51
|
Soni N, Altartouri B, Hegde N, Duggavathi R, Nazarian-Firouzabadi F, Kushalappa AC. TaNAC032 transcription factor regulates lignin-biosynthetic genes to combat Fusarium head blight in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110820. [PMID: 33568310 DOI: 10.1016/j.plantsci.2021.110820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB) is a destructive disease affecting cereal crops globally due to mycotoxin contamination of grains that reduce yield and quality. Among hundreds of QTLs identified for resistance, the QTL-Fhb1 is of significant interest even today, for its major contribution to FHB resistance. Previously, QTL-Fhb1 dissection based on a combined metabolo-genomics approach, identified a few potential resistance genes, including a NAC like transcription factor for FHB resistance. Sequencing and phylogenetic analysis confirmed NAC to be the wheat TaNAC032. Also, the quantitative RT-PCR studies revealed a greater induced expression of TaNAC032 in resistant NIL in comparison to susceptible NIL upon Fusarium graminearum (Fg) infection. The virus-induced gene silencing (VIGS) based functional validation of TaNAC032 in resistant NIL confirmed increased disease severity and fungal biomass. Metabolic profiling revealed low abundances of resistance-related (RR) metabolites in TaNAC032 silenced NIL-R compared to non-silenced. Silenced plants showed decreased transcript abundances of RR metabolite biosynthetic genes associated with a reduction in total lignin content in rachis, confirming the regulatory role of TaNAC032 in wheat in response to Fg infection. If TaNA032 is mutated in an FHB susceptible cultivar, it can be edited to enhance FHB resistance.
Collapse
Affiliation(s)
- Nancy Soni
- Plant Science Department, McGill University, Quebec, Canada
| | - Bara Altartouri
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
| | - Niranjan Hegde
- Plant Science Department, McGill University, Quebec, Canada
| | - Raj Duggavathi
- Animal Science Department, McGill University, Quebec, Canada
| | | | | |
Collapse
|
52
|
TaAP2-15, An AP2/ERF Transcription Factor, Is Positively Involved in Wheat Resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci 2021; 22:ijms22042080. [PMID: 33669850 PMCID: PMC7923241 DOI: 10.3390/ijms22042080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
AP2 transcription factors play a crucial role in plant development and reproductive growth, as well as response to biotic and abiotic stress. However, the role of TaAP2-15, in the interaction between wheat and the stripe fungus, Puccinia striiformis f. sp. tritici (Pst), remains elusive. In this study, we isolated TaAP2-15 and characterized its function during the interaction. TaAP2-15 was localized in the nucleus of wheat and N. benthamiana. Silencing of TaAP2-15 by barley stripe mosaic virus (BSMV)-mediated VIGS (virus-induced gene silencing) increased the susceptibility of wheat to Pst accompanied by enhanced growth of the pathogen (number of haustoria, haustorial mother cells and hyphal length). We confirmed by quantitative real-time PCR that the transcript levels of pathogenesis-related genes (TaPR1 and TaPR2) were down-regulated, while reactive oxygen species (ROS)-scavenging genes (TaCAT3 and TaFSOD3D) were induced accompanied by reduced accumulation of H2O2. Furthermore, we found that TaAP2-15 interacted with a zinc finger protein (TaRZFP34) that is a homolog of OsRZFP34 in rice. Together our findings demonstrate that TaAP2-15 is positively involved in resistance of wheat to the stripe rust fungus and provides new insights into the roles of AP2 in the host-pathogen interaction.
Collapse
|
53
|
Kolodziej MC, Singla J, Sánchez-Martín J, Zbinden H, Šimková H, Karafiátová M, Doležel J, Gronnier J, Poretti M, Glauser G, Zhu W, Köster P, Zipfel C, Wicker T, Krattinger SG, Keller B. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat Commun 2021; 12:956. [PMID: 33574268 PMCID: PMC7878491 DOI: 10.1038/s41467-020-20777-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Plasma membrane-associated and intracellular proteins and protein complexes play a pivotal role in pathogen recognition and disease resistance signaling in plants and animals. The two predominant protein families perceiving plant pathogens are receptor-like kinases and nucleotide binding-leucine-rich repeat receptors (NLR), which often confer race-specific resistance. Leaf rust is one of the most prevalent and most devastating wheat diseases. Here, we clone the race-specific leaf rust resistance gene Lr14a from hexaploid wheat. The cloning of Lr14a is aided by the recently published genome assembly of ArinaLrFor, an Lr14a-containing wheat line. Lr14a encodes a membrane-localized protein containing twelve ankyrin (ANK) repeats and structural similarities to Ca2+-permeable non-selective cation channels. Transcriptome analyses reveal an induction of genes associated with calcium ion binding in the presence of Lr14a. Haplotype analyses indicate that Lr14a-containing chromosome segments were introgressed multiple times into the bread wheat gene pool, but we find no variation in the Lr14a coding sequence itself. Our work demonstrates the involvement of an ANK-transmembrane (TM)-like type of gene family in race-specific disease resistance in wheat. This forms the basis to explore ANK-TM-like genes in disease resistance breeding.
Collapse
Affiliation(s)
- Markus C Kolodziej
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jyoti Singla
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Javier Sánchez-Martín
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Helen Zbinden
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Julien Gronnier
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Manuel Poretti
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Université de Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Philipp Köster
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Cyril Zipfel
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Thomas Wicker
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Simon G Krattinger
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Beat Keller
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
54
|
Karki SJ, Reilly A, Zhou B, Mascarello M, Burke J, Doohan F, Douchkov D, Schweizer P, Feechan A. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease. JOURNAL OF EXPERIMENTAL BOTANY 2021. [PMID: 33095257 DOI: 10.5061/dryad.9w0vt4bcx] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici, is a major threat to wheat production worldwide. The Z. tritici genome encodes many small secreted proteins (ZtSSPs) that are likely to play a key role in the successful colonization of host tissues. However, few of these ZtSSPs have been functionally characterized for their role during infection. In this study, we identified and characterized a small, conserved cysteine-rich secreted effector from Z. tritici which has homologues in other plant pathogens in the Dothideomycetes. ZtSSP2 was expressed throughout Z. tritici infection in wheat, with the highest levels observed early during infection. A yeast two-hybrid assay revealed an interaction between ZtSSP2 and wheat E3 ubiquitin ligase (TaE3UBQ) in yeast, and this was further confirmed in planta using bimolecular fluorescence complementation and co-immunoprecipitation. Down-regulation of this wheat E3 ligase using virus-induced gene silencing increased the susceptibility of wheat to STB. Together, these results suggest that TaE3UBQ is likely to play a role in plant immunity to defend against Z. tritici.
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Reilly
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maurizio Mascarello
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 8 32, 3000 Leuven, Belgium
| | - James Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitar Douchkov
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Patrick Schweizer
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
55
|
Karki SJ, Reilly A, Zhou B, Mascarello M, Burke J, Doohan F, Douchkov D, Schweizer P, Feechan A. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:733-746. [PMID: 33095257 PMCID: PMC7853600 DOI: 10.1093/jxb/eraa489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 05/05/2023]
Abstract
Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici, is a major threat to wheat production worldwide. The Z. tritici genome encodes many small secreted proteins (ZtSSPs) that are likely to play a key role in the successful colonization of host tissues. However, few of these ZtSSPs have been functionally characterized for their role during infection. In this study, we identified and characterized a small, conserved cysteine-rich secreted effector from Z. tritici which has homologues in other plant pathogens in the Dothideomycetes. ZtSSP2 was expressed throughout Z. tritici infection in wheat, with the highest levels observed early during infection. A yeast two-hybrid assay revealed an interaction between ZtSSP2 and wheat E3 ubiquitin ligase (TaE3UBQ) in yeast, and this was further confirmed in planta using bimolecular fluorescence complementation and co-immunoprecipitation. Down-regulation of this wheat E3 ligase using virus-induced gene silencing increased the susceptibility of wheat to STB. Together, these results suggest that TaE3UBQ is likely to play a role in plant immunity to defend against Z. tritici.
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Reilly
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maurizio Mascarello
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 8 32, 3000 Leuven, Belgium
| | - James Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitar Douchkov
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Patrick Schweizer
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
56
|
Wu K, Wu Y, Zhang C, Fu Y, Liu Z, Zhang X. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector. PLANT METHODS 2021; 17:6. [PMID: 33407679 PMCID: PMC7788715 DOI: 10.1186/s13007-020-00701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. RESULTS In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to validate the involvement of DICER-LIKE 4 (DCL4) in antiviral defense against TCV. We further revealed the involvement of ARGONAUTE 2 (AGO2) in PDS silencing and antiviral defense against TCV in dcl2drb4 double mutant plants. These results demonstrated that DOUBLE-STRANDED RNA-BINDING PROTEIN 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B derivative in dcl2drb4 double mutant plants. CONCLUSIONS The CPB1B-based vector developed in this work is a valuable tool with visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.
