51
|
Puttagunta R, Gordon LA, Meyer GE, Kapfhamer D, Lamerdin JE, Kantheti P, Portman KM, Chung WK, Jenne DE, Olsen AS, Burmeister M. Comparative maps of human 19p13.3 and mouse chromosome 10 allow identification of sequences at evolutionary breakpoints. Genome Res 2000; 10:1369-80. [PMID: 10984455 PMCID: PMC310909 DOI: 10.1101/gr.145200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from approximately 4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of approximately 2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent approximately 1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates.
Collapse
MESH Headings
- Animals
- Chromosome Breakage/genetics
- Chromosome Inversion
- Chromosomes, Bacterial/genetics
- Chromosomes, Human, Pair 19/genetics
- Cosmids/genetics
- Electrophoresis, Gel, Pulsed-Field
- Evolution, Molecular
- Female
- Genetic Markers/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Physical Chromosome Mapping
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- R Puttagunta
- Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Band MR, Larson JH, Rebeiz M, Green CA, Heyen DW, Donovan J, Windish R, Steining C, Mahyuddin P, Womack JE, Lewin HA. An ordered comparative map of the cattle and human genomes. Genome Res 2000; 10:1359-68. [PMID: 10984454 PMCID: PMC310912 DOI: 10.1101/gr.145900] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A cattle-human whole-genome comparative map was constructed using parallel radiation hybrid (RH) mapping in conjunction with EST sequencing, database mining for unmapped cattle genes, and a predictive bioinformatics approach (COMPASS) for targeting specific homologous regions. A total of 768 genes were placed on the RH map in addition to 319 microsatellites used as anchor markers. Of these, 638 had human orthologs with mapping data, thus permitting construction of an ordered comparative map. The large number of ordered loci revealed > or =105 conserved segments between the two genomes. The comparative map suggests that 41 translocation events, a minimum of 54 internal rearrangements, and repositioning of all but one centromere can account for the observed organizations of the cattle and human genomes. In addition, the COMPASS in silico mapping tool was shown to be 95% accurate in its ability to predict cattle chromosome location from random sequence data, demonstrating this tool to be valuable for efficient targeting of specific regions for detailed mapping. The comparative map generated will be a cornerstone for elucidating mammalian chromosome phylogeny and the identification of genes of agricultural importance."Ought we, for instance, to begin by discussing each separate species-in virtue of some common element of their nature, and proceed from this as a basis for the consideration of them separately?" from Aristotle, On the Parts of Animals, 350 B.C.E.
Collapse
Affiliation(s)
- M R Band
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tarantino LM, Feiner L, Alavizadeh A, Wiltshire T, Hurle B, Ornitz DM, Webber AL, Raper J, Lengeling A, Rowe LB, Bucan M. A high-resolution radiation hybrid map of the proximal portion of mouse chromosome 5. Genomics 2000; 66:55-64. [PMID: 10843805 DOI: 10.1006/geno.2000.6183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation hybrid (RH) mapping of the mouse genome provides a useful tool in the integration of existing genetic and physical maps, as well as in the ongoing effort to generate a dense map of expressed sequence tags. To facilitate functional analysis of mouse Chromosome 5, we have constructed a high-resolution RH map spanning 75 cM of the chromosome. During the course of these studies, we have developed RHBase, an RH data management program that provides data storage and an interface to several RH mapping programs and databases. We have typed 95 markers on the T31 RH panel and generated an integrated map, pooling data from several sources. The integrated RH map ranges from the most proximal marker, D5Mit331 (Chromosome Committee offset, 3 cM), to D5Mit326, 74.5 cM distal on our genetic map (Chromosome Committee offset, 80 cM), and consists of 138 markers, including 89 simple sequence length polymorphic markers, 11 sequence-tagged sites generated from BAC end sequence, and 38 gene loci, and represents average coverage of approximately one locus per 0.5 cM with some regions more densely mapped. In addition to the RH mapping of markers and genes previously localized on mouse Chromosome 5, this RH map places the alpha-4 GABA(A) receptor subunit gene (Gabra4) in the central portion of the chromosome, in the vicinity of the cluster of three other GABA(A) receptor subunit genes (Gabrg1-Gabra2-Gabrb1). Our mapping effort has also defined a new cluster of four genes in the semaphorin gene family (Sema3a, Sema3c, Sema3d, and Sema3e) and the Wolfram syndrome gene (Wfs1) in this region of the chromosome.
