51
|
Mills-Lujan K, Andrews DL, Chou CW, Deom CM. The roles of phosphorylation and SHAGGY-like protein kinases in geminivirus C4 protein induced hyperplasia. PLoS One 2015; 10:e0122356. [PMID: 25815729 PMCID: PMC4376871 DOI: 10.1371/journal.pone.0122356] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/16/2015] [Indexed: 12/26/2022] Open
Abstract
Even though plant cells are highly plastic, plants only develop hyperplasia under very specific abiotic and biotic stresses, such as when exposed to pathogens like Beet curly top virus (BCTV). The C4 protein of BCTV is sufficient to induce hyperplasia and alter Arabidopsis development. It was previously shown that C4 interacts with two Arabidopsis Shaggy-like protein kinases, AtSK21 and 23, which are negative regulators of brassinosteroid (BR) hormone signaling. Here we show that the C4 protein interacts with five additional AtSK family members. Bikinin, a competitive inhibitor of the seven AtSK family members that interact with C4, induced hyperplasia similar to that induced by the C4 protein. The Ser49 residue of C4 was found to be critical for C4 function, since: 1) mutagenesis of Ser49 to Ala abolished the C4-induced phenotype, abolished C4/AtSK interactions, and resulted in a mutant protein that failed to induce changes in the BR signaling pathway; 2) Ser49 is phosphorylated in planta; and 3) plant-encoded AtSKs must be catalytically active to interact with C4. A C4 N-myristoylation site mutant that does not localize to the plasma membrane and does not induce a phenotype, retained the ability to bind AtSKs. Taken together, these results suggest that plasma membrane associated C4 interacts with and co-opts multiple AtSKs to promote its own phosphorylation and activation to subsequently compromise cell cycle control.
Collapse
Affiliation(s)
- Katherine Mills-Lujan
- Department of Plant Pathology, The University of Georgia, Athens, Georgia, United States of America
| | - David L. Andrews
- Department of Plant Pathology, The University of Georgia, Athens, Georgia, United States of America
| | - Chau-wen Chou
- Department of Chemistry, Proteomics and Mass Spectrometry Core Facility, The University of Georgia, Athens, Georgia, United States of America
| | - C. Michael Deom
- Department of Plant Pathology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
52
|
Zhao R, Sun H, Zhao N, Jing X, Shen X, Chen S. The Arabidopsis Ca²⁺-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene 2015; 563:203-14. [PMID: 25791495 DOI: 10.1016/j.gene.2015.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/04/2023]
Abstract
Ca(2+)-dependent protein kinases (CDPKs) play vital roles in plant adaptations to environmental challenges. The precise regulatory mechanism of CDPKs in mediating salt stress still remains unclear, although several CDPK members have been identified to be involved in salt stress accumulation in various plants, such as Arabidopsis thaliana and Oryza sativa. Here, we investigated the function of an Arabidopsis CDPK, CPK27, in salt stress-signaling. CPK27 is a membrane-localized protein kinase; its expression was induced by NaCl. cpk27-1, a T-DNA insertion mutant of CPK27, was much more sensitive to salt stress than wild-type plants in terms of seed germination and post-germination seedling growth. In ion-flux assay, cpk27-1 mutants exhibited a lower capacity than wild-type plants to extrude Na(+) and import H(+) after a long-term salt treatment (110mM NaCl for 10days). Moreover, the content of Na(+) was higher and K(+) was lower in cpk27-1 mutants than in wild-type plants under salt stress. In addition, the level of salt-elicited H2O2 production was higher in cpk27-1 mutants than in wild-type plants Col after a short-term NaCl shock and long-term salt treatment. Collectively, our results suggest that CPK27 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Huimin Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoshu Jing
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
53
|
Christov NK, Christova PK, Kato H, Liu Y, Sasaki K, Imai R. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:251-260. [PMID: 25306528 DOI: 10.1016/j.plaphy.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 05/20/2023]
Abstract
A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals.
Collapse
Affiliation(s)
- Nikolai Kirilov Christov
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; AgroBioInstitute, Dragan Tsankov 8, Sofia 1164, Bulgaria
| | - Petya Koeva Christova
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; AgroBioInstitute, Dragan Tsankov 8, Sofia 1164, Bulgaria
| | - Hideki Kato
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Yuelin Liu
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kentaro Sasaki
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Ryozo Imai
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
54
|
Stecker KE, Minkoff BB, Sussman MR. Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response. PLANT PHYSIOLOGY 2014; 165:1171-1187. [PMID: 24808101 PMCID: PMC4081330 DOI: 10.1104/pp.114.238816] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/29/2014] [Indexed: 05/18/2023]
Abstract
Elucidating how plants sense and respond to water loss is important for identifying genetic and chemical interventions that may help sustain crop yields in water-limiting environments. Currently, the molecular mechanisms involved in the initial perception and response to dehydration are not well understood. Modern mass spectrometric methods for quantifying changes in the phosphoproteome provide an opportunity to identify key phosphorylation events involved in this process. Here, we have used both untargeted and targeted isotope-assisted mass spectrometric methods of phosphopeptide quantitation to characterize proteins in Arabidopsis (Arabidopsis thaliana) whose degree of phosphorylation is rapidly altered by hyperosmotic treatment. Thus, protein phosphorylation events responsive to 5 min of 0.3 m mannitol treatment were first identified using 15N metabolic labeling and untargeted mass spectrometry with a high-resolution ion-trap instrument. The results from these discovery experiments were then validated using targeted Selected Reaction Monitoring mass spectrometry with a triple quadrupole. Targeted Selected Reaction Monitoring experiments were conducted with plants treated under nine different environmental perturbations to determine whether the phosphorylation changes were specific for osmosignaling or involved cross talk with other signaling pathways. The results indicate that regulatory proteins such as members of the mitogen-activated protein kinase family are specifically phosphorylated in response to osmotic stress. Proteins involved in 5' messenger RNA decapping and phosphatidylinositol 3,5-bisphosphate synthesis were also identified as targets of dehydration-induced phosphoregulation. The results of these experiments demonstrate the utility of targeted phosphoproteomic analysis in understanding protein regulation networks and provide new insight into cellular processes involved in the osmotic stress response.
Collapse
Affiliation(s)
- Kelly E Stecker
- Department of Biochemistry and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Benjamin B Minkoff
- Department of Biochemistry and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael R Sussman
- Department of Biochemistry and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
55
|
GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:9651-6. [PMID: 24928519 DOI: 10.1073/pnas.1316717111] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis glycogen synthase kinase 3 (GSK3)-like kinases have versatile functions in plant development and in responding to abiotic stresses. Although physiological evidence suggested a potential role of GSK3-like kinases in abscisic acid (ABA) signaling, the underlying molecular mechanism was largely unknown. Here we identified members of Snf1-related kinase 2s (SnRK2s), SnRK2.2 and SnRK2.3, that can interact with and be phosphorylated by a GSK3-like kinase, brassinosteroid insensitive 2 (BIN2). bin2-3 bil1 bil2, a loss-of-function mutant of BIN2 and its two closest homologs, BIN2 like 1 (BIL1) and BIN2 like 2 (BIL2), was hyposensitive to ABA in primary root inhibition, ABA-responsive gene expression, and phosphorylating ABA Response Element Binding Factor (ABF) 2 fragment by in-gel kinase assays, whereas bin2-1, a gain-of-function mutation of BIN2, was hypersensitive to ABA, suggesting that these GSK3-like kinases function as positive regulators in ABA signaling. Furthermore, BIN2 phosphorylated SnRK2.3 on T180, and SnRK2.3(T180A) had decreased kinase activity in both autophosphorylation and phosphorylating ABFs. Bikinin, a GSK3 kinase inhibitor, inhibited the SnRK2.3 kinase activity and its T180 phosphorylation in vivo. Our genetic analysis further demonstrated that BIN2 regulates ABA signaling downstream of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS receptors and clade A protein phosphatase 2C but relies on SnRK2.2 and SnRK2.3. These findings provide significant insight into the modulation of ABA signaling by Arabidopsis GSK3-like kinases.
