51
|
Li L, Xia S, Zhao Z, Deng L, Wang H, Yang D, Hu Y, Ji J, Huang D, Xin T. EMP3 as a prognostic biomarker correlates with EMT in GBM. BMC Cancer 2024; 24:89. [PMID: 38229014 DOI: 10.1186/s12885-023-11796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Siyu Xia
- Department of Oncology, The Beidahuang Group General Hospital, Harbin, 150006, China
| | - Zitong Zhao
- Department of Anesthesiology and Pain Rehabilitation, School of Medicine, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, 201619, China
| | - Lili Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dongbo Yang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jingjing Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dayong Huang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Tao Xin
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
52
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
53
|
Li J, Zhao J, Sun S, Shen S, Zhong B, Dong X. Peptidomics insights: neutrophil extracellular traps (NETs) related to the chronic subdural hemorrhage. PeerJ 2023; 11:e16676. [PMID: 38144176 PMCID: PMC10749094 DOI: 10.7717/peerj.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic subdural hemorrhage (CSDH) refers to a hematoma with an envelope between the dura mater and the arachnoid membrane and is more common among the elderly. It was reported that the dura mater, which is highly vascularized with capillary beds, precapillary arterioles and postcapillary venules play an important role in the protection of the central nervous system (CNS). Numerous evidences suggests that peptides play an important role in neuroprotection of CNS. However, whether dura mater derived endogenous peptides participate in the pathogenesis of CSDH remains undetermined. In the current study, the peptidomic profiles were performed in human dura of CSDH (three patients) and the relative control group (three non-CSDH samples) by LC-MS (liquid chromatography-mass spectrometry). The results suggested that a total of 569 peptides were differentially expressed in the dura matter of CSDH compared with relative controls, including 217 up-regulated peptides and 352 down-regulated peptides. Gene Ontology (GO) analysis demonstrated that the precursor proteins of those differentially expressed peptides were involved in the various biological processes. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that NETs participated in the pathogenies of CSDH. Further investigate showed that H3Cit was significantly elevated in the dural and hematoma membranes of patients with CSDH compared to patients without CSDH. Taken together, our results showed the differentially expressed peptides in human dura mater of CSDH and demonstrated that NETs formation in the dural and hematoma membranes might be involved in the pathogenesis of CSDH. It is worth noting that pharmacological inhibition of NETs may have potential therapeutic implications for CSDH.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Shen
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bincheng Zhong
- Department of Emergency, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Parvanian S, Coelho-Rato LS, Patteson AE, Eriksson JE. Vimentin takes a hike - Emerging roles of extracellular vimentin in cancer and wound healing. Curr Opin Cell Biol 2023; 85:102246. [PMID: 37783033 PMCID: PMC11214764 DOI: 10.1016/j.ceb.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Vimentin is a cytoskeletal protein important for many cellular processes, including proliferation, migration, invasion, stress resistance, signaling, and many more. The vimentin-deficient mouse has revealed many of these functions as it has numerous severe phenotypes, many of which are found only following a suitable challenge or stress. While these functions are usually related to vimentin as a major intracellular protein, vimentin is also emerging as an extracellular protein, exposed at the cell surface in an oligomeric form or secreted to the extracellular environment in soluble and vesicle-bound forms. Thus, this review explores the roles of the extracellular pool of vimentin (eVIM), identified in both normal and pathological states. It focuses specifically on the recent advances regarding the role of eVIM in wound healing and cancer. Finally, it discusses new technologies and future perspectives for the clinical application of eVIM.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
55
|
Thalla DG, Lautenschläger F. Extracellular vimentin: Battle between the devil and the angel. Curr Opin Cell Biol 2023; 85:102265. [PMID: 37866018 DOI: 10.1016/j.ceb.2023.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Vimentin, an intracellular cytoskeletal protein, can be secreted by various cells in response to conditions such as injury, stress, senescence, and cancer. Once vimentin is secreted outside of the cell, it is called extracellular vimentin. This extracellular vimentin is significantly involved in pathological conditions, particularly in the areas of viral infection, cancer, immune response, and wound healing. The effects of extracellular vimentin can be either positive or negative, for example it can enhance axonal repair but also mediates SARS-CoV-2 infection. In this review, we categorize the functional implications of extracellular vimentin based on its localization outside the cell. Specifically, we classify extracellular vimentin into two distinct forms: surface vimentin, which remains bound to the cell surface, and secreted vimentin, which refers to the free form that is completely released outside the cell. Overall, extracellular vimentin has a dual nature that encompasses both beneficial and detrimental effects on the functionality of cells, organs and whole organisms. Here, we summarize its effects in viral infection, cancer, immune response and wound healing. We find that surface vimentin is often associated with negative consequences, whereas secreted vimentin manifests predominantly with positive influences. We found that the observed effects of extracellular vimentin strongly depend on the specific circumstances under which its expression occurs in cells.
Collapse
Affiliation(s)
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
56
|
Wu J, Wu X, Cheng C, Liu L, Xu L, Xu Z, Wang S, Symmes D, Mo L, Chen R, Zhang J. Therapeutic targeting of vimentin by ALD-R491 impacts multiple pathogenic processes to attenuate acute and chronic colitis in mice. Biomed Pharmacother 2023; 168:115648. [PMID: 37812892 DOI: 10.1016/j.biopha.2023.115648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Vimentin, an intermediate filament protein, crucially contributes to the pathogenesis of inflammatory bowel disease (IBD) by interacting with genetic risk factors, facilitating pathogen infection, and modulating both innate and adaptive immune responses. This study aimed to demonstrate preclinical proof-of-concept for targeting vimentin therapeutically in IBD across diverse etiologies. METHODS The small molecule compound ALD-R491 was assessed for vimentin binding using microscale thermophoresis, off-target effects via Eurofins screening, and therapeutic effects in mice with dextran sulfate sodium (DSS)-induced acute colitis and in IL-10 KO with spontaneous colitis. Parameters measured included body weight, survival, disease activity, colon length, and histology. The study analyzed intestinal proinflammatory cytokines, Th17/Treg cells, and epithelial barrier molecules, along with gut microbiota profiling. RESULTS ALD-R491 specifically bound vimentin with a dissociation constant (KD) of 328 ± 12.66 nM and no off-target effects. In the DSS model, orally administered ALD-R491 exhibited dose-dependent therapeutic effects, superior to 5-ASA and Tofacitinib. In the IL-10 KO model, ALD-R491 significantly delayed colitis onset and progression, with near-zero disease activity index scores over a 15-week treatment. ALD-R491 consistently showed in both models a reduced proinflammatory cytokine expression, including TNF-α, IL-1β, IL-6, IL-17, IL-22, a rebalanced Th17/Treg axis by reducing RORγt while enhancing FoxP3 expression, and an improved epithelial barrier integrity by increasing intestinal expressions of Mucin-2, ZO-1 and Claudin5. The intestinal dysbiosis was restored with enriched presence of probiotics. CONCLUSIONS Targeting vimentin exhibits significant therapeutic effects on various facets of IBD pathogenesis, representing a compelling approach for the development of highly effective treatments in IBD.
Collapse
Affiliation(s)
- Jianping Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cheng
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, China
| | - Lu Liu
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Union City, CA 94587, USA
| | - Lian Mo
- Aluda Pharmaceuticals, Inc., Union City, CA 94587, USA
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Union City, CA 94587, USA; Luoda Biosciences, Inc., Chuzhou, Anhui, China.
