51
|
Crabtree J, Wiltshire T, Brunk B, Zhao S, Schug J, Stoeckert CJ, Bucan M. High-resolution BAC-based map of the central portion of mouse chromosome 5. Genome Res 2001; 11:1746-57. [PMID: 11591652 PMCID: PMC311151 DOI: 10.1101/gr.195101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The current strategy for sequencing the mouse genome involves the combination of a whole-genome shotgun approach with clone-based sequencing. High-resolution physical maps will provide a foundation for assembling contiguous segments of sequence. We have established a bacterial artificial chromosome (BAC)-based map of a 5-Mb region on mouse Chromosome 5, encompassing three gene families: receptor tyrosine kinases (PdgfraKit-Kdr), nonreceptor protein-tyrosine type kinases (Tec-Txk), and type-A receptors for the neurotransmitter GABA (Gabra2, Gabrb1, Gabrg1, and Gabra4). The construction of a BAC contig was initiated by hybridization screening the C57BL/6J (RPCI-23) BAC library, using known genes and sequence tagged sites (STSs). Additional overlapping clones were identified by searching the database of available restriction fingerprints for the RPCI-23 and RPCI-24 libraries. This effort resulted in the selection of >600 BAC clones, 251 kb of BAC-end sequences, and the placement of 40 known and/or predicted genes within this 5-Mb region. We use this high-resolution map to illustrate the integration of the BAC fingerprint map with a radiation-hybrid map via assembled expressed sequence tags (ESTs). From annotation of three representative BAC clones we demonstrate that up to 98% of the draft sequence for each contig could be ordered and oriented using known genes, BAC ends, consensus sequences for transcript assemblies, and comparisons with orthologous human sequence. For functional studies, annotation of sequence fragments as they are assembled into 50-200-kb stretches will be remarkably valuable.
Collapse
Affiliation(s)
- J Crabtree
- Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Hudson TJ, Church DM, Greenaway S, Nguyen H, Cook A, Steen RG, Van Etten WJ, Castle AB, Strivens MA, Trickett P, Heuston C, Davison C, Southwell A, Hardisty R, Varela-Carver A, Haynes AR, Rodriguez-Tome P, Doi H, Ko MS, Pontius J, Schriml L, Wagner L, Maglott D, Brown SD, Lander ES, Schuler G, Denny P. A radiation hybrid map of mouse genes. Nat Genet 2001; 29:201-5. [PMID: 11586302 DOI: 10.1038/ng1001-201] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.
Collapse
Affiliation(s)
- T J Hudson
- Center for Genome Research, Whitehead Institute/Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhao S, Shatsman S, Ayodeji B, Geer K, Tsegaye G, Krol M, Gebregeorgis E, Shvartsbeyn A, Russell D, Overton L, Jiang L, Dimitrov G, Tran K, Shetty J, Malek JA, Feldblyum T, Nierman WC, Fraser CM. Mouse BAC ends quality assessment and sequence analyses. Genome Res 2001; 11:1736-45. [PMID: 11591651 PMCID: PMC311142 DOI: 10.1101/gr.179201] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A large-scale BAC end-sequencing project at The Institute for Genomic Research (TIGR) has generated one of the most extensive sets of sequence markers for the mouse genome to date. With a sequencing success rate of >80%, an average read length of 485 bp, and ABI3700 capillary sequencers, we have generated 449,234 nonredundant mouse BAC end sequences (mBESs) with 218 Mb total from 257,318 clones from libraries RPCI-23 and RPCI-24, representing 15x clone coverage, 7% sequence coverage, and a marker every 7 kb across the genome. A total of 191,916 BACs have sequences from both ends providing 12x genome coverage. The average Q20 length is 406 bp and 84% of the bases have phred quality scores > or = 20. RPCI-24 mBESs have more Q20 bases and longer reads on average than RPCI-23 sequences. ABI3700 sequencers and the sample tracking system ensure that > 95% of mBESs are associated with the right clone identifiers. We have found that a significant fraction of mBESs contains L1 repeats and approximately 48% of the clones have both ends with > or = 100 bp contiguous unique Q20 bases. About 3% mBESs match ESTs and > 70% of matches were conserved between the mouse and the human or the rat. Approximately 0.1% mBESs contain STSs. About 0.2% mBESs match human finished sequences and > 70% of these sequences have EST hits. The analyses indicate that our high-quality mouse BAC end sequences will be a valuable resource to the community.
Collapse
Affiliation(s)
- S Zhao
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bryda EC, Kim HJ, Legare ME, Frankel WN, Noben-Trauth K. High-resolution genetic and physical mapping of modifier-of-deafwaddler (mdfw) and Waltzer (Cdh23v). Genomics 2001; 73:338-42. [PMID: 11350126 DOI: 10.1006/geno.2001.6538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modifier-of-deafwaddler (mdfw) and waltzer (Cdh23v) are loci on mouse chromosome 10 encoding factors that are essential for the function of auditory hair cells. The BALB/cByJ-specific mdfw allele encodes a necessary and sufficient modifier that induces progressive early onset hearing loss in CBy-dfw2J heterozygotes. Recessive mutations in the waltzer locus result in circling behavior and congenital deafness. In this report we present a high-resolution integrated genetic and physical map of mdfw and Cdh23(v). Our genetic analyses localize mdfw between markers D10Mit60 and 148M13T7 within a 1.01-cM region. The Cdh23v critical interval is fully contained within the mdfw region and localizes between markers 146O23T7 and 148M13T7 within a 0.35-cM interval that is represented in an approximately 500-kb BAC contig. Our data suggest that mdfw and Cdh23v are allelic.
Collapse
Affiliation(s)
- E C Bryda
- Department of Microbiology, Immunology & Molecular Genetics, Huntington, West Virginia 25704, USA
| | | | | | | | | |
Collapse
|
55
|
Grenard P, Bates MK, Aeschlimann D. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001; 276:33066-78. [PMID: 11390390 DOI: 10.1074/jbc.m102553200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We isolated and characterized the gene encoding human transglutaminase (TG)(X) (TGM5) and mapped it to the 15q15.2 region of chromosome 15 by fluorescence in situ hybridization. The gene consists of 13 exons separated by 12 introns and spans about 35 kilobases. Further sequence analysis and mapping showed that this locus contained three transglutaminase genes arranged in tandem: EPB42 (band 4.2 protein), TGM5, and a novel gene (TGM7). A full-length cDNA for the novel transglutaminase (TG(Z)) was obtained by anchored polymerase chain reaction. The deduced amino acid sequence encoded a protein with 710 amino acids and a molecular mass of 80 kDa. Northern blotting showed that the three genes are differentially expressed in human tissues. Band 4.2 protein expression was associated with hematopoiesis, whereas TG(X) and TG(Z) showed widespread expression in different tissues. Interestingly, the chromosomal segment containing the human TGM5, TGM7, and EPB42 genes and the segment containing the genes encoding TG(C),TG(E), and another novel gene (TGM6) on chromosome 20q11 are in mouse all found on distal chromosome 2 as determined by radiation hybrid mapping. This finding suggests that in evolution these six genes arose from local duplication of a single gene and subsequent redistribution to two distinct chromosomes in the human genome.
Collapse
Affiliation(s)
- P Grenard
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | | | | |
Collapse
|
56
|
|
57
|
Wagener R, Kobbe B, Aszódi A, Aeschlimann D, Paulsson M. Characterization of the mouse matrilin-4 gene: a 5' antiparallel overlap with the gene encoding the transcription factor RBP-l. Genomics 2001; 76:89-98. [PMID: 11549321 DOI: 10.1006/geno.2001.6589] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated and characterized the gene encoding mouse matrilin-4 (Matn4), an extracellular matrix protein present in a broad spectrum of tissues. The gene spanned 16 kb, consisted of 12 exons, and localized to chromosome 2. As in all known matrilin genes, the last intron, separating the exons coding for the coiled-coil domain, did not follow the GT-AG rule and belonged to the subgroup of introns having AT-AC at the ends. Matn4 contained two exons in the 5' UTR that could be alternatively spliced. We localized a major and a minor transcription start site to two different untranslated exons: exon 0a and exon 0b. Matn4 divergently overlapped 5' with the gene encoding RBP-L (for recombining binding protein suppressor of hairless-like; Rbpsuhl), a transcription factor with homology to RBP-JK. Exon 1 of Rbpsuhl was located in the second intron of Matn4, whereas exon 0a, the first exon of Matn4, was located in the second intron of Rbpsuhl. The second exons of the respective genes overlapped in an antisense orientation. We mapped the major transcription start of Rbpsuhl to a position approximately 150 nt upstream of the splice acceptor site of the first intron, leading to the synthesis of a truncated variant of RBP-L probably missing the amino-terminal 121 amino acid residues. We analyzed the expression of the different Matn4 and Rbpsuhl transcripts by quantitative RT-PCR; this showed the highest expression for both genes in lung and brain. In situ hybridization of brain sections showed a partially overlapping expression pattern for the two genes.