Collapse
|
56
|
Rajwade AV, Kadoo NY, Borikar SP, Harsulkar AM, Ghorpade PB, Gupta VS. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. PHYTOCHEMISTRY 2014; 98:41-53. [PMID: 24380374 DOI: 10.1016/j.phytochem.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 05/24/2023]
Abstract
Linseed or flax (Linum usitatissimum L.) varieties differ markedly in their seed α-linolenic acid (ALA) levels. Fatty acid desaturases play a key role in accumulating ALA in seed. We performed fatty acid (FA) profiling of various seed developmental stages of ten Indian linseed varieties including one mutant variety. Depending on their ALA contents, these varieties were grouped under high ALA and low ALA groups. Transcript profiling of six microsomal desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B), which act sequentially in the fatty acid desaturation pathway, was performed using real-time PCR. We observed gene specific as well as temporal expression pattern for all the desaturases and their differential expression profiles corresponded well with the variation in FA accumulation in the two groups. Our study points to efficient conversion of intermediate FAs [stearic (SA), oleic (OA) and linoleic acids (LA)] to the final product, ALA, due to efficient action of all the desaturases in high ALA group. While in the low ALA group, even though the initial conversion up to OA was efficient, later conversions up to ALA seemed to be inefficient, leading to higher accumulation of OA and LA instead of ALA. We sequenced the six desaturase genes from the ten varieties and observed that variation in the amino acid (AA) sequences of desaturases was not responsible for differential ALA accumulation, except in the mutant variety TL23 with very low (<2%) ALA content. In TL23, a point mutation in the FAD3A gene resulted into a premature stop codon generating a truncated protein with 291 AA.
Collapse
Affiliation(s)
- Ashwini V Rajwade
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Sanjay P Borikar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Abhay M Harsulkar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411 043, India.
| | | | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| |
Collapse
|
57
|
Guerrero-González ML, Rodríguez-Kessler M, Jiménez-Bremont JF. uORF, a regulatory mechanism of the Arabidopsis polyamine oxidase 2. Mol Biol Rep 2014; 41:2427-43. [PMID: 24435979 DOI: 10.1007/s11033-014-3098-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 01/04/2014] [Indexed: 01/01/2023]
Abstract
The translational efficiency of an mRNA can be modulated by elements located in the 5'-untranslated region. The flavin-containing polyamine oxidases catabolize oxidative deamination of spermidine and spermine, thus contributing to polyamine homeostasis as well as diverse biological processes through their reaction products. In this study, we characterized the uORF of AtPAO2 gene using the GUS reporter gene. Transgenic lines harboring the native AtPAO2 promoter or the constitutive CaMV 35S promoter show that the uORF negatively affects GUS expression. Exogenous applications of PAs positively modulate GUS expression, thus alleviating the negative effect of AtPAO2 uORF, while treatments with MGBG inhibitor show an opposite effect. Our data suggest that AtPAO2 uORF regulatory mechanism is modulated by polyamines. In addition, we present a comparative in silico study of the uORFs identified in several plant transcripts encoding polyamine oxidases in both mono- and dicotyledonous plants as well as in the Bryophyte Physcomitrella patens. The polyamine oxidase uORF-encoded peptides are conserved among families and share conserved features such as their position, length, and amino acid sequence. Our findings provide new insights into the regulatory mechanism of polyamine oxidase genes and encourage further exploration to assess the biological significance of uORFs in the polyamine catabolic pathway.
Collapse
Affiliation(s)
- Maria L Guerrero-González
- Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa de San Jose 2055, AP 3-74 Tangamanga, 78216, San Luis Potosi, SLP, Mexico
| | | | | |
Collapse
|
58
|
Wang L, Wang Y, Zhou P. Validation of reference genes for quantitative real-time PCR during Chinese wolfberry fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:304-10. [PMID: 23811043 DOI: 10.1016/j.plaphy.2013.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/21/2013] [Indexed: 05/12/2023]
Abstract
Lycium barbarum L., a woody bush that grows in Eurasia and North Africa, is an ornamental and medicinal plant. Its fruits have been used for centuries in China as a traditional herbal medicine and as a valuable nourishing tonic. There has been no report describing the selection of reference genes for stringent normalization for quantitative PCR (qPCR) in L. barbarum. The present study identified reliable reference genes for normalization of qPCR data in L. barbarum during fruit development from among eight candidate genes (GAPDH, TEF G, EF 1a, UBQ, TUB a, SAMS, EF2 and Hsp80) using the geNorm and NormFinder statistical algorithms. The results showed that the best-ranked references genes differed across the samples. A combination of GAPDH and EF1a would be appropriate as a reference panel for normalizing gene expression data across fruit developmental stages. A combination of EF 1a and SAMS would be appropriate as a reference panel for normalizing gene expression data at the stage A tested, whereas the combination of TUB a, and TEF G was the most suitable for stage B. EF2 and Hsp80 exhibited the most stable expression under stage C and stage D. NormFinder ranking of reference gene candidates was slightly different from that determined by geNorm. These results provide guidelines for the selection of reference genes under different development stages and also represent a foundation for more accurate and widespread use of qRT-PCR in L. barbarum gene analysis.
Collapse
Affiliation(s)
- Lijuan Wang
- Ningxia University, 750021 Yinchuan, PR China.
| | | | | |
Collapse
|
59
|
Qi X, Chanderbali AS, Wong GKS, Soltis DE, Soltis PS. Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants. BMC Evol Biol 2013; 13:143. [PMID: 23834366 PMCID: PMC3710211 DOI: 10.1186/1471-2148-13-143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND GSK3 (glycogen synthase kinase 3) genes encode signal transduction proteins with roles in a variety of biological processes in eukaryotes. In contrast to the low copy numbers observed in animals, GSK3 genes have expanded into a multi-gene family in land plants (embryophytes), and have also evolved functions in diverse plant specific processes, including floral development in angiosperms. However, despite previous efforts, the phylogeny of land plant GSK3 genes is currently unclear. Here, we analyze genes from a representative sample of phylogenetically pivotal taxa, including basal angiosperms, gymnosperms, and monilophytes, to reconstruct the evolutionary history and functional diversification of the GSK3 gene family in land plants. RESULTS Maximum Likelihood phylogenetic analyses resolve a gene tree with four major gene duplication events that coincide with the emergence of novel land plant clades. The single GSK3 gene inherited from the ancestor of land plants was first duplicated along the ancestral branch to extant vascular plants, and three subsequent duplications produced three GSK3 loci in the ancestor of euphyllophytes, four in the ancestor of seed plants, and at least five in the ancestor of angiosperms. A single gene in the Amborella trichopoda genome may be the sole survivor of a sixth GSK3 locus that originated in the ancestor of extant angiosperms. Homologs of two Arabidopsis GSK3 genes with genetically confirmed roles in floral development, AtSK11 and AtSK12, exhibit floral preferential expression in several basal angiosperms, suggesting evolutionary conservation of their floral functions. Members of other gene lineages appear to have independently evolved roles in plant reproductive tissues in individual taxa. CONCLUSIONS Our phylogenetic analyses provide the most detailed reconstruction of GSK3 gene evolution in land plants to date and offer new insights into the origins, relationships, and functions of family members. Notably, the diversity of this "green" branch of the gene family has increased in concert with the increasing morphological and physiological complexity of land plant life forms. Expression data for seed plants indicate that the functions of GSK3 genes have also diversified during evolutionary time.
Collapse
Affiliation(s)
- Xinshuai Qi
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - André S Chanderbali
- Department of Biology, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
60
|
Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O. Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003120. [PMID: 23236296 PMCID: PMC3516540 DOI: 10.1371/journal.pgen.1003120] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/12/2012] [Indexed: 12/03/2022] Open
Abstract
Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator. Plants are adapted to soils in which the amounts of different nutrients vary widely, like Zn-deficient or Zn-contaminated soils. Exploring the molecular bases of plant adaptation to Zn-contaminated soils is important in determining strategies for phytoremediation. Here, we describe the mapping and characterization of a QTL for Zn tolerance in A. thaliana that underlies the natural variation of the root response to excess Zn. This physiological variation is controlled by different alleles of the AtFRD3 gene, which codes for a citrate transporter that uploads citrate into the xylem sap, hence playing a role in Fe homeostasis. In the Zn-sensitive accession Shahdara, the expression of AtFRD3 is drastically reduced and the protein encoded is unable to efflux citrate in vitro. Less Fe and Zn are found in Shahdara root exudates, and less Fe and Zn are translocated from root to shoot when Zn is in excess. We deduce that a fine-tuned Fe and Zn homeostasis is crucial for Zn tolerance in A. thaliana. Finally, as a range of alleles were identified, some rare, it was possible to define a sequence motif that is a putative metal-responsive cis-element and demonstrate that two amino acids are essential for the function of the FRD3 transporter.