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
57
|
Rostgaard N, Olsen MH, Lolansen SD, Nørager NH, Plomgaard P, MacAulay N, Juhler M. Ventricular CSF proteomic profiles and predictors of surgical treatment outcome in chronic hydrocephalus. Acta Neurochir (Wien) 2023; 165:4059-4070. [PMID: 37857909 PMCID: PMC10739511 DOI: 10.1007/s00701-023-05832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND By applying an unbiased proteomic approach, we aimed to search for cerebrospinal fluid (CSF) protein biomarkers distinguishing between obstructive and communicating hydrocephalus in order to improve appropriate surgical selection for endoscopic third ventriculostomy vs. shunt implants. Our second study purpose was to look for potential CSF biomarkers distinguishing between patients with adult chronic hydrocephalus benefitting from surgery (responders) vs. those who did not (non-responders). METHODS Ventricular CSF samples were collected from 62 patients with communicating hydrocephalus and 28 patients with obstructive hydrocephalus. CSF was collected in relation to the patients' surgical treatment. As a control group, CSF was collected from ten patients with unruptured aneurysm undergoing preventive surgery (vascular clipping). RESULTS Mass spectrometry-based proteomic analysis of the samples identified 1251 unique proteins. No proteins differed significantly between the communicating hydrocephalus group and the obstructive hydrocephalus group. Four proteins were found to be significantly less abundant in CSF from communicating hydrocephalus patients compared to control subjects. A PCA plot revealed similar proteomic CSF profiles of obstructive and communicating hydrocephalus and control samples. For obstructive hydrocephalus, ten proteins were found to predict responders from non-responders. CONCLUSION Here, we show that the proteomic profile of ventricular CSF from patients with hydrocephalus differs slightly from control subjects. Furthermore, we find ten predictors of response to surgical outcome (endoscopic third ventriculostomy or ventriculo-peritoneal shunt) in patients with obstructive hydrocephalus.
Collapse
Affiliation(s)
- Nina Rostgaard
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Hernandez Nørager
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Centre of Diagnostic Investigations, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
58
|
Jiang NZ, Bai MZ, Huang CF, Ma ZL, Zhong RY, Fu WK, Gao L, Tian L, Mi NN, Ma HD, Lu YW, Zhang ZA, Zhao JY, Yu HY, Zhang BP, Zhang XZ, Ren YX, Zhang C, Zhang Y, Yue P, Lin YY, Meng WB. First report on establishment and characterization of the extrahepatic cholangiocarcinoma sarcoma cell line CBC2T-2. World J Gastroenterol 2023; 29:5683-5698. [PMID: 38077157 PMCID: PMC10701331 DOI: 10.3748/wjg.v29.i41.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma sarcoma is extremely rare in clinical practice. These cells consist of both epithelial and mesenchymal cells. Patient-derived cell lines that maintain tumor characteristics are valuable tools for studying the molecular mechanisms associated with carcinosarcoma. However, cholangiocarcinoma sarcoma cell lines are not available in cell banks. AIM To establish and characterize a new extrahepatic cholangiocarcinoma sarcoma cell line, namely CBC2T-2. METHODS We conducted a short tandem repeat (STR) test to confirm the identity of the CBC2T-2 cell line. Furthermore, we assessed the migratory and invasive properties of the cells and performed clonogenicity assay to evaluate the ability of individual cells to form colonies. The tumorigenic potential of CBC2T-2 cells was tested in vivo using non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The cells were injected subcutaneously and tumor formation was observed. In addition, immunohistochemical analysis was carried out to examine the expression of epithelial marker CK19 and mesenchymal marker vimentin in both CBC2T-2 cells and xenografts. The CBC2T-2 cell line was used to screen the potential therapeutic effects of various clinical agents in patients with cholangiocarcinoma sarcoma. Lastly, whole-exome sequencing was performed to identify genetic alterations and screen for somatic mutations in the CBC2T-2 cell line. RESULTS The STR test showed that there was no cross-contamination and the results were identical to those of the original tissue. The cells showed round or oval-shaped epithelioid cells and mesenchymal cells with spindle-shaped or elongated morphology. The cells exhibited a high proliferation ratio with a doubling time of 47.11 h. This cell line has migratory, invasive, and clonogenic abilities. The chromosomes in the CBC2T-2 cells were polyploidy, with numbers ranging from 69 to 79. The subcutaneous tumorigenic assay confirmed the in vivo tumorigenic ability of CBC2T-2 cells in NOD/SCID mice. CBC2T-2 cells and xenografts were positive for both the epithelial marker, CK19, and the mesenchymal marker, vimentin. These results suggest that CBC2T-2 cells may have both epithelial and mesenchymal characteristics. The cells were also used to screen clinical agents in patients with cholangiocarcinoma sarcoma, and a combination of paclitaxel and gemcitabine was found to be the most effective treatment option. CONCLUSION We established the first human cholangiocarcinoma sarcoma cell line, CBC2T-2, with stable biogenetic traits. This cell line, as a research model, has a high clinical value and would facilitate the understanding of the pathogenesis of cholangiocarcinoma sarcoma.
Collapse
Affiliation(s)
- Ning-Zu Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ming-Zhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chong-Fei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ze-Long Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ru-Yang Zhong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Kang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Liang Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ning-Ning Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hai-Dong Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ya-Wen Lu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zi-Ang Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jin-Yu Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hai-Ying Yu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Bao-Ping Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xian-Zhuo Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yan-Xian Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yong Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ping Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yan-Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Bo Meng
- Department of General Surgery, The First Hospital of Lanzhou University and Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
59
|
Hu WM, Li M, Ning JZ, Tang YQ, Song TB, Li LZ, Zou F, Cheng F, Yu WM. FAM171B stabilizes vimentin and enhances CCL2-mediated TAM infiltration to promote bladder cancer progression. J Exp Clin Cancer Res 2023; 42:290. [PMID: 37915048 PMCID: PMC10621219 DOI: 10.1186/s13046-023-02860-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Invasion and metastasis are the main causes of unfavourable prognosis in patients diagnosed with bladder cancer. The efficacy of immunotherapy in bladder cancer remains suboptimal due to the presence of an immunosuppressive microenvironment. The novel protein family with sequence similarity 171B (FAM171B) has been identified, but its precise role and mechanism in bladder cancer remain unclear. METHODS In this study, we conducted an analysis to investigate the associations between FAM171B expression and the prognosis and clinicopathological stage of bladder cancer. To this end, we utilized RNA sequencing data from the TCGA and GEO databases, as well as tumor tissue specimens obtained from our clinical centre. RNA sequencing analysis allowed us to examine the biological function of FAM171B at the transcriptional level in bladder cancer cells. Additionally, we used immunoprecipitation and mass spectrometry to identify the protein that interacts with FAM171B in bladder cancer cells. The effects of FAM171B on modulating tumor-associated macrophages (TAMs) and vimentin-mediated tumor progression, as well as the underlying mechanisms, were clarified by phalloidin staining, immunofluorescence staining, ELISA, RNA immunoprecipitation, flow cytometry and a bladder cancer graft model. RESULTS FAM171B expression exhibits strong positive correlation with poor survival outcomes and advanced clinicopathological stages in patients with bladder cancer. FAM171B significantly promoted bladder cancer growth and metastasis, accompanied by TAM accumulation in the microenvironment, in vivo and in vitro. Through studies of the molecular mechanism, we found that FAM171B contributes to tumor progression by stabilizing vimentin in the cytoplasm. Additionally, our research revealed that FAM171B enhances the splicing of CCL2 mRNA by interacting with heterogeneous nuclear ribonucleoprotein U (HNRNPU), ultimately leading to increased recruitment and M2 polarization of TAMs. CONCLUSIONS In this study, we identified FAM171B as a potent factor that promotes the progression of bladder cancer. These findings establish a solid theoretical foundation for considering FAM171B as a potential diagnostic and therapeutic biomarker for bladder cancer.
