51
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
Affiliation(s)
- Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
| | - Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
52
|
Fu X, Zhou Y, Zeng L, Dong F, Mei X, Liao Y, Watanabe N, Yang Z. Analytical method for metabolites involved in biosynthesis of plant volatile compounds. RSC Adv 2017. [DOI: 10.1039/c7ra00766c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The progress in the successful techniques used for studying metabolites involved in the metabolic routes of plant volatiles is summarized.
Collapse
Affiliation(s)
- Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Fang Dong
- Guangdong Food and Drug Vocational College
- Guangzhou 510520
- China
| | - Xin Mei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Naoharu Watanabe
- Graduate School of Science and Technology
- Shizuoka University
- Hamamatsu 432-8561
- Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| |
Collapse
|
53
|
Giacomuzzi V, Cappellin L, Khomenko I, Biasioli F, Schütz S, Tasin M, Knight AL, Angeli S. Emission of Volatile Compounds from Apple Plants Infested with Pandemis heparana Larvae, Antennal Response of Conspecific Adults, and Preliminary Field Trial. J Chem Ecol 2016; 42:1265-1280. [PMID: 27896554 DOI: 10.1007/s10886-016-0794-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022]
Abstract
This study investigated the volatile emission from apple (Malus x domestica Borkh., cv. Golden Delicious) foliage that was either intact, mechanically-damaged, or exposed to larval feeding by Pandemis heparana (Denis and Schiffermüller) (Lepidoptera: Tortricidae). Volatiles were collected by closed-loop-stripping-analysis and characterized by gas chromatography-mass spectrometry in three time periods: after 1 h and again 24 and 48 h later. Volatiles for all treatments also were monitored continuously over a 72-h period by the use of proton transfer reaction - time of flight-mass spectrometry (PTR-ToF-MS). In addition, the volatile samples were analyzed by gas chromatography-electroantennographic detection (GC-EAD) using male and female antennae of P. heparana. Twelve compounds were detected from intact foliage compared with 23 from mechanically-damaged, and 30 from P. heparana-infested foliage. Interestingly, six compounds were released only by P. heparana-infested foliage. The emission dynamics of many compounds measured by PTR-ToF-MS showed striking differences according to the timing of herbivory and the circadian cycle. For example, the emission of green leaf volatiles began shortly after the start of herbivory, and increased over time independently from the light-dark cycle. Conversely, the emission of terpenes and aromatic compounds showed a several-hour delay in response to herbivory, and followed a diurnal rhythm. Methanol was the only identified volatile showing a nocturnal rhythm. Consistent GC-EAD responses were found for sixteen compounds, including five aromatic ones. A field trial in Sweden demonstrated that benzyl alcohol, 2-phenylethanol, phenylacetonitrile, and indole lures placed in traps were not attractive to Pandemis spp. adults, but 2-phenylethanol and phenylacetonitrile when used in combination with acetic acid were attractive to both sexes.
Collapse
Affiliation(s)
- Valentino Giacomuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge,, MA, 02138, USA
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Stefan Schütz
- Büsgen-Institute, Department of Forest Zoology and Forest Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Marco Tasin
- Department of Plant Protection Biology, Unit of Integrated Plant Protection, Swedish University of Agricultural Science, Växtskyddsvägen 3, 230 53, Alnarp, Sweden
| | - Alan L Knight
- USDA, Agricultural Research Service, 5230 Konnowac Pass Rd, Wapato, WA, 98951, USA.
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
54
|
Dong F, Fu X, Watanabe N, Su X, Yang Z. Recent Advances in the Emission and Functions of Plant Vegetative Volatiles. Molecules 2016; 21:124. [PMID: 26805805 PMCID: PMC6272994 DOI: 10.3390/molecules21020124] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
Abstract
Plants synthesize and emit a large variety of volatile organic compounds, which possess extremely important ecological functions. In most case, most plant volatiles are liquids, rather than gases, at room temperature. Some volatiles are emitted “on demand” when plants, especially vegetative parts, are exposed to abiotic or biotic stress. In this review, we summarize some of the highlights of plant vegetative volatile emission and functions research published during the past few years.
Collapse
Affiliation(s)
- Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Xinguo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
55
|
Schuman MC, Valim HA, Joo Y. Temporal Dynamics of Plant Volatiles: Mechanistic Bases and Functional Consequences. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
56
|
|
57
|
Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. Biosynthesis of essential oils in aromatic plants: A review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057841] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Yahyaa M, Tholl D, Cormier G, Jensen R, Simon PW, Ibdah M. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4870-8. [PMID: 25924989 DOI: 10.1021/acs.jafc.5b00546] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| | - Dorothea Tholl
- ‡Department of Biological Sciences, Virginia Polytechnic Institute and State University, 409 Latham Hall, 220 Agquad Lane, Blacksburg, Virginia 24061, United States
| | - Guy Cormier
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Roderick Jensen
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Philipp W Simon
- ∥Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, United States
| | - Mwafaq Ibdah
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| |
Collapse
|
59
|
Boggia L, Sgorbini B, Bertea CM, Cagliero C, Bicchi C, Maffei ME, Rubiolo P. Direct Contact - Sorptive Tape Extraction coupled with Gas Chromatography - Mass Spectrometry to reveal volatile topographical dynamics of lima bean (Phaseolus lunatus L.) upon herbivory by Spodoptera littoralis Boisd. BMC PLANT BIOLOGY 2015; 15:102. [PMID: 25887127 PMCID: PMC4415311 DOI: 10.1186/s12870-015-0487-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/01/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND The dynamics of plant volatile (PV) emission, and the relationship between damaged area and biosynthesis of bioactive molecules in plant-insect interactions, remain open questions. Direct Contact-Sorptive Tape Extraction (DC-STE) is a sorption sampling technique employing non adhesive polydimethylsiloxane tapes, which are placed in direct contact with a biologically-active surface. DC-STE coupled to Gas Chromatography - Mass Spectrometry (GC-MS) is a non-destructive, high concentration-capacity sampling technique able to detect and allow identification of PVs involved in plant responses to biotic and abiotic stresses. Here we investigated the leaf topographical dynamics of herbivory-induced PV (HIPV) produced by Phaseolus lunatus L. (lima bean) in response to herbivory by larvae of the Mediterranean climbing cutworm (Spodoptera littoralis Boisd.) and mechanical wounding by DC-STE-GC-MS. RESULTS Time-course experiments on herbivory wounding caused by larvae (HW), mechanical damage by a pattern wheel (MD), and MD combined with the larvae oral secretions (OS) showed that green leaf volatiles (GLVs) [(E)-2-hexenal, (Z)-3-hexen-1-ol, 1-octen-3-ol, (Z)-3-hexenyl acetate, (Z)-3-hexenyl butyrate] were associated with both MD and HW, whereas monoterpenoids [(E)-β-ocimene], sesquiterpenoids [(E)-nerolidol] and homoterpenes (DMNT and TMTT) were specifically associated with HW. Up-regulation of genes coding for HIPV-related enzymes (Farnesyl Pyrophosphate Synthase, Lipoxygenase, Ocimene Synthase and Terpene Synthase 2) was consistent with HIPV results. GLVs and sesquiterpenoids were produced locally and found to influence their own gene expression in distant tissues, whereas (E)-β-ocimene, TMTT, and DMNT gene expression was limited to wounded areas. CONCLUSIONS DC-STE-GC-MS was found to be a reliable method for the topographical evaluation of plant responses to biotic and abiotic stresses, by revealing the differential distribution of different classes of HIPVs. The main advantages of this technique include: a) in vivo sampling; b) reproducible sampling; c) ease of execution; d) simultaneous assays of different leaf portions, and e) preservation of plant material for further "omic" studies. DC-STE-GC-MS is also a low-impact innovative method for in situ PV detection that finds potential applications in sustainable crop management.