Collapse
Affiliation(s)
- Christophe Pineau
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Stéphanie Loubet
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Cécile Lefoulon
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Claude Chalies
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Cécile Fizames
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Benoit Lacombe
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Marina Ferrand
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Olivier Loudet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pierre Berthomieu
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Odile Richard
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
- * E-mail:
| |
Collapse
|
61
|
Comelli RN, Welchen E, Kim HJ, Hong JC, Gonzalez DH. Delta subclass HD-Zip proteins and a B-3 AP2/ERF transcription factor interact with promoter elements required for expression of the Arabidopsis cytochrome c oxidase 5b-1 gene. PLANT MOLECULAR BIOLOGY 2012; 80:157-167. [PMID: 22669746 DOI: 10.1007/s11103-012-9935-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/20/2012] [Indexed: 06/01/2023]
Abstract
We have identified transcription factors that interact with a promoter region involved in expression of the Arabidopsis thaliana COX5b-1 gene, which encodes an isoform of the cytochrome c oxidase zinc binding subunit. Elements with the core sequence ATCATT, involved in induction by sugars, are recognized both in vitro and in one-hybrid assays in yeast by HD-Zip proteins from the delta subclass and, though less efficiently, by the trihelix transcription factor GT-3b. DistalB-like elements (CCACTTG), required for induction by abscisic acid (ABA), interact with ESE1, a member of the B-3 subgroup of AP2/ERF transcription factors. The HD-Zip protein Athb-21 and ESE1 are able to interact in yeast two-hybrid assays with the ABA responsive element binding factor AREB2/ABF4, which binds to a G-box absolutely required for expression of the COX5b-1 gene. Overexpression of the identified transcription factors in plants produces an increase in COX5b-1 transcript levels. Moreover, these factors are able to induce the expression of a reporter gene located in plants under the control of the relevant COX5b-1 promoter regions required for expression. Analysis of promoter regions of COX5b genes from different plant species suggests that the identified transcription factors were recruited for the regulation of COX5b gene expression at different stages during the evolution of dicot plants.
Collapse
Affiliation(s)
- Raúl N Comelli
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
62
|
Dal Santo S, Stampfl H, Krasensky J, Kempa S, Gibon Y, Petutschnig E, Rozhon W, Heuck A, Clausen T, Jonak C. Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. THE PLANT CELL 2012; 24:3380-92. [PMID: 22885737 PMCID: PMC3462638 DOI: 10.1105/tpc.112.101279] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 05/19/2023]
Abstract
Diverse stresses such as high salt conditions cause an increase in reactive oxygen species (ROS), necessitating a redox stress response. However, little is known about the signaling pathways that regulate the antioxidant system to counteract oxidative stress. Here, we show that a Glycogen Synthase Kinase3 from Arabidopsis thaliana (ASKα) regulates stress tolerance by activating Glc-6-phosphate dehydrogenase (G6PD), which is essential for maintaining the cellular redox balance. Loss of stress-activated ASKα leads to reduced G6PD activity, elevated levels of ROS, and enhanced sensitivity to salt stress. Conversely, plants overexpressing ASKα have increased G6PD activity and low levels of ROS in response to stress and are more tolerant to salt stress. ASKα stimulates the activity of a specific cytosolic G6PD isoform by phosphorylating the evolutionarily conserved Thr-467, which is implicated in cosubstrate binding. Our results reveal a novel mechanism of G6PD adaptive regulation that is critical for the cellular stress response.
Collapse
Affiliation(s)
- Silvia Dal Santo
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Hansjörg Stampfl
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Julia Krasensky
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Stefan Kempa
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Yves Gibon
- Institut National de la Recherche Agronomique-Bordeaux, La Grande Ferrade, 33883 Villenave d’Ornon, France
| | - Elena Petutschnig
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Alexander Heuck
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Address correspondence to
| |
Collapse
|
63
|
Welchen E, Hildebrandt TM, Lewejohann D, Gonzalez DH, Braun HP. Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:990-1001. [PMID: 22551905 DOI: 10.1016/j.bbabio.2012.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/12/2022]
Abstract
We studied the role of cytochrome c (CYTc), which mediates electron transfer between Complexes III and IV, in cellular events related with mitochondrial respiration, plant development and redox homeostasis. We analyzed single and double homozygous mutants in both CYTc-encoding genes from Arabidopsis: CYTC-1 and CYTC-2. While individual mutants were similar to wild-type, knock-out of both genes produced an arrest of embryo development, showing that CYTc function is essential at early stages of plant development. Mutants in which CYTc levels were extremely reduced respective to wild-type had smaller rosettes with a pronounced decrease in parenchymatic cell size and an overall delay in development. Mitochondria from these mutants had lower respiration rates and a relative increase in alternative respiration. Furthermore, the decrease in CYTc severely affected the activity and the amount of Complex IV, without affecting Complexes I and III. Reactive oxygen species levels were reduced in these mutants, which showed induction of genes encoding antioxidant enzymes. Ascorbic acid levels were not affected, suggesting that a small amount of CYTc is enough to support its normal synthesis. We postulate that, in addition to its role as an electron carrier between Complexes III and IV, CYTc influences Complex IV levels in plants, probably reflecting a role of this protein in Complex IV stability. This double function of CYTc most likely explains why it is essential for plant survival.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (IAL), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | | | | | | | | |
Collapse
|
64
|
Li S, Pandey S, Gookin TE, Zhao Z, Wilson L, Assmann SM. Gene-sharing networks reveal organizing principles of transcriptomes in Arabidopsis and other multicellular organisms. THE PLANT CELL 2012; 24:1362-78. [PMID: 22517316 PMCID: PMC3398552 DOI: 10.1105/tpc.111.094748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/29/2012] [Accepted: 03/16/2012] [Indexed: 05/18/2023]
Abstract
Understanding tissue-related gene expression patterns can provide important insights into gene, tissue, and organ function. Transcriptome analyses often have focused on housekeeping or tissue-specific genes or on gene coexpression. However, by analyzing thousands of single-gene expression distributions in multiple tissues of Arabidopsis thaliana, rice (Oryza sativa), human (Homo sapiens), and mouse (Mus musculus), we found that these organisms primarily operate by gene sharing, a phenomenon where, in each organism, most genes exhibit a high expression level in a few key tissues. We designed an analytical pipeline to characterize this phenomenon and then derived Arabidopsis and human gene-sharing networks, in which tissues are connected solely based on the extent of shared preferentially expressed genes. The results show that tissues or cell types from the same organ system tend to group together to form network modules. Tissues that are in consecutive developmental stages or have common physiological functions are connected in these networks, revealing the importance of shared preferentially expressed genes in conferring specialized functions of each tissue type. The networks provide predictive power for each tissue type regarding gene functions of both known and heretofore unknown genes, as shown by the identification of four new genes with functions in guard cell and abscisic acid response. We provide a Web interface that enables, based on the extent of gene sharing, both prediction of tissue-related functions for any Arabidopsis gene of interest and predictions concerning the relatedness of tissues. Common gene-sharing patterns observed in the four model organisms suggest that gene sharing evolved as a fundamental organizing principle of gene expression in diverse multicellular eukaryotes.
Collapse
Affiliation(s)
- Song Li
- Biology Department, Pensylvania State University, University Park, Pensylvania 16802, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Wang X, Singer SD, Liu Z. Silencing of meiosis-critical genes for engineering male sterility in plants. PLANT CELL REPORTS 2012; 31:747-56. [PMID: 22120011 DOI: 10.1007/s00299-011-1193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/07/2011] [Accepted: 11/14/2011] [Indexed: 05/20/2023]
Abstract
The potential for pollen-mediated transgene flow into wild or closely related species has provoked unease in terms of transgenic modification of agricultural plant species. One approach to remedy this situation in species whose seeds and fruits are not of particular value is to engineer male sterility into the transgenic lines. In this study, three meiosis-critical genes, namely AHP2, AtRAD51C and SWITCH1 (SWI), were chosen as silencing targets to test the feasibility of incorporating sterility into plants using an RNAi-based approach. Our results indicated that the silencing of each of these genes via hairpin RNA (termed AHPi, RAD51Ci and SWIi lines) in Arabidopsis thaliana yielded a proportion of transgenic plants exhibiting a similar 'partially sterile' phenotype in which less than 50% of pollen was viable. In addition, a 'sterile' phenotype was also evident in a minority of RAD51Ci and SWIi, but not AHPi, lines in which plants yielded no seeds and either produced inviable pollen (RAD51Ci lines) or displayed a complete absence of pollen (SWIi lines). This suggests that AtRAD51C and SWI may function at distinct stages of meiosis. Further analyses of SWIi lines demonstrated that the 'sterile' phenotype was associated with a substantial reduction in the level of targeted gene transcript in floral tissues and resulted from sterility of the male, but not female gametes. This work demonstrates that generating male sterility through the silencing of key genes involved in the regulation of meiosis is feasible, and its advantages and potential applications for transgene containment are discussed.
