51
|
Kim JH, Lee HJ, Jung JH, Lee S, Park CM. HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis. MOLECULAR PLANT 2017; 10:274-284. [PMID: 27890635 DOI: 10.1016/j.molp.2016.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 05/06/2023]
Abstract
Upon exposure to light, developing seedlings undergo photomorphogenesis, as illustrated by inhibition of hypocotyl elongation, cotyledon opening, and leaf greening. During hypocotyl photomorphogenesis, light signals are sensed by multiple photoreceptors, among which the red/far-red light-sensing phytochromes have been extensively studied. However, it is not fully understood how the phytochromes modulate hypocotyl growth. Here, we demonstrated that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which is known to either act as E3 ubiquitin ligase or affect chromatin organization, inhibits the transcriptional activation activity of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a key transcription factor that promotes hypocotyl growth. Consistent with the negative regulatory role of HOS1 in hypocotyl growth, HOS1-defective mutants exhibited elongated hypocotyls in the light. Notably, phyB induces HOS1 activity in inhibiting PIF4 function. Taken together, these observations provide a molecular basis for the phyB-mediated suppression of hypocotyl growth in Arabidopsis.
Collapse
Affiliation(s)
- Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Sangmin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
52
|
Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y. Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochem Photobiol 2017; 93:112-127. [PMID: 27861972 DOI: 10.1111/php.12663] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.
Collapse
Affiliation(s)
- Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
53
|
Yang C, Li L. Hormonal Regulation in Shade Avoidance. FRONTIERS IN PLANT SCIENCE 2017; 8:1527. [PMID: 28928761 PMCID: PMC5591575 DOI: 10.3389/fpls.2017.01527] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves, fruits, seeds, etc.)-namely, shade avoidance syndrome (SAS). Common phenotypical changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl and internode elongation and extended petioles. Prolonged shade exposure leads to early flowering, less branching, increased susceptibility to insect herbivory, and decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits. Many genetic and molecular studies have revealed that phytochromes, cryptochromes and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under shade and regulate the stability or activity of phytochrome-interacting factors (PIFs). PIF-governed modulation of the expression of auxin biosynthesis, transporter and signaling genes is the major driver for shade-induced hypocotyl elongation. Besides auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In the young buds, shade light promotes the accumulation of abscisic acid to repress branching. Shade light also represses jasmonate- and salicylic acid-induced defense responses to balance resource allocation between growth and defense. Here we will summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis thaliana, Brassica rapa, and certain crops.
Collapse
|
54
|
Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I, Fankhauser C. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth. THE PLANT CELL 2016; 28:2889-2904. [PMID: 27923878 PMCID: PMC5240736 DOI: 10.1105/tpc.16.00463] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/20/2016] [Accepted: 12/05/2016] [Indexed: 05/18/2023]
Abstract
In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs.
Collapse
Affiliation(s)
- Markus V Kohnen
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- SIB Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabien Sénéchal
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Patricia Müller-Moulé
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, California 95616
| | - Julin Maloof
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, California 95616
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
55
|
Müller-Moulé P, Nozue K, Pytlak ML, Palmer CM, Covington MF, Wallace AD, Harmer SL, Maloof JN. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ 2016; 4:e2574. [PMID: 27761349 PMCID: PMC5068344 DOI: 10.7717/peerj.2574] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023] Open
Abstract
Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.
Collapse
Affiliation(s)
| | - Kazunari Nozue
- Department of Plant Biology, University of California , Davis , CA , United States
| | - Melissa L Pytlak
- Department of Plant Biology, University of California, Davis, CA, United States; PASCO Scientific, Roseville, CA, United State of America
| | - Christine M Palmer
- Department of Plant Biology, University of California, Davis, CA, United States; Natural Sciences Department, Castleton University, Castleton, VT, United States
| | - Michael F Covington
- Department of Plant Biology, University of California, Davis, CA, United States; Amaryllis Nucleics, Berkeley, CA, United States
| | - Andreah D Wallace
- Department of Plant Biology, University of California, Davis, CA, United States; Clontech Laboratories, Mountain View, CA, United States
| | - Stacey L Harmer
- Department of Plant Biology, University of California , Davis , CA , United States
| | - Julin N Maloof
- Department of Plant Biology, University of California , Davis , CA , United States
| |
Collapse
|
56
|
Kim K, Jeong J, Kim J, Lee N, Kim ME, Lee S, Chang Kim S, Choi G. PIF1 Regulates Plastid Development by Repressing Photosynthetic Genes in the Endodermis. MOLECULAR PLANT 2016; 9:1415-1427. [PMID: 27591813 DOI: 10.1016/j.molp.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 05/14/2023]
Abstract
Mutations in Phytochrome Interacting Factors (PIFs) induce a conversion of the endodermal amyloplasts necessary for gravity sensing to plastids with developed thylakoids accompanied by abnormal activation of photosynthetic genes in the dark. In this study, we investigated how PIFs regulate endodermal plastid development by performing comparative transcriptome analysis. We show that both endodermal expression of PIF1 and global expression of the PIF quartet induce transcriptional changes in genes enriched for nuclear-encoded photosynthetic genes such as LHCA and LHCB. Among the 94 shared differentially expressed genes identified from the comparative transcriptome analysis, only 14 genes are demonstrated to be direct targets of PIF1, and most photosynthetic genes are not. Using a co-expression analysis, we identified a direct target of PIF, whose expression pattern shows a strong negative correlation with many photosynthetic genes. We have named this gene REPRESSOR OF PHOTOSYNTHETIC GENES1 (RPGE1). Endodermal expression of RPGE1 rescued the elevated expression of photosynthetic genes found in the pif quadruple (pifQ) mutant and partly restored amyloplast development and hypocotyl negative gravitropism. Taken together, our results indicate that RPGE1 acts downstream of PIF1 in the endodermis to repress photosynthetic genes and regulate plastid development.