Collapse
Affiliation(s)
- Lorenzo Boggia
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Cinzia M Bertea
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Carlo Bicchi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.
| |
Collapse
|
60
|
Okada K, Abe H, Arimura GI. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. PLANT & CELL PHYSIOLOGY 2015; 56:16-27. [PMID: 25378688 DOI: 10.1093/pcp/pcu158] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Jasmonic acid (JA) and its derivatives (jasmonates, JAs) are phytohormones with essential roles in plant defense against pathogenesis and herbivorous arthropods. Both the up- and down-regulation of defense responses are dependent on signaling pathways mediated by JAs as well as other stress hormones (e.g. salicylic acid), generally those involving the transcriptional and post-transcriptional regulation of transcription factors via protein modification and epigenetic regulation. In addition to the typical model plant Arabidopsis (a dicotyledon), advances in genetics research have made rice a model monocot in which innovative pest control traits can be introduced and whose JA signaling pathway can be studied. In this review, we introduce the dynamic functions of JAs in plant defense strategy using defensive substances (e.g. indole alkaloids and terpenoid phytoalexins) and airborne signals (e.g. green leaf volatiles and volatile terpenes) in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores. We then discuss the important issue of how the mutualism of herbivorous arthropods with viruses or bacteria can cause cross-talk between JA and other phytohormones to counter the defense systems.
Collapse
Affiliation(s)
- Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Center, Tsukuba, 305-0074 Japan
| | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, 125-8585 Japan
| |
Collapse
|
61
|
War AR, Paulraj MG, Ignacimuthu S, Sharma HC. Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. PEST MANAGEMENT SCIENCE 2015; 71:72-82. [PMID: 25488591 DOI: 10.1002/ps.3764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 12/17/2013] [Accepted: 02/06/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid (JA) and salicylic acid (SA) was studied in groundnut genotypes (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) with different levels of resistance to insects and the susceptible check JL 24 under greenhouse conditions. Activities of oxidative enzymes and the amounts of secondary metabolites and proteins were quantified at 6 days after JA and SA application/insect infestation. Data were also recorded on plant damage and H. armigera larval weights and survival. RESULTS Higher levels of enzymatic activities and amounts of secondary metabolites were observed in the insect-resistant genotypes pretreated with JA and then infested with H. armigera than in JL 24. The insect-resistant genotypes suffered lower insect damage and resulted in poor survival and lower weights of H. armigera larvae than JL 24. In some cases, JA and SA showed similar effects. CONCLUSION JA and SA induced the activity of antioxidative enzymes in groundnut plants against H. armigera, and reduced its growth and development. However, induced response to application of JA was greater than to SA, and resulted in reduced plant damage, and larval weights and survival, suggesting that induced resistance can be used as a component of pest management in groundnut.
Collapse
Affiliation(s)
- Abdul Rashid War
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India; Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
62
|
Seidl-Adams I, Richter A, Boomer KB, Yoshinaga N, Degenhardt J, Tumlinson JH. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. PLANT, CELL & ENVIRONMENT 2015; 38:23-34. [PMID: 24725255 DOI: 10.1111/pce.12347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Maize seedlings emit sesquiterpenes during the day in response to insect herbivory. Parasitoids and predators use induced volatile blends to find their hosts or prey. To investigate the diurnal regulation of biosynthesis and emission of induced sesquiterpenes, we applied linolenoyl-L-glutamine (LG) to maize seedlings in the morning or evening using a cut-stem assay and tracked farnesene emission, in planta accumulation, as well as transcript levels of farnesyl pyrophosphate synthase 3 (ZmFPPS3) and terpene synthase10 (ZmTPS10) throughout the following day. Independent of time of day of LG treatment, maximum transcript levels of ZmFPPS3 and ZmTPS10 occurred within 3-4 h after elicitor application. The similarity between the patterns of farnesene emission and in planta accumulation in light-exposed seedlings in both time courses suggested unobstructed emission in the light. After evening induction, farnesene biosynthesis increased dramatically during early morning hours. Contrary to light-exposed seedlings dark-kept seedlings retained the majority of the synthesized farnesene. Two treatments to reduce stomatal aperture, dark exposure at midday, and abscisic acid treatment before daybreak, resulted in significantly reduced amounts of emitted and significantly increased amounts of in planta accumulating farnesene. Our results suggest that stomata not only play an important role in gas exchange for primary metabolism but also for indirect plant defences.