Collapse
Affiliation(s)
- Xiping Wang
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | | | | |
Collapse
|
66
|
Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:809-23. [PMID: 22016421 DOI: 10.1093/jxb/err305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The function of the class I TCP transcription factor TCP15 from Arabidopsis thaliana has been studied through the analysis of plants that express a fusion of this protein to the EAR repressor domain. Constitutive expression of TCP15-EAR produces growth arrest at the seedling stage, before leaf emergence. Expression of the repressor fusion from the AtTCP15 promoter produces small plants with leaves whose margins progressively curve upwards, starting from the basal part of the lamina. Leaves contain smaller and less differentiated cells, both on the adaxial and abaxial sides. The abaxial domain is relatively enlarged, with disorganized cells separated by empty spaces. TCP15-EAR also affects the growth of leaf petioles, flower pedicels, and anther filaments. Flowers show reduced elongation of the three outer whorls and altered gynoecia with irregular carpel surfaces and enlarged repla. Ectopic stigma-like structures develop from medial and basal parts of the replum. TCP15-EAR produces an increase in expression of the boundary-specific genes LOB, CUC1, and CUC2. Changes in CUC1 and CUC2 expression can be explained by the existence of lower levels of miR164 in leaves and the repression of IAA3/SHY2 and the SAUR-like gene At1g29460 in leaves and flowers. TCP15 binds to the promoter regions of IAA3/SHY2 and At1g29460, suggesting that these genes may be direct targets of the transcription factor. The results indicate that TCP15 regulates the expression of boundary-specific genes through a pathway that affects auxin homeostasis and partially overlaps with the one modulated by class II CIN-like TCP proteins.
Collapse
Affiliation(s)
- Nora G Uberti-Manassero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
67
|
Saidi Y, Hearn TJ, Coates JC. Function and evolution of 'green' GSK3/Shaggy-like kinases. TRENDS IN PLANT SCIENCE 2012; 17:39-46. [PMID: 22051150 DOI: 10.1016/j.tplants.2011.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 05/20/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) proteins, also known as SHAGGY-like kinases, have many important cell signalling roles in animals, fungi and amoebae. In particular, GSK3s participate in key developmental signalling pathways and also regulate the cytoskeleton. GSK3-encoding genes are also present in all land plants and in algae and protists, raising questions about possible ancestral functions in eukaryotes. Recent studies have revealed that plant GSK3 proteins are actively implicated in hormonal signalling networks during development as well as in biotic and abiotic stress responses. In this review, we outline the mechanisms of Arabidopsis GSK3 action, summarize GSK3 functions in dicot and monocot flowering plants, and speculate on the possible functions of GSK3s in the earliest-evolving land plants.
Collapse
Affiliation(s)
- Younousse Saidi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
68
|
Chi X, Hu R, Yang Q, Zhang X, Pan L, Chen N, Chen M, Yang Z, Wang T, He Y, Yu S. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genomics 2011; 287:167-76. [PMID: 22203160 DOI: 10.1007/s00438-011-0665-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/01/2011] [Indexed: 11/28/2022]
Abstract
Quantitative real-time reverse transcription PCR (qRT-PCR), a sensitive technique for quantifying gene expression, depends on the stability of the reference gene(s) used for data normalization. Only a few studies on the reference genes have been done with peanut to date. In the present study, 14 potential reference genes in peanut were evaluated for their expression stability using the geNorm and NormFinder statistical algorithms. Expression stability was assessed by qRT-PCR across 32 biological samples, including various tissue types, seed developmental stages, salt and cold treatments. The results showed that the best-ranked references genes differed across the samples. UKN1, UKN2, TUA5 and ACT11 were the most stable across all the tested samples. A combination of ACT11, TUA5, UKN2, PEPKR1 and TIP41 would be appropriate as a reference panel for normalizing gene expression data across the various tissues tested, whereas the combination of TUA5 and UKN1 was the most suitable for seed developmental stages. TUA5 and EF1b exhibited the most stable expression under cold treatment. For salt-treated leaves, TUA5 and UKN2 were the most stably expressed and HDC and UKN1 for salt-treated roots. The relative gene expression level of peanut Cys(2)/His(2)-type zinc finger protein gene AhZFP1 was analyzed in order to validate the reference genes selected for this study. These results provide guidelines for the selection of reference genes under different experimental conditions and also a foundation for more accurate and widespread use of qRT-PCR in peanut gene analysis.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao 266100, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Li L, Ren F, Wei P, Chen Q, Chen J, Wang X. Identification of AtSM34, a novel tonoplast intrinsic protein-interacting polypeptide expressed in response to osmotic stress in germinating seedlings. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4793-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
70
|
Singer SD, Hily JM, Cox KD. Analysis of the enhancer-blocking function of the TBS element from Petunia hybrida in transgenic Arabidopsis thaliana and Nicotiana tabacum. PLANT CELL REPORTS 2011; 30:2013-25. [PMID: 21706298 DOI: 10.1007/s00299-011-1109-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/01/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
Transcriptional enhancers possess the ability to override the tissue-specificity and efficiency of nearby promoters, which is of concern when generating transgenic constructs bearing multiple cassettes. One means of preventing these inappropriate interactions is through the use of enhancer-blocking insulators. The 2-kb transformation booster sequence (TBS) from Petunia hybrida has been shown previously to exhibit this function when inserted between an enhancer and promoter in transgenic Arabidopsis thaliana. In this study, we attempted to further characterize the ability of this fragment to impede enhancer-promoter interference through an analysis of transgenic Arabidopsis and Nicotiana tabacum lines bearing various permutations of the TBS element between the cauliflower mosaic virus (CaMV) 35S enhancer and an assortment of tissue-specific promoters fused to the β-glucuronidase (GUS) reporter gene. The full-length TBS fragment was found to function in both orientations, although to a significantly lesser degree in the reverse orientation, and was operational in both plant species tested. While multiple deletion fragments were found to exhibit activity, it appeared that several regions of the TBS were required for maximal enhancer-blocking function. Furthermore, we found that this element exhibited promoter-like activity, which has implications in terms of possible mechanisms behind its ability to impede enhancer-promoter communication in plants.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
71
|
Zhao R, Sun HL, Mei C, Wang XJ, Yan L, Liu R, Zhang XF, Wang XF, Zhang DP. The Arabidopsis Ca(2+) -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. THE NEW PHYTOLOGIST 2011; 192:61-73. [PMID: 21692804 DOI: 10.1111/j.1469-8137.2011.03793.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Ca(2+) -dependent protein kinase (CDPK) is believed to be involved in abscisic acid (ABA) signaling, and several members of the Arabidopsis CDPK superfamily have been identified as positive ABA signaling regulators, but it remains unknown if CDPK negatively regulates ABA signaling. • Here, we investigated the function of an Arabidopsis (Arabidopsis thaliana) CDPK, CPK12, in ABA signaling pathway. • We generated Arabidopsis CPK12-RNAi lines, and observed that downregulation of CPK12 resulted in ABA hypersensitivity in seed germination and post-germination growth, and altered expression of a set of ABA-responsive genes. Expression assay showed that CPK12 was ubiquitously expressed and localized to both cytosol and nucleus. Biochemical assays showed that CPK12 interacted with, phosphorylated and stimulated a type 2C protein phosphatase ABI2, and phosphorylated two ABA-responsive transcription factors (ABF1 and ABF4) in vitro. • Our findings show that the Arabidopsis CPK12 is a negative ABA-signaling regulator in seed germination and post-germination growth, suggesting that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction.
Collapse
Affiliation(s)
- Rui Zhao
- College of Biological Sciences, China Agricultural University, 100094 Beijing, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Hai-Li Sun
- College of Biological Sciences, China Agricultural University, 100094 Beijing, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Chao Mei
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xiao-Jing Wang
- College of Biological Sciences, China Agricultural University, 100094 Beijing, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Lu Yan
- College of Biological Sciences, China Agricultural University, 100094 Beijing, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Rui Liu
- College of Biological Sciences, China Agricultural University, 100094 Beijing, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xiao-Feng Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xiao-Fang Wang
- College of Biological Sciences, China Agricultural University, 100094 Beijing, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Da-Peng Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
72
|
Jamil A, Riaz S, Ashraf M, Foolad MR. Gene Expression Profiling of Plants under Salt Stress. CRITICAL REVIEWS IN PLANT SCIENCES 2011; 30:435-458. [PMID: 0 DOI: 10.1080/07352689.2011.605739] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
73
|
Attallah CV, Welchen E, Martin AP, Spinelli SV, Bonnard G, Palatnik JF, Gonzalez DH. Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4281-94. [PMID: 21543521 DOI: 10.1093/jxb/err138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two Arabidopsis thaliana genes (HCC1 and HCC2), resulting from a duplication that took place before the emergence of flowering plants, encode proteins with homology to the SCO proteins involved in copper insertion during cytochrome c oxidase (COX) assembly in other organisms. Heterozygote HCC1 mutant plants produce 25% abnormal seeds with defective embryos arrested at the heart or torpedo stage. These embryos lack COX activity, suggesting that the requirement of HCC1 during the early stages of plant development is related with its COX assembly function. Homozygote HCC2 mutant plants develop normally and do not show changes in COX2 levels. These plants display increased sensitivity of root growth to increased copper and a higher expression of miR398 and other genes that respond to copper limitation, in spite of the fact that they have a higher copper content than the wild type. HCC2 mutant plants also show increased expression of stress-responsive genes. The results suggest that HCC1 is the protein involved in COX biogenesis and that HCC2, that lacks the cysteines and histidine putatively involved in copper binding, functions in copper sensing and redox homeostasis. In addition, plants that overexpress HCC1 have an altered response of root elongation to changes in copper in the growth medium and increased expression of two low-copper-responsive genes, suggesting that HCC1 may also have a role in copper homeostasis.