Collapse
Affiliation(s)
- R Wagener
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, Cologne, D-50931, Germany.
| | | | | | | | | |
Collapse
|
58
|
Karlsson M, Reue K, Xia YR, Lusis AJ, Langin D, Tornqvist H, Holm C. Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene 2001; 272:11-8. [PMID: 11470505 DOI: 10.1016/s0378-1119(01)00559-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoglyceride lipase (MGL) functions together with hormone-sensitive lipase to hydrolyze intracellular triglyceride stores of adipocytes and other cells to fatty acids and glycerol. In addition, MGL presumably complements lipoprotein lipase in completing the hydrolysis of monoglycerides resulting from degradation of lipoprotein triglycerides. Cosmid clones containing the mouse MGL gene were isolated from a genomic library using the coding region of the mouse MGL cDNA as probe. Characterization of the clones obtained revealed that the mouse gene contains the coding sequence for MGL on seven exons, including a large terminal exon of approximately 2.6 kb containing the stop codon and the complete 3' untranslated region. Two different 5' leader sequences, diverging 21 bp upstream of the predicted translation initiation codon, were isolated from a mouse adipocyte cDNA library. Western blot analysis of different mouse tissues revealed protein size heterogeneities. The amino acid sequence derived from human MGL cDNA clones showed 84% identity with mouse MGL. The mouse MGL gene was mapped to chromosome 6 in a region with known homology to human chromosome 3q21.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 5' Untranslated Regions/genetics
- Adipose Tissue/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Chromosome Mapping
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons/genetics
- Female
- Genes/genetics
- Humans
- Introns/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Sequence Data
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Muridae
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Karlsson
- Department of Cell and Molecular Biology, BMC, C11, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
59
|
Alavizadeh A, Kiernan AE, Nolan P, Lo C, Steel KP, Bucan M. The Wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Dev Biol 2001; 234:244-60. [PMID: 11356033 DOI: 10.1006/dbio.2001.0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a screen for mouse mutations with dominant behavioral anomalies, we identified Wheels, a mutation associated with circling and hyperactivity in heterozygotes and embryonic lethality in homozygotes. Mutant Wheels embryos die at E10.5-E11.5 and exhibit a host of morphological anomalies which include growth retardation and anomalies in vascular and hindbrain development. The latter includes perturbation of rhombomeric boundaries as detected by Krox20 and Hoxb1. PECAM-1 staining of embryos revealed normal formation of the primary vascular plexus. However, subsequent stages of branching and remodeling do not proceed normally in the yolk sac and in the embryo proper. To obtain insights into the circling behavior, we examined development of the inner ear by paint-filling of membranous labyrinths of Whl/+ embryos. This analysis revealed smaller posterior and lateral semicircular canal primordia and a delay in the canal fusion process at E12.5. By E13.5, the lateral canal was truncated and the posterior canal was small or absent altogether. Marker analysis revealed an early molecular phenotype in heterozygous embryos characterized by perturbed expression of Bmp4 and Msx1 in prospective lateral and posterior cristae at E11.5. We have constructed a genetic and radiation hybrid map of the centromeric portion of mouse Chromosome 4 across the Wheels region and refined the position of the Wheels locus to the approximately 1.1-cM region between D4Mit104 and D4Mit181. We have placed the locus encoding Epha7, in the Wheels candidate region; however, further analysis showed no mutations in the Epha7-coding region and no detectable changes in mRNA expression pattern. In summary, our findings indicate that Wheels, a gene which is essential for the survival of the embryo, may link diverse processes involved in vascular, hindbrain, and inner ear development.
Collapse
Affiliation(s)
- A Alavizadeh
- Department of Psychiatry and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
60
|
Fischer SE, Wienholds E, Plasterk RH. Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci U S A 2001; 98:6759-64. [PMID: 11381141 PMCID: PMC34426 DOI: 10.1073/pnas.121569298] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Indexed: 01/27/2023] Open
Abstract
Tc1/mariner elements are able to transpose in species other than the host from which they were isolated. As potential vectors for insertional mutagenesis and transgenesis of the mouse, these cut-and-paste transposons were tested for their ability to transpose in the mouse germ line. First, the levels of activity of several Tc1/mariner elements in mammalian cells were compared; the reconstructed fish transposon Sleeping Beauty (SB) was found to be an order of magnitude more efficient than the other tested transposons. SB then was introduced into the mouse germ line as a two-component system: one transgene for the expression of the transposase in the male germ line and a second transgene carrying a modified transposon. In 20% of the progeny of double transgenic male mice the transposon had jumped from the original chromosomal position into another locus. Analysis of the integration sites shows that these jumps indeed occurred through the action of SB transposase, and that SB has a strong preference for intrachromosomal transposition. Analysis of the excision sites suggests that double-strand breaks in haploid spermatids are repaired via nonhomologous end joining. The SB system may be a powerful tool for transposon mutagenesis of the mouse germ line.
Collapse
Affiliation(s)
- S E Fischer
- Hubrecht Laboratory, Centre for Biomedical Genetics, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
61
|
Chen F, Collin GB, Liu KC, Beier DR, Eccles M, Nishina PM, Moshang T, Epstein JA. Characterization of the murine Lbx2 promoter, identification of the human homologue, and evaluation as a candidate for Alström syndrome. Genomics 2001; 74:219-27. [PMID: 11386758 DOI: 10.1006/geno.2001.6539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The murine Lbx2 gene is a member of the ladybird family of homeobox genes, which is expressed in the developing urogenital system, eye, and brain. Using transgenic mice, we demonstrate that 9 kb of the 5' flanking region of mouse Lbx2 is able to direct expression of a reporter gene in a tissue-specific manner recapitulating the endogenous expression pattern. This regulatory region provides a novel reagent allowing for transgenic expression in the developing urogenital ridge. In addition, we describe the identification of the human homologue, LBX2. Comparison of the human LBX2 and mouse Lbx2 sequences upstream of the coding regions reveals sequence conservation suggesting conserved regulatory regions. Both the human LBX2 and the mouse Lbx2 genes have similar genomic structures and are composed of two exons separated by an intron. We mapped the mouse Lbx2 gene to 35 cM on chromosome 6 and the human LBX2 gene to a homologous region of chromosome 2p13. This is a candidate region for several inherited disorders, including Alström syndrome, a disorder that includes ocular, urogenital, and renal abnormalities. Given the expression pattern of Lbx2, the chromosomal location in humans, and the potential function of mammalian ladybird genes, we have begun to analyze patients with ocular disorders and those with Alström syndrome for mutations in LBX2. Although polymorphisms were identified, our results indicate that mutations in the coding region of LBX2 do not account for Alström syndrome in the six kindreds analyzed.
Collapse
Affiliation(s)
- F Chen
- Cardiology Division, Department of Medicine, University of Pennsylvania Health System, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Oesterreicher TJ, Markesich DC, Henning SJ. Cloning, characterization and mapping of the mouse trehalase (Treh) gene. Gene 2001; 270:211-20. [PMID: 11404018 DOI: 10.1016/s0378-1119(01)00474-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trehalase is the least studied of the membrane-bound alpha- glucosidase enzymes. Here we report the isolation and characterization of the mouse trehalase (Treh) gene. Initially, PCR using primers based on published rat cDNA sequence was used to clone a partial mouse cDNA. This allowed design of mouse primers which identified a single positive clone in a bacterial artificial chromosome (BAC) library of mouse genomic DNA. Analysis of BAC subclones showed that the Treh structural gene spans approximately 13 kb and comprises 15 exons. Data from genomic Southern blotting were consistent with mouse Treh being a single copy gene. The transcription initiation site was determined by both S1 nuclease mapping and 5' rapid amplification of cDNA ends (5' RACE) to be located 25 nt upstream of the ATG in exon 1. The mouse Treh exons were found to have an open reading frame of 1728 nt and the encoded protein of 576 amino acids showed 81, 82 and 93% amino acid sequence identity with rabbit, human and rat trehalase, respectively. The trehalase signature sequence found at amino acids 162 to 175 had 100% identity with the corresponding region of rabbit, human and rat and 79% identity with that for yeast trehalase. When a mouse Treh cDNA was used for Northern blot analysis of RNA from 12 mouse tissues, Treh mRNA expression was detected only in kidney and small intestine. The size of the mRNA in both of these tissues was estimated to be approximately 2.1 kb, furthermore both tissues appear to have the same transcription initiation site as determined by nuclease protection. Using the T31 radiation hybrid panel, mouse Treh was shown to be located on Chromosome 9 in a broad region that is orthologous with human Chromosome 11q23. The human trehalase gene (TREH) was identified in the latter location via database searching, which also revealed the overall structure of the human gene as being similar to that of the mouse.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Human, Pair 11/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- Genes/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
- Trehalase/genetics
Collapse
Affiliation(s)
- T J Oesterreicher
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | | | | |
Collapse
|
63
|
Skinner JA, Saltiel AR. Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1. Biochem J 2001; 356:257-67. [PMID: 11336659 PMCID: PMC1221835 DOI: 10.1042/0264-6021:3560257] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify novel protein phosphatase 1 (PP1)-interacting proteins, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the catalytic subunit of PP1 as bait. In the present work, the isolation, identification and initial biochemical characterization of a novel PP1-interacting protein, MYPT3, which is homologous with the myosin phosphatase targetting subunit (MYPT) family, is described. MYPT3 aligns >99% with a region of mouse genomic DNA clone RP23-156P23 and localizes to chromosome 15, between markers at 44.1-46.5 cM, as demonstrated by radiation hybrid mapping. The gene consists of ten exons that encode for a 524-amino acid sequence with a predicted molecular mass of 57529 Da. The N-terminal region of MYPT3 consists of a consensus PP1-binding site and multiple ankyrin repeats. MYPT3 is distinguished from related approximately 110-130 kDa MYPT subunits by its molecular mass of 58 kDa, and a unique C-terminal region that contains several potential signalling motifs and a CaaX prenylation site. We have shown that affinity-purified glutathione S-transferase (GST)-MYPT3 is prenylated by purified recombinant farnesyltransferase in vitro. Endogenous PP1 from 3T3-L1 lysates specifically interacts with MYPT3. Additionally, purified PP1 activity was inhibited by GST-MYPT3 toward phosphorylase a, myosin light chain and myosin substrate in vitro. Overall, our findings identify a novel prenylatable subunit of PP1 that defines a new subfamily of MYPT.