Collapse
Affiliation(s)
- I Seidl-Adams
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | | | | | | | | | | |
Collapse
|
63
|
Clavijo McCormick A, Boeckler GA, Köllner TG, Gershenzon J, Unsicker SB. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC PLANT BIOLOGY 2014; 14:304. [PMID: 25429804 PMCID: PMC4262996 DOI: 10.1186/s12870-014-0304-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/23/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND The role of herbivore-induced plant volatiles as signals mediating the attraction of herbivore enemies is a well-known phenomenon. Studies with short-lived herbaceous plant species have shown that various biotic and abiotic factors can strongly affect the quantity, composition and timing of volatile emission dynamics. However, there is little knowledge on how these factors influence the volatile emission of long-lived woody perennials. The aim of this study was to investigate the temporal dynamics of herbivore-induced volatile emission of black poplar (Populus nigra) through several day-night cycles following the onset of herbivory. We also determined the influence of different herbivore species, caterpillars of the gypsy moth (Lymantria dispar) and poplar hawkmoth (Laothoe populi), and different herbivore developmental stages on emission. RESULTS The emission dynamics of major groups of volatile compounds differed strikingly in response to the timing of herbivory and the day-night cycle. The emission of aldoximes, salicyl aldehyde, and to a lesser extent, green leaf volatiles began shortly after herbivore attack and ceased quickly after herbivore removal, irrespective of the day-night cycle. However, the emission of most terpenes showed a more delayed reaction to the start and end of herbivory, and emission was significantly greater during the day compared to the night. The identity of the caterpillar species caused only slight changes in emission, but variation in developmental stage had a strong impact on volatile emission with early instar L. dispar inducing more nitrogenous volatiles and terpenoids than late instar caterpillars of the same species. CONCLUSIONS The results indicate that only a few of the many herbivore-induced black poplar volatiles are released in tight correlation with the timing of herbivory. These may represent the most reliable cues for herbivore enemies and, interestingly, have been shown in a recent study to be the best attractants for an herbivore enemy that parasitizes gypsy moth larvae feeding on black poplar.
Collapse
Affiliation(s)
- Andrea Clavijo McCormick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| | - G Andreas Boeckler
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| |
Collapse
|
64
|
Prevalence, evolution, and cis-regulation of diel transcription in Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2014; 4:2461-71. [PMID: 25354782 PMCID: PMC4267941 DOI: 10.1534/g3.114.015032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endogenous (circadian) and exogenous (e.g., diel) biological rhythms are a prominent feature of many living systems. In green algal species, knowledge of the extent of diel rhythmicity of genome-wide gene expression, its evolution, and its cis-regulatory mechanism is limited. In this study, we identified cyclically expressed genes under diel conditions in Chlamydomonas reinhardtii and found that ~50% of the 17,114 annotated genes exhibited cyclic expression. These cyclic expression patterns indicate a clear succession of biological processes during the course of a day. Among 237 functional categories enriched in cyclically expressed genes, >90% were phase-specific, including photosynthesis, cell division, and motility-related processes. By contrasting cyclic expression between C. reinhardtii and Arabidopsis thaliana putative orthologs, we found significant but weak conservation in cyclic gene expression patterns. On the other hand, within C. reinhardtii cyclic expression was preferentially maintained between duplicates, and the evolution of phase between paralogs is limited to relatively minor time shifts. Finally, to better understand the cis regulatory basis of diel expression, putative cis-regulatory elements were identified that could predict the expression phase of a subset of the cyclic transcriptome. Our findings demonstrate both the prevalence of cycling genes as well as the complex regulatory circuitry required to control cyclic expression in a green algal model, highlighting the need to consider diel expression in studying algal molecular networks and in future biotechnological applications.
Collapse
|
65
|
Mitsunami T, Nishihara M, Galis I, Alamgir KM, Hojo Y, Fujita K, Sasaki N, Nemoto K, Sawasaki T, Arimura GI. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura. PLoS One 2014; 9:e108849. [PMID: 25268129 PMCID: PMC4182574 DOI: 10.1371/journal.pone.0108849] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022] Open
Abstract
Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.
Collapse
Affiliation(s)
- Tomoko Mitsunami
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, Japan
| | | | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kabir Md Alamgir
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | | | | | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
66
|
Menzel TR, Huang TY, Weldegergis BT, Gols R, van Loon JJA, Dicke M. Effect of Sequential Induction by Mamestra brassicae L. and Tetranychus urticae Koch on Lima Bean Plant Indirect Defense. J Chem Ecol 2014; 40:977-85. [DOI: 10.1007/s10886-014-0499-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/22/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
|
67
|
Menzel TR, Weldegergis BT, David A, Boland W, Gols R, van Loon JJA, Dicke M. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4821-31. [PMID: 25318119 PMCID: PMC4144767 DOI: 10.1093/jxb/eru242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant's phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation.
Collapse
Affiliation(s)
- Tila R Menzel
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Anja David
- Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
68
|
Desurmont GA, Harvey J, van Dam NM, Cristescu SM, Schiestl FP, Cozzolino S, Anderson P, Larsson MC, Kindlmann P, Danner H, Turlings TCJ. Alien interference: disruption of infochemical networks by invasive insect herbivores. PLANT, CELL & ENVIRONMENT 2014; 37:1854-65. [PMID: 24689553 DOI: 10.1111/pce.12333] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 05/09/2023]
Abstract
Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.
Collapse
Affiliation(s)
- Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1060-72. [PMID: 24684685 PMCID: PMC4190661 DOI: 10.1111/tpj.12523] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 05/02/2023]
Abstract
Plant volatiles (PVs) mediate interactions between plants and arthropods, microbes and other plants, and are involved in responses to abiotic stress. PV emissions are therefore influenced by many environmental factors, including herbivore damage, microbial invasion, and cues from neighboring plants, and also light regime, temperature, humidity and nutrient availability. Thus, an understanding of the physiological and ecological functions of PVs must be based on measurements reflecting PV emissions under natural conditions. However, PVs are usually sampled in the artificial environments of laboratories or climate chambers. Sampling of PVs in natural environments is difficult, being limited by the need to transport, maintain and provide power to instruments, or use expensive sorbent devices in replicate. Ideally, PVs should be measured in natural settings with high replication, spatio-temporal resolution and sensitivity, and modest costs. Polydimethylsiloxane (PDMS), a sorbent commonly used for PV sampling, is available as silicone tubing for as little as 0.60 € m(-1) (versus 100-550 € each for standard PDMS sorbent devices). Small pieces of silicone tubing (STs) of various lengths from millimeters to centimeters may be added to any experimental setting and used for headspace sampling, with little manipulation of the organism or headspace. STs have sufficiently fast absorption kinetics and large capacity to sample plant headspaces over a timescale of minutes to hours, and thus can produce biologically meaningful 'snapshots' of PV blends. When combined with thermal desorption coupled to GC-MS (a 40-year-old widely available technology), use of STs yields reproducible, sensitive, spatio-temporally resolved quantitative data from headspace samples taken in natural environments.
Collapse
Affiliation(s)
- Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Calcium imaging perspectives in plants. Int J Mol Sci 2014; 15:3842-59. [PMID: 24599077 PMCID: PMC3975371 DOI: 10.3390/ijms15033842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Abstract
The calcium ion (Ca2+) is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.