Collapse
Affiliation(s)
- Carolina V Attallah
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
74
|
Richard O, Pineau C, Loubet S, Chalies C, Vile D, Marquès L, Berthomieu P. Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed a low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. PLANT, CELL & ENVIRONMENT 2011; 34:1065-78. [PMID: 21410476 DOI: 10.1111/j.1365-3040.2011.02305.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work reports the first characterization of the natural variation of Zn tolerance and accumulation in Arabidopsis thaliana. Root and shoot growth as well as Zn content were determined for 27 A. thaliana accessions grown in vitro in presence of Zn concentrations ranging from 1 to 250 µm. All traits varied by at least twofold and their broad sense heritability varied from 0.36 to 0.91. Primary and lateral root developments were differently affected by Zn in the different accessions. Remarkably, Zn was for the first time shown to be essential for the development of lateral roots. As a general rule, the different traits showed uncorrelated variations. In particular, variation in Zn tolerance was not linked to either root or shoot Zn contents. The only detectable relationship between different traits linked Zn sensitivity of roots to root-to-shoot Zn translocation but the correlation between variation of these traits was pretty low. This suggests that Zn translocation from root to shoots explains only a part of Zn tolerance. Our analysis opens the way to the characterization of genetic determinants controlling different Zn-related traits through the identification of particular accessions displaying contrasted phenotypes and representing excellent starting material to develop quantitative trait locus (QTL) studies.
Collapse
Affiliation(s)
- O Richard
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
75
|
Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 2011; 12:216. [PMID: 21554708 PMCID: PMC3115880 DOI: 10.1186/1471-2164-12-216] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/09/2011] [Indexed: 12/15/2022] Open
Abstract
Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate. Conclusions Our results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Zhang XQ, Wei PC, Xiong YM, Yang Y, Chen J, Wang XC. Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. PLANT CELL REPORTS 2011; 30:27-36. [PMID: 20976459 DOI: 10.1007/s00299-010-0937-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 08/23/2010] [Accepted: 09/24/2010] [Indexed: 05/02/2023]
Abstract
Guard cell walls of stomata are highly specialized in plants. Previous research focused on the structure and anatomy of guard cell walls, but little is known about guard cell regulation during stomata movement. In this work, we investigate the possible biological role of the Arabidopsis expansin gene AtEXPA1 in stomatal opening. The AtEXPA1 promoter drove the expression of the GUS reporter gene specifically in guard cells. Light-induced stomatal opening was accelerated in 35S::AtEXPA1 lines, whereas the anti-AtEXPA1 antibody decelerated light-induced stomatal opening. The inhibition of the anti-AtEXPA1 antibody on stomatal opening was largely dependent on the environmental pH. The volumetric elastic modulus (ε) was measured as an indicator of changes in the cell wall. The ε value of guard cells in 35S::AtEXPA1 lines was smaller than in the wild types. The putative role of AtEXPA1 as controller of stomatal opening rate and its regulation are discussed.
Collapse
Affiliation(s)
- Xiu-Qing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 2010; 37:389-97, 1-2. [DOI: 10.1016/s1673-8527(09)60057-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 04/29/2010] [Accepted: 05/07/2010] [Indexed: 11/21/2022]
|
79
|
dit Frey NF, Muller P, Jammes F, Kizis D, Leung J, Perrot-Rechenmann C, Bianchi MW. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis. THE PLANT CELL 2010; 22:1575-91. [PMID: 20484005 PMCID: PMC2899877 DOI: 10.1105/tpc.109.070680] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 05/20/2023]
Abstract
Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death-associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.
Collapse
Affiliation(s)
- Nicolas Frei dit Frey
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Philippe Muller
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Fabien Jammes
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Centre National de la Recherche Scientifique 8114, Université d'Evry Val d'Essonne, 91057 Evry cedex, France
| | - Dimosthenis Kizis
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Jeffrey Leung
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Michele Wolfe Bianchi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
- Faculté des Sciences et Technologie, Université Paris Est-Créteil, 94010 Créteil cedex, France
- Address correspondence to
| |
Collapse
|
80
|
Wang XJ, Zhu SY, Lu YF, Zhao R, Xin Q, Wang XF, Zhang DP. Two coupled components of the mitogen-activated protein kinase cascade MdMPK1 and MdMKK1 from apple function in ABA signal transduction. PLANT & CELL PHYSIOLOGY 2010; 51:754-66. [PMID: 20360020 DOI: 10.1093/pcp/pcq037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant mitogen-activated protein kinase (MAPK) cascades are involved in a range of biotic and abiotic stress responses, but many members of the MAPK family involved in signal transduction of the stress-related hormone ABA remain to be identified and how they regulate ABA signaling is still unclear. Here we characterized biochemically an apple MAPK signaling cascade MdMKK1-MdMPK1, which is transiently activated by ABA. Expression of MdMKK1 or MdMPK1 in the reference plant Arabidopsis (Arabidopsis thaliana) confers ABA hypersensitivity in both seed germination and seedling growth, showing that MdMKK1 and MdMPK1 are positively involved in ABA signaling. Expression of MdMKK1 or MdMPK1 up-regulates expression of several ABA-responsive transcription factor-encoding genes including ABI5. Furthermore, MdMPK1 phosphorylates the Arabidopsis ABI5 protein through the unique residue Ser314, showing that ABI5 is a potential direct downstream component of MAPK in ABA signaling. These findings indicate that the apple MdMKK1-MdMPK1-coupled signaling cascade may function in ABA signaling by regulating both expression and the phosphorylation status of the important ABA signaling component ABI5 or ABI5-like transcription factors.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- College of Biological Sciences, China Agricultural University, Beijing 100094, PR China
| | | | | | | | | | | | | |
Collapse
|
81
|
Sun P, Guo Y, Qi J, Zhou L, Li X. Isolation and expression analysis of tuberous root development related genes in Rehmannia glutinosa. Mol Biol Rep 2010; 37:1069-79. [PMID: 19774491 DOI: 10.1007/s11033-009-9834-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
As one kind of important modified storage organs, tuberous roots are attractive for their economic and biological values. Although considerable progresses have been made in the past, molecular information regarding the tuberous root development is still limited. In this study, we focused on the molecular profiling of the tuberous root development of Rehmannia glutinosa. Suppression subtractive hybridization technology was employed to compare gene expression between adventitious root and developing tuberous root. As a result, a tuberous root subtractive library was constructed and 199 development-related unique expressed sequence tags were identified, which represent different groups of genes involved in metabolism, protein synthesis, protein fate, cell fate, signaling, transcription and development, etc. In order to further validate the obtained result, 18 genes were selected for expression analysis and the genes most likely being involved in tuberous root development were discussed. Our present study provided the first molecular profiling of tuberous root development-related genes in Rehmannia glutinosa, which will establish the basis for future deciphering the tuberous root development mechanism.
Collapse
Affiliation(s)
- Peng Sun
- Institute of Medicinal Plants Development, Peking Union, Medical College, Chinese Academy of Medical Sciences, 100193 Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
82
|
Mills-Lujan K, Deom CM. Geminivirus C4 protein alters Arabidopsis development. PROTOPLASMA 2010; 239:95-110. [PMID: 20091067 DOI: 10.1007/s00709-009-0086-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 10/28/2009] [Indexed: 05/21/2023]
Abstract
The C4 protein of beet curly top virus [BCTV-B (US:Log:76)] induces hyperplasia in infected phloem tissue and tumorigenic growths in transgenic plants. The protein offers an excellent model for studying cell cycle control, cell differentiation, and plant development. To investigate the role of the C4 protein in plant development, transgenic Arabidopsis thaliana plants were generated in which the C4 transgene was expressed under the control of an inducible promoter. A detailed analysis of the developmental changes that occur in cotyledons and hypocotyls of seedlings expressing the C4 transgene showed extensive cell division in all tissues types examined, radically altered tissue layer organization, and the absence of a clearly defined vascular system. Induced seedlings failed to develop true leaves, lateral roots, and shoot and root apical meristems, as well as vascular tissue. Specialized epidermis structures, such as stomata and root hairs, were either absent or developmentally impaired in seedlings that expressed C4 protein. Exogenous application of brassinosteroid and abscisic acid weakly rescued the C4-induced phenotype, while induced seedlings were hypersensitive to gibberellic acid and kinetin. These results indicate that ectopic expression of the BCTV C4 protein in A. thaliana drastically alters plant development, possibly through the disruption of multiple hormonal pathways.