Collapse
Affiliation(s)
- Keunhwa Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jinkil Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jeongheon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Mi Eon Kim
- Center for Gas Analysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, Republic of Korea
| | - Sangil Lee
- Center for Gas Analysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
57
|
Liu G, Gao S, Tian H, Wu W, Robert HS, Ding Z. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis. PLoS Genet 2016; 12:e1006360. [PMID: 27716807 PMCID: PMC5065128 DOI: 10.1371/journal.pgen.1006360] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.
Collapse
Affiliation(s)
- Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Shan Gao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Huiyu Tian
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Wenwen Wu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
58
|
Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology. PLANT MOLECULAR BIOLOGY 2016; 91:691-702. [PMID: 27061301 DOI: 10.1007/s11103-016-0477-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.
Collapse
Affiliation(s)
- Hagop S Atamian
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
59
|
Martin G, Soy J, Monte E. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:962. [PMID: 27458465 PMCID: PMC4930942 DOI: 10.3389/fpls.2016.00962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/15/2016] [Indexed: 05/29/2023]
Abstract
Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.
Collapse
|
60
|
de Wit M, Galvão VC, Fankhauser C. Light-Mediated Hormonal Regulation of Plant Growth and Development. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:513-37. [PMID: 26905653 DOI: 10.1146/annurev-arplant-043015-112252] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.
Collapse
Affiliation(s)
- Mieke de Wit
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Vinicius Costa Galvão
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| |
Collapse
|
61
|
Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters. Proc Natl Acad Sci U S A 2016; 113:4870-5. [PMID: 27071129 DOI: 10.1073/pnas.1603745113] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A mechanism for integrating light perception and the endogenous circadian clock is central to a plant's capacity to coordinate its growth and development with the prevailing daily light/dark cycles. Under short-day (SD) photocycles, hypocotyl elongation is maximal at dawn, being promoted by the collective activity of a quartet of transcription factors, called PIF1, PIF3, PIF4, and PIF5 (phytochrome-interacting factors). PIF protein abundance in SDs oscillates as a balance between synthesis and photoactivated-phytochrome-imposed degradation, with maximum levels accumulating at the end of the long night. Previous evidence shows that elongation under diurnal conditions (as well as in shade) is also subjected to circadian gating. However, the mechanism underlying these phenomena is incompletely understood. Here we show that the PIFs and the core clock component Timing of CAB expression 1 (TOC1) display coincident cobinding to the promoters of predawn-phased, growth-related genes under SD conditions. TOC1 interacts with the PIFs and represses their transcriptional activation activity, antagonizing PIF-induced growth. Given the dynamics of TOC1 abundance (displaying high postdusk levels that progressively decline during the long night), our data suggest that TOC1 functions to provide a direct output from the core clock that transiently constrains the growth-promoting activity of the accumulating PIFs early postdusk, thereby gating growth to predawn, when conditions for cell elongation are optimal. These findings unveil a previously unrecognized mechanism whereby a core circadian clock output signal converges immediately with the phytochrome photosensory pathway to coregulate directly the activity of the PIF transcription factors positioned at the apex of a transcriptional network that regulates a diversity of downstream morphogenic responses.
Collapse
|
62
|
Miyazaki Y, Jikumaru Y, Takase T, Saitoh A, Sugitani A, Kamiya Y, Kiyosue T. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana. PLANT CELL REPORTS 2016; 35:455-467. [PMID: 26601822 DOI: 10.1007/s00299-015-1896-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2). LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.
Collapse
Affiliation(s)
- Yuji Miyazaki
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Yusuke Jikumaru
- Growth Regulation Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomoyuki Takase
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Aya Saitoh
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Asuka Sugitani
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Yuji Kamiya
- Growth Regulation Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohiro Kiyosue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
63
|
Endo M, Araki T, Nagatani A. Tissue-specific regulation of flowering by photoreceptors. Cell Mol Life Sci 2016; 73:829-39. [PMID: 26621669 PMCID: PMC11108494 DOI: 10.1007/s00018-015-2095-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Plants use various kinds of environmental signals to adjust the timing of the transition from the vegetative to reproductive phase (flowering). Since flowering at the appropriate time is crucial for plant reproductive strategy, several kinds of photoreceptors are deployed to sense environmental light conditions. In this review, we will update our current understanding of light signaling pathways in flowering regulation, especially, in which tissue do photoreceptors regulate flowering in response to light quality and photoperiod. Since light signaling is also integrated into other flowering pathways, we also introduce recent progress on how photoreceptors are involved in tissue-specific thermosensation and the gibberellin pathway. Finally, we discuss the importance of cell-type-specific analyses for future plant studies.
Collapse
Affiliation(s)
- Motomu Endo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Akira Nagatani
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
64
|
Chitwood DH, Kumar R, Ranjan A, Pelletier JM, Townsley BT, Ichihashi Y, Martinez CC, Zumstein K, Harada JJ, Maloof JN, Sinha NR. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology. PLANT PHYSIOLOGY 2015; 169:2030-47. [PMID: 26381315 PMCID: PMC4634097 DOI: 10.1104/pp.15.01229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/15/2015] [Indexed: 05/18/2023]
Abstract
Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types.