Collapse
|
71
|
Verrillo F, Occhipinti A, Kanchiswamy CN, Maffei ME. Quantitative analysis of herbivore-induced cytosolic calcium by using a Cameleon (YC 3.6) calcium sensor in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:136-139. [PMID: 24331428 DOI: 10.1016/j.jplph.2013.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 06/03/2023]
Abstract
Ca(2+) is a key player in plant cell responses to biotic and abiotic stress. Owing to the central role of cytosolic Ca(2+) ([Ca(2+)]cyt) during early signaling and the need for precise determination of [Ca(2+)]cyt variations, we used a Cameleon YC 3.6 reporter protein expressed in Arabidopsis thaliana to quantify [Ca(2+)]cyt variations upon leaf mechanical damage (MD), herbivory by 3rd and 5th instar larvae of Spodoptera littoralis and S. littoralis oral secretions (OS) applied to MD. YC 3.6 allowed a clear distinction between MD and herbivory and discriminated between the two larvae instars. To our knowledge this is the first report of quantitative [Ca(2+)]cyt determination upon herbivory using a Cameleon calcium sensor.
Collapse
Affiliation(s)
- Francesca Verrillo
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Italy.
| | - Andrea Occhipinti
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Italy.
| | | | - Massimo E Maffei
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Italy.
| |
Collapse
|
72
|
Ali M, Sugimoto K, Ramadan A, Arimura GI. Memory of plant communications for priming anti-herbivore responses. Sci Rep 2013; 3:1872. [PMID: 23695148 PMCID: PMC3660719 DOI: 10.1038/srep01872] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/03/2013] [Indexed: 01/14/2023] Open
Abstract
The emission of a specific blend of volatiles in response to Mythimna separata (herbivore-induced plant volatiles, HIPVs) plays a great ecological role by priming neighbouring plants. Maize plants placed downwind of infested, conspecific plants showed reduced larval development not only immediately after exposure to HIPVs but also when receiver plants were tested after a time lag of up to 5 days, compared to those exposed to volatiles from uninfested plants and tested after the same time lag. The molecular basis of this plant memory was, in part, the similarly recalled expression of a Bowman-Birk type trypsin inhibitor (TI) gene, in a jasmonic acid induction-independent manner. Moreover, in the promoter region of TI, a suite of methylation sites was found to be demethylated by the HIPV treatment. These findings provide an innovative mechanism for the epigenetic basis of the memory of HIPV-mediated habituation for plant defence.
Collapse
Affiliation(s)
- Mohamed Ali
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | | | | | | |
Collapse
|
73
|
Sufang Z, Jianing W, Zhen Z, Le K. Rhythms of volatiles release from healthy and insect-damaged Phaseolus vulgaris. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25759. [PMID: 23887493 PMCID: PMC4091087 DOI: 10.4161/psb.25759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 05/11/2023]
Abstract
The release rhythm of volatiles is an important physiological characteristic of plants, because the timing of release can affect the function of each particular volatile compound. However, most studies on volatiles release rhythms have been conducted using model plants, rather than crop plants. Here, we analyzed the variations in volatile compounds released from healthy and leafminer (Liriomyza huidobrensis)-infested kidney bean (Phaseolus vulgaris), an important legume crop plant, over a 24 h period. The constituents of the volatiles mixture released from plants were analyzed every 3 h starting from 08:00. The collected volatiles were identified and quantified by gas chromatography–mass spectrometry. Undamaged kidney bean plants released trace amounts of volatiles, with no obvious release rhythms. However, leafminer-damaged plants released large amounts of volatiles, in two main peaks. The main peak of emission was from 17:00 to 20:00, while the secondary peak was in the early morning. The terpene volatiles and (Z)-3-hexenyl acetate showed similar rhythms as that of total volatiles. However, the green leaf volatile (Z)-3-hexen-ol was emitted during the night with peak emission in the early morning. These results give us a clear picture of the volatiles release rhythms of kidney bean plants damaged by leafminer.
Collapse
Affiliation(s)
- Zhang Sufang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology; Chinese Academy of Sciences; Beijing, PR China
- Key Laboratory of Forest Protection; Research Institute of Forest Ecology, Environment and Protection; Chinese Academy of Forestry; State Forestry Administration; Beijing, PR China
| | - Wei Jianing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology; Chinese Academy of Sciences; Beijing, PR China
| | - Zhang Zhen
- Key Laboratory of Forest Protection; Research Institute of Forest Ecology, Environment and Protection; Chinese Academy of Forestry; State Forestry Administration; Beijing, PR China
| | - Kang Le
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology; Chinese Academy of Sciences; Beijing, PR China
| |
Collapse
|
74
|
Guo H, Wielsch N, Hafke JB, Svatoš A, Mithöfer A, Boland W. A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:849-58. [PMID: 23845235 DOI: 10.1016/j.ibmb.2013.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 05/08/2023]
Abstract
Insect herbivory on plants is a complex incident consisting of at least two different aspects, namely mechanical damage and chemical challenge, as feeding insects introduce oral secretions (OS) into the wounded tissue of the attacked plant. Mechanical wounding alone is sufficient to induce a set of defense-related reactions in host plants, but some early events such as membrane potential (Vm) changes and cytosolic Ca²⁺-elevations can be triggered only by herbivores suggesting that OS-derived molecules are involved in those processes. Following an assay-guided purification based on planar lipid bilayer membrane technique in combination with proteomic analysis, a porin-like protein (PLP) of most likely bacterial origin was determined from collected OS of Spodoptera littoralis larvae. PLP exhibited channel-forming activity. Further, early defense-related events in plant-insect interaction were evaluated by using a purified fraction and α-hemolysin (α-HL) as a commercial pore-forming compound. Both up-regulated the calmodulin-like CML42 in Arabidopsis thaliana, which only responds to oral secretion and not to wounding. An elevation of in vivo [Ca²⁺](cyt) was not observed. Because membrane channel formation is a widespread phenomenon in plant-insect interactions, this PLP might represent an example for microbial compounds from the insect gut which are initially involved in plant-insect interactions.
Collapse
Affiliation(s)
- Huijuan Guo
- Bioorganic Chemistry Department, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. CHEMOECOLOGY 2013. [DOI: 10.1007/s00049-013-0141-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
76
|
Garcia-Jimenez P, Brito-Romano O, Robaina RR. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide. JOURNAL OF PHYCOLOGY 2013; 49:661-669. [PMID: 27007198 DOI: 10.1111/jpy.12083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/01/2013] [Indexed: 06/05/2023]
Abstract
The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula.