Collapse
Affiliation(s)
- Katherine Mills-Lujan
- Department of Plant Pathology, The University of Georgia, Athens, GA 30602-7274, USA
| | | |
Collapse
|
83
|
Lecourieux F, Lecourieux D, Vignault C, Delrot S. A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells. PLANT PHYSIOLOGY 2010; 152:1096-106. [PMID: 19923236 PMCID: PMC2815899 DOI: 10.1104/pp.109.149138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/10/2009] [Indexed: 05/20/2023]
Abstract
In grapevine (Vitis vinifera), as in many crops, soluble sugar content is a major component of yield and economical value. This paper identifies and characterizes a Glycogen Synthase Kinase3 protein kinase, cloned from a cDNA library of grape Cabernet Sauvignon berries harvested at the ripening stage. This gene, called VvSK1, was mainly expressed in flowers, berries, and roots. In the berries, it was strongly expressed at postvéraison, when the berries accumulate glucose, fructose, and abscisic acid. In grapevine cell suspensions, VvSK1 transcript abundance is increased by sugars and abscisic acid. In transgenic grapevine cells overexpressing VvSK1, the expression of four monosaccharide transporters (VvHT3, VvHT4, VvHT5, and VvHT6) was up-regulated, the rate of glucose uptake was increased 3- to 5-fold, and the amount of glucose and sucrose accumulation was more than doubled, while the starch amount was not affected. This work provides, to our knowledge, the first example of the control of sugar uptake and accumulation by a sugar-inducible protein kinase.
Collapse
Affiliation(s)
- Fatma Lecourieux
- UMR Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, Institut des Sciences de Vigne et du Vin, 33882 Villenave d'Ornon, France.
| | | | | | | |
Collapse
|
84
|
Comelli RN, Gonzalez DH. Identification of regulatory elements involved in expression and induction by sucrose and UV-B light of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b. PHYSIOLOGIA PLANTARUM 2009; 137:213-224. [PMID: 19781003 DOI: 10.1111/j.1399-3054.2009.01285.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The promoter sequences required for expression of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b, were analyzed using plants transformed with deleted and mutagenized forms of the promoter fused to gus. A 1000-bp promoter fragment produces expression in root and shoot meristems, leaf and cotyledon tips, and anthers. Deletion analysis indicated the presence of positive and negative regulatory elements. A regulatory element located between -660 and -620 from the translation start site was identified as a G-box by mutagenic analysis. Mutation of the G-box, that is present within the coding region of the preceding gene in the genome, increases expression of COX5b-2 in cotyledon and leaf lamina and abolishes induction by ultraviolet-B (UV-B) light, which presumably acts through the removal of an inhibitory factor. Identified positive regulatory elements include a site II element (TGGGCC), a related element with the sequence TGGGTC and four initiator elements (YTCANTYY) that completely abolish expression when mutated in combination. Site II elements are also involved in the response to sucrose. The results imply that the COX5b-2 gene has retained expression characteristics presented by most respiratory chain component genes, but its expression mechanisms have diverged from those employed by COX5b-1, the other gene encoding cytochrome c oxidase subunit 5b in Arabidopsis.
Collapse
Affiliation(s)
- Raúl N Comelli
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, Santa Fe, Argentina
| | | |
Collapse
|
85
|
De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J, Peelman F, Coutuer S, Denayer T, Jansen L, Nguyen L, Vanhoutte I, Beemster GTS, Vleminckx K, Jonak C, Chory J, Inzé D, Russinova E, Beeckman T. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. ACTA ACUST UNITED AC 2009; 16:594-604. [PMID: 19549598 PMCID: PMC4854203 DOI: 10.1016/j.chembiol.2009.04.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/23/2009] [Accepted: 04/20/2009] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is a key regulator in signaling pathways in both animals and plants. Three Arabidopsis thaliana GSK3s are shown to be related to brassinosteroid (BR) signaling. In a phenotype-based compound screen we identified bikinin, a small molecule that activates BR signaling downstream of the BR receptor. Bikinin directly binds the GSK3 BIN2 and acts as an ATP competitor. Furthermore, bikinin inhibits the activity of six other Arabidopsis GSK3s. Genome-wide transcript analyses demonstrate that simultaneous inhibition of seven GSK3s is sufficient to activate BR responses. Our data suggest that GSK3 inhibition is the sole activation mode of BR signaling and argues against GSK3-independent BR responses in Arabidopsis. The opportunity to generate multiple and conditional knockouts in key regulators in the BR signaling pathway by bikinin represents a useful tool to further unravel regulatory mechanisms.
Collapse
Affiliation(s)
- Bert De Rybel
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hily JM, Singer SD, Yang Y, Liu Z. A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. PLANT CELL REPORTS 2009; 28:1095-104. [PMID: 19373469 DOI: 10.1007/s00299-009-0700-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/20/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5' MAR, Nicotiana tabacum Rb7 3' MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer-promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::beta-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated.
Collapse
Affiliation(s)
- Jean-Michel Hily
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | | | | | | |
Collapse
|
87
|
Yan Z, Zhao J, Peng P, Chihara RK, Li J. BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. PLANT PHYSIOLOGY 2009; 150:710-21. [PMID: 19395409 PMCID: PMC2689954 DOI: 10.1104/pp.109.138099] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/20/2009] [Indexed: 05/18/2023]
Abstract
GLYCOGEN SYNTHASE KINASE3 (GSK3) is a highly conserved serine/threonine kinase involved in a variety of developmental signaling processes. The Arabidopsis (Arabidopsis thaliana) genome encodes 10 GSK3-like kinases that are clustered into four groups. Forward genetic screens have so far uncovered eight mutants, all of which carry gain-of-function mutations in BRASSINOSTEROID-INSENSITIVE2 (BIN2), one of the three members in group II. Genetic and biochemical studies have implicated a negative regulatory role for BIN2 in brassinosteroid (BR) signaling. Here, we report the identification of eight ethyl methanesulfonate-mutagenized loss-of-function bin2 alleles and one T-DNA insertional mutation each for BIN2 and its two closest homologs, BIN2-Like1 and BIN2-Like2. Our genetic, biochemical, and physiological assays revealed that despite functional redundancy, BIN2 plays a dominant role among the three group II members in regulating BR signaling. Surprisingly, the bin2bil1bil2 triple T-DNA insertional mutant still responds to BR and accumulates a more phosphorylated form of a BIN2 substrate than the wild-type plant. Using the specific GSK3 inhibitor lithium chloride, we have provided strong circumstantial evidence for the involvement of other Arabidopsis GSK3-like kinases in BR signaling. Interestingly, lithium chloride treatment was able to suppress the gain-of-function bin2-1 mutation but had a much weaker effect on a strong BR receptor mutant, suggesting the presence of a BIN2-independent regulatory step downstream of BR receptor activation.
Collapse
Affiliation(s)
- Zhenyan Yan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
88
|
Comelli RN, Viola IL, Gonzalez DH. Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase. PLANT MOLECULAR BIOLOGY 2009; 69:729-743. [PMID: 19125337 DOI: 10.1007/s11103-008-9451-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 12/17/2008] [Indexed: 05/27/2023]
Abstract
Arabidopsis COX5b-1 encodes an isoform of the zinc binding subunit 5b of mitochondrial cytochrome c oxidase. A promoter region required for expression and induction by sucrose of this gene was analyzed using plants stably transformed with mutagenized promoter fragments fused to the gus reporter gene. Promoter dependent expression is absolutely dependent on a G-box present at -228 from the translation start site. This element interacts in vitro and in vivo with transcription factors from the bZip family, preferentially with the abscisic acid-responsive element binding factor AREB2/ABF4. A region located upstream of the G-box (-333/-259) contains elements with the core sequence ATCATT and distalB-like sequences (CCACTTG) that are required for expression in vegetative tissues. These sequences bind different sets of proteins present in plant nuclear extracts and participate in induction by sucrose (ATCATT) and abscisic acid (distalB) of the COX5b-1 promoter. We propose that the COX5b-1 promoter has acquired novel regulatory mechanisms during evolution after gene duplication. These novel mechanisms have allowed the diversification of expression patterns, but also the conservation of some responses that, as induction by sucrose, are shared by COX5b-1 and other genes encoding components of the mitochondrial respiratory chain. Conservation of these responses may be a pre-requisite for the successful incorporation of new regulatory elements in this class of genes.