Collapse
Affiliation(s)
- J A Skinner
- Department of Cell Biology, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
64
|
Montmayeur JP, Liberles SD, Matsunami H, Buck LB. A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 2001; 4:492-8. [PMID: 11319557 DOI: 10.1038/87440] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying sweet taste in mammals have been elusive. Although numerous studies have implicated G proteins in sweet taste detection, the expected G protein-coupled receptors have not been found. Here we describe a candidate taste receptor gene, T1r3, that is located at or near the mouse Sac locus, a genetic locus that controls the detection of certain sweet tastants. T1R3 differs in amino acid sequence in mouse strains with different Sac phenotypes ('tasters' versus 'nontasters'). In addition, a perfect correlation exists between two different T1r3 alleles and Sac phenotypes in recombinant inbred mouse strains. The T1r3 gene is expressed in a subset of taste cells in circumvallate, foliate and fungiform taste papillae. In circumvallate and foliate papillae, most T1r3-expressing cells also express a gene encoding a related receptor, T1R2, raising the possibility that these cells recognize more than one ligand, or that the two receptors function as heterodimers.
Collapse
Affiliation(s)
- J P Montmayeur
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
65
|
Grimmond S, Larder R, Van Hateren N, Siggers P, Morse S, Hacker T, Arkell R, Greenfield A. Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development. Mech Dev 2001; 102:209-11. [PMID: 11287194 DOI: 10.1016/s0925-4773(00)00586-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have recently reported the preliminary characterisation of a novel EGF-related gene, Scube1 (signal peptide-CUB domain-EGF-related, gene 1), that is expressed prominently in the developing gonad, nervous system, somites, surface ectoderm and limb buds of the mouse. Here we describe the expression pattern of a closely related gene, Scube2 (also known as Cegp1), which maps to the distal region of mouse chromosome 7. Scube2 transcription is restricted to the embryonic neurectoderm but is also detectable in the adult heart, lung and testis.
Collapse
Affiliation(s)
- S Grimmond
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, Didcot, UK
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Wang PJ, McCarrey JR, Yang F, Page DC. An abundance of X-linked genes expressed in spermatogonia. Nat Genet 2001; 27:422-6. [PMID: 11279525 DOI: 10.1038/86927] [Citation(s) in RCA: 599] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Spermatogonia are the self-renewing, mitotic germ cells of the testis from which sperm arise by means of the differentiation pathway known as spermatogenesis. By contrast with hematopoietic and other mammalian stem-cell populations, which have been subjects of intense molecular genetic investigation, spermatogonia have remained largely unexplored at the molecular level. Here we describe a systematic search for genes expressed in mouse spermatogonia, but not in somatic tissues. We identified 25 genes (19 of which are novel) that are expressed in only male germ cells. Of the 25 genes, 3 are Y-linked and 10 are X-linked. If these genes had been distributed randomly in the genome, one would have expected zero to two of the genes to be X-linked. Our findings indicate that the X chromosome has a predominant role in pre-meiotic stages of mammalian spermatogenesis. We hypothesize that the X chromosome acquired this prominent role in male germ-cell development as it evolved from an ordinary, unspecialized autosome.
Collapse
Affiliation(s)
- P J Wang
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
67
|
Stan RV, Arden KC, Palade GE. cDNA and protein sequence, genomic organization, and analysis of cis regulatory elements of mouse and human PLVAP genes. Genomics 2001; 72:304-13. [PMID: 11401446 DOI: 10.1006/geno.2000.6489] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PV-1 is a novel protein component of the endothelial fenestral and stomatal diaphragms. PV-1 cDNA and protein sequences are highly conserved across species. The conserved extracellular domain features found in rat, mouse, and human PV-1 protein are four N-glycosylation sites, two coiled-coil domains, a proline-rich region, and even cysteine spacing. No consensus site in the intracellular domain was found. Northern blotting of mouse and human tissues is in agreement with and expands those performed in rat and correlated well with the postulated presence of PV-1 in the endothelial diaphragms. The genomic organization of the human and mouse genes (HGMW-approved symbol PLVAP) has been determined, and the analysis of their 5' flanking regions has found a highly conserved classical TATA-driven promoter that shows several transcription factor consensus binding sites. Radiation hybrid panel mapping has localized the human and mouse PLVAP genes to chromosomes 19p13.2 and 8B3-C1, respectively.
Collapse
Affiliation(s)
- R V Stan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA.
| | | | | |
Collapse
|
68
|
Ramalho JS, Tolmachova T, Hume AN, McGuigan A, Gregory-Evans CY, Huxley C, Seabra MC. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene. BMC Genet 2001; 2:2. [PMID: 11178108 PMCID: PMC29082 DOI: 10.1186/1471-2156-2-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 02/02/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. RESULTS The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb). The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. CONCLUSIONS Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.
Collapse
Affiliation(s)
- José S Ramalho
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Tanya Tolmachova
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Alistair N Hume
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Amanda McGuigan
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Cheryl Y Gregory-Evans
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Clare Huxley
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Miguel C Seabra
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
69
|
Rendtorff ND, Frödin M, Attié-Bitach T, Vekemans M, Tommerup N. Identification and characterization of an inner ear-expressed human melanoma inhibitory activity (MIA)-like gene (MIAL) with a frequent polymorphism that abolishes translation. Genomics 2001; 71:40-52. [PMID: 11161796 DOI: 10.1006/geno.2000.6409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To discover new cochlea-specific genes as candidate genes for nonsyndromic hearing impairment, we searched in The Institute of Genome Research database for expressed sequence tags isolated from the cochlea only. This led to the cloning and characterization of a human gene named melanoma inhibitory activity-like (MIAL; HGMW-approved symbol OTOR alias MIAL) gene. In situ hybridization revealed MIAL expression in a cell layer beneath the sensory epithelium of cochlea and vestibule of human fetal inner ear. No other human tissue, except fetal brain, showed expression of MIAL when analyzed by in situ hybridization or reverse transcription-polymerase chain reaction. The cDNA of the mouse homologue was also cloned and mapped about 80 cM from the top of mouse chromosome 2. In mouse, Mial was also expressed in the cochlea and the vestibule of the inner ear, as well as in brain, eye, limb, and ovary. Expression in mammalian cell cultures showed that MIAL is translated as an approximately 15-kDa polypeptide that is assembled into a covalently linked homodimer, modified by sulfation, and secreted from the cells via the Golgi apparatus. In the human MIAL gene, a frequent polymorphism was discovered in the translation initiation codon (ACG instead of ATG). Of 505 individuals, 48 (9.5%) were ATG/ACG heterozygous and 1 (0.2%) was homozygous for ACG. No MIAL protein was synthesized in cells transfected with cDNA of the ACG allele. The inner ear-restricted expression pattern and the existence of an inactive allele suggest that MIAL may contribute to inner-ear dysfunction in humans.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/embryology
- Brefeldin A/pharmacology
- COS Cells
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/metabolism
- Databases, Factual
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Electrophoresis, Polyacrylamide Gel
- Expressed Sequence Tags
- Extracellular Matrix Proteins
- Extremities/embryology
- Eye/embryology
- Female
- Humans
- Immunoblotting
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Models, Genetic
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Ovary/embryology
- Polymorphism, Genetic
- Precipitin Tests
- Protein Biosynthesis
- Protein Processing, Post-Translational
- Protein Synthesis Inhibitors/pharmacology
- Proteins/genetics
- Proteins/physiology
- RNA, Messenger/metabolism
- Radiation Hybrid Mapping
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- N D Rendtorff
- Department of Medical Genetics, Institute of Medical Biochemistry and Genetics, University of Copenhagen, N, 2200, Denmark
| | | | | | | | | |
Collapse
|
70
|
Péterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 2001; 27:121-4. [PMID: 11138012 DOI: 10.1038/83685] [Citation(s) in RCA: 465] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice carrying mutations in the fatty liver dystrophy (fld) gene have features of human lipodystrophy, a genetically heterogeneous group of disorders characterized by loss of body fat, fatty liver, hypertriglyceridemia and insulin resistance. Through positional cloning, we have isolated the gene responsible and characterized two independent mutant alleles, fld and fld(2J). The gene (Lpin1) encodes a novel nuclear protein which we have named lipin. Consistent with the observed reduction of adipose tissue mass in fld and fld(2J)mice, wild-type Lpin1 mRNA is expressed at high levels in adipose tissue and is induced during differentiation of 3T3-L1 pre-adipocytes. Our results indicate that lipin is required for normal adipose tissue development, and provide a candidate gene for human lipodystrophy. Lipin defines a novel family of nuclear proteins containing at least three members in mammalian species, and homologs in distantly related organisms from human to yeast.