Collapse
Affiliation(s)
- Pilar Garcia-Jimenez
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, E-35017, Spain
| | - Olegario Brito-Romano
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, E-35017, Spain
| | - Rafael R Robaina
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, E-35017, Spain
| |
Collapse
|
77
|
Niinemets Ü, Kännaste A, Copolovici L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. FRONTIERS IN PLANT SCIENCE 2013; 4:262. [PMID: 23888161 PMCID: PMC3719043 DOI: 10.3389/fpls.2013.00262] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/27/2013] [Indexed: 05/18/2023]
Abstract
Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction response, possibly reflecting a systemic response. The dose-response relationships can also vary in dependence on plant genotype, herbivore feeding behavior, and plant pre-stress physiological status. Overall, the evidence suggests that there are quantitative relationships between the biotic stress severity and induced volatile emissions. These relationships constitute an encouraging platform to develop quantitative plant stress response models.
Collapse
Affiliation(s)
| | | | - Lucian Copolovici
- Estonian University of Life SciencesTartu, Estonia
- Institute of Technical and Natural Sciences Research-Development, Aurel Vlaicu UniversityArad, Romania
| |
Collapse
|
78
|
Zhang PJ, Xu CX, Zhang JM, Lu YB, Wei JN, Liu YQ, David A, Boland W, Turlings TCJ. Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Peng-Jun Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Cai-Xia Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops; Ministry of Agriculture; Beijing China
| | - Jin-Ming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Yao-Bin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Jia-Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents; Institute of Zoology; Chinese Academy of Sciences; Beijing 100080, China
| | - Yin-Quan Liu
- Institute of Insect Sciences; Zhejiang University; Hangzhou 310029, China
| | - Anja David
- Max Planck Institute for Chemical Ecology; Hans-Knoell-Strasse 8 07745 Jena Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology; Hans-Knoell-Strasse 8 07745 Jena Germany
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE); University of Neuchâtel; CH-2000 Neuchâtel Switzerland
| |
Collapse
|
79
|
Baldwin IT, Meldau S. Just in time: circadian defense patterns and the optimal defense hypothesis. PLANT SIGNALING & BEHAVIOR 2013; 8:e24410. [PMID: 23603968 PMCID: PMC3909060 DOI: 10.4161/psb.24410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 05/07/2023]
Abstract
The optimal defense hypothesis (ODH) provides a functional explanation for the inhomogeneous distribution of defensive structures and defense metabolites throughout a plant's body: tissues that are most valuable in terms of fitness and have the highest probability of attack are generally the best defended. In a previous review, we argue that ontogenically-controlled accumulations of defense metabolites are likely regulated through an integration of developmental and defense signaling pathways. In this addendum, we extend the discussion of ODH patterns by including the recent discoveries of circadian clock-controlled defenses in plants.
Collapse
Affiliation(s)
- Ian T Baldwin
- Max Planck Institute for Chemical Ecology; Department of Molecular Ecology; Jena, Germany
| | - Stefan Meldau
- Max Planck Institute for Chemical Ecology; Department of Molecular Ecology; Jena, Germany
| |
Collapse
|
80
|
Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. eLife 2013; 2:e00421. [PMID: 23682312 PMCID: PMC3654435 DOI: 10.7554/elife.00421] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI:http://dx.doi.org/10.7554/eLife.00421.001 Plants have developed a variety of strategies to defend themselves against herbivorous animals, particularly insects. In addition to mechanical defences such as thorns and spines, plants also produce compounds known as secondary metabolites that keep insects and other herbivores at bay by acting as repellents or toxins. Some of these metabolites are produced on a continuous basis by plants, whereas others—notably compounds called green-leaf volatiles—are only produced once the plant has been attacked. Green-leaf volatiles—which are also responsible for the smell of freshly cut grass—have been observed to provide plants with both direct protection, by inhibiting or repelling herbivores, and indirect protection, by attracting predators of the herbivores themselves. The hawkmoth Manduca sexta lays its eggs on various plants, including tobacco plants and sacred Datura plants. Once the eggs have hatched into caterpillars, they start eating the leaves of their host plant, and if present in large numbers, these caterpillars can quickly defoliate and destroy it. In an effort to defend itself, the host plant releases green-leaf volatiles to attract various species of Geocoris, and these bugs eat the eggs. One of the green-leaf volatiles released by tobacco plants is known as (Z)-3-hexenal, but enzymes released by M. sexta caterpillars change some of these molecules into (E)-2-hexenal, which has the same chemical formula but a different structure. The resulting changes in the ‘volatile profile’ alerts Geocoris bugs to the presence of M. sexta eggs and caterpillars on the plant. Now Allmann et al. show that adult female M. sexta moths can also detect similar changes in the volatile profile emitted by sacred Datura plants that have been damaged by M. sexta caterpillars. This alerts the moths to the fact that Geocoris bugs are likely to be attacking eggs and caterpillars on the plant, or on their way to the plant, so they lay their eggs on other plants. This reduces competition for resources and also reduces the risk of newly laid eggs being eaten by predators. Allmann et al. also identified the neural mechanism that allows moths to detect changes in the volatile profile of plants—the E- and Z- odours lead to different activation patterns in the moth brain. DOI:http://dx.doi.org/10.7554/eLife.00421.002
Collapse
Affiliation(s)
- Silke Allmann
- Department of Molecular Ecology , Max Planck Institute for Chemical Ecology , Jena , Germany
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Miyamoto K, Shimizu T, Mochizuki S, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. PROTOPLASMA 2013; 250:241-249. [PMID: 22456953 DOI: 10.1007/s00709-012-0400-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/14/2012] [Indexed: 05/27/2023]
Abstract
The plant hormone jasmonic acid (JA) regulates various developmental processes and plant defence responses to environmental stresses. We previously reported that RERJ1, a JA-inducible transcription factor in rice, is up-regulated by exposure to wounding and drought stress. Here, we demonstrated that the expression of RERJ1 after wounding is regulated in a JA-dependent manner in rice, based on histochemical analysis of RERJ1 promoter-GUS transgenic plants. RERJ1 expression was induced only at the region of injury after wounding, whereas expression was induced in the entire leaf after drought. According to JA measurements of stressed leaves, high accumulation of endogenous JA was only detected around the wound site in a rice leaves, whereas the drought treatment led to uniform accumulation of JA in the entire leaf, suggesting that RERJ1 will be a useful marker gene for studies on localization of JA in rice. Nuclear localization and transactivation ability of RERJ1 were also demonstrated. These results suggest that RERJ1 plays a role as a transcriptional activator for regulating stress-inducible gene expression, with a strong correlation to JA accumulation in the stressed region.