Collapse
Affiliation(s)
- Raúl N Comelli
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|
89
|
Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 2009; 10:11. [PMID: 19232096 PMCID: PMC2667184 DOI: 10.1186/1471-2199-10-11] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/20/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. RESULTS The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and alpha-tubulin. CONCLUSION The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability under all the tested conditions. The new reference genes will enable more accurate normalization and quantification of gene expression in wheat and will be helpful for designing primer pairs targeting orthologous genes in other plant species.
Collapse
Affiliation(s)
- Anna R Paolacci
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Oronzo A Tanzarella
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Enrico Porceddu
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Mario Ciaffi
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
90
|
Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC, Fourcroy P, Berthomieu P. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:897-911. [PMID: 18400935 PMCID: PMC2409035 DOI: 10.1104/pp.108.118612] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/02/2008] [Indexed: 05/18/2023]
Abstract
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots.
Collapse
Affiliation(s)
- Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes , Unité Mixte de Recherche, Montpellier SupAgro/CNRS/INRA, Université Montpellier II, 34060 Montpellier cedex 1, France.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Bove J, Kim CY, Gibson CA, Assmann SM. Characterization of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:71-88. [PMID: 18278441 DOI: 10.1007/s11103-008-9302-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/25/2008] [Indexed: 05/24/2023]
Abstract
We report the characterization of three UBA2 genes (UBA2a, -b, and -c; corresponding to At3g56860, At2g41060, and At3g15010) encoding Arabidopsis thaliana proteins with high homology to Vicia faba AKIP1 and other heterogeneous nuclear ribonucleoprotein (hnRNP)-type RNA-binding proteins. In vitro RNA binding assays revealed that the three UBA2 proteins interact efficiently with homoribopolymers. Biolistic transient expression of UBA2-GFPs demonstrated that the three UBA2 proteins localize to the nucleus. Expression analysis by RNA gel blot, RT-PCR, and promoter::GUS assays showed that UBA2 transcripts are present in all organs. UBA2 genes are subject to alternative splicing affecting only the 3'-untranslated regions (UTRs): six different splice variants were detected for UBA2a, and two each were found for UBA2b and UBA2c. RT-PCR and quantitative real-time RT-PCR analysis showed that the levels of UBA2 transcripts are regulated by wounding in a splice variant-specific manner: splice variants UBA2a.1 and UBA2c.1 increased following mechanical wounding. Wounding effects on gene expression are transduced by methyl jasmonate (MeJA)-dependent and oligogalacturonide (OGA)-dependent pathways. However, neither MeJA nor OGA treatment altered levels of any of the UBA2 transcripts, and other plant hormones implicated in wound responses, ethylene and abscisic acid (ABA), also had no effect on accumulation of UBA2 transcripts. Taken together, these results imply that the three UBA2 genes encode hnRNP-type nuclear RNA-binding proteins that function in a novel wound signal transduction pathway.
Collapse
Affiliation(s)
- Jérôme Bove
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
92
|
Jurca ME, Bottka S, Fehér A. Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). PLANT CELL REPORTS 2008; 27:739-48. [PMID: 18087702 DOI: 10.1007/s00299-007-0494-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/06/2007] [Accepted: 12/01/2007] [Indexed: 05/05/2023]
Abstract
The receptor-like cytoplasmic protein kinases (RLCKs) are plant-specific proteins encoded by almost 200 genes in the Arabidopsis genome. Despite of their high number, the available information on the potential function of RLCKs is very limited. In this report, the sequence analysis and the gene expression pattern of 14 members of one of the Arabidopsis RLCK families (RLCK class VI) are described. Sequence comparison indicated that gene duplication played a significant role in the formation of the kinase family and that several members carry an N-terminal "universal stress protein" (UspA) domain. In order to gain insight into the potential function of the RLCK VI kinases, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the relative transcript levels in the various organs of the Arabidopsis plant as well as under a series of abiotic stress/hormone treatments in seedlings. The obtained data revealed the differentially regulated expression of the genes in agreement with a high variability of sequence elements in their promoters. The divergent expression patterns indicate that the encoded kinase proteins may be involved in a wide variety of signal transduction pathways related to plant development and stress responses. The significance of gene duplication and expression divergence in the extension of the Arabidopsis RLCK VI family during evolution is discussed.
Collapse
Affiliation(s)
- Manuela E Jurca
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | |
Collapse
|
93
|
Conn VM, Walker AR, Franco CMM. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:208-18. [PMID: 18184065 DOI: 10.1094/mpmi-21-2-0208] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endophytic actinobacteria, isolated from healthy wheat tissue, which are capable of suppressing a number wheat fungal pathogens both in vitro and in planta, were investigated for the ability to activate key genes in the systemic acquired resistance (SAR) or the jasmonate/ethylene (JA/ET) pathways in Arabidopsis thaliana. Inoculation of A. thaliana (Col-0) with selected endophytic strains induced a low level of SAR and JA/ET gene expression, measured using quantitative polymerase chain reaction. Upon pathogen challenge, endophyte-treated plants demonstrated a higher abundance of defense gene expression compared with the non-endophyte-treated controls. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora required the JA/ET pathway. On the other hand, resistance to the fungal pathogen Fusarium oxysporum involved primarily the SAR pathway. The endophytic actinobacteria appear to be able to "prime" both the SAR and JA/ET pathways, upregulating genes in either pathway depending on the infecting pathogen. Culture filtrates of the endophytic actinobacteria were investigated for the ability to also activate defense pathways. The culture filtrate of Micromonospora sp. strain EN43 grown in a minimal medium resulted in the induction of the SAR pathway; however, when grown in a complex medium, the JA/ET pathway was activated. Further analysis using Streptomyces sp. strain EN27 and defense-compromised mutants of A. thaliana indicated that resistance to E. carotovora subsp. carotovora occurred via an NPR1-independent pathway and required salicylic acid whereas the JA/ET signaling molecules were not essential. In contrast, resistance to F. oxysporum mediated by Streptomyces sp. strain EN27 occurred via an NPR1-dependent pathway but also required salicylic acid and was JA/ET independent.
Collapse
Affiliation(s)
- V M Conn
- Department of Medical Biotechnology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
94
|
Bedhomme M, Jouannic S, Champion A, Simanis V, Henry Y. Plants, MEN and SIN. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1-10. [PMID: 18053736 DOI: 10.1016/j.plaphy.2007.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Indexed: 05/25/2023]
Abstract
In fission yeast, the onset of septation is signalled through the septum initiation network (SIN) signaling pathway. Similarly, in budding yeast the onset of budding is signalled through the mitotic exit network (MEN) pathway. We previously characterized in Arabidopsis signaling elements (GTPases, kinases) closely related to the core elements (spg1p/TEM1p, cdc7p/CDC15p) of the SIN and MEN pathways. Our first results suggested that a plant signaling pathway must be used to coordinate mitotic exit with cytokinesis. This review questioned the value of such an hypothesis in a multicellular organism. The core elements (G-protein, kinase) of the SIN and MEN pathways were only detected in fungi, plants and Mycetozoa. We also noticed that AtSGP GTPase and AtMAP3Kepsilon kinase revealed two paralogues in Arabidopsis. Although Arabidopsis genes complement fission yeast mutants, and Arabidopsis proteins interact with fission yeast proteins, plants do not use these core elements to coordinate the termination of cell division with cytokinesis. Transcriptional regulation and expression data suggest a function for the plant SIN-like elements in the control of cell type specification. Exploring the evolutionary conservation of an ancient signaling pathway provides evidence that evolution has recycled regulatory elements for elaborating a new signaling avenue.
Collapse
Affiliation(s)
- Mariette Bedhomme
- Laboratoire Cycle Cellulaire, Développement et Différenciation, Institut de Biotechnologie des Plantes, UMR 8618, Batiment 630, Universite Paris XI, Orsay, France
| | | | | | | | | |
Collapse
|
95
|
Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. PLANT MOLECULAR BIOLOGY 2007; 65:453-66. [PMID: 17690841 DOI: 10.1007/s11103-007-9213-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/21/2007] [Indexed: 05/16/2023]
Abstract
T-DNA-tagged rice plants were screened under cold- or salt-stress conditions to determine the genes involved in the molecular mechanism for their abiotic-stress response. Line 0-165-65 was identified as a salt-responsive line. The gene responsible for this GUS-positive phenotype was revealed by inverse PCR as OsGSK1 (Oryza sativa glycogen synthase kinase3-like gene 1), a member of the plant GSK3/SHAGGY-like protein kinase genes and an orthologue of the Arabidopsis brassinosteroid insensitive 2 (BIN2), AtSK21. Northern blot analysis showed that OsGSK1 was most highly detected in the developing panicles, suggesting that its expression is developmental stage specific. Knockout (KO) mutants of OsGSK1 showed enhanced tolerance to cold, heat, salt, and drought stresses when compared with non-transgenic segregants (NT). Overexpression of the full-length OsGSK1 led to a stunted growth phenotype similar to the one observed with the gain-of-function BIN/AtSK21 mutant. This suggests that OsGSK1 might be a functional rice orthologue that serves as a negative regulator of brassinosteroid (BR)-signaling. Therefore, we propose that stress-responsive OsGSK1 may have physiological roles in stress signal-transduction pathways and floral developmental processes.