Collapse
Affiliation(s)
- Kunxin Wu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yadan Wu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Chunwei Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yan Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Zhixin Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China.
| | - Xiuchun Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China.
| |
Collapse
|
57
|
Islam MA, Guo J, Peng H, Tian S, Bai X, Zhu H, Kang Z, Guo J. TaYS1A, a Yellow Stripe-Like Transporter Gene, Is Required for Wheat Resistance to Puccinia striiformis f. sp. Tritici. Genes (Basel) 2020; 11:E1452. [PMID: 33287151 PMCID: PMC7761651 DOI: 10.3390/genes11121452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Yellow stripe-like (YSL) transporters are required for the transportation of metal-phytosiderophores and are structurally related to metal-nicotianamine complexes. Some studies also reported the involvement of YSL transporters in pathogen-induced defense. However, the molecular mechanisms of YSL genes involved in biotic stress responses are still not clear, especially in cereal crops. This study aimed to functionally characterize TaYS1A during the interaction of wheat and Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust disease. TaYS1A was localized in the cell membrane of wheat protoplasts and Nicotiana benthamiana cells. TaYS1A was significantly up-regulated in wheat leaves after being infected with the avirulent Pst isolate CYR23 and after treatment with salicylic acid (SA). Silencing of TaYS1A by the virus-induced gene silencing method enhanced the susceptibility of wheat to Pst accompanied by reducing the accumulation of SA and H2O2 and down-regulating the transcriptions of TaPR1 and TaPR2. In addition, TaYS1A was found to interact with TaNH2, a homolog of OsNH2, by yeast-two-hybrid assay, and silencing of TaYS1A diminished the expression of TaNH2. Our findings suggested the existence of positive regulation of TaYS1A in providing resistance against Pst by modulating SA-induced signaling and offered new insight into the biological role of YSL in wheat against pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A and F University, Yangling 712100, China; (M.A.I.); (J.G.); (H.P.); (S.T.); (X.B.); (H.Z.); (J.G.)
| | | |
Collapse
|
58
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
59
|
Wang M, Gao S, Zeng W, Yang Y, Ma J, Wang Y. Plant Virology Delivers Diverse Toolsets for Biotechnology. Viruses 2020; 12:E1338. [PMID: 33238421 PMCID: PMC7700544 DOI: 10.3390/v12111338] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Over a hundred years of research on plant viruses has led to a detailed understanding of viral replication, movement, and host-virus interactions. The functions of vast viral genes have also been annotated. With an increased understanding of plant viruses and plant-virus interactions, various viruses have been developed as vectors to modulate gene expressions for functional studies as well as for fulfilling the needs in biotechnology. These approaches are invaluable not only for molecular breeding and functional genomics studies related to pivotal agronomic traits, but also for the production of vaccines and health-promoting carotenoids. This review summarizes the latest progress in these forefronts as well as the available viral vectors for economically important crops and beyond.
Collapse
Affiliation(s)
- Mo Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shilei Gao
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wenzhi Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA;
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA;
| |
Collapse
|
60
|
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1072-1085. [PMID: 32609938 DOI: 10.1111/plb.13155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is a complex and precise regulatory process that is correlated with numerous internal and environmental factors. Leaf senescence is tightly related to the redistribution of nutrients, which significantly affects productivity and quality, especially in crops. Evidence shows that the mediation of transcriptional regulation by WRKY transcription factors is vital for the fine-tuning of leaf senescence. However, the underlying mechanisms of the involvement of WRKY in leaf senescence are still unclear in wheat. Using RNA sequencing data, we isolated a novel WRKY transcription factor, TaWRKY40-D, which localizes in the nucleus and is basically induced by the progression of leaf senescence. TaWRKY40-D is a promoter of natural and dark-induced leaf senescence in transgenic Arabidopsis thaliana and wheat. We also demonstrated a positive response of TaWRKY40-D in wheat upon jasmonic acid (JA) and abscisic acid (ABA) treatment. Consistent with this, the detached leaves of TaWRKY40-D VIGS (virus-induced gene silencing) wheat plants showed a stay-green phenotype, while TaWRKY40-D overexpressing Arabidopsis plants showed premature leaf senescence after JA and ABA treatment. Moreover, our results revealed that TaWRKY40-D positively regulates leaf senescence, possibly by altering the biosynthesis and signalling of JA and ABA pathway genes. Together, our results suggest a new regulator of JA- and ABA-related leaf senescence, as well as a new candidate gene that can be used for molecular breeding in wheat.
Collapse
Affiliation(s)
- L Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - W Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Q Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Y Xuan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - K Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - L Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - H Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - G Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - C Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
61
|
Soni N, Hegde N, Dhariwal A, Kushalappa AC. Role of laccase gene in wheat NILs differing at QTL-Fhb1 for resistance against Fusarium head blight. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110574. [PMID: 32771175 DOI: 10.1016/j.plantsci.2020.110574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg), is one of the most severe diseases of wheat. It affects grain yield and quality due to mycotoxin contamination, which is harmful for both human and livestock consumption. Cell wall lignification, following pathogen invasion, is one of the innate defense responses. Plant laccases are known to lignify the secondary cell walls. A metabolo-genomics study identified laccase as one of the candidate genes in QTL-Fhb1 of wheat NILs derived from Sumai 3*5/Thatcher cross. Based on phylogenetics, it was named as TaLAC4. Real-time qPCR revealed a strongly induced expression of TaLAC4 in NIL-R. The VIGS based transient silencing of TaLAC4 in NIL-R resulted in an increased susceptibility leading to Fg spread within the entire spike in 15dpi, contrasting to non-silenced where the infection was limited to inoculated spikelets. Histopathology revealed thickened cell walls, mainly due to G-lignin, in non-silenced NIL-R, relative to silenced, in conjunction with higher total lignin content. Metabolic profiling of TaLAC4 silenced NILs identified the accumulation of several precursor metabolites higher in abundances upstream TaLAC4. These results confirm that the resistance function of TaLAC4 in NIL-R is due to pathogen-induced lignification of secondary cell walls in the rachis.
Collapse
Affiliation(s)
- Nancy Soni
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, Canada
| | - Niranjan Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
62
|
Guo F, Shan Z, Yu J, Xu G, Zhang Z. The Cysteine-Rich Repeat Protein TaCRR1 Participates in Defense against Both Rhizoctonia cerealis and Bipolaris sorokiniana in Wheat. Int J Mol Sci 2020; 21:ijms21165698. [PMID: 32784820 PMCID: PMC7461100 DOI: 10.3390/ijms21165698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
The domain of unknown function 26 (DUF26), harboring a conserved cysteine-rich motif (C-X8-C-X2-C), is unique to land plants. Several cysteine-rich repeat proteins (CRRs), belonging to DUF26-containing proteins, have been implicated in the defense against fungal pathogens in ginkgo, cotton, and maize. However, little is known about the functional roles of CRRs in the important staple crop wheat (Triticum aestivum). In this study, we identified a wheat CRR-encoding gene TaCRR1 through transcriptomic analysis, and dissected the defense role of TaCRR1 against the soil-borne fungi Rhizoctonia cerealis and Bipolaris sorokiniana, causal pathogens of destructive wheat diseases. TaCRR1 transcription was up-regulated in wheat towards B. Sorokiniana or R. cerealis infection. The deduced TaCRR1 protein contained a signal peptide and two DUF26 domains. Heterologously-expressed TaCRR1 protein markedly inhibited the mycelia growth of B. sorokiniana and R. cerealis. Furthermore, the silencing of TaCRR1 both impaired host resistance to B. sorokiniana and R. cerealis and repressed the expression of several pathogenesis-related genes in wheat. These results suggest that the TaCRR1 positively participated in wheat defense against both B. sorokiniana and R. cerealis through its antifungal activity and modulating expression of pathogenesis-related genes. Thus, TaCRR1 is a candidate gene for improving wheat resistance to B. sorokiniana and R. cerealis.
Collapse
Affiliation(s)
- Feilong Guo
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zilong Shan
- ShiJiaZhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China;
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Gangbiao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
- Correspondence: (G.X.); (Z.Z.); Tel.: +86-0731-85623096 (G.X.); +86-10-82108781 (Z.Z.)
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.X.); (Z.Z.); Tel.: +86-0731-85623096 (G.X.); +86-10-82108781 (Z.Z.)
| |
Collapse
|
63
|
TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus. PLoS Genet 2020; 16:e1008713. [PMID: 32658889 PMCID: PMC7357741 DOI: 10.1371/journal.pgen.1008713] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022] Open
Abstract
Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.
Collapse
|
64
|
Zhou B, Benbow HR, Brennan CJ, Arunachalam C, Karki SJ, Mullins E, Feechan A, Burke JI, Doohan FM. Wheat Encodes Small, Secreted Proteins That Contribute to Resistance to Septoria Tritici Blotch. Front Genet 2020; 11:469. [PMID: 32477410 PMCID: PMC7235427 DOI: 10.3389/fgene.2020.00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022] Open
Abstract
During plant-pathogen interactions, pathogens secrete many rapidly evolving, small secreted proteins (SSPs) that can modify plant defense and permit pathogens to colonize plant tissue. The fungal pathogen Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB), one of the most important foliar diseases of wheat, globally. Z. tritici is a strictly apoplastic pathogen that can secrete numerous proteins into the apoplast of wheat leaves to promote infection. We sought to determine if, during STB infection, wheat also secretes small proteins into the apoplast to mediate the recognition of pathogen proteins and/or induce defense responses. To explore this, we developed an SSP-discovery pipeline to identify small, secreted proteins from wheat genomic data. Using this pipeline, we identified 6,998 SSPs, representing 2.3% of all proteins encoded by the wheat genome. We then mined a microarray dataset, detailing a resistant and susceptible host response to STB, and identified 141 Z. tritici- responsive SSPs, representing 4.7% of all proteins encoded by Z. tritici - responsive genes. We demonstrate that a subset of these SSPs have a functional signal peptide and can interact with Z. tritici SSPs. Transiently silencing two of these wheat SSPs using virus-induced gene silencing (VIGS) shows an increase in susceptibility to STB, confirming their role in defense against Z. tritici.