Collapse
Affiliation(s)
- M Péterfy
- Department of Medicine, University of California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
71
|
Abstract
The anterior lobe of the pituitary gland is composed of five hormone-producing cell types and develops from Rathke's pouch, an invagination of oral ectoderm. In mice, rapid cell proliferation occurs in the pouch from embryonic day 12.5 (e12.5) to e14.5, preceding the appearance of most hormone transcripts. Cell-type-specific commitment probably occurs prior to e14.5, but cell differentiation can be demonstrated only by detection of hormone transcripts. Although several transcription factors critical for pouch expansion are known, few of their target genes have been identified. To identify putative transcription factor target genes and cell-type-specific markers, we used differential display PCR analysis of RNA prepared from e12.5 and e14.5 Rathke's pouches. We present an expression profile of the developing pituitary gland including 83 transcripts, 40% of which are novel. The tissue distribution, cell specificity, and developmental regulation were determined for a subset of the transcripts.
Collapse
Affiliation(s)
- K R Douglas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
72
|
Cherqui S, Kalatzis V, Forestier L, Poras I, Antignac C. Identification and characterisation of the murine homologue of the gene responsible for cystinosis, Ctns. BMC Genomics 2000; 1:2. [PMID: 11121245 PMCID: PMC29086 DOI: 10.1186/1471-2164-1-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Accepted: 12/06/2000] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cystinosis is an autosomal recessive disorder characterised by an intralysosomal accumulation of cystine, and affected individuals progress to end-stage renal failure before the age of ten. The causative gene, CTNS, was cloned in 1998 and the encoded protein, cystinosin, was predicted to be a lysosomal membrane protein. RESULTS We have cloned the murine homologue of CTNS, Ctns, and the encoded amino acid sequence is 92.6% similar to cystinosin. We localised Ctns to mouse chromosome 11 in a region syntenic to human chromosome 17 containing CTNS. Ctns is widely expressed in all tissues tested with the exception of skeletal muscle, in contrast to CTNS. CONCLUSIONS We have isolated, characterised and localised Ctns, the murine homologue of CTNS underlying cystinosis. Furthermore, our work has brought to light the existence of a differential pattern of expression between the human and murine homologues, providing critical information for the generation of a mouse model for cystinosis.
Collapse
Affiliation(s)
- Stéphanie Cherqui
- Inserm U423,Université René Descartes, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| | - Vasiliki Kalatzis
- Inserm U423,Université René Descartes, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| | - Lionel Forestier
- Inserm U423,Université René Descartes, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| | - Isabelle Poras
- Genoscope, Centre National de Séquençage, 91057 Evry Cedex, France
| | - Corinne Antignac
- Inserm U423,Université René Descartes, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| |
Collapse
|
73
|
Del Punta K, Rothman A, Rodriguez I, Mombaerts P. Sequence diversity and genomic organization of vomeronasal receptor genes in the mouse. Genome Res 2000; 10:1958-67. [PMID: 11116090 PMCID: PMC313053 DOI: 10.1101/gr.10.12.1958] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The vomeronasal system of mice is thought to be specialized in the detection of pheromones. Two multigene families have been identified that encode proteins with seven putative transmembrane domains and that are expressed selectively in subsets of neurons of the vomeronasal organ. The products of these vomeronasal receptor (Vr) genes are regarded as candidate pheromone receptors. Little is known about their genomic organization and sequence diversity, and only five sequences of mouse V1r coding regions are publicly available. Here, we have begun to characterize systematically the V1r repertoire in the mouse. We isolated 107 bacterial artificial chromosomes (BACs) containing V1r genes from a 129 mouse library. Hybridization experiments indicate that at least 107 V1r-like sequences reside on these BACs. We assembled most of the BACs into six contigs, of which one major contig and one minor contig were characterized in detail. The major contig is 630-860 kb long, encompasses a cluster of 21-48 V1r genes, and contains marker D6Mit227. Sequencing of the coding regions was facilitated by the absence of introns. We determined the sequence of the coding region of 25 possibly functional V1r genes and seven pseudogenes. The functional V1rs can be arranged into three groups; V1rs of one group are novel and substantially divergent from the other V1rs. The genomic and sequence information described here should be useful in defining the biological function of these receptors.
Collapse
Affiliation(s)
- K Del Punta
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
74
|
Haque J, Boger S, Li J, Duncan SA. The murine Pes1 gene encodes a nuclear protein containing a BRCT domain. Genomics 2000; 70:201-10. [PMID: 11112348 DOI: 10.1006/geno.2000.6375] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pescadillo was originally identified in the zebrafish Danio rerio as a site of a retrovirus-insertion mutation that caused severe defects during embryogenesis. In particular, growth of the fetal zebrafish liver was significantly affected by loss of pescadillo function. To begin to understand the role of pescadillo during mammalian hepatogenesis we identified the murine homologue of pescadillo and named it Pes1. A single gene localized to chromosome 11 on the mouse genome encodes Pes1. Although Pes1 mRNA was detected in all tissues examined it was present at the highest levels in both adult and fetal liver. Analysis of the predicted amino acid sequence of Pes1 found it to contain a BRCT domain, which has previously been found in several proteins involved in cell-cycle checkpoints and DNA repair. Consistent with a putative role in these processes we found that when recombinant Pes1 protein was expressed in HepG2 cells it localized to the nucleus.
Collapse
Affiliation(s)
- J Haque
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
75
|
Del Punta K, Rothman A, Rodriguez I, Mombaerts P. Sequence Diversity and Genomic Organization of Vomeronasal Receptor Genes in the Mouse. Genome Res 2000. [DOI: 10.1101/gr.140600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vomeronasal system of mice is thought to be specialized in the detection of pheromones. Two multigene families have been identified that encode proteins with seven putative transmembrane domains and that are expressed selectively in subsets of neurons of the vomeronasal organ. The products of these vomeronasal receptor (Vr) genes are regarded as candidate pheromone receptors. Little is known about their genomic organization and sequence diversity, and only five sequences of mouse V1r coding regions are publicly available. Here, we have begun to characterize systematically the V1r repertoire in the mouse. We isolated 107 bacterial artificial chromosomes (BACs) containing V1r genes from a 129 mouse library. Hybridization experiments indicate that at least 107 V1r-like sequences reside on these BACs. We assembled most of the BACs into six contigs, of which one major contig and one minor contig were characterized in detail. The major contig is 630–860 kb long, encompasses a cluster of 21–48 V1r genes, and contains markerD6Mit227. Sequencing of the coding regions was facilitated by the absence of introns. We determined the sequence of the coding region of 25 possibly functional V1r genes and seven pseudogenes. The functional V1rs can be arranged into three groups; V1rs of one group are novel and substantially divergent from the other V1rs. The genomic and sequence information described here should be useful in defining the biological function of these receptors.