Collapse
Affiliation(s)
- Koji Miyamoto
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Köllner TG, Lenk C, Schnee C, Köpke S, Lindemann P, Gershenzon J, Degenhardt J. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC PLANT BIOLOGY 2013; 13:15. [PMID: 23363415 PMCID: PMC3570303 DOI: 10.1186/1471-2229-13-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/28/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maize (Zea mays L.) leaves damaged by lepidopteran herbivores emit a complex volatile blend that can attract natural enemies of the herbivores and may also have roles in direct defense and inter- or intra-plant signaling. The volatile blend is dominated by sesquiterpenes of which the majority is produced by two herbivore-induced terpene synthases, TPS10 and TPS23. However, little is known about the pattern of volatile emission within maize leaves. RESULTS In this study, we restricted herbivore feeding to small sections of the maize leaf with the aim of determining the patterns of volatile sesquiterpene emission throughout the damaged leaf and in neighboring leaves. Sesquiterpene volatiles were released at high rates from damaged leaves, but at much lower rates from neighboring leaves. Release was restricted to the site of damage or to leaf sections located apical to the damage, but was not seen in sections basal to the damage or on the other side of the midrib. The emission pattern correlated well with the transcript pattern of the respective sesquiterpene synthase genes, tps10 and tps23, implying that biosynthesis likely occurs at the site of emission. The concentrations of jasmonic acid and its leucine derivative were also elevated in terpene-emitting tissues suggesting a role for jasmonates in propagating the damage signal. CONCLUSIONS In contrast to other defense reactions which often occur systemically throughout the whole plant, herbivore-induced sesquiterpene production in maize is restricted to the wounding site and distal leaf parts. Since the signal mediating this reaction is directed to the leaf tip and cannot propagate parallel to the leaf axis, it is likely connected to the xylem. The increasing gradient of volatiles from the tip of the leaf towards the damage site might aid herbivore enemies in host or prey finding.
Collapse
Affiliation(s)
- Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Claudia Lenk
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, D-06120, Halle/Saale, Germany
| | - Christiane Schnee
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
- Current address: Friedrich Löffler Institute, Naumburger Strasse 96a, Jena, 07743, Germany
| | - Sabrina Köpke
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Peter Lindemann
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, D-06120, Halle/Saale, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Jörg Degenhardt
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, D-06120, Halle/Saale, Germany
| |
Collapse
|
83
|
Sharkey TD, Gray DW, Pell HK, Breneman SR, Topper L. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family. Evolution 2012; 67:1026-40. [PMID: 23550753 DOI: 10.1111/evo.12013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently.
Collapse
Affiliation(s)
- Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | |
Collapse
|
84
|
Ozawa R, Nishimura O, Yazawa S, Muroi A, Takabayashi J, Arimura GI. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator. Mol Ecol 2012; 21:5624-35. [PMID: 23043221 DOI: 10.1111/mec.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022]
Abstract
Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent.
Collapse
Affiliation(s)
- Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | | | | | | | | | | |
Collapse
|
85
|
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. PLANT SIGNALING & BEHAVIOR 2012; 7:1306-20. [PMID: 22895106 PMCID: PMC3493419 DOI: 10.4161/psb.21663] [Citation(s) in RCA: 759] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.
Collapse
Affiliation(s)
- Abdul Rashid War
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Patancheru; Andhra Pradesh, India
- Entomology Research Institute; Loyola College; Chennai, Tamil Nadu, India
| | | | - Tariq Ahmad
- Division of Entomology; Department of Zoology; University of Kashmir; Srinagar, India
| | - Abdul Ahad Buhroo
- Division of Entomology; Department of Zoology; University of Kashmir; Srinagar, India
| | | | | | - Hari Chand Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Patancheru; Andhra Pradesh, India
- Correspondence to: Hari Chand Sharma,
| |
Collapse
|
86
|
Irmisch S, Krause ST, Kunert G, Gershenzon J, Degenhardt J, Köllner TG. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC PLANT BIOLOGY 2012; 12:84. [PMID: 22682202 PMCID: PMC3423072 DOI: 10.1186/1471-2229-12-84] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/01/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. RESULTS Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (-)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (-)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (-)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. CONCLUSIONS The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.
Collapse
Affiliation(s)
- Sandra Irmisch
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle 06120, Germany
- Current address: Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena 07745, Germany
| | - Sandra T Krause
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle 06120, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena 07745, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena 07745, Germany
| | - Jörg Degenhardt
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle 06120, Germany
| | - Tobias G Köllner
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle 06120, Germany
- Current address: Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena 07745, Germany
| |
Collapse
|
87
|
Kooke R, Keurentjes JJB. Multi-dimensional regulation of metabolic networks shaping plant development and performance. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3353-65. [PMID: 22140247 DOI: 10.1093/jxb/err373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The metabolome is an integral part of a plant's life cycle and determines for a large part its external phenotype. It is the final, internal product of chemical interactions, obtained through developmental, genetic, and environmental inputs, and as such, it defines the state of a plant in terms of development and performance. Understanding its regulation will provide knowledge and new insights into the biochemical pathways and genetic interactions that shape the plant and its surroundings. In this review, we will focus on four dimensions that contribute to the huge diversity of metabolomes and we will illustrate how this diversity shapes the plant in terms of development and performance: (i) temporal regulation: the metabolome is extremely dynamic and temporal changes in the environment can have an immense impact on its composition; (ii) spatial regulation: metabolites can be very specific, in both quantitative and qualitative terms, to specialized organs, tissues, and cell types; (iii) environmental regulation: the metabolic profile of plants is highly dependent on environmental signals, such as light, temperature, and nutrients, and very susceptible to biotic and abiotic stresses; and (iv) genetic regulation: the biosynthesis, structure, and accumulation of metabolites have a genetic origin, and there is quantitative and qualitative variation for metabolomes within a species. We will address the contribution of these dimensions to the wide diversity of metabolomes and highlight how the multi-dimensional regulation of metabolism defines the plant's phenotype.