Collapse
Affiliation(s)
- Binbin Zhou
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Harriet R. Benbow
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Ciarán J. Brennan
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Chanemougasoundharam Arunachalam
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Sujit J. Karki
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc, Carlow, Ireland
| | - Angela Feechan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James I. Burke
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| |
Collapse
|
65
|
Paudel B, Zhuang Y, Galla A, Dahal S, Qiu Y, Ma A, Raihan T, Yen Y. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat. Sci Rep 2020; 10:7794. [PMID: 32385328 PMCID: PMC7210279 DOI: 10.1038/s41598-020-64777-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/17/2020] [Indexed: 01/14/2023] Open
Abstract
Fusarium head blight (FHB) is a severe disease of wheat (Triticum aestivum L.). Qfhb1 is the most important quantitative trait locus (QTL) for FHB resistance. We previously identified wheat gene WFhb1-1 (aka WFhb1-c1) as a candidate for FHB resistance gene. Here we report that WFhb1-1 has been cloned. The gene (GenBank # KU304333.1) consists of a single exon, encoding a putative membrane protein of 127 amino acids. WFhb1-1 protein produced in Pichia pastoris inhibits growth of both F. graminearum and P. pastoris in culture. Western Blotting with anti- WFhb1-1 antibody revealed a significant decrease (p < 0.01) in WFhb1-1 accumulation, 12 hours post Fusarium inoculation in non-Qfhb1-carrier wheat but not in Qfhb1-carrier wheat. Overexpressing WFhb1-1 in non-Qfhb1-carrier wheat led to a significant decrease (p < 0.01) in Fusarium-damaged rachis rate, Fusarium-diseased kernel rate and DON content in harvested kernels, while silencing WFhb1-1 in Qfhb1-carrier wheat resulted in a significant increase (p < 0.01) in FHB severity. Therefore, WFhb1-1 is an important FHB resistance gene with a potential antifungal function and probably a key functional component of Qfhb1 in wheat. A model regarding how WFhb1-1 functions in FHB resistance/susceptibility is hypothesized and discussed.
Collapse
Affiliation(s)
- Bimal Paudel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Yongbin Zhuang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Aravind Galla
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Entomology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Subha Dahal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yinjie Qiu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Anjun Ma
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Tajbir Raihan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
66
|
Gu J, Sun J, Liu N, Sun X, Liu C, Wu L, Liu G, Zeng F, Hou C, Han S, Zhen W, Wang D. A novel cysteine-rich receptor-like kinase gene, TaCRK2, contributes to leaf rust resistance in wheat. MOLECULAR PLANT PATHOLOGY 2020; 21:732-746. [PMID: 32196909 PMCID: PMC7170779 DOI: 10.1111/mpp.12929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/04/2023]
Abstract
Leaf rust, caused by Puccinia triticina, is one of the most destructive fungal diseases in wheat production worldwide. The hypersensitive reaction (HR) is an important defence response against P. triticina infection. In this study, the physiological races 165 and 260 of P. triticina were combined with a line derived from the bread wheat cultivar Thatcher with the leaf rust resistance locus Lr26 to form compatible and incompatible combinations, respectively. Based on an RNA-Seq database of the interaction systems, a new wheat cysteine-rich receptor-like kinase gene, TaCRK2, is specifically induced and up-regulated in the incompatible combination. We identified that TaCRK2 was regulated in a Ca2+ -dependent manner. Knockdown of TaCRK2 by virus-induced gene silencing and RNAi leads to a dramatic increase in HR area and the number of haustorial mother cells at the single infection site. In addition, urediniospores, a P. triticina-specific pathogenic marker in compatible combinations, were observed on leaf surfaces of silenced plants at approximately 15 days after inoculation in the incompatible combination. Moreover, transcription levels of TaPR1, TaPR2, and TaPR5 were obviously reduced in TaCRK2-silenced plants. TaCRK2 overexpression in Nicotiana benthamiana induced strong HR-like cell death. Finally, transient expression of green fluorescent protein fused with TaCRK2 in N. benthamiana indicated that TaCRK2 localizes in the endoplasmic reticulum. Thus, TaCRK2 plays an important role in the resistance to P. triticina infection and has a positive regulation effect on the HR cell death process induced by P. triticina.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Jiawei Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | | | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Gang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Wenchao Zhen
- Key Laboratory of Regulation and Control of Crop Growth of HebeiCollege of AgronomyHebei Agriculture UniversityBaodingChina
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| |
Collapse
|
67
|
Hu Z, Huang X, Amombo E, Liu A, Fan J, Bi A, Ji K, Xin H, Chen L, Fu J. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110432. [PMID: 32234227 DOI: 10.1016/j.plantsci.2020.110432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and utilization of bermudagrass [Cynodon dactylon (L.) Pers], a prominent warm-season turfgrass. However, the molecular mechanism of cold response in bermudagrass remains largely unknown. In this study, we characterized a cold-responsive ERF (ethylene responsive factor) transcription factor, CdERF1, from bermudagrass. CdERF1 expression was induced by cold, drought and salinity stresses. The CdERF1 protein was nucleus-localized and encompassed transcriptional activation activity. Transgenic Arabidopsis plants overexpressing CdERF1 showed enhanced cold tolerance, whereas CdERF1-underexpressing bermudagrass plants via virus induced gene silencing (VIGS) method exhibited reduced cold resistance compared with control, respectively. Under cold stress, electrolyte leakage (EL), malondialdehyde (MDA), H2O2 and O2- contents were reduced, while the activities of SOD and POD were elevated in transgenic Arabidopsis. By contrast, these above physiological indicators in CdERF1-underexpressing bermudagrass exhibited the opposite trend. To further explore the possible molecular mechanism of bermudagrass cold stress response, the RNA-Seq analyses were performed. The result indicated that overexpression of CdERF1 activated a subset of stress-related genes in transgenic Arabidopsis, such as CBF2, pEARLI1 (lipid transfer protein), PER71 (peroxidase) and LTP (lipid transfer protein). Interestingly, under-expression of CdERF1 suppressed the transcription of many genes in CdERF1-underexpressing bermudagrass, also including pEARLI1 (lipid transfer protein) and PER70 (peroxidase). All these results revealed that CdERF1 positively regulates plant cold response probably by activating stress-related genes, PODs, CBF2 and LTPs. This study also suggests that CdERF1 may be an ideal candidate in the effort to improve cold tolerance of bermudagrass in the further molecular breeding.
Collapse
Affiliation(s)
- Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou Jiangsu 225009, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Kang Ji
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China; Shandong Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai 264025, China.
| |
Collapse
|
68
|
Brauer EK, Balcerzak M, Rocheleau H, Leung W, Schernthaner J, Subramaniam R, Ouellet T. Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:553-560. [PMID: 31790345 DOI: 10.1094/mpmi-11-19-0332-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin virulence factor that promotes growth of the Fusarium graminearum fungus in wheat floral tissues. To further our understanding of the effects of DON exposure on plant cell function, we characterized DON-induced transcriptional changes in wheat spikelets. Four hundred wheat genes were differentially expressed during infection with wild-type F. graminearum as compared with a Δtri5 mutant strain that is unable to produce DON. Most of these genes were more induced by the DON-producing strain and included genes involved in secondary metabolism, signaling, transport, and stress responses. DON induction was confirmed for a subset of the genes, including TaNFXL1, by treating tissues with DON directly. Previous work indicates that the NFXL1 ortholog represses trichothecene-induced defense responses and bacterial resistance in Arabidopsis, but the role of the NFXL family has not been studied in wheat. We observed greater DON-induced TaNFXL1 gene expression in a susceptible wheat genotype relative to the F. graminearum-resistant genotype Wuhan 1. Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaNFXL1 represses F. graminearum resistance. Together, this suggests that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Winnie Leung
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Johann Schernthaner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
69
|
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC PLANT BIOLOGY 2020; 20:49. [PMID: 32000681 PMCID: PMC6993525 DOI: 10.1186/s12870-020-2248-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biotrophic fungi make intimate contact with host cells to access nutrients. Sugar is considered as the main carbon sources absorbed from host cells by pathogens. Partition, exchanges and competition for sugar at plant-pathogen interfaces are controlled by sugar transporters. Previous studies have indicated that the leaf rust resistance (Lr) gene Lr67, a natural mutation of TaSTP13 encoding a wheat sugar transport protein, confers partial resistance to all three wheat rust species and powdery mildew possibly due to weakened sugar transport activity of TaSTP13 by heterodimerization. However, one major problem that remains unresolved concerns whether TaSTP13 participates in wheat susceptibility to rust and mildew. RESULTS In this study, expression of TaSTP13 was highly induced in wheat leaves challenged by Puccinia striiformis f. sp. tritici (Pst) and certain abiotic treatments. TaSTP13 was localized in the plasma membrane and functioned as homooligomers. In addition, a functional domain for its transport activity was identified in yeast. Suppression of TaSTP13 reduced wheat susceptibility to Pst by barley stripe mosaic virus-induced gene silencing (VIGS). While overexpression of TaSTP13 promoted Arabidopsis susceptibility to powdery mildew and led to increased glucose accumulation in the leaves. CONCLUSIONS These results indicate that TaSTP13 is transcriptionally induced and contributes to wheat susceptibility to stripe rust, possibly by promoting cytoplasmic hexose accumulation for fungal sugar acquisition in wheat-Pst interactions.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
70
|
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC PLANT BIOLOGY 2020; 20:49. [PMID: 32000681 DOI: 10.1186/s12870-020-2248-2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Biotrophic fungi make intimate contact with host cells to access nutrients. Sugar is considered as the main carbon sources absorbed from host cells by pathogens. Partition, exchanges and competition for sugar at plant-pathogen interfaces are controlled by sugar transporters. Previous studies have indicated that the leaf rust resistance (Lr) gene Lr67, a natural mutation of TaSTP13 encoding a wheat sugar transport protein, confers partial resistance to all three wheat rust species and powdery mildew possibly due to weakened sugar transport activity of TaSTP13 by heterodimerization. However, one major problem that remains unresolved concerns whether TaSTP13 participates in wheat susceptibility to rust and mildew. RESULTS In this study, expression of TaSTP13 was highly induced in wheat leaves challenged by Puccinia striiformis f. sp. tritici (Pst) and certain abiotic treatments. TaSTP13 was localized in the plasma membrane and functioned as homooligomers. In addition, a functional domain for its transport activity was identified in yeast. Suppression of TaSTP13 reduced wheat susceptibility to Pst by barley stripe mosaic virus-induced gene silencing (VIGS). While overexpression of TaSTP13 promoted Arabidopsis susceptibility to powdery mildew and led to increased glucose accumulation in the leaves. CONCLUSIONS These results indicate that TaSTP13 is transcriptionally induced and contributes to wheat susceptibility to stripe rust, possibly by promoting cytoplasmic hexose accumulation for fungal sugar acquisition in wheat-Pst interactions.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
71
|
Ecotopic Expression of the Antimicrobial Peptide DmAMP1W Improves Resistance of Transgenic Wheat to Two Diseases: Sharp Eyespot and Common Root Rot. Int J Mol Sci 2020; 21:ijms21020647. [PMID: 31963767 PMCID: PMC7014311 DOI: 10.3390/ijms21020647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important staple crop. Sharp eyespot and common root rot are destructive diseases of wheat. Antimicrobial peptides (AMPs) are small peptides with broad-spectrum antimicrobial activity. In this study, we synthesized the DmAMP1W gene, encoding Dahlia merckii DmAMP1, and investigated the antifungal role of DmAMP1W in vitro and in transgenic wheat. Protein electrophoresis analysis and in vitro inhibition results demonstrated that the synthesized DmAMP1W correctly translated to the expected peptide DmAMP1W, and the purified peptide inhibited growths of the fungi Rhizoctonia cerealis and Bipolaris sorokiniana, the pathogenic causes of wheat sharp eyespot and common root rot. DmAMP1W was introduced into a wheat variety Zhoumai18 via Agrobacterium-mediated transformation. The molecular characteristics indicated that DmAMP1W could be heritable and expressed in five transgenic wheat lines in T1–T2 generations. Average sharp eyespot infection types of these five DmAMP1W transgenic wheat lines in T1–T2 generations decreased 0.69–1.54 and 0.40–0.82 compared with non-transformed Zhoumai18, respectively. Average common root rot infection types of these transgenic lines and non-transformed Zhoumai18 were 1.23–1.48 and 2.27, respectively. These results indicated that DmAMP1W-expressing transgenic wheat lines displayed enhanced-resistance to both sharp eyespot and common root rot. This study provides new broad-spectrum antifungal resources for wheat breeding.