Collapse
|
76
|
Ton C, Hwang DM, Dempsey AA, Tang HC, Yoon J, Lim M, Mably JD, Fishman MC, Liew CC. Identification, characterization, and mapping of expressed sequence tags from an embryonic zebrafish heart cDNA library. Genome Res 2000; 10:1915-27. [PMID: 11116087 PMCID: PMC313056 DOI: 10.1101/gr.10.12.1915] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The generation of expressed sequence tags (ESTs) has proven to be a rapid and economical approach by which to identify and characterize expressed genes. We generated 5102 ESTs from a 3-d-old embryonic zebrafish heart cDNA library. Of these, 57.6% matched to known genes, 14.2% matched only to other ESTs, and 27.8% showed no match to any ESTs or known genes. Clustering of all ESTs identified 359 unique clusters comprising 1771 ESTs, whereas the remaining 3331 ESTs did not cluster. This estimates the number of unique genes identified in the data set to be approximately 3690. A total of 1242 unique known genes were used to analyze the gene expression patterns in the zebrafish embryonic heart. These were categorized into seven categories on the basis of gene function. The largest class of genes represented those involved in gene/protein expression (25.9% of known transcripts). This class was followed by genes involved in metabolism (18.7%), cell structure/motility (16.4%), cell signaling and communication (9.6%), cell/organism defense (7.1%), and cell division (4.4%). Unclassified genes constituted the remaining 17.91%. Radiation hybrid mapping was performed for 102 ESTs and comparison of map positions between zebrafish and human identified new synteny groups. Continued comparative analysis will be useful in defining the boundaries of conserved chromosome segments between zebrafish and humans, which will facilitate the transfer of genetic information between the two organisms and improve our understanding of vertebrate evolution.
Collapse
Affiliation(s)
- C Ton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ton C, Hwang DM, Dempsey AA, Tang HC, Yoon J, Lim M, Mably JD, Fishman MC, Liew CC. Identification, Characterization, and Mapping of Expressed Sequence Tags from an Embryonic Zebrafish Heart cDNA Library. Genome Res 2000. [DOI: 10.1101/gr.154000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of expressed sequence tags (ESTs) has proven to be a rapid and economical approach by which to identify and characterize expressed genes. We generated 5102 ESTs from a 3-d-old embryonic zebrafish heart cDNA library. Of these, 57.6% matched to known genes, 14.2% matched only to other ESTs, and 27.8% showed no match to any ESTs or known genes. Clustering of all ESTs identified 359 unique clusters comprising 1771 ESTs, whereas the remaining 3331 ESTs did not cluster. This estimates the number of unique genes identified in the data set to be approximately 3690. A total of 1242 unique known genes were used to analyze the gene expression patterns in the zebrafish embryonic heart. These were categorized into seven categories on the basis of gene function. The largest class of genes represented those involved in gene/protein expression (25.9% of known transcripts). This class was followed by genes involved in metabolism (18.7%), cell structure/motility (16.4%), cell signaling and communication (9.6%), cell/organism defense (7.1%), and cell division (4.4%). Unclassified genes constituted the remaining 17.91%. Radiation hybrid mapping was performed for 102 ESTs and comparison of map positions between zebrafish and human identified new synteny groups. Continued comparative analysis will be useful in defining the boundaries of conserved chromosome segments between zebrafish and humans, which will facilitate the transfer of genetic information between the two organisms and improve our understanding of vertebrate evolution.[The sequence data described in this paper have been submitted to the GenBank data library under accession nos.BE693120–BE693210 and BE704450.]
Collapse
|
78
|
Kile BT, Viney EM, Willson TA, Brodnicki TC, Cancilla MR, Herlihy AS, Croker BA, Baca M, Nicola NA, Hilton DJ, Alexander WS. Cloning and characterization of the genes encoding the ankyrin repeat and SOCS box-containing proteins Asb-1, Asb-2, Asb-3 and Asb-4. Gene 2000; 258:31-41. [PMID: 11111040 DOI: 10.1016/s0378-1119(00)00402-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Members of the suppressor of cytokine signalling (SOCS) family of proteins have been shown to inhibit cytokine signalling via direct interactions with JAK kinases or activated cytokine receptors. In addition to their novel amino-terminal regions and SH2 domains that mediate these interactions, the SOCS proteins also contain carboxy-terminal regions of homology called the SOCS box. The SOCS box serves to couple SOCS proteins and their binding partners with the elongin B and C complex, possibly targeting them for degradation. Several other families of proteins also contain SOCS boxes but differ from the SOCS proteins in the type of domain or motif they contain upstream of the SOCS box. We report here the cloning, characterization, mapping and expression analysis of four members of the ankyrin repeat and SOCS box-containing (Asb) protein family.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ankyrin Repeat/genetics
- Base Sequence
- Blotting, Northern
- Carrier Proteins/genetics
- Chromosome Mapping
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Expression
- Genes/genetics
- Humans
- Introns
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- B T Kile
- The Walter and Eliza Hall Institute for Medical Research and The Cooperative Research Centre for Cellular Growth Factors, Post Office, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Grimmond S, Larder R, Van Hateren N, Siggers P, Hulsebos TJ, Arkell R, Greenfield A. Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1). Genomics 2000; 70:74-81. [PMID: 11087664 DOI: 10.1006/geno.2000.6370] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The epidermal growth factor (EGF) superfamily comprises a diverse group of proteins that function as secreted signaling molecules, growth factors, and components of the extracellular matrix, many with a role in vertebrate development. We have isolated a novel mammalian gene encoding an EGF-related protein with a CUB (C1s-like) domain that defines a new mammalian gene family. The Scube1 (signal peptide-CUB domain-EGF-related 1) gene was isolated from a developing mouse urogenital ridge cDNA library and is expressed prominently in the developing gonad, nervous system, somites, surface ectoderm, and limb buds. We have mapped Scube1 to mouse chromosome 15 and show that it is orthologous to a human gene in the syntenic region of chromosome 22q13. We discuss the possible functions of this novel gene and its role in heritable disease in light of these data.
Collapse
Affiliation(s)
- S Grimmond
- MRC Mammalian Genetics Unit, Harwell, OX11 0RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
80
|
Strippoli P, Petrini M, Lenzi L, Carinci P, Zannotti M. The murine DSCR1-like (Down syndrome candidate region 1) gene family: conserved synteny with the human orthologous genes. Gene 2000; 257:223-32. [PMID: 11080588 DOI: 10.1016/s0378-1119(00)00407-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A recently recognized gene family, conserved from yeast to humans, includes Down syndrome candidate region 1 gene (DSCR1), Adapt78 (recognized as the hamster ortholog of the DSCR1 isoform 4), ZAKI-4 (renamed DSCR1-like 1, DSCR1L1) and DSCR1L2 (a novel gene on human chromosome 1), along with yeast and C. elegans single members (Strippoli P., Lenzi L., Petrini M., Carinci P., Zannotti M., 2000. A new gene family including DSCR1 (Down Syndrome Candidate Region 1) and ZAKI-4: characterization from yeast to human and identification of DSCR1-like 2, a novel human member. Genomics 64, 252-263). The proposed family labels were a putative single-strand nucleic acid binding domain similar to the RNA recognition motif, and a unique, highly-conserved serine-proline motif. We have used a bioinformatics-driven molecular biology approach to characterize the murine members of DSCR1-like gene family. Systematic expressed-sequence-tags (EST) database search and reverse-transcription polymerase chain rection (RT-PCR) product sequencing allowed identification of the murine DSCR1, DSCR1L1 and DSCR1L2. The sequences of the respective protein products are of 198, 197 and 241 amino acids, respectively, and are very similar to the corresponding human proteins. The very broad expression pattern of the murine DSCR1 genes is similar to that of the human genes. Using a radiation hybrid panel, we mapped the murine DSCR1-like family members. The murine DSCR1 ortholog is located on the chromosome 16, in a region corresponding to that on human chromosome 21 just upstream of the Down syndrome candidate region. DSCR1L1 and DSCR1L2 murine genes are also located in chromosomal segments of chromosome 17 and 4, respectively, exactly corresponding to those containing the respective human homologs on chromosomes 6 and 1. Description of the mouse orthologs for DSCR1-like genes will allow knockout mice to be obtained for specific family members.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Databases, Factual
- Embryo, Mammalian/metabolism
- Evolution, Molecular
- Expressed Sequence Tags
- Gene Expression
- Gene Expression Regulation, Developmental
- Intracellular Signaling Peptides and Proteins
- Male
- Mice
- Molecular Sequence Data
- Multigene Family/genetics
- Muscle Proteins/genetics
- Phylogeny
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radiation Hybrid Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- P Strippoli
- Istituto di Istologia ed Embriologia GeneraleVia Belmeloro, 8-40126 (BO), Bologna, Italy
| | | | | | | | | |
Collapse
|
81
|
Jia HP, Wowk SA, Schutte BC, Lee SK, Vivado A, Tack BF, Bevins CL, McCray PB. A novel murine beta -defensin expressed in tongue, esophagus, and trachea. J Biol Chem 2000; 275:33314-20. [PMID: 10922379 DOI: 10.1074/jbc.m006603200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Defensins are broad spectrum antimicrobial peptides expressed at epithelial surfaces. Two human beta-defensins, HBD-1 and HBD-2, have been identified. In the lung, HBD-2 is an inducible product of airway epithelia and may play a role in innate mucosal defenses. We recently characterized rat homologs (RBD-1, RBD-2) of the human genes and used these sequences to identify novel mouse genes. Mouse beta-defensin-4 (MBD-4) was amplified from lung cDNA using polymerase chain reaction primers designed from conserved sequences of RBD-2 and HBD-2. A full-length cDNA was cloned which encodes a putative peptide with the sequence MRIHYLLFTFLLVLLSPLAAFTQIINNPITCMTNGAICWGPCPTAFRQIGNCGHFKVRCCKIR. The peptide shares approximately 40% identity with HBD-2. MBD-4 mRNA was expressed in the esophagus, tongue, and trachea but not in any of 20 other tissues surveyed. Cloning of the genomic sequence of MBD-4 revealed two nearly (>99%) identical sequences encoding MBD-4 and the presence of numerous additional highly similar genomic sequences. Radiation hybrid mapping localized this gene to a region of chromosome 8 near several other defensins, MBD-2, MBD-3, and alpha-defensins (cryptdins)-3 and -17, consistent with a gene cluster. Our genomic cloning and mapping data suggest that there is a large beta-defensin gene family in mice. Identification of murine beta-defensins provides an opportunity to understand further the role of these peptides in host defense through animal model studies and the generation of beta-defensin-deficient animals by gene targeting.