Collapse
Affiliation(s)
- Daniel H Chitwood
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ravi Kumar
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California, Davis, California 95616
| | - Julie M Pelletier
- Department of Plant Biology, University of California, Davis, California 95616
| | - Brad T Townsley
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ciera C Martinez
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, California 95616
| | - John J Harada
- Department of Plant Biology, University of California, Davis, California 95616
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, California 95616
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
65
|
de Wit M, Ljung K, Fankhauser C. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. THE NEW PHYTOLOGIST 2015; 208:198-209. [PMID: 25963518 DOI: 10.1111/nph.13449] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/03/2015] [Indexed: 05/04/2023]
Abstract
Foliar shade triggers rapid growth of specific structures that facilitate access of the plant to direct sunlight. In leaves of many plant species, this growth response is complex because, although shade triggers the elongation of petioles, it reduces the growth of the lamina. How the same external cue leads to these contrasting growth responses in different parts of the leaf is not understood. Using mutant analysis, pharmacological treatment and gene expression analyses, we investigated the role of PHYTOCHROME INTERACTING FACTOR7 (PIF7) and the growth-promoting hormone auxin in these contrasting leaf growth responses. Both petiole elongation and lamina growth reduction are dependent on PIF7. The induction of auxin production is both necessary and sufficient to induce opposite growth responses in petioles vs lamina. However, these contrasting growth responses are not caused by different auxin concentrations in the two leaf parts. Our work suggests that a transient increase in auxin levels triggers tissue-specific growth responses in different leaf parts. We provide evidence suggesting that this may be caused by the different sensitivity to auxin in the petiole vs the blade and by tissue-specific gene expression.
Collapse
Affiliation(s)
- Mieke de Wit
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
66
|
Mizuno T, Oka H, Yoshimura F, Ishida K, Yamashino T. Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana. Biosci Biotechnol Biochem 2015; 79:1987-94. [PMID: 26193333 DOI: 10.1080/09168451.2015.1065171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Shade avoidance responses are changes in plant architecture to reduce the part of a body that is in the shade in natural habitats. The most common warning signal that induces shade avoidance responses is reduction of red/far-red light ratio perceived by phytochromes. A pair of basic helix-loop-helix transcription factors, named PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and PIF5, is crucially involved in the shade avoidance-induced hypocotyl elongation in Arabidopsis thaliana. It has been recently reported that PIF7 also plays a role in this event. Here, we examined the involvement of these PIFs in end-of-day far-red light (EODFR) responses under light and dark cycle conditions. It was shown that PIF7 played a predominant role in the EODFR-dependent hypocotyl elongation. We propose the mechanism by which PIF7 together with PIF4 and PIF5 coordinately transcribes a set of downstream genes to promote elongation of hypocotyls in response to the EODFR treatment.
Collapse
Affiliation(s)
- Takeshi Mizuno
- a Laboratory of Molecular and Functional Genomics , School of Agriculture, Nagoya University , Nagoya , Japan
| | - Haruka Oka
- a Laboratory of Molecular and Functional Genomics , School of Agriculture, Nagoya University , Nagoya , Japan
| | - Fumi Yoshimura
- a Laboratory of Molecular and Functional Genomics , School of Agriculture, Nagoya University , Nagoya , Japan
| | - Kai Ishida
- a Laboratory of Molecular and Functional Genomics , School of Agriculture, Nagoya University , Nagoya , Japan
| | - Takafumi Yamashino
- a Laboratory of Molecular and Functional Genomics , School of Agriculture, Nagoya University , Nagoya , Japan
| |
Collapse
|
67
|
Nito K, Kajiyama T, Unten-Kobayashi J, Fujii A, Mochizuki N, Kambara H, Nagatani A. Spatial Regulation of the Gene Expression Response to Shade in Arabidopsis Seedlings. PLANT & CELL PHYSIOLOGY 2015; 56:1306-19. [PMID: 25907567 DOI: 10.1093/pcp/pcv057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 05/04/2023]
Abstract
The shade avoidance response, which allows plants to escape from nearby competitors, is triggered by a reduction in the PFR form of phytochrome in response to shade. Classic physiological experiments have demonstrated that the shade signal perceived by the leaves is transmitted to the other parts of the plant. Recently, a simple method was developed to analyze the transcriptome in a single microgram tissue sample. In the present study, we adopted this method to conduct organ-specific transcriptomic analysis of the shade avoidance response in Arabidopsis seedlings. The shoot apical samples, which contained the meristem, basal parts of leaf primordia and short fragments of vasculature, were collected from the topmost part of the hypocotyl and subjected to RNA sequencing analysis. Unexpectedly, many more genes were up-regulated in the shoot apical region than in the cotyledons. Spotlight irradiation demonstrated that the apex-responsive genes were mainly controlled by phytochrome in the cotyledons. In accordance with the involvement of many auxin-responsive genes in this category, auxin biosynthesis was genetically shown to be essential for this response. In contrast, organ-autonomous regulation was more important for the genes that were up-regulated preferentially either in the cotyledons or in both the cotyledons and the apical region. Their responses to shade depended variously on auxin and PIFs (phytochrome-interacting factors), indicating the mechanistic diversity of the organ-autonomous response. Finally, we examined the expression of the auxin synthesis genes, the YUC genes, and found that three YUC genes, which were differently spatially regulated, co-ordinately elevated the auxin level within the shoot apical region.