Collapse
|
72
|
Dmochowska-Boguta M, Kloc Y, Zielezinski A, Werecki P, Nadolska-Orczyk A, Karlowski WM, Orczyk W. TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance. PLoS One 2020; 15:e0227713. [PMID: 31929605 PMCID: PMC6957155 DOI: 10.1371/journal.pone.0227713] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/25/2019] [Indexed: 11/19/2022] Open
Abstract
In wheat, adult plant resistance (APR) to leaf rust (Puccinia triticina), is effective in restricting pathogen growth and provides durable resistance against a wide range of virulent forms of P. triticina. Despite the importance, there is limited knowledge on the molecular basis of this type of resistance. We isolated and characterized the wall-associated kinase encoding gene in wheat, and assigned it as TaWAK6. Localization of TaWAK6 homeologs in A and B wheat subgenomes was consistent with the presence of the gene's orthologs in T. urartu (AA) and T. dicoccoides (AABB) and with the absence of its orthologs in Aegilops tauschii (DD). Overexpression of TaWAK6 did not change the wheat phenotype, nor did it affect seedling resistance. However, the adult plants overexpressing TaWAK6 showed that important parameters of APR were significantly elevated. Infection types scored on the first (flag), second and third leaves indicated elevated resistance, which significantly correlated with expression of TaWAK6. Analysis of plant-pathogen interactions showed a lower number of uredinia and higher rates of necrosis at the infection sites and this was associated with smaller size of uredinia and a longer latent period. The results indicated a role of TaWAK6 in quantitative partial resistance similar to APR in wheat. It is proposed that TaWAK6, which is a non-arginine-aspartate (non-RD) kinase, represents a novel class of quantitative immune receptors in monocots.
Collapse
Affiliation(s)
- Marta Dmochowska-Boguta
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland
| | - Yuliya Kloc
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Przemysław Werecki
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland
| |
Collapse
|
73
|
Sibisi P, Venter E. Wheat Argonaute 5 Functions in Aphid-Plant Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:641. [PMID: 32528501 PMCID: PMC7266077 DOI: 10.3389/fpls.2020.00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/24/2020] [Indexed: 05/21/2023]
Abstract
Aphids feeding on plants experience similar responses to pathogens due to the prolonged and intimate contact with the plant. Diuraphis noxia is an economically important aphid pest on wheat that exhibits such an interaction. Studies on small RNA (sRNA) that regulate genes imparting resistance to wheat against D. noxia have predicted an Argonaute 5 (TaAGO5) gene as possible role player in the resistance response. Functional characterization revealed that TaAGO5 is crucial in regulating the response to infestation by D. noxia. Knockdown of TaAGO5 by 22% in D. noxia resistant wheat resulted in a completely susceptible phenotype. The fecundity and stress levels of D. noxia feeding on these silenced plants were similar to aphids feeding on the susceptible controls. Thus, TaAGO5 is crucial in the defense response by wheat plants during aphid feeding and this is similar to Nicotiana benthaminia plants experiencing arthropod herbivory. Additionally, TaAGO5 was differentially regulated by the Barley mosaic virus (BMV) used in the functional characterization. This provides evidence that TaAGO5 could play a role during virus infection of wheat. The role of AGO5 proteins in plant responses to arthropod herbivory and virus infection is known for dicotyledonous plants. Here, we present data that indicate that this role of TaAGO5 is conserved in wheat and possibly for monocotyledonous plants. These observations extend our knowledge on the roles of AGO proteins in plant resistance.
Collapse
|
74
|
Liu X, Zhu X, Wei X, Lu C, Shen F, Zhang X, Zhang Z. The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:344-355. [PMID: 31536614 PMCID: PMC6913698 DOI: 10.1093/jxb/erz409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/03/2019] [Indexed: 05/26/2023]
Abstract
Wheat (Triticum aestivum) is essential for global food security. Rhizoctonia cerealis is the causal pathogen of sharp eyespot, an important disease of wheat. GATA proteins in model plants have been implicated in growth and development; however, little is known about their roles in immunity. Here, we report a defence role for a wheat LLM-domain-containing B-GATA transcription factor, TaGATA1, against R. cerealis infection and explore the underlying mechanism. Through transcriptomic analysis, TaGATA1 was identified to be more highly expressed in resistant wheat genotypes than in susceptible wheat genotypes. TaGATA1 was located on chromosome 3B and had two homoeologous genes on chromosomes 3A and 3D. TaGATA1 was found to be localized in the nucleus, possessed transcriptional activation activity, and bound to GATA-core cis-elements. TaGATA1 overexpression significantly enhanced resistance of transgenic wheat to R. cerealis, whereas silencing of TaGATA1 suppressed the resistance. Quantitative reverse transcription-PCR and ChIP-qPCR results indicated that TaGATA1 directly bound to and activated certain defence genes in host immune response to R. cerealis. Collectively, TaGATA1 positively regulates immune responses to R. cerealis through activating expression of defence genes in wheat. This study reveals a new function of plant GATAs in immunity and provides a candidate gene for improving crop resistance to R. cerealis.
Collapse
Affiliation(s)
- Xin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hunan Agricultural University, Changsha, China
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - Fangdi Shen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ningbo Polytechnic, Ningbo, China
| | | | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
75
|
Brennan CJ, Zhou B, Benbow HR, Ajaz S, Karki SJ, Hehir JG, O’Driscoll A, Feechan A, Mullins E, Doohan FM. Taxonomically Restricted Wheat Genes Interact With Small Secreted Fungal Proteins and Enhance Resistance to Septoria Tritici Blotch Disease. FRONTIERS IN PLANT SCIENCE 2020; 11:433. [PMID: 32477375 PMCID: PMC7236048 DOI: 10.3389/fpls.2020.00433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Understanding the nuances of host/pathogen interactions are paramount if we wish to effectively control cereal diseases. In the case of the wheat/Zymoseptoria tritici interaction that leads to Septoria tritici blotch (STB) disease, a 10,000-year-old conflict has led to considerable armaments being developed on both sides which are not reflected in conventional model systems. Taxonomically restricted genes (TRGs) have evolved in wheat to better allow it to cope with stress caused by fungal pathogens, and Z. tritici has evolved specialized effectors which allow it to manipulate its' host. A microarray focused on the latent phase response of a resistant wheat cultivar (cv. Stigg) and susceptible wheat cultivar (cv. Gallant) to Z. tritici infection was mined for TRGs within the Poaceae. From this analysis, we identified two TRGs that were significantly upregulated in response to Z. tritici infection, Septoria-responsive TRG6 and 7 (TaSRTRG6 and TaSRTRG7). Virus induced silencing of these genes resulted in an increased susceptibility to STB disease in cvs. Gallant and Stigg, and significantly so in the latter (2.5-fold increase in STB disease). In silico and localization studies categorized TaSRTRG6 as a secreted protein and TaSRTRG7 as an intracellular protein. Yeast two-hybrid analysis and biofluorescent complementation studies demonstrated that both TaSRTRG6 and TaSRTRG7 can interact with small proteins secreted by Z. tritici (potential effector candidates). Thus we conclude that TRGs are an important part of the wheat-Z. tritici co-evolution story and potential candidates for modulating STB resistance.