Collapse
Affiliation(s)
- R Kooke
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | |
Collapse
|
88
|
Shimoda T, Nishihara M, Ozawa R, Takabayashi J, Arimura GI. The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia. THE NEW PHYTOLOGIST 2012; 193:1009-1021. [PMID: 22243440 DOI: 10.1111/j.1469-8137.2011.04018.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants.
Collapse
Affiliation(s)
- Takeshi Shimoda
- National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | | | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Gen-Ichiro Arimura
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
- Global COE Program: Evolution and Biodiversity, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
89
|
|
90
|
Dong F, Yang Z, Baldermann S, Sato Y, Asai T, Watanabe N. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13131-5. [PMID: 22077631 DOI: 10.1021/jf203396a] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a defense response to attacks by herbivores such as the smaller tea tortrix ( Adoxophyes honmai Yasuda), tea ( Camellia sinensis ) leaves emit numerous volatiles such as (Z)-3-hexen-1-ol, linalool, α-farnesene, benzyl nitrile, indole, nerolidol, and ocimenes in higher concentration. Attack of Kanzawa spider mites ( Tetranychus kanzawai Kishida), another major pest insect of tea crops, induced the emission of α-farnesene and ocimenes from tea leaves. The exogenous application of jasmonic acid to tea leaves induced a volatile blend that was similar, although not identical, to that induced by the smaller tea tortrix. Most of these herbivore-induced plant volatiles (HIPV) were not stored in the tea leaves but emitted after the herbivore attack. Both the adaxial and abaxial epidermal layers of tea leaves emitted blends of similar composition. Furthermore, HIPV such as α-farnesene were emitted mostly from damaged but not from undamaged leaf regions. A principal component analysis of metabolites (m/z 70-1000) in undamaged tea leaves exposed or not to HIPV suggests that external signaling via HIPV may lead to more drastic changes in the metabolite spectrum of tea leaves than internal signaling via vascular connections, although total catechin contents were slightly but not significantly increased in the external signaling via HIPV.
Collapse
Affiliation(s)
- Fang Dong
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|
92
|
Steinbrenner AD, Gómez S, Osorio S, Fernie AR, Orians CM. Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective. J Chem Ecol 2011; 37:1294-303. [PMID: 22161151 DOI: 10.1007/s10886-011-0042-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/15/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022]
Abstract
Induced changes in primary metabolism are important plant responses to herbivory, providing energy and metabolic precursors for defense compounds. Metabolic shifts also can lead to reallocation of leaf resources to storage tissues, thus increasing a plant's tolerance. We characterized whole-plant metabolic responses of tomato (Solanum lycopersicum) 24 h after leaf herbivory by two caterpillars (the generalist Helicoverpa zea and the specialist Manduca sexta) by using GC-MS. We measured 56 primary metabolites across the leaves, stems, roots, and apex, comparing herbivore-attacked plants to undamaged plants and mechanically damaged plants. Induced metabolic change, in terms of magnitude and number of individual concentration changes, was stronger in the apex and root tissues than in undamaged leaflets of damaged leaves, indicating rapid and significant whole-plant responses to damage. Helicoverpa zea altered many more metabolites than M. sexta across most tissues, suggesting an enhanced plant response to H. zea herbivory. Helicoverpa zea herbivory strongly affected concentrations of defense-related metabolites (simple phenolics and precursor amino acids), while M. sexta altered metabolites associated with carbon and nitrogen transport. We conclude that herbivory induces many systemic primary metabolic changes in tomato, and that changes often are specific to a single tissue or type of herbivore. The potential implications of primary metabolic changes are discussed in relation to resistance and tolerance.
Collapse
|
93
|
War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S. Herbivore induced plant volatiles: their role in plant defense for pest management. PLANT SIGNALING & BEHAVIOR 2011; 6:1973-8. [PMID: 22105032 PMCID: PMC3337190 DOI: 10.4161/psb.6.12.18053] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.
Collapse
Affiliation(s)
- Abdul Rashid War
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Andhra Pradesh, India
- Entomology Research Institute; Loyola College; Chennai, Tamil Nadu India
| | - Hari Chand Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Andhra Pradesh, India
| | | | | | - Savarimuthu Ignacimuthu
- Entomology Research Institute; Loyola College; Chennai, Tamil Nadu India
- Correspondence to: Savarimuthu Ignacimuthu,
| |
Collapse
|
94
|
Fähnrich A, Krause K, Piechulla B. Product variability of the 'cineole cassette' monoterpene synthases of related Nicotiana species. MOLECULAR PLANT 2011; 4:965-84. [PMID: 21527560 DOI: 10.1093/mp/ssr021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the 'cineole cassette' comprising 1,8-cineole, limonene, myrcene, α-pinene, β-pinene, sabinene, and α-terpineol. We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes, which produced the characteristic monoterpenes of this 'cineole cassette' with α-terpineol being most abundant in the volatile spectra. The amino acid sequences of both terpineol synthases were 99% identical. The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum. The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N. alata and N. langsdorfii were less efficient compared to the 'cineole cassette' monoterpene synthases of Arabidopsis thaliana, N. suaveolens, Salvia fruticosa, Salvia officinalis, and Citrus unshiu. The terpineol synthases of N. alata and N. langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals. The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N. alata was highest at the transition from day to night (diurnal rhythm).
Collapse
Affiliation(s)
- Anke Fähnrich
- University of Rostock, Institute for Biological Sciences, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | | | |
Collapse
|
95
|
Muroi A, Ramadan A, Nishihara M, Yamamoto M, Ozawa R, Takabayashi J, Arimura GI. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. PLoS One 2011; 6:e24594. [PMID: 22022359 PMCID: PMC3192036 DOI: 10.1371/journal.pone.0024594] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
A blend of volatile organic compounds (VOCs) emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn) by exposing them to transgenic-plant-volatiles (VOCos) including (E)-β-ocimene, emitted from transgenic tobacco plants (NtOS2) that were constitutively overexpressing (E)-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai). In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants) placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications.