Collapse
Affiliation(s)
- Kazumasa Nito
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Junko Unten-Kobayashi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Akihiko Fujii
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601 Japan
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideki Kambara
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
68
|
Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:130-7. [PMID: 26037392 DOI: 10.1016/j.pbi.2015.05.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/09/2015] [Accepted: 05/18/2015] [Indexed: 05/20/2023]
Abstract
Plant growth and development must be coordinated with metabolism, notably with the efficiency of photosynthesis and the uptake of nutrients. This coordination requires local connections between hormonal response and metabolic state, as well as long-distance connections between shoot and root tissues. Recently, several molecular mechanisms have been proposed to explain the integration of sugar signalling with hormone pathways. In this work, DELLA and PIF proteins have emerged as hubs in sugar-hormone cross-regulation networks.
Collapse
Affiliation(s)
- Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Umeå, Sweden
| | | | | |
Collapse
|
69
|
Nozue K, Tat AV, Kumar Devisetty U, Robinson M, Mumbach MR, Ichihashi Y, Lekkala S, Maloof JN. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. PLoS Genet 2015; 11:e1004953. [PMID: 25874869 PMCID: PMC4398415 DOI: 10.1371/journal.pgen.1004953] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components.
Collapse
Affiliation(s)
- Kazunari Nozue
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - An V. Tat
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Upendra Kumar Devisetty
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Matthew Robinson
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Maxwell R. Mumbach
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Saradadevi Lekkala
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
70
|
Bours R, Kohlen W, Bouwmeester HJ, van der Krol A. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. PLANT PHYSIOLOGY 2015; 167:517-30. [PMID: 25516603 PMCID: PMC4326743 DOI: 10.1104/pp.114.254425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/11/2014] [Indexed: 05/19/2023]
Abstract
We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.
Collapse
Affiliation(s)
- Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| | - Wouter Kohlen
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| |
Collapse
|
71
|
Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 2015; 11:776. [PMID: 25600997 PMCID: PMC4332151 DOI: 10.15252/msb.20145766] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.
Collapse
Affiliation(s)
- Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert W Smith
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Kelly Stewart
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gavin Steel
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Julia Foreman
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
72
|
Filo J, Wu A, Eliason E, Richardson T, Thines BC, Harmon FG. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5. PLANT SIGNALING & BEHAVIOR 2015; 10:e992707. [PMID: 25738547 PMCID: PMC4622946 DOI: 10.4161/15592324.2014.992707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
The regulatory connections between the circadian clock and hormone signaling are essential to understand, as these two regulatory processes work together to time growth processes relative to predictable environmental events. Gibberellins (GAs) are phytohormones that control many growth processes throughout all stages of the plant life cycle, including germination and flowering. An increasing number of examples demonstrate that the circadian clock directly influences GA biosynthesis and signaling. EARLY FLOWERING 3 (ELF3) participates in a tripartite transcriptional complex known as the Evening Complex (EC). In this capacity, ELF3 is fundamental to core circadian clock activity, as well as time-of-day specific regulation of genes directly responsible for growth control, namely the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 genes. Here we show that the GA biosynthesis inhibitor paclobutrazol substantially reduces the long hypocotyl and petiole phenotypes of Arabidopsis elf3 mutants. In addition, loss of ELF3 activity causes upregulation of the key GA biosynthesis genes GA20ox1 and GA20ox2. Moreover, GA20ox1 and GA20ox2 expression depends strongly on the redundant activities of PIF4 and PIF5. These findings indicate that the defining growth phenotypes of elf3 mutants arise from altered GA biosynthesis due to misregulation of PIF4 and PIF5. These observations agree with recent work linking increased GA production with the elongated growth phenotypes of the barley elf3 mutant. Thus, the role of the EC in regulation of GA biosynthesis and signaling in eudicots is shared with monocots and, therefore, is a highly conserved mechanism for growth control.
Collapse
Key Words
- CO, CONSTANS
- Col-0, Columbia
- EC, Evening Complex
- ELF3, EARLY FLOWERING 3
- ELF4, EARLY FLOWERING 4
- EMS, ethyl methanesulfonate
- FT, FLOWERING LOCUS T
- GA, gibberellin
- GA20ox, gibberellin 20-oxidase
- GA3ox, gibberellin 3-oxidase
- LD, long day
- LUX, LUX ARRHYTHMO
- PAC, paclobutrazol
- PIF - PHYTOCHROME INTERACTING FACTOR
- PIF4
- SD, short day
- WT, wild type
- ZT, Zeitgeiber Time.