Collapse
Affiliation(s)
- Ciarán J. Brennan
- UCD School of Biology and Environmental Science and UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Belfield, Ireland
| | - Binbin Zhou
- UCD School of Biology and Environmental Science and UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Belfield, Ireland
| | - Harriet R. Benbow
- UCD School of Biology and Environmental Science and UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Belfield, Ireland
| | - Sobia Ajaz
- UCD School of Biology and Environmental Science and UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Belfield, Ireland
| | - Sujit J. Karki
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | | | | | - Angela Feechan
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc, Carlow, Ireland
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science and UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Belfield, Ireland
- *Correspondence: Fiona M. Doohan,
| |
Collapse
|
76
|
Dong J, Zheng Y, Fu Y, Wang J, Yuan S, Wang Y, Zhu Q, Ou X, Li G, Kang G. PDIL1-2 can indirectly and negatively regulate expression of the AGPL1 gene in bread wheat. Biol Res 2019; 52:56. [PMID: 31699158 PMCID: PMC6839113 DOI: 10.1186/s40659-019-0263-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
Background ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. Methods In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. Results Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. Conclusions As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.
Collapse
Affiliation(s)
- Jie Dong
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, China
| | - Yongxing Zheng
- The National Engineering Research Center for Wheat, Henan Agricultural University, #63 Nongye Road, Zhengzhou, 450046, Henan, China
| | - Yihan Fu
- The National Engineering Research Center for Wheat, Henan Agricultural University, #63 Nongye Road, Zhengzhou, 450046, Henan, China
| | - Jinxi Wang
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, China
| | - Shasha Yuan
- The National Engineering Research Center for Wheat, Henan Agricultural University, #63 Nongye Road, Zhengzhou, 450046, Henan, China
| | - Yonghua Wang
- The National Engineering Research Center for Wheat, Henan Agricultural University, #63 Nongye Road, Zhengzhou, 450046, Henan, China
| | - Qidi Zhu
- The School of Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xingqi Ou
- The School of Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Gezi Li
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, China.
| | - Guozhang Kang
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, China. .,The National Engineering Research Center for Wheat, Henan Agricultural University, #63 Nongye Road, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
77
|
Huai B, Yang Q, Qian Y, Qian W, Kang Z, Liu J. ABA-Induced Sugar Transporter TaSTP6 Promotes Wheat Susceptibility to Stripe Rust. PLANT PHYSIOLOGY 2019; 181:1328-1343. [PMID: 31540949 PMCID: PMC6836835 DOI: 10.1104/pp.19.00632] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Biotrophic pathogens, such as wheat rust fungi, survive on nutrients derived from host cells. Sugar appears to be the major carbon source transferred from host cells to various fungal pathogens; however, the molecular mechanism by which host sugar transporters are manipulated by fungal pathogens for nutrient uptake is poorly understood. TaSTP6, a sugar transporter protein in wheat (Triticum aestivum), was previously shown to exhibit enhanced expression in leaves upon infection by Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. In this study, we found that Pst infection caused increased accumulation of abscisic acid (ABA) and that application of exogenous ABA significantly enhanced TaSTP6 expression. Moreover, knockdown of TaSTP6 expression by barley stripe mosaic virus-induced gene silencing reduced wheat susceptibility to the Pst pathotype CYR31, suggesting that TaSTP6 expression upregulation contributes to Pst host sugar acquisition. Consistent with this, TaSTP6 overexpression in Arabidopsis (Arabidopsis thaliana) promoted plant susceptibility to powdery mildew and led to increased Glc accumulation in the leaves. Functional complementation assays in Saccharomyces cerevisiae showed that TaSTP6 has broad substrate specificity, indicating that TaSTP6 is an active sugar transporter. Subcellular localization analysis indicated that TaSTP6 localizes to the plasma membrane. Yeast two-hybrid and bimolecular fluorescence complementation experiments revealed that TaSTP6 undergoes oligomerization. Taken together, our results suggest that Pst stimulates ABA biosynthesis in host cells and thereby upregulates TaSTP6 expression, which increases sugar supply and promotes fungal infection.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingrui Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenhao Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
78
|
Mei Y, Beernink BM, Ellison EE, Konečná E, Neelakandan AK, Voytas DF, Whitham SA. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. PLANT DIRECT 2019; 3:e00181. [PMID: 31768497 PMCID: PMC6874699 DOI: 10.1002/pld3.181] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 05/03/2023]
Abstract
Plant viruses can be engineered to carry sequences that direct silencing of target host genes, expression of heterologous proteins, or editing of host genes. A set of foxtail mosaic virus (FoMV) vectors was developed that can be used for transient gene expression and single guide RNA delivery for Cas9-mediated gene editing in maize, Setaria viridis, and Nicotiana benthamiana. This was accomplished by duplicating the FoMV capsid protein subgenomic promoter, abolishing the unnecessary open reading frame 5A, and inserting a cloning site containing unique restriction endonuclease cleavage sites immediately after the duplicated promoter. The modified FoMV vectors transiently expressed green fluorescent protein (GFP) and bialaphos resistance (BAR) protein in leaves of systemically infected maize seedlings. GFP was detected in epidermal and mesophyll cells by epifluorescence microscopy, and expression was confirmed by Western blot analyses. Plants infected with FoMV carrying the bar gene were temporarily protected from a glufosinate herbicide, and expression was confirmed using a rapid antibody-based BAR strip test. Expression of these proteins was stabilized by nucleotide substitutions in the sequence of the duplicated promoter region. Single guide RNAs expressed from the duplicated promoter mediated edits in the N. benthamiana Phytoene desaturase gene, the S. viridis Carbonic anhydrase 2 gene, and the maize HKT1 gene encoding a potassium transporter. The efficiency of editing was enhanced in the presence of synergistic viruses and a viral silencing suppressor. This work expands the utility of FoMV for virus-induced gene silencing (VIGS), virus-mediated overexpression (VOX), and virus-enabled gene editing (VEdGE) in monocots.
Collapse
Affiliation(s)
- Yu Mei
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Bliss M. Beernink
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and DevelopmentCenter for Genome EngineeringCenter for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMNUSA
| | - Eva Konečná
- Department of Genetics, Cell Biology and DevelopmentCenter for Genome EngineeringCenter for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMNUSA
| | | | - Daniel F. Voytas
- Department of Genetics, Cell Biology and DevelopmentCenter for Genome EngineeringCenter for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMNUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
79
|
Perochon A, Váry Z, Malla KB, Halford NG, Paul MJ, Doohan FM. The wheat SnRK1α family and its contribution to Fusarium toxin tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110217. [PMID: 31521211 DOI: 10.1016/j.plantsci.2019.110217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/09/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by phytopathogenic Fusarium fungi in cereal grain and plays a role as a disease virulence factor. TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhances wheat resistance to DON and it interacts with a sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α). This protein kinase family is central integrator of stress and energy signalling, regulating plant metabolism and growth. Little is known regarding the role of SnRK1α in the biotic stress response, especially in wheat. In this study, 15 wheat (Triticum aestivum) SnRK1α genes (TaSnRK1αs) belonging to four homoeologous groups were identified in the wheat genome. TaSnRK1αs are expressed ubiquitously in all organs and developmental stages apart from two members predominantly detected in grain. While DON treatment had either no effect or downregulated the transcription of TaSnRK1αs, it increased both the kinase activity associated with SnRK1α and the level of active (phosphorylated) SnRK1α. Down-regulation of two TaSnRK1αs homoeolog groups using virus induced gene silencing (VIGS) increased the DON-induced damage of wheat spikelets. Thus, we demonstrate that TaSnRK1αs contribute positively to wheat tolerance of DON and conclude that this gene family may provide useful tools for the improvement of crop biotic stress resistance.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zsolt Váry
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Matthew J Paul
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
80
|
Map-Based Functional Analysis of the GhNLP Genes Reveals Their Roles in Enhancing Tolerance to N-Deficiency in Cotton. Int J Mol Sci 2019; 20:ijms20194953. [PMID: 31597268 PMCID: PMC6801916 DOI: 10.3390/ijms20194953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023] Open
Abstract
Nitrogen is a key macronutrient needed by plants to boost their production, but the development of cotton genotypes through conventional approaches has hit a bottleneck due to the narrow genetic base of the elite cotton cultivars, due to intensive selection and inbreeding. Based on our previous research, in which the BC2F2 generations developed from two upland cotton genotypes, an abiotic stress-tolerant genotype, G. tomentosum (donor parent) and a highly-susceptible, and a highly-susceptible, but very productive, G. hirsutum (recurrent parent), were profiled under drought stress conditions. The phenotypic and the genotypic data generated through genotyping by sequencing (GBS) were integrated to map drought-tolerant quantitative trait loci (QTLs). Within the stable QTLs region for the various drought tolerance traits, a nodule-inception-like protein (NLP) gene was identified. We performed a phylogenetic analysis of the NLP proteins, mapped their chromosomal positions, intron-exon structures and conducted ds/dn analysis, which showed that most NLP genes underwent negative or purifying selection. Moreover, the functions of one of the highly upregulated genes, Gh_A05G3286 (Gh NLP5), were evaluated using the virus gene silencing (VIGS) mechanism. A total of 226 proteins encoded by the NLP genes were identified, with 105, 61, and 60 in Gossypium hirsutum, G. raimondii, and G. arboreum, respectively. Comprehensive Insilico analysis revealed that the proteins encoded by the NLP genes had varying molecular weights, protein lengths, isoelectric points (pI), and grand hydropathy values (GRAVY). The GRAVY values ranged from a negative one to zero, showing that proteins were hydrophilic. Moreover, various cis-regulatory elements that are the binding sites for stress-associated transcription factors were found in the promoters of various NLP genes. In addition, many miRNAs were predicted to target NLP genes, notably miR167a, miR167b, miR160, and miR167 that were previously shown to target five NAC genes, including NAC1 and CUC1, under N-limited conditions. The real-time quantitative polymerase chain reaction (RT-qPCR) analysis, revealed that five genes, Gh_D02G2018, Gh_A12G0439, Gh_A03G0493, Gh_A03G1178, and Gh_A05G3286 were significantly upregulated and perhaps could be the key NLP genes regulating plant response under N-limited conditions. Furthermore, the knockdown of the Gh_A05G3286 (GhNLP5) gene by virus-induced silencing (VIGS) significantly reduced the ability of these plants to the knockdown of the Gh_A05G3286 (GhNLP5) gene by virus-induced gene silencing (VIGS) significantly reduced the ability of the VIGS-plants to tolerate N-limited conditions compared to the wild types (WT). The VIGS-plants registered lower chlorophyll content, fresh shoot biomass, and fresh root biomass, addition to higher levels of malondialdehyde (MDA) and significantly reduced levels of proline, and superoxide dismutase (SOD) compared to the WT under N-limited conditions. Subsequently, the expression levels of the Nitrogen-stress responsive genes, GhTap46, GhRPL18A, and GhKLU were shown to be significantly downregulated in VIGS-plants compared to their WT under N-limited conditions. The downregulation of the nitrogen-stress responsive genes provided evidence that the silenced gene had an integral role in enhancing cotton plant tolerance to N-limited conditions.