Collapse
Affiliation(s)
- Wei-Min Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Qi Tang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian-Bao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lin-Zhi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
60
|
van Loon K, van Breest Smallenburg ME, Huijbers EJM, Griffioen AW, van Beijnum JR. Extracellular vimentin as a versatile immune suppressive protein in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188985. [PMID: 37717859 DOI: 10.1016/j.bbcan.2023.188985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The interest in finding new targets in the tumor microenvironment for anti-cancer therapy has increased rapidly over the years. More specifically, the tumor-associated blood vessels are a promising target. We recently found that the intermediate filament protein vimentin is externalized by endothelial cells of the tumor vasculature. Extracellular vimentin was shown to sustain angiogenesis by mimicking VEGF and supporting cell migration, as well as endothelial cell anergy, the unresponsiveness of the endothelium to proinflammatory cytokines. The latter hampers immune cell infiltration and subsequently provides escape from tumor immunity. Other studies showed that extracellular vimentin plays a role in sustained systemic and local inflammation. Here we will review the reported roles of extracellular vimentin with a particular emphasis on its involvement in the interactions between immune cells and the endothelium in the tumor microenvironment. To this end, we discuss the different ways by which extracellular vimentin modulates the immune system. Moreover, we review how this protein can alter immune cell-vessel wall adhesion by altering the expression of adhesion proteins, attenuating immune cell infiltration into the tumor parenchyma. Finally, we discuss how vimentin-targeting therapy can reverse endothelial cell anergy and promote immune infiltration, supporting anti-tumor immunity.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathilda E van Breest Smallenburg
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands.
| |
Collapse
|
61
|
Grolleman J, van Engeland NCA, Raza M, Azimi S, Conte V, Sahlgren CM, Bouten CVC. Environmental stiffness restores mechanical homeostasis in vimentin-depleted cells. Sci Rep 2023; 13:18374. [PMID: 37884575 PMCID: PMC10603057 DOI: 10.1038/s41598-023-44835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Recent experimental evidence indicates a role for the intermediate filament vimentin in regulating cellular mechanical homeostasis, but its precise contribution remains to be discovered. Mechanical homeostasis requires a balanced bi-directional interplay between the cell's microenvironment and the cellular morphological and mechanical state-this balance being regulated via processes of mechanotransduction and mechanoresponse, commonly referred to as mechanoreciprocity. Here, we systematically analyze vimentin-expressing and vimentin-depleted cells in a swatch of in vitro cellular microenvironments varying in stiffness and/or ECM density. We find that vimentin-expressing cells maintain mechanical homeostasis by adapting cellular morphology and mechanics to micromechanical changes in the microenvironment. However, vimentin-depleted cells lose this mechanoresponse ability on short timescales, only to reacquire it on longer time scales. Indeed, we find that the morphology and mechanics of vimentin-depleted cell in stiffened microenvironmental conditions can get restored to the homeostatic levels of vimentin-expressing cells. Additionally, we observed vimentin-depleted cells increasing collagen matrix synthesis and its crosslinking, a phenomenon which is known to increase matrix stiffness, and which we now hypothesize to be a cellular compensation mechanism for the loss of vimentin. Taken together, our findings provide further insight in the regulating role of intermediate filament vimentin in mediating mechanoreciprocity and mechanical homeostasis.
Collapse
Affiliation(s)
- Janine Grolleman
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
| | - Nicole C A van Engeland
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland
| | - Minahil Raza
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
| | - Sepinoud Azimi
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
- Department of Information and Communication Technology, Technology, Policy and Management, Delft University of Technology, Delft, 2600GA, The Netherlands
| | - Vito Conte
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08036, Barcelona, Spain.
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
| |
Collapse
|
62
|
Han Y, Wu Y, He B, Wu D, Hua J, Qian H, Zhang J. DNA nanoparticles targeting FOXO4 selectively eliminate cigarette smoke-induced senescent lung fibroblasts. NANOSCALE ADVANCES 2023; 5:5965-5973. [PMID: 37881696 PMCID: PMC10597553 DOI: 10.1039/d3na00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
The pathogenesis and development of chronic obstructive pulmonary disease (COPD) are significantly related to cellular senescence. Strategies to eliminate senescent cells have been confirmed to benefit several senescence-related diseases. However, there are few reports of senolytic drugs in COPD management. In this study, we demonstrated elevated FOXO4 expression in cigarette smoke-induced senescent lung fibroblasts both in vitro and in vivo. Additionally, self-assembled DNA nanotubes loaded with single-stranded FOXO4 siRNA (siFOXO4-NT) were designed and synthesized to knockdown FOXO4 in senescent fibroblasts. We found that siFOXO4-NT can concentration- and time-dependently enter human lung fibroblasts (HFL-1 cells), thereby reducing FOXO4 levels in vitro. Most importantly, siFOXO4-NT selectively cleared senescent HFL-1 cells by reducing BCLXL expression and the BCL2/BAX ratio, which were increased in CSE-induced senescent HFL-1 cells. The findings from our work present a novel strategy for senolytic drug development for COPD therapy.
Collapse
Affiliation(s)
- Yaopin Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Yixing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
- Department of General Practice, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Jianlan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| |
Collapse
|
63
|
Vitali T, Sanchez-Alvarez R, Witkos TM, Bantounas I, Cutiongco MFA, Dudek M, Yan G, Mironov AA, Swift J, Lowe M. Vimentin intermediate filaments provide structural stability to the mammalian Golgi complex. J Cell Sci 2023; 136:jcs260577. [PMID: 37732478 PMCID: PMC10617613 DOI: 10.1242/jcs.260577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/18/2023] [Indexed: 09/22/2023] Open
Abstract
The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.
Collapse
Affiliation(s)
- Teresa Vitali
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Rosa Sanchez-Alvarez
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tomasz M. Witkos
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ioannis Bantounas
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Marie F. A. Cutiongco
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Michal Dudek
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Guanhua Yan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Alexander A. Mironov
- Electron Microscopy Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
64
|
Hao M, Guan Z, Zhang Z, Ai H, Peng X, Zhou H, Xu J, Gu Q. Atractylodinol prevents pulmonary fibrosis through inhibiting TGF-β receptor 1 recycling by stabilizing vimentin. Mol Ther 2023; 31:3015-3033. [PMID: 37641404 PMCID: PMC10556230 DOI: 10.1016/j.ymthe.2023.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-β1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-β receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-β/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-β receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.