- circadian clock
- early flowering 3
- gibberellin
- phytochrome interacting factor
- phytohormone
- plant growth
- qPCR, quantitative RT-PCR
Collapse
Affiliation(s)
- Julie Filo
- Keck Science Department; Pitzer College; Claremont, CA USA
| | - Austin Wu
- Keck Science Department; Claremont McKenna College; Claremont, CA USA
| | - Erica Eliason
- Keck Science Department; Pitzer College; Claremont, CA USA
| | - Timothy Richardson
- Plant Gene Expression Center; USDA-ARS; Albany, CA USA
- Department of Plant and Microbial Biology; University of California; Berkeley, CA USA
| | - Bryan C Thines
- Plant Gene Expression Center; USDA-ARS; Albany, CA USA
- Department of Plant and Microbial Biology; University of California; Berkeley, CA USA
- Claremont McKenna; Pitzer; and Scripps Colleges; Claremont, CA USA
| | - Frank G Harmon
- Plant Gene Expression Center; USDA-ARS; Albany, CA USA
- Department of Plant and Microbial Biology; University of California; Berkeley, CA USA
- Correspondence to: Frank G Harmon;
| |
Collapse
|
73
|
Wu L, Zhang D, Xue M, Qian J, He Y, Wang S. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1053-63. [PMID: 24854713 DOI: 10.1111/jipb.12220] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 05/03/2023]
Abstract
It has long been thought that growth-regulating factors (GRFs) gene family members act as transcriptional activators to play important roles in multiple plant developmental processes. However, the recent characterization of Arabidopsis GRF7 showed that it functions as a transcriptional repressor of osmotic stress-responsive genes. This highlights the complex and diverse mechanisms by which different GRF members use to take action. In this study, the maize (Zea mays L.) GRF10 was functionally characterized to improve this concept. The deduced ZmGRF10 protein retains the N-terminal QLQ and WRC domains, the characteristic regions as protein-interacting and DNA-binding domains, respectively. However, it lacks nearly the entire C-terminal domain, the regions executing transactivation activity. Consistently, ZmGRF10 protein maintains the ability to interact with GRF-interacting factors (GIFs) proteins, but lacks transactivation activity. Overexpression of ZmGRF10 in maize led to a reduction in leaf size and plant height through decreasing cell proliferation, whereas the yield-related traits were not affected. Transcriptome analysis revealed that multiple biological pathways were affected by ZmGRF10 overexpression, including a few transcriptional regulatory genes, which have been demonstrated to have important roles in controlling plant growth and development. We propose that ZmGRF10 aids in fine-tuning the homeostasis of the GRF-GIF complex in the regulation of cell proliferation.
Collapse
Affiliation(s)
- Lei Wu
- National Maize Improvement Center of China, Key Laboratory of Maize Biology and Genetic Breeding of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
74
|
Matsoukas IG. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet 2014; 5:218. [PMID: 25165468 PMCID: PMC4131243 DOI: 10.3389/fgene.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- Institute for Renewable Energy and Environmental Technologies, University of Bolton Bolton, UK ; Systems and Synthetic Biology, Institute for Materials Research and Innovation, University of Bolton Bolton, UK
| |
Collapse
|
75
|
UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc Natl Acad Sci U S A 2014; 111:11894-9. [PMID: 25071218 DOI: 10.1073/pnas.1403052111] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants detect different facets of their radiation environment via specific photoreceptors to modulate growth and development. UV-B is perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). The molecular mechanisms linking UVR8 activation to plant growth are not fully understood, however. When grown in close proximity to neighboring vegetation, shade-intolerant plants initiate dramatic stem elongation to overtop competitors. Here we show that UV-B, detected by UVR8, provides an unambiguous sunlight signal that inhibits shade avoidance responses in Arabidopsis thaliana by antagonizing the phytohormones auxin and gibberellin. UV-B triggers degradation of the transcription factors PHYTOCHROME INTERACTING FACTOR 4 and PHYTOCHROME INTERACTING FACTOR 5 and stabilizes growth-repressing DELLA proteins, inhibiting auxin biosynthesis via a dual mechanism. Our findings show that UVR8 signaling is closely integrated with other photoreceptor pathways to regulate auxin signaling and plant growth in sunlight.
Collapse
|
76
|
Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ. Interaction of light and temperature signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2859-71. [PMID: 24569036 DOI: 10.1093/jxb/eru059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light and temperature are arguably two of the most important signals regulating the growth and development of plants. In addition to their direct energetic effects on plant growth, light and temperature provide vital immediate and predictive cues for plants to ensure optimal development both spatially and temporally. While the majority of research to date has focused on the contribution of either light or temperature signals in isolation, it is becoming apparent that an understanding of how the two interact is essential to appreciate fully the complex and elegant ways in which plants utilize these environmental cues. This review will outline the diverse mechanisms by which light and temperature signals are integrated and will consider why such interconnected systems (as opposed to entirely separate light and temperature pathways) may be evolutionarily favourable.
Collapse
Affiliation(s)
- Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Gabriela Toledo-Ortiz
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Douglas E Pyott
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Karen J Halliday
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| |
Collapse
|
77
|
Soy J, Leivar P, Monte E. PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2925-36. [PMID: 24420574 PMCID: PMC4056538 DOI: 10.1093/jxb/ert465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seedlings growing under diurnal conditions display maximal growth at the end of the night in short-day (SD) photoperiods. Current evidence indicates that this behaviour involves the action of PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) together with PIF4 and PIF5, through direct regulation of growth-related genes at dawn coinciding with a PIF3 accumulation peak generated by phytochrome-imposed oscillations in protein abundance. Here, to assess how alterations in PIF3 levels impact seedling growth, the night-specific accumulation of PIF3 was modulated by releasing SD-grown seedlings into continuous light, or by exposing them to a phytochrome-inactivating end-of-day far-red pulse (EOD-FRp). The data show a strong direct correlation between PIF3 accumulation, PIF3-regulated induction of growth-related genes, and hypocotyl elongation, and suggest that growth promotion in SD conditions involves factors other than PIF3, PIF4, and PIF5. Using a pif1 mutant, evidence is provided that PIF1 also contributes to inducing hypocotyl elongation during the dark period under diurnal conditions. PIF1 displayed constitutive transcript levels in SD conditions, suggesting that phytochrome-imposed oscillations in PIF1 protein abundance determine its accumulation and action during the night, similar to PIF3 and in contrast to PIF4 and PIF5, which oscillate diurnally due to a combination of circadian clock-regulated transcription and light control of protein accumulation. Furthermore, using single and higher order pif mutants, the relative contribution of each member of the PIF quartet to the regulation of morphogenesis and the expression of selected growth marker genes under SD conditions, or under SD conditions supplemented with an EOD-FRp, is defined. Collectively, the data indicate that PIF1, PIF3, PIF4, and PIF5 act together to promote and optimize growth under photoperiodic conditions.