Collapse
Affiliation(s)
- Atsushi Muroi
- Global COE Program: Evolution and Biodiversity, Graduate School of Science, Kyoto University, Kyoto, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Abdelaziz Ramadan
- Global COE Program: Evolution and Biodiversity, Graduate School of Science, Kyoto University, Kyoto, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Masaki Yamamoto
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | | | - Gen-ichiro Arimura
- Global COE Program: Evolution and Biodiversity, Graduate School of Science, Kyoto University, Kyoto, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
| |
Collapse
|
96
|
von Mérey G, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D'Alessandro M. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. PHYTOCHEMISTRY 2011; 72:1838-47. [PMID: 21658734 DOI: 10.1016/j.phytochem.2011.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 05/09/2023]
Abstract
Maize plants respond to feeding by arthropod herbivores by producing a number of secondary plant compounds, including volatile organic compounds (VOCs). These herbivore-induced VOCs are not only known to attract natural enemies of the herbivores, but they may also prime inducible defences in neighbouring plants, resulting in stronger and faster defence responses in these VOC-exposed plants. Among the compounds that cause this priming effect, green leaf volatiles (GLVs) have received particular attention, as they are ubiquitous and rapidly emitted upon damage. In this study, we investigated their effects under realistic conditions by applying specially devised dispensers to release four synthetic GLVs at physiologically relevant concentrations in a series of experiments in maize fields. We compared the VOC emission of GLV-exposed maize plants to non-exposed plants and monitored the attraction of herbivores and predators, as well as parasitism of the caterpillar Spodoptera frugiperda, the most common herbivore in the experimental maize fields. We found that maize plants that were exposed to GLVs emitted increased quantities of sesquiterpenes compared to non-exposed plants. In several replicates, herbivorous insects, such as adult Diabrotica beetles and S. frugiperda larvae, were observed more frequently in GLV-treated plots and caused more damage to GLV-exposed plants than to non-exposed plants. Parasitism of S. frugiperda was only weakly affected by GLVs and overall parasitism rates of S. frugiperda were similar in GLV-exposed and non-exposed plots. The effects on insect presence depended on the distance from the GLV-dispensers at which the plants were located. The results are discussed in the context of strategies to improve biological control by enhancing plant-mediated attraction of natural enemies.
Collapse
Affiliation(s)
- Georg von Mérey
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), Institute of Biology, University of Neuchâtel, Emile-Argand 11, C.P. 158, 2009 Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
97
|
Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 2011; 36:22-34. [PMID: 20084432 DOI: 10.1007/s10886-009-9732-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/16/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.
Collapse
Affiliation(s)
- Delia M Pinto
- Plant Production Research/Plant Protection Unit, MTT Agrifood Research Finland, Jokioinen, Finland
| | | | | | | | | |
Collapse
|
98
|
Maffei ME, Gertsch J, Appendino G. Plant volatiles: Production, function and pharmacology. Nat Prod Rep 2011; 28:1359-80. [DOI: 10.1039/c1np00021g] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
99
|
Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets U. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol 2010; 37:18-28. [PMID: 21181243 DOI: 10.1007/s10886-010-9897-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/25/2010] [Accepted: 12/03/2010] [Indexed: 01/17/2023]
Abstract
Plant volatile organic compounds (VOCs) elicited in response to herbivory serve as cues for parasitic and predatory insects. Knowledge about quantitative relationships between the extent of herbivore-induced damage and the quantities of VOCs released is scarce. We studied the kinetics of VOC-emissions from foliage of the deciduous tree Alnus glutinosa induced by feeding activity of larvae of the geometrid moth Cabera pusaria. Quantitative relationships between the intensity of stress and strength of plant response were determined. Intensity of biotic stress was characterized by herbivore numbers (0-8 larvae) and by the amount of leaf area eaten. The strength of plant response was characterized by monitoring (i) changes in photosynthesis, (ii) leaf ultrastructure, and (iii) plant volatiles. Net assimilation rate displayed compensatory responses in herbivore-damaged leaves compared with control leaves. This compensatory response was associated with an overall increase in chloroplast size. Feeding-induced emissions of products of the lipoxygenase pathway (LOX products; (E)-2-hexenal, (Z)-3-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate) peaked at day 1 after larval feeding started, followed by an increase of emissions of ubiquitous monoterpenes peaking on days 2 and 3. The emission of the monoterpene (E)-β-ocimene and of the nerolidol-derived homoterpene 4,8-dimethyl-nona-1,3,7-triene (DMNT) peaked on day 3. Furthermore, the emission kinetics of the sesquiterpene (E,E)-α-farnesene tended to be biphasic with peaks on days 2 and 4 after start of larval feeding. Emission rates of the induced LOX products, of (E)-β-ocimene and (E,E)-α-farnesene were positively correlated with the number of larvae feeding. In contrast, the emission of DMNT was independent of the number of feeders. These data show quantitative relationships between the strength of herbivory and the emissions of LOX products and most of the terpenoids elicited in response to feeding. Thus, herbivory-elicited LOX products and terpenoid emissions may convey both quantitative and qualitative signals to antagonists of the herbivores. In contrast, our data suggest that the feeding-induced homoterpene DMNT conveys the information "presence of herbivores" rather than information about the quantities of herbivores to predators and parasitoids.
Collapse
Affiliation(s)
- Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia.
| | | | | | | | | |
Collapse
|
100
|
Radhika V, Kost C, Mithöfer A, Boland W. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc Natl Acad Sci U S A 2010; 107:17228-33. [PMID: 20855624 PMCID: PMC2951398 DOI: 10.1073/pnas.1009007107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To maximize fitness, plants need to perceive changes in their light environment and adjust their physiological responses accordingly. Whether and how such changes also affect the regulation of their defense responses against herbivores remains largely unclear. We addressed this issue by studying the secretion of extrafloral nectar (EFN) in lima bean (Phaseolus lunatus), which is known to be activated by the phytohormone jasmonic acid (JA) and functions as an indirect defense mechanism against herbivores. We found that the plant's EFN secretion in response to JA was light dependent: In the dark, JA reduced EFN secretion, whereas under light conditions, JA induced EFN secretion relative to controls. This modulation was affected by the light's spectral composition [i.e., ratio of red to far-red (R:FR) radiation], but not light intensity. These findings demonstrate a unique differential effect of JA on EFN secretion depending on the ambient light conditions. Interestingly, treatment with the isoleucine-JA conjugate (JA-Ile) enhanced EFN secretion under light conditions yet did not reduce EFN secretion in the dark. Moreover, inhibition of Ile biosynthesis in light-exposed plants significantly decreased the EFN secretion rate. This reduction could be recovered by additional application of JA-Ile, suggesting that JA-Ile is the active compound required to up-regulate EFN secretion. Finally, experiments with mechanically damaged plants revealed that light was required for the formation of JA-Ile, but not of JA. These results demonstrate that in lima bean, the light environment modulates the plant's response to jasmonates as well as JA-Ile biosynthesis, which controls the subsequent EFN secretion.
Collapse
Affiliation(s)
- Venkatesan Radhika
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christian Kost
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|