Collapse
Affiliation(s)
- Mengjiao Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhuoji Guan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhikang Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haopeng Ai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihao Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qiong Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
65
|
Pajares MA, Hernández-Gerez E, Pekny M, Pérez-Sala D. Alexander disease: the road ahead. Neural Regen Res 2023; 18:2156-2160. [PMID: 37056123 DOI: 10.4103/1673-5374.369097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein, a type III intermediate filament protein expressed in astrocytes. Both early (infantile or juvenile) and adult onsets of the disease are known and, in both cases, astrocytes present characteristic aggregates, named Rosenthal fibers. Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner. Although the presence of aggregates suggests a proteostasis problem of the mutant forms, this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased. Additionally, several isoforms of glial fibrillary acidic protein have been described to date, while the impact of the mutations on their expression and proportion has not been exhaustively studied. Moreover, the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered, leading to functional changes that may modify the morphology, positioning, and/or the function of several organelles, in turn, impairing astrocyte normal function and subsequently affecting neurons. In particular, mitochondrial function, redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes. To study the disease and to develop putative therapeutic strategies, several experimental models have been developed, a collection that is in constant growth. The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations, together with the availability of new and more relevant experimental models, holds promise for the design and assay of novel therapeutic strategies.
Collapse
Affiliation(s)
- María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Elena Hernández-Gerez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; University of Newcastle, Newcastle, NSW, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
66
|
Andrianto A, Sudiana IK, Suprabawati DGA, Notobroto HB. Immune system and tumor microenvironment in early-stage breast cancer: different mechanisms for early recurrence after mastectomy and chemotherapy on ductal and lobular types. F1000Res 2023; 12:841. [PMID: 38046195 PMCID: PMC10692586 DOI: 10.12688/f1000research.134302.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background: The most common type of breast cancer is the ductal type (IDC), followed by lobular type (ILC). Surgery is the main therapy for early-stage breast cancer. Adjuvant chemotherapy might be given to those at high risk of recurrence. Recurrence is still possible after mastectomy and chemotherapy and most often occurs in the first two years. We aimed to determine the mechanisms in early local recurrence in both types. Methods: We used an observational method with a cross-sectional study design. The samples were patients with early-stage IDC and ILC, who underwent modified radical mastectomy (MRM) and got adjuvant chemotherapy with taxan and anthracycline base, and experienced recurrence in the first two years after surgery. The materials in this study were paraffin blocks from surgical specimens; we examined vimentin, α-SMA and MMP1, PDGF and CD95 by immunohistochemistry (IHC). Data analysis was done using OpenEpi 3.0.1 and EZR. We used pathway analysis with linear regression. Results: There were 25 samples with local recurrence and 25 samples without recurrence in the ductal type group. The lobular type group consisted of six subjects without recurrence and seven with recurrence. There were significant differences in the expression of vimentin (p=0.000 and 0.021, respectively), PDGF (p=0.000 and 0.002) and CD95 (p=0.000 and 0.045) in ductal and lobular cancer types, respectively. MMP1 (p=0.000) and α-SMA (p=0.000) only showed a significant difference in the ductal type. The pathway analysis showed that in the ductal type, the mechanism of recurrence was enabled by two factors: α-SMA and CD95. Meanwhile, for the lobular type, the recurrence mechanism was through the CD95 pathway. Conclusions: Local recurrence in early-stage IDC and ILC had different mechanisms. These findings are expected to make cancer treatment in both types more focused and efficient.
Collapse
Affiliation(s)
- Andreas Andrianto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Desak Gede Agung Suprabawati
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatistics and Population, Faculty of Public Health, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| |
Collapse
|
67
|
Jiang Y, Feng Y, Huang J, Huang Z, Tan R, Li T, Chen Z, Tang X, Qiu J, Li C, Chen H, Yang Z. LAD1 promotes malignant progression by diminishing ubiquitin-dependent degradation of vimentin in gastric cancer. J Transl Med 2023; 21:632. [PMID: 37718450 PMCID: PMC10506284 DOI: 10.1186/s12967-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Ladinin-1 (LAD1), an anchoring filament protein, has been associated with several cancer types, including cancers of the colon, lungs, and breast. However, it is still unclear how and why LAD1 causes gastric cancer (GC). METHODS Multiple in vitro and in vivo, functional gains and loss experiments were carried out in the current study to confirm the function of LAD1. Mass spectrometry was used to find the proteins that interact with LAD1. Immunoprecipitation analyses revealed the mechanism of LAD1 involved in promoting aggressiveness. RESULTS The results revealed that the LAD1 was overexpressed in GC tissues, and participants with increased LAD1 expression exhibited poorer disease-free survival (DFS) and overall survival (OS). Functionally, LAD1 promotes cellular invasion, migration, proliferation, and chemoresistance in vivo and in vitro in the subcutaneous patient-and cell-derived xenograft (PDX and CDX) tumor models. Mechanistically, LAD1 competitively bound to Vimentin, preventing it from interacting with the E3 ubiquitin ligase macrophage erythroblast attacher (MAEA), which led to a reduction in K48-linked ubiquitination of Vimentin and an increase in Vimentin protein levels in GC cells. CONCLUSIONS In conclusion, the current investigation indicated that LAD1 has been predicted as a possible prognostic biomarker and therapeutic target for GC due to its ability to suppress Vimentin-MAEA interaction.
Collapse
Affiliation(s)
- Yingming Jiang
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yanchun Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jintuan Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhenze Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Rongchang Tan
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Tuoyang Li
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zijian Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xiaocheng Tang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jun Qiu
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chujun Li
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Hao Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Zuli Yang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
68
|
Jin X, Ou Z, Zhang G, Shi R, Yang J, Liu W, Luo G, Deng J, Wang W. A CO-mediated photothermal therapy to kill drug-resistant bacteria and minimize thermal injury for infected diabetic wound healing. Biomater Sci 2023; 11:6236-6251. [PMID: 37531204 DOI: 10.1039/d3bm00774j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
With an increasing proportion of drug-resistant bacteria, photothermal therapy (PTT) is a promising alternative to antibiotic treatment for infected diabetic skin ulcers. However, the inevitable thermal damage to the tissues restricts its clinical practice. Carbon monoxide (CO), as a bioactive gas molecule, can selectively inhibit bacterial growth and promote tissue regeneration, which may be coordinated with PTT for drug-resistant bacteria killing and tissue protection. Herein, a CO-mediated PTT agent (CO@mPDA) was engineered by loading manganese carbonyl groups into mesoporous polydopamine (mPDA) nanoparticles via coordination interactions between the metal center and a catechol group. Compared to the traditional PTT, the CO-mediated PTT increases the inhibition ratio of the drug-resistant bacteria both in vitro and in diabetic wound beds by selectively inhibiting the co-chaperone of the heat shock protein 90 kDa (Hsp90), and lowers the heat resistance of the bacteria rather than the mammalian tissues. Meanwhile, the tissue-protective proteins, such as Hsp90 and vimentin (Vim), are upregulated via the WNT and PI3K-Akt pathways to reduce thermal injury, especially with a laser with a high-power density. The CO-mediated PTT unified the bacterial killing with tissue protection, which offers a promising concept to improve PTT efficiency and minimize the side-effects of PTT when treating infected skin wounds.