Collapse
Affiliation(s)
- Judit Soy
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pablo Leivar
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Elena Monte
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
78
|
de Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. THE NEW PHYTOLOGIST 2014; 202:1126-1141. [PMID: 24571056 DOI: 10.1111/nph.12725] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
Light and temperature, in coordination with the endogenous clock and the hormones gibberellin (GA) and brassinosteroids (BRs), modulate plant growth and development by affecting the expression of multiple cell wall- and auxin-related genes. PHYTOCHROME INTERACTING FACTORS (PIFs) play a central role in the activation of these genes, the activity of these factors being regulated by the circadian clock and phytochrome-mediated protein destabilization. GA signaling is also integrated at the level of PIFs; the DELLA repressors are found to bind these factors and impair their DNA-binding ability. The recent finding that PIFs are co-activated by BES1 and BZR1 highlights a further role of these regulators in BR signal integration, and reveals that PIFs act in a concerted manner with the BR-related BES1/BZR1 factors to activate auxin synthesis and transport at the gene expression level, and synergistically activate several genes with a role in cell expansion. Auxins feed back into this growth regulatory module by inducing GA biosynthesis and BES1/BZR1 gene expression, in addition to directly regulating several of these growth pathway gene targets. An exciting challenge in the future will be to understand how this growth program is dynamically regulated in time and space to orchestrate differential organ expansion and to provide plants with adaptation flexibility.
Collapse
Affiliation(s)
- Miguel de Lucas
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
79
|
Bou-Torrent J, Galstyan A, Gallemí M, Cifuentes-Esquivel N, Molina-Contreras MJ, Salla-Martret M, Jikumaru Y, Yamaguchi S, Kamiya Y, Martínez-García JF. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2937-47. [PMID: 24609653 PMCID: PMC4056540 DOI: 10.1093/jxb/eru083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation. Here, we describe how plant proximity perception rapidly and temporally alters the levels of not only auxins but also active brassinosteroids and gibberellins. At the same time, shade alters the seedling sensitivity to hormones. Plant proximity perception also involves dramatic changes in gene expression that rapidly result in a new balance between positive and negative factors in a network of interacting basic helix-loop-helix proteins, such as HFR1, PAR1, and BIM and BEE factors. Here, it was shown that several of these factors act as auxin- and BR-responsiveness modulators, which ultimately control the intensity or degree of hypocotyl elongation. It was deduced that, as a consequence of the plant proximity-dependent new, dynamic, and local balance between hormone synthesis and sensitivity (mechanistically resulting from a restructured network of SAS regulators), SAS responses are unleashed and hypocotyls elongate.
Collapse
Affiliation(s)
- Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Anahit Galstyan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Marçal Gallemí
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Nicolás Cifuentes-Esquivel
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | | | - Mercè Salla-Martret
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010-Barcelona, Spain
| |
Collapse
|
80
|
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 2014. [PMID: 24867218 DOI: 10.7554/elife.03031.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
81
|
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 2014; 3. [PMID: 24867218 PMCID: PMC4075450 DOI: 10.7554/elife.03031] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/25/2014] [Indexed: 12/30/2022] Open
Abstract
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl. DOI:http://dx.doi.org/10.7554/eLife.03031.001 Plants can grow by making more cells or by increasing the size of these existing cells. Plant growth is carefully controlled, but it must be able to respond to changes in the plant's environment. Many different plant hormones and various signals from the environment—such as light and temperature—influence how and when a plant grows. The different signals that affect cell growth typically act via distinct pathways that change which genes are switched on or off inside the cells. However, the ways in which these different signals are coordinated by plants are not fully understood. Now, Oh et al. have looked at the genes that are switched on and off in response to all the major signals that regulate the growth of the first stem to emerge from the seed of Arabidopsis, a small flowering plant that is widely studied by plant biologists. Oh et al. found that the proteins that change gene expression in response to hormones or the environment bind to each other. These proteins, which are collectively called transcription factors, were also revealed to cooperate to regulate the expression of hundreds of genes: transcription factors have not been seen to behave in this way in plants before. By discovering a central mechanism that coordinates the different signals that control plant growth, these findings may guide future efforts to boost the yields of food crops and plants that are grown to make biofuels. DOI:http://dx.doi.org/10.7554/eLife.03031.002
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
82
|
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 2014; 3. [PMID: 24867218 DOI: 10.7554/elife.03031.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/25/2014] [Indexed: 05/21/2023] Open
Abstract
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
83
|
de Wit M, Lorrain S, Fankhauser C. Auxin-mediated plant architectural changes in response to shade and high temperature. PHYSIOLOGIA PLANTARUM 2014; 151:13-24. [PMID: 24011166 DOI: 10.1111/ppl.12099] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/15/2013] [Indexed: 05/24/2023]
Abstract
The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature.