Collapse
Affiliation(s)
- Serry Koh
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Alves-Ferreira M, Wellmer F, Banhara A, Kumar V, Riechmann JL, Meyerowitz EM. Global expression profiling applied to the analysis of Arabidopsis stamen development. PLANT PHYSIOLOGY 2007; 145:747-62. [PMID: 17905860 PMCID: PMC2048804 DOI: 10.1104/pp.107.104422] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/14/2007] [Indexed: 05/17/2023]
Abstract
To obtain detailed information about gene expression during stamen development in Arabidopsis (Arabidopsis thaliana), we compared, by microarray analysis, the gene expression profile of wild-type inflorescences to those of the floral mutants apetala3, sporocyteless/nozzle, and male sterile1 (ms1), in which different aspects of stamen formation are disrupted. These experiments led to the identification of groups of genes with predicted expression at early, intermediate, and late stages of stamen development. Validation experiments using in situ hybridization confirmed the predicted expression patterns. Additional experiments aimed at characterizing gene expression specifically during microspore formation. To this end, we compared the gene expression profiles of wild-type flowers of distinct developmental stages to those of the ms1 mutant. Computational analysis of the datasets derived from this experiment led to the identification of genes that are likely involved in the control of key developmental processes during microsporogenesis. We also identified a large number of genes whose expression is prolonged in ms1 mutant flowers compared to the wild type. This result suggests that MS1, which encodes a putative transcriptional regulator, is involved in the stage-specific repression of these genes. Lastly, we applied reverse genetics to characterize several of the genes identified in the microarray experiments and uncovered novel regulators of microsporogenesis, including the transcription factor MYB99 and a putative phosphatidylinositol 4-kinase.
Collapse
Affiliation(s)
- Márcio Alves-Ferreira
- California Institute of Technology, Division of Biology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
97
|
Cabello JV, Dezar CA, Manavella PA, Chan RL. The intron of the Arabidopsis thaliana COX5c gene is able to improve the drought tolerance conferred by the sunflower Hahb-4 transcription factor. PLANTA 2007; 226:1143-54. [PMID: 17569080 DOI: 10.1007/s00425-007-0560-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 05/18/2007] [Indexed: 05/15/2023]
Abstract
Hahb-4 is a member of Helianthus annuus (sunflower) subfamily I of HD-Zip proteins. Transgenic Arabidopsis thaliana plants constitutively expressing this gene exhibit a strong tolerance of water stress in concert with morphological defects and a delay in development. In order to obtain a drought-tolerant phenotype without morphological associated phenotype, several stress inducible promoters were isolated and transgenic plants expressing Hahb-4 controlled by them were obtained and analyzed. These plants showed unchanged morphology in normal growth conditions and enhanced drought tolerance compared with non-transformed plants, but no as high as the one exhibited by the constitutively transformed genotype. A chimerical construction between the Hahb-4 promoter and the leader intron of the Arabidopsis Cox5c gene was made either directing gus or Hahb-4 expression. GUS activity increased in transgenic plants after induction, showing the same distribution pattern as in plants transformed with a construction lacking the intron. Transgenic plants, bearing the chimerical construct, are indistinguishable from wild type plants in normal growth conditions whereas the water stress tolerance achieved was as strong as the one shown by the constitutive genotype. This enhanced stress tolerance seemed to be due to a combination of an increase in transcription and translation rates in comparison to those of plants transformed with the Hahb-4 promoter. Similar strategies could be applied in the future for the obtaining of suitable promoters responsive to other external agents.
Collapse
Affiliation(s)
- Julieta V Cabello
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, CC242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | | | | | | |
Collapse
|
98
|
Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. THE PLANT CELL 2007; 19:3019-36. [PMID: 17921317 PMCID: PMC2174700 DOI: 10.1105/tpc.107.050666] [Citation(s) in RCA: 401] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 08/23/2007] [Accepted: 09/14/2007] [Indexed: 05/18/2023]
Abstract
Many biochemical approaches show functions of calcium-dependent protein kinases (CDPKs) in abscisic acid (ABA) signal transduction, but molecular genetic evidence linking defined CDPK genes with ABA-regulated biological functions at the whole-plant level has been lacking. Here, we report that ABA stimulated two homologous CDPKs in Arabidopsis thaliana, CPK4 and CPK11. Loss-of-function mutations of CPK4 and CPK11 resulted in pleiotropic ABA-insensitive phenotypes in seed germination, seedling growth, and stomatal movement and led to salt insensitivity in seed germination and decreased tolerance of seedlings to salt stress. Double mutants of the two CDPK genes had stronger ABA- and salt-responsive phenotypes than the single mutants. CPK4- or CPK11-overexpressing plants generally showed inverse ABA-related phenotypes relative to those of the loss-of-function mutants. Expression levels of many ABA-responsive genes were altered in the loss-of-function mutants and overexpression lines. The CPK4 and CPK11 kinases both phosphorylated two ABA-responsive transcription factors, ABF1 and ABF4, in vitro, suggesting that the two kinases may regulate ABA signaling through these transcription factors. These data provide in planta genetic evidence for the involvement of CDPK/calcium in ABA signaling at the whole-plant level and show that CPK4 and CPK11 are two important positive regulators in CDPK/calcium-mediated ABA signaling pathways.
Collapse
Affiliation(s)
- Sai-Yong Zhu
- China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100094 Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Su Z, Chai MF, Lu PL, An R, Chen J, Wang XC. AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis. PLANTA 2007; 226:1031-9. [PMID: 17522887 DOI: 10.1007/s00425-007-0547-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/05/2007] [Indexed: 05/14/2023]
Abstract
Mtm1p is essential for the posttranslational activation of manganese-containing superoxide dismutase (SOD2) in Saccharomyces cerevisiae; however, whether the same holds true for Arabidopsis thaliana is unknown. In this study, by using the yeast mtm1 mutant complementation method, we identified a putative MTM gene (AtMTM1, At4g27940) that is necessary for SOD2 activation. Further, analysis of SOD activity revealed that an SOD2 defect is rescued in the yeast mutant Y07288 harboring the AtMTM1 gene. Related mRNA-level analysis showed the AtMTM1 gene is induced by paraquat but not by hydrogen peroxide, which indicates that this gene is related to the superoxide scavenger SOD. In addition, an AtMTM1::GFP fusion construct was transiently expressed in the protoplasts, and it was localized to the mitochondria. Furthermore, sequence deletion analysis of AtMTM1 revealed that the code region (amino acid (aa) 60-198) of Mtm1p plays an important role in localization of the protein to the mitochondria. Regulation of AtMTM1 gene expression was analyzed using a fusion construct of the 1,766 bp AtMTM1 promoter and the GUS (beta-glucuronidase) reporter gene. The screen identified GUS reporter gene expression in the developing cotyledons, leaves, roots, stems, and flowers but not in the siliques. Our results suggest that AtMTM1 encodes a mitochondrial protein that may be playing an important role in activation of MnSOD1 in Arabidopsis.
Collapse
Affiliation(s)
- Zhao Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
100
|
Yu XC, Zhu SY, Gao GF, Wang XJ, Zhao R, Zou KQ, Wang XF, Zhang XY, Wu FQ, Peng CC, Zhang DP. Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. PLANT MOLECULAR BIOLOGY 2007; 64:531-8. [PMID: 17476573 DOI: 10.1007/s11103-007-9172-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 04/09/2007] [Indexed: 05/15/2023]
Abstract
Calcium is an important second messenger involved in abscisic acid (ABA) signal transduction. Calcium-dependent protein kinases (CDPKs) are the best characterized calcium sensor in plants and are believed to be important components in plant hormone signaling. However, in planta genetic evidence has been lacking to link CDPK with ABA-regulated biological functions. We previously identified an ABA-stimulated CDPK from grape berry, which is potentially involved in ABA signaling. Here we report that heterologous overexpression of ACPK1 in Arabidopsis promotes significantly plant growth and enhances ABA-sensitivity in seed germination, early seedling growth and stomatal movement, providing evidence that ACPK1 is involved in ABA signal transduction as a positive regulator, and suggesting that the ACPK1 gene may be potentially used for elevating plant biomass production.
Collapse
Affiliation(s)
- Xiang-Chun Yu
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 100094, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|