Collapse
Affiliation(s)
- Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Zelin Ou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Guowei Zhang
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Rong Shi
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jumin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Gaoxing Luo
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
69
|
Moneo-Corcuera D, Viedma-Poyatos Á, Stamatakis K, Pérez-Sala D. Desmin Reorganization by Stimuli Inducing Oxidative Stress and Electrophiles: Role of Its Single Cysteine Residue. Antioxidants (Basel) 2023; 12:1703. [PMID: 37760006 PMCID: PMC10525603 DOI: 10.3390/antiox12091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
The type III intermediate filament proteins vimentin and GFAP are modulated by oxidants and electrophiles, mainly through perturbation of their single cysteine residues. Desmin, the type III intermediate filament protein specific to muscle cells, is critical for muscle homeostasis, playing a key role in sarcomere organization and mitochondrial function. Here, we have studied the impact of oxidants and cysteine-reactive agents on desmin behavior. Our results show that several reactive species and drugs induce covalent modifications of desmin in vitro, of which its single cysteine residue, C333, is an important target. Moreover, stimuli eliciting oxidative stress or lipoxidation, including H2O2, 15-deoxy-prostaglandin J2, and CoCl2-elicited chemical hypoxia, provoke desmin disorganization in H9c2 rat cardiomyoblasts transfected with wild-type desmin, which is partially attenuated in cells expressing a C333S mutant. Notably, in cells lacking other cytoplasmic intermediate filaments, network formation by desmin C333S appears less efficient than that of desmin wt, especially when these proteins are expressed as fluorescent fusion constructs. Nevertheless, in these cells, the desmin C333S organization is also protected from disruption by oxidants. Taken together, our results indicate that desmin is a target for oxidative and electrophilic stress, which elicit desmin remodeling conditioned by the presence of its single cysteine residue.
Collapse
Affiliation(s)
- Diego Moneo-Corcuera
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Konstantinos Stamatakis
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), 28049 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| |
Collapse
|
70
|
Liu Y, Chen Y, Wang F, Lin J, Tan X, Chen C, Wu LL, Zhang X, Wang Y, Shi Y, Yan X, Zhao K. Caveolin-1 promotes glioma progression and maintains its mitochondrial inhibition resistance. Discov Oncol 2023; 14:161. [PMID: 37642765 PMCID: PMC10465474 DOI: 10.1007/s12672-023-00765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Glioma is a lethal brain cancer and lacking effective therapies. Challenges include no effective therapeutic target, intra- and intertumoral heterogeneity, inadequate effective drugs, and an immunosuppressive microenvironment, etc. Deciphering the pathogenesis of gliomas and finding out the working mechanisms are urgent and necessary for glioma treatment. Identification of prognostic biomarkers and targeting the biomarker genes will be a promising therapy. METHODS From our RNA-sequencing data of the oxidative phosphorylation (OXPHOS)-inhibition sensitive and OXPHOS-resistant cell lines, we found that the scaffolding protein caveolin 1 (CAV1) is highly expressed in the resistant group but not in the sensitive group. By comprehensive analysis of our RNA sequencing data, Whole Genome Bisulfite Sequencing (WGBS) data and public databases, we found that CAV1 is highly expressed in gliomas and its expression is positively related with pathological processes, higher CAV1 predicts shorter overall survival. RESULTS Further analysis indicated that (1) the differentiated genes in CAV1-high groups are enriched in immune infiltration and immune response; (2) CAV1 is positively correlated with tumor metastasis markers; (3) the methylation level of CAV1 promoters in glioma group is lower in higher stage than that in lower stage; (4) CAV1 is positively correlated with glioma stemness; (5) higher expression of CAV1 renders the glioma cells' resistant to oxidative phosphorylation inhibitors. CONCLUSION Therefore, we identified a key gene CAV1 and deciphered its function in glioma progression and prognosis, proposing that CAV1 may be a therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Chen
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Fei Wang
- Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, 201399, China
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiaoling Zhang
- National Joint Engineering Laboratory for Human Disease Animal Models, First Affiliated Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, First Hospital of Jilin University, Changchun, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Xiaoli Yan
- Laboratory of Immunology and Pathogen Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
71
|
Bucki R, Iwamoto DV, Shi X, Kerr KE, Byfield FJ, Suprewicz Ł, Skłodowski K, Sutaria J, Misiak P, Wilczewska AZ, Ramachandran S, Wolfe A, Thanh MTH, Whalen E, Patteson AE, Janmey PA. Extracellular vimentin is sufficient to promote cell attachment, spreading, and motility by a mechanism involving N-acetyl glucosamine-containing structures. J Biol Chem 2023; 299:104963. [PMID: 37356720 PMCID: PMC10392088 DOI: 10.1016/j.jbc.2023.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
| | - Daniel V Iwamoto
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuechen Shi
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine E Kerr
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fitzroy J Byfield
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Julian Sutaria
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paweł Misiak
- Faculty of Chemistry, University of Białystok, Białystok, Poland
| | | | | | - Aaron Wolfe
- Ichor Life Sciences, Inc, LaFayette, New York, USA; Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA
| | - Minh-Tri Ho Thanh
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Eli Whalen
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Alison E Patteson
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA.
| | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
72
|
Rapanotti MC, Cugini E, Campione E, Di Raimondo C, Costanza G, Rossi P, Ferlosio A, Bernardini S, Orlandi A, De Luca A, Bianchi L. Epithelial-to-Mesenchymal Transition Gene Signature in Circulating Melanoma Cells: Biological and Clinical Relevance. Int J Mol Sci 2023; 24:11792. [PMID: 37511550 PMCID: PMC10380315 DOI: 10.3390/ijms241411792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The most promising method for monitoring patients with minimal morbidity is the detection of circulating melanoma cells (CMCs). We have shown that CD45-CD146+ABCB5+ CMCs identify a rare primitive stem/mesenchymal CMCs population associated with disease progression. The epithelial-to-mesenchymal transition (EMT) confers cancer cells a hybrid epithelial/mesenchymal phenotype promoting metastatization. Thus, we investigated the potential clinical value of the EMT gene signature of these primitive CMCs. A reliable quantitative real-time polymerase chain reaction (qRT-PCR) protocol was settled up using tumor cell lines RNA dilutions. Afterwards, immune-magnetically isolated CMCs from advanced melanoma patients, at onset and at the first checkpoint (following immune or targeted therapy), were tested for the level of EMT hallmarks and EMT transcription factor genes. Despite the small cohort of patients, we obtained promising results. Indeed, we observed a deep gene rewiring of the EMT investigated genes: in particular we found that the EMT gene signature of isolated CMCs correlated with patients' clinical outcomes. In conclusion, We established a reliable qRT-PCR protocol with high sensitivity and specificity to characterize the gene expression of isolated CMCs. To our knowledge, this is the first evidence demonstrating the impact of immune or targeted therapies on EMT hallmark gene expressions in CMCs from advanced melanoma patients.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
73
|
Gravina G, Ardalan M, Chumak T, Nilsson AK, Ek JC, Danielsson H, Svedin P, Pekny M, Pekna M, Sävman K, Hellström A, Mallard C. Proteomics identifies lipocalin-2 in neonatal inflammation associated with cerebrovascular alteration in mice and preterm infants. iScience 2023; 26:107217. [PMID: 37496672 PMCID: PMC10366453 DOI: 10.1016/j.isci.2023.107217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Staphylococcus (S.) epidermidis is the most common nosocomial coagulase-negative staphylococci infection in preterm infants. Clinical signs of infection are often unspecific and novel markers to complement diagnosis are needed. We investigated proteomic alterations in mouse brain after S. epidermidis infection and in preterm infant blood. We identified lipocalin-2 (LCN2) as a crucial protein associated with cerebrovascular changes and astrocyte reactivity in mice. We further proved that LCN2 protein expression was associated with endothelial cells but not astrocyte reactivity. By combining network analysis and differential expression approaches, we identified LCN2 linked to blood C-reactive protein levels in preterm infants born <28 weeks of gestation. Blood LCN2 levels were associated with similar alterations of cytokines and chemokines in both infected mice and human preterm infants with increased levels of C-reactive protein. This experimental and clinical study suggests that LCN2 may be a marker of preterm infection/inflammation associated with cerebrovascular changes and neuroinflammation.