Collapse
Affiliation(s)
- L M Tarantino
- Center for Neurobiology and Behavior, Department of Neuroscience, Department of Genetics, University of Pennsylvania, 111 CRB, 415 Curie Boulevard, Philadelphia, Pensylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Murphy WJ, Sun S, Chen Z, Yuhki N, Hirschmann D, Menotti-Raymond M, O'Brien SJ. A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res 2000; 10:691-702. [PMID: 10810092 PMCID: PMC310870 DOI: 10.1101/gr.10.5.691] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ordered gene maps of mammalian species are becoming increasingly valued in assigning gene variants to function in human and animal models, as well as recapitulating the natural history of genome organization. To extend this power to the domestic cat, a radiation hybrid (RH) map of the cat was constructed integrating 424 Type I-coding genes with 176 microsatellite markers, providing coverage over all 20 feline chromosomes. Alignment of parallel RH maps of human and cat reveal 100 conserved segments ordered (CSOs) between the species, nearly three times the number observed with reciprocal chromosome painting analyses. The observed number is equivalent to theoretical predictions of the number of conserved segments to be found between cat and human, implying that 300-400 Type I gene markers is sufficient to reveal nearly all conserved segments for species that exhibit the most frequently observed "slow" rate of genome reorganization. The cat-human RH map comparisons provide a new genomic tool for comparative gene mapping in the cat and related Felidae, and provide confirmation that the cat genome organization is remarkably conserved compared with human. These data demonstrate that ordered RH-based gene maps provide the most precise assessment of comparing genomes, short of contig construction or full-sequence determination.
Collapse
Affiliation(s)
- W J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201 USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
Bouck JB, Metzker ML, Gibbs RA. Shotgun sample sequence comparisons between mouse and human genomes. Nat Genet 2000; 25:31-3. [PMID: 10802652 DOI: 10.1038/75563] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mixed 'clone-by-clone' and 'whole-genome shotgun' strategy will be used to determine the genomic sequence of the mouse. This method will allow a phase of rapid annotation of the contemporaneous human sequence draft, through whole-genome 'sample sequence comparisons'.
Collapse
Affiliation(s)
- J B Bouck
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
56
|
West DB, Iakougova O, Olsson C, Ross D, Ohmen J, Chatterjee A. Mouse genetics/genomics: an effective approach for drug target discovery and validation. Med Res Rev 2000; 20:216-30. [PMID: 10797467 DOI: 10.1002/(sici)1098-1128(200005)20:3<216::aid-med6>3.0.co;2-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mouse has become the premier mammalian system for the identification of the genetic basis of both mono- and oligogenic disorders, as well as the understanding of complex diseases with gene-gene and gene-environment interactions. The similarity between human and mouse genetic disease is sometimes striking, while in other cases the phenotypes are less similar. The ability to genetically map and then clone single gene disorders rapidly, and the emerging technologies that will allow the economical identification of the polygenes controlling quantitative traits further demonstrate the utility of the mouse as a model for gene discovery. Additionally, the ability to genetically manipulate the mouse through transgenesis and gene targeting allows for the testing of hypotheses regarding specific gene function and their role in disease. The utility of the mouse extends beyond being just a gene discovery tool to provide prevalidated targets. It can also be used for the development of animal models, and the testing of compounds in specifically constructed transgenic and knockout strains to further define the target and pathway of a therapeutic compound.
Collapse
Affiliation(s)
- D B West
- Parke-Davis Laboratory for Molecular Genetics, 1501 Harbor Bay Parkway, Alameda, CA 94502, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Thomas JW, Summers TJ, Lee-Lin SQ, Maduro VV, Idol JR, Mastrian SD, Ryan JF, Jamison DC, Green ED. Comparative genome mapping in the sequence-based era: early experience with human chromosome 7. Genome Res 2000; 10:624-33. [PMID: 10810084 PMCID: PMC310865 DOI: 10.1101/gr.10.5.624] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs). Mouse-specific hybridization probes are designed from such sequences and used to screen a mouse bacterial artificial chromosome (BAC) library, with the resulting data used to assemble BAC contigs based on probe-content data. Nascent contigs are then expanded using probes derived from newly generated BAC-end sequences. This approach produces BAC-based sequence-ready maps that are known to contain a gene(s) and are homologous to segments of the human genome for which sequence is already available. Our ongoing efforts have thus far resulted in the isolation and mapping of >3,800 mouse BACs, which have been assembled into >100 contigs. These contigs include >250 genes and represent approximately 40% of the mouse genome that is homologous to human chromosome 7. Together, these approaches illustrate how the availability of genomic sequence directly facilitates studies in comparative genomics and genome evolution.