Collapse
|
81
|
Wang Z, Xu X, Ni L, Guo J, Gu C. Efficient virus-induced gene silencing in Hibiscus hamabo Sieb. et Zucc. using tobacco rattle virus. PeerJ 2019; 7:e7505. [PMID: 31423365 PMCID: PMC6694781 DOI: 10.7717/peerj.7505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background Hibiscus hamabo Sieb. et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation H. hamabo is currently inefficient and laborious, restricting gene functional studies on this species. In plants, virus-induced gene silencing provides a pathway to rapidly and effectively create targeted gene knockouts for gene functional studies. Methods In this study, we tested the efficiency of a tobacco rattle virus vector in silencing the cloroplastos alterados 1 (CLA1) gene through agroinfiltration. Results The leaves of H. hamabo showed white streaks typical of CLA1 gene silencing three weeks after agroinfiltration. In agroinfiltrated H. hamabo plants, the CLA1 expression levels in leaves with white streaks were all significantly lower than those in leaves from mock-infected and control plants. Conclusions The system presented here can efficiently silence genes in H. hamabo and may be a powerful tool for large-scale reverse-genetic analyses of gene functions in H. hamabo.
Collapse
Affiliation(s)
- Zhiquan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Longjie Ni
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.,College of Forest Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinbo Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Chunsun Gu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
82
|
Tzean Y, Lee MC, Jan HH, Chiu YS, Tu TC, Hou BH, Chen HM, Chou CN, Yeh HH. Cucumber mosaic virus-induced gene silencing in banana. Sci Rep 2019; 9:11553. [PMID: 31399618 PMCID: PMC6689018 DOI: 10.1038/s41598-019-47962-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
Banana (Musa spp.) is one of the world's most important staple and cash crops. Despite accumulating genetic and transcriptomic data, low transformation efficiency in agronomically important Musa spp. render translational researches in banana difficult by using conventional knockout approaches. To develop tools for translational research in bananas, we developed a virus induced-gene silencing (VIGS) system based on a banana-infecting cucumber mosaic virus (CMV) isolate, CMV 20. CMV 20 genomic RNA 1, 2, and 3, were separately cloned in Agrobacterium pJL89 binary vectors, and a cloning site was introduced on RNA 2 immediately after the 2a open reading frame to insert the gene targeted for silencing. An efficient Agrobacterium inoculation method was developed for banana, which enabled the CMV 20 VIGS vector infection rate to reach 95% in our experiments. CMV 20-based silencing of Musa acuminata cv. Cavendish (AAA group) glutamate 1-semialdehyde aminotransferase (MaGSA) produced a typical chlorotic phenotype and silencing of M. acuminata phytoene desaturase (MaPDS) produced a photobleachnig phenotype. We show this approach efficiently reduced GSA and PDS transcripts to 10% and 18% of the control, respectively. The high infection rate and extended silencing of this VIGS system will provide an invaluable tool to accelerate functional genomic studies in banana.
Collapse
Affiliation(s)
- Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Ming-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Hsiao-Hsuan Jan
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Tsui-Chin Tu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Chun-Nan Chou
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan.
| |
Collapse
|
83
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
84
|
Karre S, Kumar A, Yogendra K, Kage U, Kushalappa A, Charron JB. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. PLANT MOLECULAR BIOLOGY 2019; 100:591-605. [PMID: 31098785 DOI: 10.1007/s11103-019-00882-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/09/2019] [Indexed: 05/20/2023]
Abstract
Crop plant resistance against pathogens is governed by dynamic molecular and biochemical responses driven by complex transcriptional networks. However, the underlying mechanisms are largely unclear. Here we report an interesting role of HvWRKY23 transcription factor (TF) in modulating defense response against Fusarium head blight (FHB) in barley. The combined approach of gene silencing, metabolomics, real time expression analysis and ab initio bioinformatics tools led to the identification of the HvWRKY23 role in FHB resistance. The knock-down of HvWRKY23 gene in the FHB resistant barley genotype CI9831, followed by inoculation with Fusarium graminearum, led to the down regulation of key flavonoid and hydroxycinnamic acid amide biosynthetic genes resulting in reduced accumulation of resistant related (RR) secondary metabolites such as pelargonidin 3-rutinoside, peonidin 3-rhamnoside-5-glucoside, kaempferol 3-O-arabinoside and other flavonoid glycosides. Reduced abundances of RR metabolites in TF silenced plants were also associated with an increased proportion of spikelets diseased and amount of fungal biomass in spikelets, depicting the role of HvWRKY23 in disease resistance. The luciferase reporter assay demonstrated binding of HvWRKY23 protein to promoters of key flavonoid and hydroxycinnamic acid amides (HCAA) biosynthetic genes, such as HvPAL2, HvCHS1, HvHCT, HvLAC15 and HvUDPGT. The accumulation of high abundances of HCAAs and flavonoid glycosides reinforce cell walls to contain the pathogen to initial infection area. This gene in commercial cultivars can be edited, if non-functional, to enhance resistance against FHB.
Collapse
Affiliation(s)
- Shailesh Karre
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Arun Kumar
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kalenahalli Yogendra
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Udaykumar Kage
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Ajjamada Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Jean-Benoit Charron
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
85
|
Guo WL, Chen BH, Guo YY, Yang HL, Mu JY, Wang YL, Li XZ, Zhou JG. Improved Powdery Mildew Resistance of Transgenic Nicotiana benthamiana Overexpressing the Cucurbita moschata CmSGT1 Gene. FRONTIERS IN PLANT SCIENCE 2019; 10:955. [PMID: 31402923 PMCID: PMC6670833 DOI: 10.3389/fpls.2019.00955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/09/2019] [Indexed: 05/27/2023]
Abstract
Powdery mildew (PM), which is mainly caused by Podosphaera xanthii, is a serious biotrophic pathogen disease affecting field-grown and greenhouse-grown cucurbit crops worldwide. Because fungicides poorly control PM, the development and cultivation of PM-resistant varieties is critical. A homolog of SGT1 (suppressor of the G2 allele of skp1), which encodes a key component of the plant disease-associated signal transduction pathway, was previously identified through a transcriptomic analysis of a PM-resistant pumpkin (Cucurbita moschata) inbred line infected with PM. In this study, we have characterized this SGT1 homolog in C. moschata, and investigated its effects on biotic stress resistance. Subcellular localization results revealed that CmSGT1 is present in the nucleus. Additionally, CmSGT1 expression levels in the PM-resistant material was strongly induced by PM, salicylic acid (SA) and hydrogen peroxide (H2O2). In contrast, SA and H2O2 downregulated CmSGT1 expression in the PM-susceptible material. The ethephon (Eth) and methyl jasmonate (MeJA) treatments upregulated CmSGT1 expression in both plant materials. The constitutive overexpression of CmSGT1 in Nicotiana benthamiana (N. benthamiana) minimized the PM symptoms on the leaves of PM-infected seedlings, accelerated the onset of cell necrosis, and enhanced the accumulation of H2O2. Furthermore, the expression levels of PR1a and PR5, which are SA signaling transduction markers, were higher in the transgenic plants than in wild-type plants. Thus, the transgenic N. benthamiana plants were significantly more resistant to Erysiphe cichoracearum than the wild-type plants. This increased resistance was correlated with cell death, H2O2 accumulation, and upregulated expression of SA-dependent defense genes. However, the chlorosis and yellowing of plant materials and the concentration of bacteria at infection sites were greater in the transgenic N. benthamiana plants than in the wild-type plants in response to infections by the pathogens responsible for bacterial wilt and scab. Therefore, CmSGT1-overexpressing N. benthamiana plants were hypersensitive to these two diseases. The results of this study may represent valuable genetic information for the breeding of disease-resistant pumpkin varieties, and may also help to reveal the molecular mechanism underlying CmSGT1 functions.