Collapse
Affiliation(s)
- Giacomo Gravina
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatric Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joakim C. Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Danielsson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- University of Newcastle, Newcastle, NSW, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Marcela Pekna
- University of Newcastle, Newcastle, NSW, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Laboratory of Regenerative Neurobiology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
74
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
75
|
Liu Y, Cui J, Zhang J, Chen Z, Song Z, Bao D, Xiang R, Li D, Yang Y. Excess KLHL24 Impairs Skin Wound Healing through the Degradation of Vimentin. J Invest Dermatol 2023; 143:1289-1298.e15. [PMID: 36716923 DOI: 10.1016/j.jid.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 01/30/2023]
Abstract
Start codon variants in ubiquitin ligase KLHL24 lead to a gain-of-function mutant KLHL24-ΔN28, which mediates the excessive degradation of keratin 15, desmin, and keratin 14, resulting in alopecia, cardiopathy, and epidermolysis bullosa syndrome. Patients with alopecia, cardiopathy, and epidermolysis bullosa syndrome normally present atrophic scars after wounds heal, which is rare in KRT14-related epidermolysis bullosa. The mechanisms underlying the formation of atrophic scars in epidermolysis bullosa of patients with alopecia, cardiopathy, and epidermolysis bullosa syndrome remain unclear. This study showed that KLHL24-ΔN28 impaired skin wound healing by excessively degrading vimentin. Heterozygous Klhl24c.3G>T knock-in mice displayed delayed wound healing and decreased wound collagen deposition. We identified vimentin as an unreported substrate of KLHL24. KLHL24-ΔN28 mediated the excessive degradation of vimentin, which failed to maintain efficient fibroblast proliferation and activation during wound healing. Furthermore, by mediating vimentin degradation, KLHL24 can hinder myofibroblast activation, which attenuated bleomycin-induced skin fibrosis. These findings showed the function of KLHL24 in regulating tissue remodeling, atrophic scarring, and fibrosis.
Collapse
Affiliation(s)
- Yihe Liu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jun Cui
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jing Zhang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhiming Chen
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhongya Song
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dan Bao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ruiyu Xiang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dongqing Li
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Yang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
76
|
Cheng L, Li S, He K, Kang Y, Li T, Li C, Zhang Y, Zhang W, Huang Y. Melatonin regulates cancer migration and stemness and enhances the anti-tumour effect of cisplatin. J Cell Mol Med 2023. [PMID: 37307404 PMCID: PMC10399526 DOI: 10.1111/jcmm.17809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Melatonin, a lipophilic hormone released from the pineal gland, has oncostatic effects on various types of cancers. However, its cancer treatment potential needs to be improved by deciphering its corresponding mechanisms of action and optimising therapeutic strategy. In the present study, melatonin inhibited gastric cancer cell migration and soft agar colony formation. Magnetic-activated cell sorting was applied to isolate CD133+ cancer stem cells. Gene expression analysis showed that melatonin lowered the upregulation of LC3-II expression in CD133+ cells compared to CD133- cells. Several long non-coding RNAs and many components in the canonical Wnt signalling pathway were altered in melatonin-treated cells. In addition, knockdown of long non-coding RNA H19 enhanced the expression of pro-apoptotic genes, Bax and Bak, induced by melatonin treatment. Combinatorial treatment with melatonin and cisplatin was investigated to improve the applicability of melatonin as an anticancer therapy. Combinatorial treatment increased the apoptosis rate and induced G0/G1 cell cycle arrest. Melatonin can regulate migration and stemness in gastric cancer cells by modifying many signalling pathways. Combinatorial treatment with melatonin and cisplatin has the potential to improve the therapeutic efficacy of both.
Collapse
Affiliation(s)
- Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Kailun He
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
77
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
78
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
79
|
Pekna M, Siqin S, de Pablo Y, Stokowska A, Torinsson Naluai Å, Pekny M. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent. Neurochem Res 2023; 48:1233-1241. [PMID: 36097103 PMCID: PMC10030406 DOI: 10.1007/s11064-022-03743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naïve astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
| | - Sumen Siqin
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
- Division of Episomal Persistent DNA in Cancer and Chronic Diseases, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Åsa Torinsson Naluai
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
- Florey Institute of Neuroscience and and Mental Health, Parkville, Melbourne, Australia.
- University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
80
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
81
|
Leube RE, Quinlan RA. Editorial: The wetware credentials of intermediate filaments involves coordinating, organising and networking in cells and tissues. Front Cell Dev Biol 2023; 11:1146618. [PMID: 36861037 PMCID: PMC9969193 DOI: 10.3389/fcell.2023.1146618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
- Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany,*Correspondence: Rudolf E. Leube, ; Roy A. Quinlan,
| | - Roy A. Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom,Biophysical Sciences Institute, University of Durham, Durham, United Kingdom,Department of Biological Structure, University of Washington, Seattle, WA, United States,*Correspondence: Rudolf E. Leube, ; Roy A. Quinlan,
| |
Collapse
|
82
|
Xu H, Bensalel J, Raju S, Capobianco E, Lu ML, Wei J. Characterization of huntingtin interactomes and their dynamic responses in living cells by proximity proteomics. J Neurochem 2023; 164:512-528. [PMID: 36437609 DOI: 10.1111/jnc.15726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Huntingtin (Htt) is a large protein without clearly defined molecular functions. Mutation in this protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Identification of Htt-interacting proteins by the traditional approaches including yeast two-hybrid systems and affinity purifications has greatly facilitated the understanding of Htt function. However, these methods eliminated the intracellular spatial information of the Htt interactome during sample preparations. Moreover, the temporal changes of the Htt interactome in response to acute cellular stresses cannot be easily resolved with these approaches. Ascorbate peroxidase (APEX2)-based proximity labeling has been used to spatiotemporally investigate protein-protein interactions in living cells. In this study, we generated stable human SH-SY5Y cell lines expressing full-length Htt23Q and Htt145Q with N-terminus tagged Flag-APEX2 to quantitatively map the spatiotemporal changes of Htt interactome to a mild acute proteotoxic stress. Our data revealed that normal and mutant Htt (muHtt) are associated with distinct intracellular microenvironments. Specifically, mutant Htt is preferentially associated with intermediate filaments and myosin complexes. Furthermore, the dynamic changes of Htt interactomes in response to stress are different between normal and mutant Htt. Vimentin is identified as one of the most significant proteins that preferentially interacts with muHtt in situ. Further functional studies demonstrated that mutant Htt affects the vimentin's function of regulating proteostasis in healthy and HD human neural stem cells. Taken together, our data offer important insights into the molecular functions of normal and mutant Htt by providing a list of Htt-interacting proteins in their natural cellular context for further studies in different HD models.