Collapse
Affiliation(s)
- J W Thomas
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kaisaki PJ, Rouard M, Danoy PA, Wallis RH, Collins SC, Rice M, Levy ER, Lathrop M, Bihoreau MT, Gauguier D. Detailed comparative gene map of rat chromosome 1 with mouse and human genomes and physical mapping of an evolutionary chromosomal breakpoint. Genomics 2000; 64:32-43. [PMID: 10708516 DOI: 10.1006/geno.1999.6107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the localization of 92 new gene-based markers assigned to rat chromosome 1 by linkage or radiation hybrid mapping. The markers were chosen to enrich gene mapping data in a region of the rat chromosome known to contain several of the principal quantitative trait loci in rodent models of human multifactorial disease. The composite map reported here provides map information on a total of 139 known genes, including 80 that have been localized in mouse and 109 that have been localized in human, and integrates the gene-based markers with anonymous microsatellites. The evolutionary breakpoints identifying 16 segments that are homologous regions in the human genome are defined. These data will facilitate genetic and comparative mapping studies and identification of novel candidate genes for the quantitative trait loci that have been localized to the region.
Collapse
Affiliation(s)
- P J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Waddington D, Springbett AJ, Burt DW. A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps. Genetics 2000; 154:323-32. [PMID: 10628991 PMCID: PMC1460923 DOI: 10.1093/genetics/154.1.323] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative genetic maps of two species allow insights into the rearrangements of their genomes since divergence from a common ancestor. When the map details the positions of genes (or any set of orthologous DNA sequences) on chromosomes, syntenic blocks of one or more genes may be identified and used, with appropriate models, to estimate the number of chromosomal segments with conserved content conserved between species. We propose a model for the distribution of the lengths of unobserved segments on each chromosome that allows for widely differing chromosome lengths. The model uses as data either the counts of genes in a syntenic block or the distance between extreme members of a block, or both. The parameters of the proposed segment length distribution, estimated by maximum likelihood, give predictions of the number of conserved segments per chromosome. The model is applied to data from two comparative maps for the chicken, one with human and one with mouse.
Collapse
Affiliation(s)
- D Waddington
- Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, Scotland.
| | | | | |
Collapse
|
60
|
Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP. The DNA sequence of human chromosome 22. Nature 1999; 402:489-95. [PMID: 10591208 DOI: 10.1038/990031] [Citation(s) in RCA: 813] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
Collapse
Affiliation(s)
- I Dunham
- Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Murphy WJ, Sun S, Chen ZQ, Pecon-Slattery J, O'Brien SJ. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res 1999; 9:1223-30. [PMID: 10613845 PMCID: PMC311008 DOI: 10.1101/gr.9.12.1223] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A radiation hybrid (RH)-derived physical map of 25 markers on the feline X chromosome (including 19 Type I coding loci and 6 Type II microsatellite markers) was compared to homologous marker order on the human and mouse X chromosome maps. Complete conservation of synteny and marker order was observed between feline and human X chromosomes, whereas the same markers identified a minimum of seven rearranged syntenic segments between mouse and cat/human X chromosome marker order. Within the blocks, the feline, human, and mouse marker order was strongly conserved. Similarly, Y chromosome locus order was remarkably conserved between cat and human Y chromosomes, with only one marker (SMCY) position rearranged between the species. Tight linkage and a conserved gene order for a segment encoding three genes, DFFRY-DBY-UTY in human, mouse, and cat Y chromosomes, coupled with demonstrated deletion effects of these genes on reproductive impairment in both human and mouse, implicates the region as critical for Y-mediated sperm production.