Collapse
Affiliation(s)
- H P Jia
- Departments of Pediatrics, Genetics Ph.D. Program, and Microbiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Rowe LB, Barter ME, Eppig JT. Cross-referencing radiation hybrid data to the recombination map: lessons from mouse chromosome 18. Genomics 2000; 69:27-36. [PMID: 11013072 DOI: 10.1006/geno.2000.6314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We are building a framework map of known-order anchor markers between the mouse T31 radiation hybrid (RH) panel and the recombination map based on The Jackson Laboratory (TJL) interspecific backcross panels using the established genetic order to evaluate and strengthen the RH results. In making this map comparison, we have elucidated several problems inherent in RH mapping and minimized these by careful attention to data gathering and interpretation methods. We describe lessons and pitfalls of developing radiation hybrid maps, using the example of mouse Chromosome 18, for which we have built a framework map of microsatellite anchor loci spanning the entire chromosome at significant LOD with no gaps. Sixty-five D18Mit- simple sequence length polymorphism (SSLP) markers form a continuous linkage along the T31 RH Chromosome 18 (RH map length 1598 cR, genetic length 41 cM) with all LODs greater than 6. These markers are also placed on TJL interspecific backcrosses, and the order of the markers in the two systems is in complete agreement. We are continuing to cross-reference the RH data to TJL backcross data for the other mouse chromosomes to improve further the power of RH mapping and to integrate more precisely the extensive existing recombination mapping data for the mouse with the incoming radiation hybrid map data.
Collapse
Affiliation(s)
- L B Rowe
- The Jackson Laboratory, Bar Harbor, Maine 04609-1500, USA.
| | | | | |
Collapse
|
83
|
Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood 2000. [DOI: 10.1182/blood.v96.5.1798.h8001798_1798_1807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Injuries to the vessel wall and subsequent exposure of collagen from the subendothelial matrix result in thrombus formation. In physiological conditions, the platelet plug limits blood loss. However, in pathologic conditions, such as rupture of atherosclerotic plaques, platelet–collagen interactions are associated with cardiovascular and cerebral vascular diseases. Platelet glycoprotein VI (GPVI) plays a crucial role in collagen-induced activation and aggregation of platelets, and people who are deficient in GPVI suffer from bleeding disorders. Based on the fact that GPVI is coupled to the Fc receptor (FcR)-γ chain and thus should share homology with the FcR chains, the genes encoding human and mouse GPVI were identified. They belong to the immunoglobulin (Ig) superfamily and share 64% homology at the protein level. Functional evidence demonstrating the identity of the recombinant protein with GPVI was shown by binding to its natural ligand collagen; binding to convulxin (Cvx), a GPVI-specific ligand from snake venom; binding of anti-GPVI IgG isolated from a patient; and association to the FcR-γ chain. The study also demonstrated that the soluble protein blocks Cvx and collagen-induced platelet aggregation and that GPVI expression is restricted to megakaryocytes and platelets. Finally, human GPVI was mapped to chromosome 19, long arm, region 1, band 3 (19q13), in the same region as multiple members of the Ig superfamily. This work offers the opportunity to explore the involvement of GPVI in thrombotic disease, to develop alternative antithrombotic compounds, and to characterize the mechanism involved in GPVI genetic deficiencies.
Collapse
|
84
|
Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood 2000. [DOI: 10.1182/blood.v96.5.1798] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Injuries to the vessel wall and subsequent exposure of collagen from the subendothelial matrix result in thrombus formation. In physiological conditions, the platelet plug limits blood loss. However, in pathologic conditions, such as rupture of atherosclerotic plaques, platelet–collagen interactions are associated with cardiovascular and cerebral vascular diseases. Platelet glycoprotein VI (GPVI) plays a crucial role in collagen-induced activation and aggregation of platelets, and people who are deficient in GPVI suffer from bleeding disorders. Based on the fact that GPVI is coupled to the Fc receptor (FcR)-γ chain and thus should share homology with the FcR chains, the genes encoding human and mouse GPVI were identified. They belong to the immunoglobulin (Ig) superfamily and share 64% homology at the protein level. Functional evidence demonstrating the identity of the recombinant protein with GPVI was shown by binding to its natural ligand collagen; binding to convulxin (Cvx), a GPVI-specific ligand from snake venom; binding of anti-GPVI IgG isolated from a patient; and association to the FcR-γ chain. The study also demonstrated that the soluble protein blocks Cvx and collagen-induced platelet aggregation and that GPVI expression is restricted to megakaryocytes and platelets. Finally, human GPVI was mapped to chromosome 19, long arm, region 1, band 3 (19q13), in the same region as multiple members of the Ig superfamily. This work offers the opportunity to explore the involvement of GPVI in thrombotic disease, to develop alternative antithrombotic compounds, and to characterize the mechanism involved in GPVI genetic deficiencies.
Collapse
|
85
|
Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 2000; 156:327-39. [PMID: 10978296 PMCID: PMC1461246 DOI: 10.1093/genetics/156.1.327] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)-oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0. 5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.
Collapse
Affiliation(s)
- O Riera-Lizarazu
- Department of Agronomy and Plant Genetics and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | |
Collapse
|
86
|
Lyons PA, Hancock WW, Denny P, Lord CJ, Hill NJ, Armitage N, Siegmund T, Todd JA, Phillips MS, Hess JF, Chen SL, Fischer PA, Peterson LB, Wicker LS. The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 2000; 13:107-15. [PMID: 10933399 DOI: 10.1016/s1074-7613(00)00012-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous analyses of NOD mice have shown that some genes control the development of both insulitis and diabetes, while other loci influence diabetes without reducing insulitis. Evidence for the existence of a gene only influencing diabetes, Idd9 on mouse chromosome 4, is provided here by the development of a novel congenic mouse strain, NOD.B10 Idd9. NOD.B10 Idd9 mice display profound resistance to diabetes even though nearly all develop insulitis. Subcongenic analysis has demonstrated that alleles of at least three B10 genes, Idd9.1, Idd9.2, and Idd9.3 are required to produce Idd9-mediated diabetes resistance. Candidate genes with amino acid differences between the NOD and B10 strains have been localized to the 5.6 cM Idd9.2 interval (Tnfr2, Cd30) and to the 2.0 cM Idd9.3 interval (Cd137).
Collapse
Affiliation(s)
- P A Lyons
- The Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge University, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The humble house mouse's cohabitation with humans has been noted since the birth of agriculture, about 10 000 years ago, in the fertile flood plains of the Middle East. In recent times, however, the mouse has been elevated from pest to model for the study of human health and disease. Recent genomics and genetics initiatives will ensure the continued growth of the house mouse as a disease model.
Collapse
Affiliation(s)
- P Denny
- MRC UK Mouse Genome Centre and Mammalian Genetics Unit, Harwell, Oxfordshire, UK.
| | | |
Collapse
|
88
|
Widney DP, Xia YR, Lusis AJ, Smith JB. The murine chemokine CXCL11 (IFN-inducible T cell alpha chemoattractant) is an IFN-gamma- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6322-31. [PMID: 10843686 DOI: 10.4049/jimmunol.164.12.6322] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new murine chemokine was identified in a search for glucocorticoid-attenuated response genes induced in the lung during endotoxemia. The first 73 residues of the predicted mature peptide are 71% identical and 93% similar to human CXCL11/IFN-inducible T cell alpha chemoattractant (I-TAC) (alias beta-R1, H174, IFN-inducible protein 9 (IP-9), and SCYB9B). The murine chemokine has six additional residues at the carboxyl terminus not present in human I-TAC. Identification of this cDNA as murine CXCL11/I-TAC is supported by phylogenetic analysis and by radiation hybrid mapping of murine I-TAC (gene symbol Scyb11) to mouse chromosome 5 close to the genes for monokine induced by IFN-gamma (MIG) and IP10. Murine I-TAC mRNA is induced in RAW 264.7 macrophages by IFN-gamma or LPS and is weakly induced by IFN-alphabeta. IFN-gamma induction of murine I-TAC is markedly enhanced by costimulation with LPS or IL-1beta in RAW cells and by TNF-alpha in both RAW cells and Swiss 3T3 fibroblasts. Murine I-TAC is induced in multiple tissues during endoxemia, with strongest expression in lung, heart, small intestine, and kidney, a pattern of tissue expression different from those of MIG and IP10. Peak expression of I-TAC message is delayed compared with IP10, both in lung after i.v. LPS and in RAW 264.7 cells treated with LPS or with IFN-gamma. Pretreatment with dexamethasone strongly attenuates both IFN-gamma-induced I-TAC expression in RAW cells and endotoxemia-induced I-TAC expression in lung and small intestine. The structural and regulatory similarities of murine and human I-TAC suggest that mouse models will be useful for investigating the role of this chemokine in human biology and disease.