Collapse
Affiliation(s)
- Mieke de Wit
- Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
| | | | | |
Collapse
|
84
|
Zhou J, Liu Q, Zhang F, Wang Y, Zhang S, Cheng H, Yan L, Li L, Chen F, Xie X. Overexpression of OsPIL15, a phytochrome-interacting factor-like protein gene, represses etiolated seedling growth in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:373-87. [PMID: 24279300 DOI: 10.1111/jipb.12137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/17/2013] [Indexed: 05/22/2023]
Abstract
Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germination to vegetational architecture in Arabidopsis. However, information regarding the functions of the PIF family in monocots has not been widely reported. Here, we investigate the roles of OsPIL15, a member of the rice (Oryza sativa L. cv. Nipponbare) PIF family, in regulating seedling growth. OsPIL15 encodes a basic helix-loop-helix factor localized in the nucleus. OsPIL15-OX seedlings exhibit an exaggerated shorter aboveground part and undeveloped root system relative to wild-type seedlings, suggesting that OsPIL15 represses seedling growth in the dark. Microarray analysis combined with gene ontology analysis revealed that OsPIL15 represses a set of genes involved in auxin pathways and cell wall organization or biogenesis. Given the important roles of the auxin pathway and cell wall properties in controlling plant growth, we speculate that OsPIL15 represses seedling growth likely by regulating the auxin pathway and suppressing cell wall organization in etiolated rice seedlings. Additionally, exposure to red light or far-red light relieved growth retardation and promoted seedling elongation in the OsPIL15-OX lines, despite higher levels of OsPIL15 transcripts under red light and far-red light than in the dark. These results suggest that light regulation of OsPIL15 expression is probably involved in photomorphogenesis in rice.
Collapse
Affiliation(s)
- Jinjun Zhou
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hsu PY, Harmer SL. Wheels within wheels: the plant circadian system. TRENDS IN PLANT SCIENCE 2014; 19:240-9. [PMID: 24373845 PMCID: PMC3976767 DOI: 10.1016/j.tplants.2013.11.007] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 05/18/2023]
Abstract
Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.
Collapse
Affiliation(s)
- Polly Yingshan Hsu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
86
|
Leivar P, Monte E. PIFs: systems integrators in plant development. THE PLANT CELL 2014; 26:56-78. [PMID: 24481072 PMCID: PMC3963594 DOI: 10.1105/tpc.113.120857] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 05/17/2023]
Abstract
Phytochrome-interacting factors (PIFs) are members of the Arabidopsis thaliana basic helix-loop-helix family of transcriptional regulators that interact specifically with the active Pfr conformer of phytochrome (phy) photoreceptors. PIFs are central regulators of photomorphogenic development that act to promote stem growth, and this activity is reversed upon interaction with phy in response to light. Recently, significant progress has been made in defining the transcriptional networks directly regulated by PIFs, as well as the convergence of other signaling pathways on the PIFs to modulate growth. Here, we summarize and highlight these findings in the context of PIFs acting as integrators of light and other signals. We discuss progress in our understanding of the transcriptional and posttranslational regulation of PIFs that illustrates the integration of light with hormonal pathways and the circadian clock, and we review seedling hypocotyl growth as a paradigm of PIFs acting at the interface of these signals. Based on these advances, PIFs are emerging as required factors for growth, acting as central components of a regulatory node that integrates multiple internal and external signals to optimize plant development.
Collapse
|
87
|
Transcription of ST2A encoding a sulfotransferase family protein that is involved in jasmonic acid metabolism is controlled according to the circadian clock- and PIF4/PIF5-mediated external coincidence mechanism in Arabidopsis thaliana. Biosci Biotechnol Biochem 2013; 77:2454-60. [PMID: 24317064 DOI: 10.1271/bbb.130559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant elongation growth on a day-to-day basis is enhanced under specific photoperiod and temperature conditions. Circadian clock is involved in the temperature adaptive photoperiodic control of plant architecture, including hypocotyl elongation in Arabidopsis thaliana. In this regulation, phytochrome interacting transcriptional factors, PIF4 and PIF5, are activated at the end of night under short photoperiod or high temperature conditions, due to the coincidence between internal (circadian rhythm of the transcripts) and external (length of dark period) time cues. It is previously found that biosynthesis or metabolism of phytohormones including auxin, and their signal transduction-related genes are downstream targets of circadian clock and PIF4/PIF5 mediated external coincidence mechanism. Brassinosteroid and gibberellic acid played a positive role in the hypocotyl elongation of seedlings under light and dark cycle conditions. On the other hand, cytokinin and jasmonic acid played an opposite role. In this study, diurnal expression profile of a gene encoding a sulfotransferase family protein that is involved in the jasmonic acid metabolism, ST2A, was examined. It was found that transcription of ST2A is induced at the end of night under LD/22 °C and SD/28 °C conditions according to the external coincidence mechanism. The results of this study support the idea that the circadian clock orchestrates a variety of hormone-signaling pathways to regulate the photoperiod and temperature-dependent morphogenesis in A. thaliana.