Collapse
Affiliation(s)
- W J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201,USA.
| | | | | | | | | |
Collapse
|
62
|
Wiltshire T, Pletcher M, Cole SE, Villanueva M, Birren B, Lehoczky J, Dewar K, Reeves RH. Perfect conserved linkage across the entire mouse chromosome 10 region homologous to human chromosome 21. Genome Res 1999; 9:1214-22. [PMID: 10613844 PMCID: PMC311004 DOI: 10.1101/gr.9.12.1214] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distal end of human Chromosome (HSA) 21 from PDXK to the telomere shows perfect conserved linkage with mouse Chromosome (MMU) 10. This region is bounded on the proximal side by a segment of homology to HSA22q11.2, and on the distal side by a region of homology with HSA19p13.1. A high-resolution PAC-based physical map is described that spans 2.8 Mb, including the entire 2.1 Mb from Pdxk to Prmt2 corresponding to HSA21. Thirty-four expressed sequences are mapped, three of which were not mapped previously in any species and nine more that are mapped in mouse for the first time. These genes confirm and extend the conserved linkage between MMU10 and HSA21. The ordered PACs and dense STS map provide a clone resource for biological experiments, for rapid and accurate mapping, and for genomic sequencing. The new genes identified here may be involved in Down syndrome (DS) or in several genetic diseases that map to this conserved region of HSA21.
Collapse
Affiliation(s)
- T Wiltshire
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Devos KM, Beales J, Nagamura Y, Sasaki T. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res 1999; 9:825-9. [PMID: 10508840 PMCID: PMC310814 DOI: 10.1101/gr.9.9.825] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1999] [Accepted: 07/21/1999] [Indexed: 11/24/2022]
Abstract
With the genomic sequencing of Arabidopsis nearing completion and rice sequencing very much in its infancy, a key question is whether we can exploit the Arabidopsis sequence to identify candidate genes for traits in cereal crops using a map-based approach. This requires the existence of colinearity between the Arabidopsis and cereal genomes, represented by rice, which is readily detectable using currently available resources, that is, Arabidopsis genomic sequence, rice ESTs, and genetic and physical maps. A detailed study of the colinearity remaining between two small regions of Arabidopsis chromosome 1 and rice suggests that at least in these regions of the Arabidopsis genome, conservation of gene orders with rice has been eroded to the point that it is no longer identifiable using comparative mapping. Although our analysis does not preclude that tracts of colinear gene orders may be identified using sequence comparisons or may exist in other regions of the rice and Arabidopsis genomes, it is unlikely that the extent of colinearity will be sufficient to allow map-based cross-species gene prediction and isolation. Our research also highlights the difficulties encountered in identifying orthologs using BLAST searches in incomplete sequence databases. This complicates the interpretation of comparative data among highly divergent species and limits the exploitation of Arabidopsis sequence in monocot studies.
Collapse
Affiliation(s)
- K M Devos
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
64
|
Abstract
Comparative gene mapping and chromosome painting permit the tentative reconstruction of ancestral karyotypes. The modern human karyotype is proposed to differ from that of the most recent common ancestor of catarrhine primates by two major rearrangements. The first was the fission of an ancestral chromosome to produce the homologues of human chromosomes 14 and 15. This fission occurred before the divergence of gibbons from humans and other apes. The second was the fusion of two ancestral chromosomes to form human chromosome 2. This fusion occurred after the divergence of humans and chimpanzees. Moving further back in time, homologues of human chromosomes 3 and 21 were formed by the fission of an ancestral linkage group that combined loci of both human chromosomes, whereas homologues of human chromosomes 12 and 22 were formed by a reciprocal translocation between two ancestral chromosomes. Both events occurred at some time after our most recent common ancestor with lemurs. Less direct evidence suggests that the short and long arms of human chromosomes 8, 16 and 19 were unlinked in this ancestor. Finally, the most recent common ancestor of primates and artiodactyls is proposed to have possessed a chromosome that combined loci from human chromosomes 4 and 8p, a chromosome that combined loci from human chromosomes 16q and 19q, and a chromosome that combined loci from human chromosomes 2p and 20.