Collapse
Affiliation(s)
- D P Widney
- Department of Pediatrics, University of California, Los Angeles, School of Medicine, 90095, USA
| | | | | | | |
Collapse
|
89
|
Depatie C, Lee SH, Stafford A, Avner P, Belouchi A, Gros P, Vidal SM. Sequence-ready BAC contig, physical, and transcriptional map of a 2-Mb region overlapping the mouse chromosome 6 host-resistance locus Cmv1. Genomics 2000; 66:161-74. [PMID: 10860661 DOI: 10.1006/geno.2000.6186] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The host-resistance locus Cmv1 controls viral replication of mouse cytomegalovirus (MCMV) in the spleen of infected mice. Cmv1 maps on distal chromosome 6, very tightly linked to the Ly49 gene family within a 0.35-cM interval defined proximally by Cd94/Nkg2d and distally by D6Mit13/D6Mit111/D6Mit219/Prp/Kap. To facilitate the cloning of the gene, we have created a high-resolution physical map of the Cmv1 genetic interval that is based on long-range restriction mapping by pulsed-field gel electrophoresis, fluorescence in situ hybridization analysis of interphase nuclei, and the assembly of a cloned contig. A contig of BAC and YAC clones was assembled using probes derived from the minimal genetic interval. Individual clones from the region were validated by (1) restriction digest fingerprinting, (2) STS content mapping, (3) Southern hybridizations, and (4) sequencing and mapping of clone ends. This contig contains 25 YACs anchored by 71 STSs and 73 BACs anchored by 40 STSs. We also report the cloning of 31 new STSs and 18 new polymorphic markers. A minimum tiling path was defined that consists of either 4 YACs or 13 BACs covering 1.82 Mb between D6Ott8, the closest proximal marker, and D6Ott115, the closest distal marker. Gene distribution in the region includes 14 Ly49 genes as well as 3 new additional transcripts. This high-resolution, sequence-ready BAC contig provides a backbone for the identification of Cmv1 and its relationship with genes involved in innate immunity.
Collapse
Affiliation(s)
- C Depatie
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
90
|
Mashimo J, Shibanuma M, Satoh H, Chida K, Nose K. Genomic structure and chromosomal mapping of the mouse hic-5 gene that encodes a focal adhesion protein. Gene 2000; 249:99-103. [PMID: 10831843 DOI: 10.1016/s0378-1119(00)00163-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hic-5 gene encodes a focal adhesion protein that has striking similarity to paxillin. Genomic clones of the mouse hic-5 gene were isolated, and included 10 exons that covered the whole mouse mRNA sequence. Comparison of the sequence with those in the expressed sequence tag database suggested that the hic-5 gene contained an extra exon (named exon 1') located about 1kb upstream of exon 1, and mouse cells seemed to express two alternatively spliced forms of mRNA. All the exon-intron boundaries followed the GT/AG rule. Physical mapping and fluorescent in situ hybridization analysis indicated that the hic-5 gene is located on mouse chromosome 7, 60. 0cM from the centromere.
Collapse
Affiliation(s)
- J Mashimo
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
91
|
Tarantino LM, Feiner L, Alavizadeh A, Wiltshire T, Hurle B, Ornitz DM, Webber AL, Raper J, Lengeling A, Rowe LB, Bucan M. A high-resolution radiation hybrid map of the proximal portion of mouse chromosome 5. Genomics 2000; 66:55-64. [PMID: 10843805 DOI: 10.1006/geno.2000.6183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation hybrid (RH) mapping of the mouse genome provides a useful tool in the integration of existing genetic and physical maps, as well as in the ongoing effort to generate a dense map of expressed sequence tags. To facilitate functional analysis of mouse Chromosome 5, we have constructed a high-resolution RH map spanning 75 cM of the chromosome. During the course of these studies, we have developed RHBase, an RH data management program that provides data storage and an interface to several RH mapping programs and databases. We have typed 95 markers on the T31 RH panel and generated an integrated map, pooling data from several sources. The integrated RH map ranges from the most proximal marker, D5Mit331 (Chromosome Committee offset, 3 cM), to D5Mit326, 74.5 cM distal on our genetic map (Chromosome Committee offset, 80 cM), and consists of 138 markers, including 89 simple sequence length polymorphic markers, 11 sequence-tagged sites generated from BAC end sequence, and 38 gene loci, and represents average coverage of approximately one locus per 0.5 cM with some regions more densely mapped. In addition to the RH mapping of markers and genes previously localized on mouse Chromosome 5, this RH map places the alpha-4 GABA(A) receptor subunit gene (Gabra4) in the central portion of the chromosome, in the vicinity of the cluster of three other GABA(A) receptor subunit genes (Gabrg1-Gabra2-Gabrb1). Our mapping effort has also defined a new cluster of four genes in the semaphorin gene family (Sema3a, Sema3c, Sema3d, and Sema3e) and the Wolfram syndrome gene (Wfs1) in this region of the chromosome.
Collapse
Affiliation(s)
- L M Tarantino
- Center for Neurobiology and Behavior, Department of Neuroscience, Department of Genetics, University of Pennsylvania, 111 CRB, 415 Curie Boulevard, Philadelphia, Pensylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
|
93
|
Yang H, Slupska MM, Wei YF, Tai JH, Luther WM, Xia YR, Shih DM, Chiang JH, Baikalov C, Fitz-Gibbon S, Phan IT, Conrad A, Miller JH. Cloning and characterization of a new member of the Nudix hydrolases from human and mouse. J Biol Chem 2000; 275:8844-53. [PMID: 10722730 DOI: 10.1074/jbc.275.12.8844] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins containing the Nudix box "GX(5)EX(7)REUXEEXGU" (where U is usually Leu, Val, or Ile) are Nudix hydrolases, which catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives. Here we report cloning and characterization of a human cDNA encoding a novel nudix hydrolase NUDT5 for the hydrolysis of ADP-sugars. The deduced amino acid sequence of NUDT5 contains 219 amino acids, including a conserved Nudix box sequence. The recombinant NUDT5 was expressed in Escherichia coli and purified to near homogeneity. At the optimal pH of 7, the purified recombinant NUDT5 catalyzed hydrolysis of two major substrates ADP-ribose and ADP-mannose with K(m) values of 32 and 83 microM, respectively; the V(max) for ADP-mannose was about 1.5 times that with ADP-ribose. The murine NUDT5 homolog was also cloned and characterized. mNudT5 has 81% amino acid identity to NUDT5 with catalytic activities similar to NUDT5 under the optimal pH of 9. Both NUDT5 and mNudT5 transcripts were ubiquitously expressed in tissues analyzed with preferential abundance in liver. The genomic structures of both NUDT5 and mNudT5 were determined and located on human chromosome 10 and mouse chromosome 2, respectively. The role of NUDT5 in maintaining levels of free ADP-ribose in cells is discussed.
Collapse
Affiliation(s)
- H Yang
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Al-Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomès D, Bruzzone R. Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J Neurosci Res 2000; 59:813-26. [PMID: 10700019 DOI: 10.1002/(sici)1097-4547(20000315)59:6<813::aid-jnr14>3.0.co;2-#] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal neurons of virtually every type are coupled by gap-junctional channels whose pharmacological and gating properties have been studied extensively. We have begun to identify the molecular composition and functional properties of the connexins that form these 'electrical synapses,' and have cloned several that constitute a new subclass (gamma) of the connexin family expressed predominantly in retina and brain. In this paper, we present a series of experiments characterizing connexin36 (Cx36), a member of the gamma subclass that was cloned from a mouse retinal cDNA library. Cx36 has been localized to mouse chromosome 2, in a region syntenic to human chromosome 5, and immunocytochemistry showed strong labeling in the ganglion cell and inner nuclear layers of the mouse retina. Comparison of the developmental time course of Cx36 expression in mouse retina with the genesis of the various classes of retinal cells suggests that the expression of Cx36 occurs primarily after cellular differentiation is complete. Because photic stimulation can affect the gap-junctional coupling between retinal neurons, we determined whether lighting conditions might influence the steady state levels of Cx36 transcript in the mouse retina. Steady-state levels of Cx36 transcript were significantly higher in animals reared under typical cyclic-light conditions; exposure either to constant darkness or to continuous illumination reduced the steady-state level of mRNA approximately 40%. Injection of Cx36 cRNA into pairs of Xenopus oocytes induced intercellular conductances that were relatively insensitive to transjunctional voltage, a property shared with other members of the gamma subclass of connexins. Like skate Cx35, mouse Cx36 was unable to form heterotypic gap-junctional channels when paired with two other rodent connexins. In addition, mouse Cx36 failed to form voltage-activated hemichannels, whereas both skate and perch Cx35 displayed quinine-sensitive hemichannel activity. The conservation of intercellular channel gating contrasts with the failure of Cx36 to make hemichannels, suggesting that the voltage-gating mechanisms of hemichannels may be distinct from those of intact intercellular channels.