Collapse
Affiliation(s)
- Wei-Li Guo
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Bi-Hua Chen
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yan-Yan Guo
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - He-Lian Yang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Jin-Yan Mu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yan-Li Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xin-Zheng Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Jun-Guo Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
86
|
Kant R, Dasgupta I. Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. PLANT MOLECULAR BIOLOGY 2019; 100:3-18. [PMID: 30850930 DOI: 10.1007/s11103-019-00854-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/02/2019] [Indexed: 05/20/2023]
Abstract
The design and use of existing VIGS vectors for revealing monocot gene functions are described and potential new vectors are discussed, which may expand their repertoire. Virus induced gene silencing (VIGS) is a method of transient gene silencing in plants, triggered by the use of modified viral vectors. VIGS has found widespread use in deciphering the functions of plant genes, mainly for dicots. In the last decade, however, its use in monocots has increased noticeably, involving not only previously described viruses for monocots, but also those described for dicots. Additional viruses have been modified for VIGS to bring a larger collection of monocots under the ambit of this method. For monocots, new methods of inoculation have been tried to obtain increased silencing efficiency. The issue of insert stability and duration of silencing have also been addressed by various research groups. VIGS has been used to unravel the functions of a fairly large collection of monocot genes. This review summarizes the above developments, bringing out some of the gaps in our understanding and identifies directions to develop this technology further in the coming years.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
87
|
Liu P, Guo J, Zhang R, Zhao J, Liu C, Qi T, Duan Y, Kang Z, Guo J. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:956-968. [PMID: 30451367 PMCID: PMC6587807 DOI: 10.1111/pbi.13031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 05/18/2023]
Abstract
Calcineurin B-like interacting protein kinase (CIPKs) has been shown to be required for biotic stress tolerance of plants in plant-pathogen interactions. However, the roles of CIPKs in immune signalling of cereal crops and an in-depth knowledge of substrates of CIPKs in response to biotic stress are under debate. In this study, we identified and cloned a CIPK homologue gene TaCIPK10 from wheat. TaCIPK10 was rapidly induced by Puccinia striiformis f. sp. tritici (Pst) inoculation and salicylic acid (SA) treatment. In vitro phosphorylation assay demonstrated that the kinase activity of TaCIPK10 is regulated by Ca2+ and TaCBL4. Knockdown TaCIPK10 significantly reduced wheat resistance to Pst, whereas TaCIPK10 overexpression resulted in enhanced wheat resistance to Pst by the induction of defense response in different aspects, including hypersensitive cell death, ROS accumulation and pathogenesis-relative genes expression. Moreover, TaCIPK10 physically interacted with and phosphorylated TaNH2, which was homologous to AtNPR3/4. Silencing of TaNH2 in wheat resulted in enhanced susceptibility to the avirulent Pst race, CYR23, indicating its positive role in wheat resistance. Our results demonstrate that TaCIPK10 positively regulate wheat resistance to Pst as molecular links between of Ca2+ and downstream components of defense response and TaCIPK10 interacts with and phosphorylates TaNH2 to regulate wheat resistance to Pst.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiming Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiaxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
88
|
Wang X, Ren Y, Li J, Wang Z, Xin Z, Lin T. Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance. Biol Res 2019; 52:14. [PMID: 30894225 PMCID: PMC6427858 DOI: 10.1186/s40659-019-0222-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. Methods Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. Results In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. Conclusion These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.
Collapse
Affiliation(s)
- Xinbo Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jingjing Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
89
|
Liang F, Du X, Zhang J, Li X, Wang F, Wang H, Liu D. Wheat TaLr35PR2 gene is required for Lr35-mediated adult plant resistance against leaf rust fungus. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 47:26-37. [PMID: 31813413 DOI: 10.1071/fp18340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
In this study we analysed the expression patterns of TaLr35PR2 and confirmed its role in Lr35-mediated adult resistance to leaf rust fungus. β-1,3-glucanase, a pathogenesis-related protein, has a critical function in plant defence response against fungal pathogens. We previously described the full-length gene TaLr35PR2, which encodes a protein exhibiting amino acid and structural similarity to β-1,3-glucanase, in the wheat near-isogenic line TcLr35 (GenBank accession number DQ294235.1). This work aimed to further assess TaLr35PR2 expression patterns and function in Lr35-mediated adult resistance to Puccinia triticina. Immunoblot was performed to demonstrate that TaLr35PR2 expression was triggered early by P. triticina, with expression levels markedly elevated in incompatible interaction compared with those in compatible one. Additionally, TaLr35PR2 accumulation steadily increased and overtly peaked after challenge with P. triticina through the various developmental stages of TcLr35 wheat, and remaining at similar levels after mock inoculation. Furthermore, TaLr35PR2 expression was significantly reduced in barley stripe mosaic virus (BSMV)-induced gene knockdown plants, in which pathological assessment revealed that TaLr35PR2-silenced plants was obviously susceptible to leaf rust fungus compared with wild-type TcLr35, indicating that Lr35-mediated resistance to leaf rust was diminished. These findings strongly suggest that TaLr35PR2 is involved in Lr35-mediated wheat defence against the leaf rust pathogen.
Collapse
Affiliation(s)
- Fang Liang
- Centre of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiong Du
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Jiarui Zhang
- Centre of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoying Li
- Centre of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Fei Wang
- Centre of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Haiyan Wang
- Centre of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; and Corresponding author.
| | - Daqun Liu
- Centre of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
90
|
Gunupuru LR, Perochon A, Ali SS, Scofield SR, Doohan FM. Virus-Induced Gene Silencing (VIGS) for Functional Characterization of Disease Resistance Genes in Barley Seedlings. Methods Mol Biol 2019; 1900:95-114. [PMID: 30460561 DOI: 10.1007/978-1-4939-8944-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the recent advances in sequencing technologies, many studies are generating lists of candidate genes associated with specific traits. The major bottleneck in functional genomics is the validation of gene function. This is achieved by analyzing the effect of either gene silencing or overexpression on a specific phenotypic or biochemical trait. This usually requires the generation of stable transgenic plants and this can take considerable time. Therefore any technique that expedites the validation of gene function is of particular benefit in cereals, including barley. One such technique is Virus-Induced Gene Silencing (VIGS), which evokes a natural antiviral defense mechanism in plants. VIGS can be used to downregulate gene expression in a transient manner, but long enough to determine its effects on a specific phenotype. It is particularly useful for screening candidate genes and selecting those with potential for disease control. VIGS based on Barley Stripe Mosaic Virus (BSMV) is a powerful and efficient tool for the analysis of gene function in cereals. Here we present a BSMV VIGS protocol for simple and robust gene silencing in barley and describe it to evaluate the role of the hormone receptor BRI1 (Brassinosteroid Insensitive 1) in barley leaf resistance to Fusarium infection.
Collapse
Affiliation(s)
- Lokanadha R Gunupuru
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Alexandre Perochon
- School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - Shahin S Ali
- SPCL, USDA/ARS Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Steven R Scofield
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, USA.,Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Fiona M Doohan
- School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
91
|
Geng S, Kong X, Song G, Jia M, Guan J, Wang F, Qin Z, Wu L, Lan X, Li A, Mao L. DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. THE NEW PHYTOLOGIST 2019; 221:1023-1035. [PMID: 30256420 PMCID: PMC6586159 DOI: 10.1111/nph.15432] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/06/2018] [Indexed: 05/23/2023]
Abstract
DNA methylation is dynamically involved in plant immunity, but little information is known about its roles in plant interactions with biotrophic fungi, especially in temperate grasses such as wheat (Triticum aestivum). Using wheat diploid progenitor Aegilops tauschii accession AL8/78, the genome of which has been sequenced, we assessed the extent of DNA methylation in response to infection with Blumeria graminis f. sp. tritici (Bgt), which causes powdery mildew. Upon Bgt infection, ARGONAUTE4a (AGO4a) was significantly downregulated in A. tauschii, which was accompanied by a substantial reduction in AGO4a-sorted 24-nt siRNA levels, especially for genes near transposable elements (TAGs). Bisulfite sequencing revealed abundant differentially methylated regions (DMRs) with CHH hypomethylation. TAGs bearing CHH-hypomethylated DMRs were enriched for 'response to stress' functions, including receptor kinase, peroxidase, and pathogenesis-related genes. Virus-induced gene silencing (VIGS) of a DOMAINS REARRANGED METHYLASE 2 (DRM2) homolog enhanced plant resistance to Bgt. The effect of CHH hypomethylation was exemplified by the upregulation of a pathogenesis-related β-1,3-glucanse gene implicated in Bgt defense. These findings support the idea that dynamic DNA methylation represents a regulatory layer in the complex mechanism of plant immunity, which could be exploited to improve disease resistance in common wheat.
Collapse
Affiliation(s)
- Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Xingchen Kong
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | - Gaoyuan Song
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Jiantao Guan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhengrui Qin
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Liang Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Xiujin Lan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
92
|
Identification of Two Novel Wheat Drought Tolerance-Related Proteins by Comparative Proteomic Analysis Combined with Virus-Induced Gene Silencing. Int J Mol Sci 2018; 19:ijms19124020. [PMID: 30545152 PMCID: PMC6321273 DOI: 10.3390/ijms19124020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat.
Collapse
|
93
|
Gunupuru LR, Arunachalam C, Malla KB, Kahla A, Perochon A, Jia J, Thapa G, Doohan FM. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS One 2018; 13:e0204992. [PMID: 30312356 PMCID: PMC6185721 DOI: 10.1371/journal.pone.0204992] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
The mycotoxin deoxynivalenol (DON) serves as a plant disease virulence factor for the fungi Fusarium graminearum and F. culmorum during the development of Fusarium head blight (FHB) disease on wheat. A wheat cytochrome P450 gene from the subfamily CYP72A, TaCYP72A, was cloned from wheat cultivar CM82036. TaCYP72A was located on chromosome 3A with homeologs present on 3B and 3D of the wheat genome. Using gene expression studies, we showed that TaCYP72A variants were activated in wheat spikelets as an early response to F. graminearum, and this activation was in response to the mycotoxic Fusarium virulence factor deoxynivalenol (DON). Virus induced gene silencing (VIGS) studies in wheat heads revealed that this gene family contributes to DON resistance. VIGS resulted in more DON-induced discoloration of spikelets, as compared to mock VIGS treatment. In addition to positively affecting DON resistance, TaCYP72A also had a positive effect on grain number. VIGS of TaCYP72A genes reduced grain number by more than 59%. Thus, we provide evidence that TaCYP72A contributes to host resistance to DON and conclude that this gene family warrants further assessment as positive contributors to both biotic stress resistance and grain development in wheat.