Collapse
Affiliation(s)
- D Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
65
|
de Koning DJ, Janss LL, Rattink AP, van Oers PA, de Vries BJ, Groenen MA, van der Poel JJ, de Groot PN, Brascamp EW, van Arendonk JA. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 1999; 152:1679-90. [PMID: 10430592 PMCID: PMC1460688 DOI: 10.1093/genetics/152.4.1679] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 619 F(2) animals and their parents were typed for molecular markers covering the entire porcine genome. Associations were studied between these markers and two fatness traits: intramuscular fat content and backfat thickness. Association analyses were performed using interval mapping by regression under two genetic models: (1) an outbred line-cross model where the founder lines were assumed to be fixed for different QTL alleles; and (2) a half-sib model where a unique allele substitution effect was fitted within each of the 19 half-sib families. Both approaches revealed for backfat thickness a highly significant QTL on chromosome 7 and suggestive evidence for a QTL at chromosome 2. Furthermore, suggestive QTL affecting backfat thickness were detected on chromosomes 1 and 6 under the line-cross model. For intramuscular fat content the line-cross approach showed suggestive evidence for QTL on chromosomes 2, 4, and 6, whereas the half-sib analysis showed suggestive linkage for chromosomes 4 and 7. The nature of the QTL effects and assumptions underlying both models could explain discrepancies between the findings under the two models. It is concluded that both approaches can complement each other in the analysis of data from outbred line crosses.
Collapse
Affiliation(s)
- D J de Koning
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen Agricultural University, 6700 AH Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Watanabe TK, Bihoreau MT, McCarthy LC, Kiguwa SL, Hishigaki H, Tsuji A, Browne J, Yamasaki Y, Mizoguchi-Miyakita A, Oga K, Ono T, Okuno S, Kanemoto N, Takahashi E, Tomita K, Hayashi H, Adachi M, Webber C, Davis M, Kiel S, Knights C, Smith A, Critcher R, Miller J, Thangarajah T, Day PJ, Hudson JR, Irie Y, Takagi T, Nakamura Y, Goodfellow PN, Lathrop GM, Tanigami A, James MR. A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet 1999; 22:27-36. [PMID: 10319858 DOI: 10.1038/8737] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A whole-genome radiation hybrid (RH) panel was used to construct a high-resolution map of the rat genome based on microsatellite and gene markers. These include 3,019 new microsatellite markers described here for the first time and 1,714 microsatellite markers with known genetic locations, allowing comparison and integration of maps from different sources. A robust RH framework map containing 1,030 positions ordered with odds of at least 1,000:1 has been defined as a tool for mapping these markers, and for future RH mapping in the rat. More than 500 genes which have been mapped in mouse and/or human were localized with respect to the rat RH framework, allowing the construction of detailed rat-mouse and rat-human comparative maps and illustrating the power of the RH approach for comparative mapping.
Collapse
Affiliation(s)
- T K Watanabe
- Otsuka GEN Research Institute, Otsuka Pharmaceutical Co. Ltd, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Song HJ, Poy G, Darwiche N, Lichti U, Kuroki T, Steinert PM, Kartasova T. Mouse Sprr2 genes: a clustered family of genes showing differential expression in epithelial tissues. Genomics 1999; 55:28-42. [PMID: 9888996 DOI: 10.1006/geno.1998.5607] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small proline-rich (SPR) proteins are structural components of the cornified cell envelope of stratified squamous epithelia. They are subdivided into three families, i.e., SPR1, SPR2, and SPR3, of which the SPR2 family is the most complex. To understand the significance of this complexity, we have isolated 11 mouse Sprr2 genes, constructed a provisional physical map of the Sprr2 locus on mouse Chromosome 3, and examined the expression patterns of the Sprr2 genes in mouse epithelial tissues. The 11 Sprr2 sequences are highly conserved with a central domain containing a variable number of repeats. In situ hybridization showed the Sprr2 expression to be confined to epithelia. RT-PCR using primers specific for each of the 11 Sprr2 members demonstrated varying degrees of expression among the individual Sprr2 members in different tissues. The correlation between the physical location of the genes in the Sprr2 locus and their expression patterns suggests multiple levels of controlled expression.
Collapse
Affiliation(s)
- H J Song
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Several eukaryotes, including maize, yeast and Xenopus, are degenerate polyploids formed by relatively recent whole-genome duplications. Ohno's conjecture that more ancient genome duplications occurred in an ancestor of vertebrates is probably at least partly true but the present shortage of gene sequence and map information from vertebrates makes it difficult to either prove or disprove this hypothesis. Candidate paralogous segments in mammalian genomes have been identified but the lack of statistical rigour means that many of the proposals in the literature are probably artefacts.