Collapse
Affiliation(s)
- M R Al-Ubaidi
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 6012, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
Sapiro R, Tarantino LM, Velazquez F, Kiriakidou M, Hecht NB, Bucan M, Strauss JF. Sperm antigen 6 is the murine homologue of the Chlamydomonas reinhardtii central apparatus protein encoded by the PF16 locus. Biol Reprod 2000; 62:511-8. [PMID: 10684790 DOI: 10.1095/biolreprod62.3.511] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A cDNA encoding sperm antigen 6 (Spag6), the murine homologue of the Chlamydomonas reinhardtii PF16 protein-a component of the flagella central apparatus-was isolated from a mouse testis cDNA library. The cDNA sequence predicted a 55.3-kDa polypeptide containing 8 contiguous armadillo repeats with 65% amino acid sequence identity and 81% similarity to the Chlamydomonas PF1 protein. An antipeptide antibody generated against a C-terminal sequence recognized a 55-kDa protein in sperm extracts and localized Spag6 to the principal piece of permeabilized mouse sperm tails. When expressed in COS-1 cells, Spag6 colocalized with microtubules. The Spag6 gene was found to be highly expressed in testis and was mapped using the T31 radiation hybrid panel to mouse chromosome 16. Mutations in the Chlamydomonas PF16 gene cause flagellar paralysis. The presence of a highly conserved mammalian PF16 homologue (Spag6) raises the possibility that Spag6 plays an important role in sperm flagellar function.
Collapse
Affiliation(s)
- R Sapiro
- Center for Research on Reproduction and Women's Health, Center for Neurobiology and Behavior, and Molecular Genetics in Psychology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Wakana S, Sugaya E, Naramoto F, Yokote N, Maruyama C, Jin W, Ohguchi H, Tsuda T, Sugaya A, Kajiwara K. Gene mapping of SEZ group genes and determination of pentylenetetrazol susceptible quantitative trait loci in the mouse chromosome. Brain Res 2000; 857:286-90. [PMID: 10700579 DOI: 10.1016/s0006-8993(99)02406-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene mapping of the newly discovered SEZ genes (seizure-related genes) in the mouse was performed by linkage analysis. SEZ6 was on chromosome 11, SEZ12 on chromosome 16, SEZ15 on chromosome 3 and SEZ17 (PTZ17) on chromosome 18. The mouse chromosomal locus related to high susceptibility to pentylenetetrazol (PTZ) was also determined by linkage analysis using the recombinant inbred mouse, BXD (C57BLxDBA). A significant level of PTZ susceptibility was found on chromosome 2. Chromosomal loci of the newly discovered SEZ genes were not coincident with the significant chromosomal loci to PTZ susceptibility. Since epilepsy is assumed to be a disease syndrome which is probably manifested by abnormal expression of multifocal genes, determination of the role of each chromosomal locus in the provocation of seizure activity is important.
Collapse
Affiliation(s)
- S Wakana
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Salbaum JM, Kappen C. Cloning and expression of nope, a new mouse gene of the immunoglobulin superfamily related to guidance receptors. Genomics 2000; 64:15-23. [PMID: 10708514 DOI: 10.1006/geno.2000.6114] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The novel mouse gene Nope was identified due to its proximity to the Punc gene on chromosome 9. With a domain structure of four immunoglobulin domains, five fibronectin type III repeats, a single transmembrane domain, and a cytoplasmic domain, Nope encodes a new member of the immunoglobulin superfamily of cell surface proteins. It displays a high level of similarity to Punc, as well as to guidance receptors such as the Deleted in Colorectal Cancer protein and Neogenin. Nope is expressed during embryonic development in the notochord, in developing skeletal muscles, and later in the ventricular zone of the nervous system. In the adult brain, Nope can be detected in the hippocampus. Radiation hybrid mapping of Nope, Punc, and Neogenin placed all three genes in close vicinity on mouse chromosome 9.
Collapse
Affiliation(s)
- J M Salbaum
- The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
98
|
Engert JC, Bérubé P, Mercier J, Doré C, Lepage P, Ge B, Bouchard JP, Mathieu J, Melançon SB, Schalling M, Lander ES, Morgan K, Hudson TJ, Richter A. ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000; 24:120-5. [PMID: 10655055 DOI: 10.1038/72769] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is an early onset neurodegenerative disease with high prevalence (carrier frequency 1/22) in the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region of Quebec. We previously mapped the gene responsible for ARSACS to chromosome 13q11 and identified two ancestral haplotypes. Here we report the cloning of this gene, SACS, which encodes the protein sacsin. The ORF of SACS is 11,487 bp and is encoded by a single gigantic exon spanning 12,794 bp. This exon is the largest to be identified in any vertebrate organism. The ORF is conserved in human and mouse. The putative protein contains three large segments with sequence similarity to each other and to the predicted protein of an Arabidopsis thaliana ORF. The presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding. SACS is expressed in a variety of tissues, including the central nervous system. We identified two SACSmutations in ARSACS families that lead to protein truncation, consistent with haplotype analysis.
Collapse
Affiliation(s)
- J C Engert
- Montreal Genome Centre, McGill University Health Centre Research Institute, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
We screened clones for thioredoxin reductase genes with a degenerate PCR-based strategy and have isolated two novel cDNA clones from a mouse thymocyte cDNA library. These encode two distinct thioredoxin reductases (TrxR1 and TrxR2) with 499 and 527 amino acid (aa) residues and calculated molecular masses of 54.5 kDa and 56.8 kDa respectively. These proteins share 90% and 50% aa sequence identity with those of previously cloned human TrxR, containing the redox-active cysteines, FAD binding domain, and the selenocysteine (SeCys) insertion sequence, which is composed of a putative stem-loop sequence located in the 3'-untranslated region (UTR). TrxR2 showing less homology to human TrxR has a mitochondrial translocation signal and a mitochondrial prepeptide protease cleavage site in the N-terminal domain. Transient expression experiments of each gene as fusion proteins with Xpress-tagged protein in NIH 3T3 cells indicated that TrxR1 was localized in the nucleus and cytoplasm and TrxR2 in the mitochondria. Furthermore, we mapped the TrxR1 gene to chromosome 10 (placed 1.71 cR from D10Mit42, lod>3.0) and the TrxR2 gene to chromosome 16 (placed 22.56 cR from D16Mit34, lod>3.0). Thus, the mouse has at least two distinct nuclear genes for TrxR that have different translocation sites in the cell.
Collapse
Affiliation(s)
- H Kawai
- Department of Regulatory Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | | | | | | |
Collapse
|
100
|
Abstract
Blood pressure is a quantitative trait that has a strong genetic component in humans and rats. Several selectively bred strains of rats with divergent blood pressures serve as an animal model for genetic dissection of the causes of inherited hypertension. The goal is to identify the genetic loci controlling blood pressure, i.e., the so-called quantitative trait loci (QTL). The theoretical basis for such genetic dissection and recent progress in understanding genetic hypertension are reviewed. The usual paradigm is to produce segregating populations derived from a hypertensive and normotensive strain and to seek linkage of blood pressure to genetic markers using recently developed statistical techniques for QTL analysis. This has yielded candidate QTL regions on almost every rat chromosome, and also some interactions between QTL have been defined. These statistically defined QTL regions are much too large to practice positional cloning to identify the genes involved. Most investigators are, therefore, fine mapping the QTL using congenic strains to substitute small segments of chromosome from one strain into another. Although impressive progress has been made, this process is slow due to the extensive breeding that is required. At this point, no blood pressure QTL have met stringent criteria for identification, but this should be an attainable goal given the recently developed genomic resources for the rat. Similar experiments are ongoing to look for genes that influence cardiac hypertrophy, stroke, and renal failure and that are independent of the genes for hypertension.
Collapse
Affiliation(s)
- J P Rapp
- Department of Physiology, Medical College of Ohio, Toledo, Ohio, USA.
| |
Collapse
|