Collapse
Affiliation(s)
- Hongyuan Xu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Johanna Bensalel
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sunil Raju
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | | | - Michael L Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jianning Wei
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
83
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
84
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 PMCID: PMC9885403 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/19/2022] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
85
|
Drobinski PJ, Nissen NI, Sinkeviciute D, Willumsen N, Karsdal MA, Bay-Jensen AC. In Contrast to Anti-CCP, MMP-Degraded and Citrullinated Vimentin (VICM) Is Both a Diagnostic and a Treatment Response Biomarker. Int J Mol Sci 2022; 24:ijms24010321. [PMID: 36613765 PMCID: PMC9820189 DOI: 10.3390/ijms24010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Protein citrullination and degradation by matrix metalloproteinases (MMP) plays a central role in the pathology of rheumatoid arthritis (RA). Autoantibodies are known to target citrullinated vimentin. The aim of this study was to investigate the relationship between the blood levels of MMP-degraded and citrullinated vimentin (VICM), as compared with the levels of MMP-degraded and non-citrullinated vimentin (VIM), and the standard anti-CCP biomarker in RA patients undergoing treatment. Thus, VIM, VICM and anti-CCP were quantified by ELISA in serum samples from baseline and week 8 of patients (n = 257) with RA, treated with either tocilizumab (8 mg/kg), methotrexate (7.5−15 mg/kg) or a placebo and compared with a reference cohort (n = 64). The three biomarkers were elevated in RA serum compared with the reference cohort: medians were 1.7 vs. 0.8 ng/mL (p < 0.05) for VIM; 7.5 vs. 0.7 ng/mL (p < 0.0001) for VICM; 57 vs. 4 RU/mL (p < 0.001) for anti-CCP. VICM was decreased in response to tocilizumab (2.9-fold, p < 0.0001) and to methotrexate (1.5-fold, p < 0.05) compared with the placebo, while anti-CCP was not. Serum VIM was also modulated by both drugs, although to a lesser degree. A high baseline level of VICM was predictive of a low disease activity response at week 8. In conclusion, VICM can differentiate between RA and healthy donors in a similar manner to anti-CCP; furthermore, VICM is also a pharmacodynamic marker.
Collapse
Affiliation(s)
- Patryk J. Drobinski
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Neel I. Nissen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Oncology, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - Dovile Sinkeviciute
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | | | - Morten A. Karsdal
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
- Oncology, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - Anne C. Bay-Jensen
- ImmunoScience, Nordic Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark
- Correspondence:
| |
Collapse
|
86
|
Winkiel MJ, Chowański S, Słocińska M. Anticancer activity of glycoalkaloids from Solanum plants: A review. Front Pharmacol 2022; 13:979451. [PMID: 36569285 PMCID: PMC9767987 DOI: 10.3389/fphar.2022.979451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of death worldwide. For this reason, new compounds that have chemotherapeutic potential have been identified. One such group of substances is Solanaceae glycoalkaloids (GAs). They are natural compounds produced by plants widely used in traditional medicine for healing many disorders. Among others, GAs exhibit significant antitumor properties, for example, a strong inhibitory effect on cancer cell growth. This activity can result in the induction of tumor cell apoptosis, which can occur via different molecular pathways. The molecular mechanisms of the action of GAs are the subject of intensive research, as improved understanding could lead to the development of new cancer therapies. The genetic basis for the formation of neoplasms are mutations in protooncogenes, suppressors, and apoptosis-controlling and repair genes; therefore, substances with antineoplastic properties may affect the levels of their expression or the levels of their expression products. Therapeutic compounds can be applied separately or in combination with other drugs to increase the efficiency of cancer therapy; they can act on the cell through various mechanisms at different stages of carcinogenesis, inducing the process of apoptosis, blocking cell proliferation and migration, and inhibiting angiogenesis. This review summarizes the newest studies on the anticancer properties of solanine (SN), chaconine (CH), solasonine (SS), solamargine (SM), tomatine (TT) and their extracts from Solanum plants.
Collapse
|
87
|
Pérez-Sala D, Guo M. Editorial: Intermediate filaments structure, function, and clinical significance. Front Cell Dev Biol 2022; 10:1103110. [PMID: 36531962 PMCID: PMC9748686 DOI: 10.3389/fcell.2022.1103110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 10/28/2023] Open
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Ming Guo
- Department of Mechanical Engineering, Physics of Living Systems Center, Center for Multi-Cellular Engineered Living Systems, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
88
|
Kim HR, Warrington SJ, López-Guajardo A, Al Hennawi K, Cook SL, Griffith ZDJ, Symmes D, Zhang T, Qu Z, Xu Y, Chen R, Gad AKB. ALD-R491 regulates vimentin filament stability and solubility, cell contractile force, cell migration speed and directionality. Front Cell Dev Biol 2022; 10:926283. [PMID: 36483676 PMCID: PMC9723350 DOI: 10.3389/fcell.2022.926283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/07/2022] [Indexed: 08/12/2023] Open
Abstract
Metastasizing cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumors in the clinic. However, the role of vimentin in cell motility, and if the assembly of non-filamentous variants of vimentin into filaments regulates cell migration remains unclear. We observed that the vimentin-targeting drug ALD-R491 increased the stability of vimentin filaments, by reducing filament assembly and/or disassembly. ALD-R491-treatment also resulted in more bundled and disorganized filaments and an increased pool of non-filamentous vimentin. This was accompanied by a reduction in size of cell-matrix adhesions and increased cellular contractile forces. Moreover, during cell migration, cells showed erratic formation of lamellipodia at the cell periphery, loss of coordinated cell movement, reduced cell migration speed, directionality and an elongated cell shape with long thin extensions at the rear that often detached. Taken together, these results indicate that the stability of vimentin filaments and the soluble pool of vimentin regulate the speed and directionality of cell migration and the capacity of cells to migrate in a mechanically cohesive manner. These observations suggest that the stability of vimentin filaments governs the adhesive, physical and migratory properties of cells, and expands our understanding of vimentin functions in health and disease, including cancer metastasis.
Collapse
Affiliation(s)
- Hyejeong Rosemary Kim
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | - Ana López-Guajardo
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Khairat Al Hennawi
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sarah L. Cook
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Zak D. J. Griffith
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Tao Zhang
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Zhipeng Qu
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
| |
Collapse
|
89
|
Marynowska M, Herosimczyk A, Lepczyński A, Barszcz M, Konopka A, Dunisławska A, Ożgo M. Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources. Animals (Basel) 2022; 12:3147. [PMID: 36428375 PMCID: PMC9687048 DOI: 10.3390/ani12223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, two different ITFs sources were incorporated into a cereal-based diet to evaluate possible aortic protein and gene changes in nursery pigs. The animals were fed two different experimental diets from the 10th day of life, supplemented with either 4% of dried chicory root (CR) or with 2% of native inulin (IN). After a 40-day dietary intervention trial, pigs were sacrificed at day 50 and the aortas were harvested. Our data indicate that dietary ITFs have the potential to influence several structural and physiological changes that are reflected both in the mRNA and protein levels in porcine aorta. In contrast to our hypothesis, we could not show any beneficial effects of a CR diet on vascular functions. The direction of changes of several proteins and genes may indicate disrupted ECM turnover (COL6A1 and COL6A2, MMP2, TIMP3, EFEMP1), increased inflammation and lipid accumulation (FFAR2), as well as decreased activity of endothelial nitric oxide synthase (TXNDC5, ORM1). On the other hand, the IN diet may counteract a highly pro-oxidant environment through the endothelin-NO axis (CALR, TCP1, HSP8, PDIA3, RCN2), fibrinolytic activity (ANXA2), anti-atherogenic (CAVIN-1) and anti-calcification (LMNA) properties, thus contributing to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Adrianna Konopka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
90
|
Hao Y, Yang J, Yang B, Zhang T, Shi X, Yang X, Zhang D, Zhao D, Yan W, Chen L, Liu X, Zheng H, Zhang K. Identification and analysis of the interaction network of African swine fever virus D1133L with host proteins. Front Microbiol 2022; 13:1037346. [PMID: 36406406 PMCID: PMC9673173 DOI: 10.3389/fmicb.2022.1037346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
African swine fever (ASF) is a contagious and lethal hemorrhagic disease in pigs; its spread results in huge economic losses to the global pig industry. ASF virus (ASFV) is a large double-stranded DNA virus encoding >150 open reading frames. Among them, ASFV-encoded D1133L was predicted to be a helicase but its specific function remains unknown. Since virus-host protein interactions are key to understanding viral protein function, we used co-immunoprecipitation combined with liquid chromatography-mass spectrometry to investigate D1133L. This study describes the interaction network of ASFV D1133L protein in porcine kidney PK-15 cells. Overall, 1,471 host proteins that potentially interact with D1133L are identified. Based on these host proteins, a protein–protein network was constructed. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that cellular D1133L-interacted proteins are involved in the ribosome, spliceosome, RNA transport, oxidative phosphorylation, proteasome, and DNA replication. Vimentin (VIM), tripartite motif-containing protein 21 (TRIM21), and Tu translation elongation factor (TUFM) were confirmed to interact with D1133L in vitro. VIM or TRIM21 overexpression significantly promoted ASFV replication, but TUFM overexpression significantly inhibited ASFV replication. These results help elucidate the specific functions of D1133L and the potential mechanisms underlying ASFV replication.