Collapse
Affiliation(s)
- L Skrabanek
- Department of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
69
|
Abstract
The past 10 years have seen the discovery of unexpected levels of conservation of gene content and gene orders over millions of years of evolution within grasses, crucifers, legumes, some trees, and Solanaceae crops. Within the grasses, which include the three 500-million-ton-plus-per-year crops (wheat, maize, and rice), and the crucifers, which include all the Brassica crops, colinearity looks good enough to do most map-based cloning only in the small genome model species, rice and Arabidopsis. Elsewhere, knowledge gained in a few major crops is being pooled and applied across the board. The extrapolation of information from the well-studied species to orphan crops, which include many tropical species, is providing a solid base for their improvement. Genome rearrangements are giving new insights into evolution. In fact, comparative genetics is the key that will unlock the secrets of crop plants with genomes larger than that of humans.
Collapse
Affiliation(s)
- M D Gale
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, Norfolk, UK
| | | |
Collapse
|
70
|
Schibler L, Vaiman D, Oustry A, Giraud-Delville C, Cribiu EP. Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res 1998; 8:901-15. [PMID: 9750190 DOI: 10.1101/gr.8.9.901] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A total of 202 genes were cytogenetically mapped to goat chromosomes, multiplying by five the total number of regional gene localizations in domestic ruminants (255). This map encompasses 249 and 173 common anchor loci regularly spaced along human and murine chromosomes, respectively, which makes it possible to perform a genome-wide comparison between three mammalian orders. Twice as many rearrangements as revealed by ZOO-FISH were observed. The average size of conserved fragments could be estimated at 27 and 8 cM with humans and mice, respectively. The position of evolutionary breakpoints often correspond with human chromosome sites known to be vulnerable to rearrangement in neoplasia. Furthermore, 75 microsatellite markers, 30 of which were isolated from gene-containing bacterial artificial chromosomes (BACs), were added to the previous goat genetic map, achieving 88% genome coverage. Finally, 124 microsatellites were cytogenetically mapped, which made it possible to physically anchor and orient all the linkage groups. We believe that this comprehensive map will speed up positional cloning projects in domestic ruminants and clarify some aspects of mammalian chromosomal evolution.
Collapse
Affiliation(s)
- L Schibler
- Institut National de la Recherche Agronomique (INRA), Departement de Génétique Animale, Laboratoire de Génétique biochimique et de Cytogénétique, 78350 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
71
|
Moghaddam PH, de Knijff P, Schipper RF, Moghaddam PH, Kazemi M, Lambooij SL, van der Meer R, Naipal A, Pesonen N, van der Slik A, Giphart MJ. Selective co-evolution of the D6STNFa microsatellite region with HLA class I and II loci. TISSUE ANTIGENS 1998; 52:213-9. [PMID: 9802600 DOI: 10.1111/j.1399-0039.1998.tb03035.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We analyzed the HLA-A, -B, -DR and -DQ phenotypes and 12 microsatellite locus genotypes within and close to the major histocompatibility complex in a panel of 98 randomly selected, healthy, unrelated Dutch Caucasoid individuals. Allele frequencies and Hardy-Weinberg equilibrium (HWE) were calculated. Also, the linkage disequilibrium patterns between HLA and microsatellite loci were studied. The HLA-A, -B, -DR, -DQ and six microsatellite loci centromeric of the HLA-A showed HWE. In contrast, all microsatellites telomeric of the HLA-A showed deviation from HWE due to excess of homozygosity. Linkage disequilibrium analyses provided strong evidence that among the tested microsatellite loci only the alleles of the D6STNFa locus are in linkage disequilibrium with both HLA-B and -DR. Our results suggest that selection acting on the HLA genes includes the D6STNFa locus and linked genes.
Collapse
Affiliation(s)
- P H Moghaddam
- Department of Immunohematology and Blood Bank, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Grewal PK, Todd LC, van der Maarel S, Frants RR, Hewitt JE. FRG1, a gene in the FSH muscular dystrophy region on human chromosome 4q35, is highly conserved in vertebrates and invertebrates. Gene X 1998; 216:13-9. [PMID: 9714712 DOI: 10.1016/s0378-1119(98)00334-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human FRG1 gene maps to human chromosome 4q35 and was identified as a candidate for facioscapulohumeral muscular dystrophy. However, FRG1 is apparently not causally associated with the disease and as yet, its function remains unclear. We have cloned homologues of FRG1 from two additional vertebrates, the mouse and the Japanese puffer fish Fugu rubripes, and investigated the genomic organization of the genes in the two species. The intron/exon structure of the genes is identical throughout the protein coding region, although the Fugu gene is five times smaller than the mouse gene. We have also identified FRG1 homologues in two nematodes; Caenorhabditis elegans and Brugia malayi. The FRG1 protein is highly conserved and contains a lipocalin sequence motif, suggesting it may function as a transport protein.