Collapse
Affiliation(s)
- Lokanadha R. Gunupuru
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Chanemougasoundharam Arunachalam
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Keshav B. Malla
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Amal Kahla
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Alexandre Perochon
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Jianguang Jia
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Ganesh Thapa
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Fiona M. Doohan
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| |
Collapse
|
94
|
Howells RM, Craze M, Bowden S, Wallington EJ. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC PLANT BIOLOGY 2018; 18:215. [PMID: 30285624 PMCID: PMC6171145 DOI: 10.1186/s12870-018-1433-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/20/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The use of CRISPR/Cas9 systems could prove to be a valuable tool in crop research, providing the ability to fully knockout gene function in complex genomes or to precisely adjust gene function by knockout of individual alleles. RESULTS We compare gene editing in hexaploid wheat (Triticum aestivum) with diploid barley (Hordeum vulgare), using a combination of single genome and tri-genome targeting. High efficiency gene editing, 11-17% for single genome targeted guides and 5% for tri-genome targeted guides, was achieved in wheat using stable Agrobacterium-mediated transformation. Gene editing in wheat was shown to be predominantly heterozygous, edits were inherited in a Mendelian fashion over multiple generations and no off-target effects were observed. Comparison of editing between the two species demonstrated that more stable, heritable edits were produced in wheat, whilst barley exhibited continued and somatic editing. CONCLUSION Our work shows the potential to obtain stable edited transgene-free wheat lines in 36 weeks through only two generations and that targeted mutagenesis of individual homeologues within the wheat genome is achievable with a modest amount of effort, and without off-target mutations or the need for lengthy crossing strategies.
Collapse
Affiliation(s)
- Rhian M Howells
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| | - Melanie Craze
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| | - Sarah Bowden
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| | - Emma J Wallington
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| |
Collapse
|
95
|
Nicolis V, Venter E. Silencing of a Unique Integrated Domain Nucleotide-Binding Leucine-Rich Repeat Gene in Wheat Abolishes Diuraphis noxia Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018. [PMID: 29533135 DOI: 10.1094/mpmi-11-17-0262-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants respond in a similar manner to aphid feeding as to pathogen attack. Diuraphis noxia is a specialist aphid, feeding only on selected grasses that include wheat, barley, and oats. The wheat-Diuraphis noxia interaction is characterized by responses very similar to those seen in wheat-pathogen interactions with none of the underlying resistance pathways and genes characterized yet. From wheat harboring the Dn1 resistance gene, we have identified a nucleotide-binding leucine-rich repeat (NLR) gene containing two integrated domains (IDs). These are three C-terminus ankyrin repeat domains and an N-terminus WRKY domain. The NLR core of the gene can be traced through speciation events within the grass family, with a recent WRKY domain integration that is Triticum-specific. Virus-induced gene silencing of the gene in a resistant wheat line resulted in the abolishment of the resistance response and induced a highly susceptible phenotype. Silenced plants supported a higher number of aphids, similar to the susceptible near-isogenic line (NIL), and the intrinsic rate of increase of the aphids matched that of aphids feeding on the susceptible NIL. The presence of the gene is necessary for Dn1 resistance and we have named the gene Associated with Dn resistance 1 (Adnr1) to reflect this function.
Collapse
Affiliation(s)
- Vittorio Nicolis
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
96
|
Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA Interference Mechanisms and Applications in Plant Pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:581-610. [PMID: 29979927 DOI: 10.1146/annurev-phyto-080417-050044] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor ( 138 ). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.
Collapse
Affiliation(s)
- Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner Mongolia, Hohhot, Inner Mongolia 010021, China
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| |
Collapse
|
97
|
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:405-426. [PMID: 30149789 DOI: 10.1146/annurev-phyto-080417-050141] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Cara Mortimer
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Roger Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA;
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| |
Collapse
|
98
|
Liu P, Duan Y, Liu C, Xue Q, Guo J, Qi T, Kang Z, Guo J. The calcium sensor TaCBL4 and its interacting protein TaCIPK5 are required for wheat resistance to stripe rust fungus. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4443-4457. [PMID: 29931351 DOI: 10.1093/jxb/ery227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Calcineurin B-like proteins (CBLs) act as Ca2+ sensors to activate specific protein kinases, namely CBL-interacting protein kinases (CIPKs). Recent research has demonstrated that the CBL-CIPK complex is not only required for abiotic stress signaling, but is also probably involved in biotic stress perception. However, the role of this complex in immune signaling, including pathogen perception, is unknown. In this study, we isolated one signaling component of the TaCBL-TaCIPK complex (TaCBL4-TaCIPK5) and characterized its role in the interaction between wheat (Triticum aestivum) and Puccinia striiformis f. sp. tritici (Pst, stripe rust fungus). Among all TaCBLs in wheat, TaCBL4 mRNA accumulation markedly increased after infection by Pst. Silencing of TaCBL4 resulted in enhanced susceptibility to avirulent Pst infection. In addition, screening determined that TaCIPK5 physically interacted with TaCBL4 in planta and positively contributed to wheat resistance to Pst. Moreover, the disease resistance phenotype of TaCBL4 and TaCIPK5 co-silenced plants was consistent with that of single-knockdown plants. The accumulation of reactive oxygen species (ROS) was significantly altered in all silenced plants during Pst infection. Together these findings demonstrate that the TaCBL4-TaCIPK5 complex positively modulates wheat resistance in a ROS-dependent manner, and provide new insights into the roles of CBL-CIPK in wheat.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qinghe Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
99
|
Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N, Kuhlmann M. Abscisic acid influences tillering by modulation of strigolactones in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3883-3898. [PMID: 29982677 PMCID: PMC6054196 DOI: 10.1093/jxb/ery200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/15/2018] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) represent a class of plant hormones that are involved in inhibiting shoot branching and in promoting abiotic stress responses. There is evidence that the biosynthetic pathways of SLs and abscisic acid (ABA) are functionally connected. However, little is known about the mechanisms underlying the interaction of SLs and ABA, and the relevance of this interaction for shoot architecture. Based on sequence homology, four genes (HvD27, HvMAX1, HvCCD7, and HvCCD8) involved in SL biosynthesis were identified in barley and functionally verified by complementation of Arabidopsis mutants or by virus-induced gene silencing. To investigate the influence of ABA on SLs, two transgenic lines accumulating ABA as a result of RNAi-mediated down-regulation of HvABA 8'-hydroxylase 1 and 3 were employed. LC-MS/MS analysis confirmed higher ABA levels in root and stem base tissues in these transgenic lines. Both lines showed enhanced tiller formation and lower concentrations of 5-deoxystrigol in root exudates, which was detected for the first time as a naturally occurring SL in barley. Lower expression levels of HvD27, HvMAX1, HvCCD7, and HvCCD8 indicated that ABA suppresses SL biosynthesis, leading to enhanced tiller formation in barley.
Collapse
Affiliation(s)
- Hongwen Wang
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Wanxin Chen
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Kai Eggert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, XH Amsterdam, The Netherlands
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Mohammad R Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Christiane Seiler
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), Grain Quality and Nutrition Center, Metro Manila, Philippines
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
- Correspondence: or
| | - Markus Kuhlmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
- Correspondence: or
| |
Collapse
|
100
|
Singh DK, Lee HK, Dweikat I, Mysore KS. An efficient and improved method for virus-induced gene silencing in sorghum. BMC PLANT BIOLOGY 2018; 18:123. [PMID: 29914379 PMCID: PMC6006947 DOI: 10.1186/s12870-018-1344-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the draft genome of sorghum is available, the understanding of gene function is limited due to the lack of extensive mutant resources. Virus-induced gene silencing (VIGS) is an alternative to mutant resources to study gene function. This study reports an improved and efficient method for Brome mosaic virus (BMV)-based VIGS in sorghum. METHODS Sorghum plants were rub-inoculated with sap prepared by grinding 2 g of infected Nicotiana benthamiana leaf in 1 ml 10 mM potassium phosphate buffer (pH 6.8) and 100 mg of carborundum abrasive. The sap was rubbed on two to three top leaves of sorghum. Inoculated plants were covered with a dome to maintain high humidity and kept in the dark for two days at 18 °C. Inoculated plants were then transferred to 18 °C growth chamber with 12 h/12 h light/dark cycle. RESULTS This study shows that BMV infection rate can be significantly increased in sorghum by incubating plants at 18 °C. A substantial variation in BMV infection rate in sorghum genotypes/varieties was observed and BTx623 was the most susceptible. Ubiquitin (Ubiq) silencing is a better visual marker for VIGS in sorghum compared to other markers such as Magnesium Chelatase subunit H (ChlH) and Phytoene desaturase (PDS). The use of antisense strand of a gene in BMV was found to significantly increase the efficiency and extent of VIGS in sorghum. In situ hybridization experiments showed that the non-uniform silencing in sorghum is due to the uneven spread of the virus. This study further demonstrates that genes could also be silenced in the inflorescence of sorghum. CONCLUSION In general, sorghum plants are difficult to infect with BMV and therefore recalcitrant to VIGS studies. However, by using BMV as a vector, a BMV susceptible sorghum variety, 18 °C for incubating plants, and antisense strand of the target gene fragment, efficient VIGS can still be achieved in sorghum.
Collapse
Affiliation(s)
| | - Hee-Kyung Lee
- Noble Research Institute, Ardmore, Oklahoma 73401 USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583 USA
| | | |
Collapse
|