Collapse
|
91
|
Yang MY, Lin YJ, Han MM, Bi YY, He XY, Xing L, Jeong JH, Zhou TJ, Jiang HL. Pathological collagen targeting and penetrating liposomes for idiopathic pulmonary fibrosis therapy. J Control Release 2022; 351:623-637. [PMID: 36191673 DOI: 10.1016/j.jconrel.2022.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease in which collagen progressively deposits in the supporting framework of the lungs. The pathological collagen creates a recalcitrant barrier in mesenchyme for drug penetration, thus greatly restricting the therapeutical efficacy. On the other hand, this overloaded collagen is gradually exposed to the bloodstream at fibrotic sites because of the vascular hyperpermeability, thus serving as a potential target. Herein, pathological collagen targeting and penetrating liposomes (DP-CC) were constructed to deliver anti-fibrotic dual drugs including pirfenidone (PFD) and dexamethasone (DEX) deep into injured alveoli. The liposomes were co-decorated with collagen binding peptide (CBP) and collagenase (COL). CBP could help vehicle recognize the pathological collagen and target the fibrotic lungs efficiently because of its high affinity to collagen, and COL assisted in breaking through the collagen barrier and delivering vehicle to the center of injured sites. Then, the released dual drugs developed a synergistic anti-fibrotic effect to repair the damaged epithelium and remodel the extracellular matrix (ECM), thus rebuilding the lung architecture. This study provides a promising strategy to deliver drugs deep into pathological collagen accumulated sites for the enhanced treatment of IPF.
Collapse
Affiliation(s)
- Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Jun Lin
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Yang Bi
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yue He
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
92
|
Chen KZ, Liu SX, Li YW, He T, Zhao J, Wang T, Qiu XX, Wu HF. Vimentin as a potential target for diverse nervous system diseases. Neural Regen Res 2022; 18:969-975. [PMID: 36254976 PMCID: PMC9827761 DOI: 10.4103/1673-5374.355744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vimentin is a major type III intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout (GFAP-/-VIM-/-) mice. However, attenuated glial scar formation in post-stroke in GFAP-/- VIM-/- mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIM-/- mice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
Collapse
Affiliation(s)
- Kang-Zhen Chen
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Shu-Xian Liu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Yan-Wei Li
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Tao He
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jie Zhao
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tao Wang
- Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Xian-Xiu Qiu
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Hong-Fu Wu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| |
Collapse
|
93
|
Sivagurunathan S, Vahabikashi A, Yang H, Zhang J, Vazquez K, Rajasundaram D, Politanska Y, Abdala-Valencia H, Notbohm J, Guo M, Adam SA, Goldman RD. Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells. Front Cell Dev Biol 2022; 10:929495. [PMID: 36200046 PMCID: PMC9527304 DOI: 10.3389/fcell.2022.929495] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.
Collapse
Affiliation(s)
- Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiqian Yang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Jun Zhang
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuliya Politanska
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hiam Abdala-Valencia
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob Notbohm
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Ming Guo
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
94
|
Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022; 219:e20220038. [PMID: 35938989 PMCID: PMC9365674 DOI: 10.1084/jem.20220038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.
Collapse
Affiliation(s)
- Sara A. Rubin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Chloé S. Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Cecilia Pessoa Rodrigues
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra F. Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Song P. Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
95
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
96
|
Fan X, Xu M, Chen X, Ren Q, Fan Y, Wang R, Chen J, Cui L, Wang Z, Sun X, Guo N. Proteomic profiling and correlations with clinical features reveal biomarkers indicative of diabetic retinopathy with diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1001391. [PMID: 36277688 PMCID: PMC9581084 DOI: 10.3389/fendo.2022.1001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are complications of diabetes and place serious health and economic burdens on society. However, the identification and characterization of early biomarkers for DKD, especially for nonproliferative DR (NPDR) patients with DKD, are still needed. This study aimed to demonstrate the plasma proteomic profiles of NPDR+DKD and NPDR patients and identify potential biomarkers for early diagnosis of DKD. Fifteen plasma samples from the NPDR group and nine from the NPDR+DKD group were analyzed by LC-MS/MS to identify the differentially expressed proteins between the two groups. Functional enrichment, protein-protein interaction and clinical feature correlation analyses revealed the target protein candidates, which were verified using ELISA and receiver operating characteristic (ROC) analysis. In total, 410 proteins were detected in plasma; 15 were significantly upregulated and 7 were downregulated in the NPDR+DKD group. Bioinformatics analysis suggested that DKD is closely related to cell adhesion and immunity pathways. β-2-Microglobulin (B2M) and vimentin (VIM) were upregulated in NPDR+DKD, enriched as hub proteins and strongly correlated with clinical features. ELISA showed that B2M (p<0.001) and VIM (p<0.0001) were significantly upregulated in NPDR+DKD compared with NPDR. In ROC analysis, B2M and VIM could distinguish DKD from NPDR with area under the curve values of 0.9000 (p < 0.0001) and 0.9950. Our proteomic study revealed alterations in the proteomic profile and identified VIM and B2M as early biomarkers of DKD, laying the foundation for the prevention, diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Xiao’e Fan
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
- *Correspondence: Xiao’e Fan,
| | - Manhong Xu
- Department of Vitreoretinal and Ocular Trauma, Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research Center of Ophthalmology and Visual Science, Tianjin, China
| | - Xin Chen
- Department of Vitreoretinal and Ocular Trauma, Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research Center of Ophthalmology and Visual Science, Tianjin, China
| | - Qianfeng Ren
- Department of Pathology, Jincheng People’s Hospital, Jincheng, China
| | - Yan Fan
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Ranran Wang
- Department of Laboratory, Jincheng People’s Hospital, Jincheng, China
| | - Jiaqi Chen
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Li Cui
- Department of Nephrology, Jincheng People’s Hospital, Jincheng, China
| | - Zhengmin Wang
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Xiaoyan Sun
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Nannan Guo
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| |
Collapse
|