Collapse
Affiliation(s)
- P K Grewal
- School of Biological Sciences, The University of Manchester, 3.239 Stopford Building, Oxford Rd, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
73
|
Abstract
Significant progress has been made in sequencing the genomes of several model organisms, and efforts are now underway to complete the sequencing of the human genome. In parallel with this effort, new approaches are being developed for the elucidation of the functional content of the human genome. The mouse will have an important role in this phase of the genome project as a model system. In this review we discuss and compare classical genetic approaches to gene function-phenotype-based mutagenesis screens aimed at the establishment of a large collection of single gene mutations affecting a wide range of phenotypic traits in the mouse. Whereas large scale genome-wide screens that are directed at the identification of all loci contributing to a specific phenotype may be impractical, region-specific saturation screens that provide mutations within a delimited chromosomal region are a feasible alternative. Region-specific screens in the mouse can be performed in only two generations by combining high-efficiency chemical mutagenesis with deletion complexes generated using embryonic stem (ES) cells. The ability to create and analyze deletion complexes rapidly, as well as to map novel chemically-induced mutations within these complexes, will facilitate systematic functional analysis of the mouse genome and corresponding gene sequences in humans. Furthermore, as the extent of the mouse genome sequencing effort is still uncertain, we underscore a necessity to direct sequencing efforts to those chromosomal regions that are targets for extensive mutagenesis screens.
Collapse
Affiliation(s)
- J Schimenti
- The Jackson Laboratory, Bar Harbor, Maine 04609 USA
| | | |
Collapse
|
74
|
Yang YP, Womack JE. Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res 1998; 8:731-6. [PMID: 9685320 PMCID: PMC310752 DOI: 10.1101/gr.8.7.731] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative gene mapping in mammals typically involves identification of segments of conserved synteny in diverse genomes. The development of maps that permit comparison of gene order within conserved synteny has not advanced beyond the mouse map that takes advantage of linkage analysis in interspecific backcrosses. Radiation hybrid (RH) mapping provides a powerful tool for determining order of genes in genomes for which gene-based linkage mapping is impractical. Comparative RH mapping of 24 orthologous genes in this study revealed internal structural rearrangements between human chromosome 17 (HSA17) and bovine chromosome 19 (BTA19), two chromosomes known previously to be conserved completely and exclusively at level of synteny. Only six of the 24 genes had been previously ordered on the human G3 RH map. The use of the G3 panel to map the other 18, however, produced parallel RH maps for comparison of gene order at a resolution of <5 Mb on the bovine linkage map and from 1 to 3 Mb in the human physical map.
Collapse
Affiliation(s)
- Y P Yang
- Department of Veterinary Pathobiology and Center for Animal Genetics, Institute of Biosciences and Technology, Texas A&M University, College Station, Texas 77843-4467 USA
| | | |
Collapse
|
75
|
Chowdhary BP, Raudsepp T, Frönicke L, Scherthan H. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 1998; 8:577-89. [PMID: 9647633 DOI: 10.1101/gr.8.6.577] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although gene maps for a variety of evolutionarily diverged mammalian species have expanded rapidly during the past few years, until recently it has been difficult to precisely define chromosomal segments that are homologous between species. A solution to this problem has come from the development of Zoo-FISH, also known as cross-species chromosome painting. The use of Zoo-FISH to identify regions of chromosomal homology has allowed the transfer of information from map-rich species such as human and mouse to a wide variety of other species. From a Zoo-FISH analysis spanning four mammalian orders (Primates, Artiodactyla, Carnivora, and Perissodactyla), and involving eight species (human, pig, cattle, Indian muntjac, cat, American mink, harbor seal, and horse), three distinct classes of synteny conservation have been designated: (1) conservation of whole chromosome synteny, (2) conservation of large chromosomal blocks, and (3) conservation of neighboring segment combinations. This analysis has also made it possible to identify a set of chromosome segments (based on human chromosome equivalents) that probably made up the karyotype of the common ancestor of the four orders. This approach provides a basis for developing a picture of the ancestral mammalian karyotype, but a full understanding will depend on studies encompassing more diverse combinations of mammalian orders.
Collapse
Affiliation(s)
- B P Chowdhary
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
76
|
Affiliation(s)
- D R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|