Collapse
|
88
|
Effendi Y, Jones AM, Scherer GFE. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5065-74. [PMID: 24052532 PMCID: PMC3830486 DOI: 10.1093/jxb/ert294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R:FR light-enriched white light (WL) condition more strongly than in the high red:FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R- and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5-15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Alan M. Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Günther F. E. Scherer
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
89
|
Liu T, Carlsson J, Takeuchi T, Newton L, Farré EM. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:101-14. [PMID: 23808423 DOI: 10.1111/tpj.12276] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 05/08/2023]
Abstract
Up to 30% of the plant transcriptome is circadian clock-regulated in different species; however, we still lack a good understanding of the mechanisms involved in these genome-wide oscillations in gene expression. Here, we show that PSEUDO-RESPONSE REGULATOR 7 (PRR7), a central component of the Arabidopsis clock, is directly involved in the repression of master regulators of plant growth, light signaling and stress responses. The expression levels of most PRR7 target genes peak around dawn, in an antiphasic manner to PRR7 protein levels, and were repressed by PRR7. These findings indicate that PRR7 is important for cyclic gene expression by repressing the transcription of morning-expressed genes. In particular we found an enrichment of the genes involved in abiotic stress responses, and in accordance we observed that PRR7 is involved in the oxidative stress response and the regulation of stomata conductance.
Collapse
Affiliation(s)
- Tiffany Liu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | | | |
Collapse
|
90
|
Kwon Y, Kim JH, Nguyen HN, Jikumaru Y, Kamiya Y, Hong SW, Lee H. A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3911-22. [PMID: 23888064 PMCID: PMC3745742 DOI: 10.1093/jxb/ert223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Critical responses to developmental or environmental stimuli are mediated by different transcription factors, including members of the ERF, bZIP, MYB, MYC, and WRKY families. Of these, MYB genes play roles in many developmental processes. The overexpression of one MYB gene, MYBH, significantly increased hypocotyl elongation in Arabidopsis thaliana plants grown in the light, and the expression of this gene increased markedly in the dark. The MYBH protein contains a conserved motif, R/KLFGV, which was implicated in transcriptional repression. Interestingly, the gibberellin biosynthesis inhibitor paclobutrazol blocked the increase in hypocotyl elongation in seedlings that overexpressed MYBH. Moreover, the function of MYBH was dependent on phytochrome-interacting factor (PIF) proteins. Taken together, these results suggest that hypocotyl elongation is regulated by a delicate and efficient mechanism in which MYBH expression is triggered by challenging environmental conditions such as darkness, leading to an increase in PIF accumulation and subsequent enhanced auxin biosynthesis. These results indicate that MYBH is one of the molecular components that regulate hypocotyl elongation in response to darkness.
Collapse
Affiliation(s)
- Yerim Kwon
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ka Anam-dong, Seongbuk-ku, Seoul 136-713, Republic of Korea
- *These authors contributed equally to this work
| | - Jun Hyeok Kim
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ka Anam-dong, Seongbuk-ku, Seoul 136-713, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
- *These authors contributed equally to this work
| | - Hoai Nguyen Nguyen
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ka Anam-dong, Seongbuk-ku, Seoul 136-713, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Hojoung Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, 1, 5-ka Anam-dong, Seongbuk-ku, Seoul 136-713, Republic of Korea
- To whom correspondence should be addressed.
| |
Collapse
|
91
|
Sun J, Qi L, Li Y, Zhai Q, Li C. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. THE PLANT CELL 2013; 25:2102-14. [PMID: 23757399 PMCID: PMC3723615 DOI: 10.1105/tpc.113.112417] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/13/2013] [Accepted: 05/27/2013] [Indexed: 05/19/2023]
Abstract
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that phytochrome interacting factoR4 (PIF4) and PIF5 act downstream of the BL sensor phototropin1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the auxin/indole-3-acetic acid (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with auxin response factor7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.
Collapse
|
92
|
Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:e23390. [PMID: 23299336 PMCID: PMC3676505 DOI: 10.4161/psb.23390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.
Collapse
Affiliation(s)
- Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics; School of Agriculture; Nagoya University; Nagoya, Japan
- Correspondence to: Takafumi Yamashino,
| | - Yuji Nomoto
- Laboratory of Molecular and Functional Genomics; School of Agriculture; Nagoya University; Nagoya, Japan
| | - Séverine Lorrain
- Center for Integrative Genomics; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Miki Miyachi
- Laboratory of Molecular and Functional Genomics; School of Agriculture; Nagoya University; Nagoya, Japan
| | - Shogo Ito
- Laboratory of Molecular and Functional Genomics; School of Agriculture; Nagoya University; Nagoya, Japan
| | - Norihito Nakamichi
- Laboratory of Molecular and Functional Genomics; School of Agriculture; Nagoya University; Nagoya, Japan
| | - Christian Fankhauser
- Center for Integrative Genomics; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Takeshi Mizuno
- Laboratory of Molecular and Functional Genomics; School of Agriculture; Nagoya University; Nagoya, Japan
| |
Collapse
|
93
|
McClung CR. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 2013; 24:430-6. [PMID: 23466287 DOI: 10.1016/j.semcdb.2013.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, Hanover, NH 03755, USA.
| |
Collapse
|
94
|
Chow BY, Kay SA. Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol 2013; 24:383-92. [PMID: 23435351 DOI: 10.1016/j.semcdb.2013.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022]
Abstract
The circadian clock is an endogenous timer that anticipates and synchronizes biological processes to the environment. Traditional genetic approaches identified the underlying principles and genetic components, but new discoveries have been greatly impeded by the embedded redundancies that confer necessary robustness to the clock architecture. To overcome this, global (omic) techniques have provided a new depth of information about the Arabidopsis clock. Our understanding of the factors, regulation, and mechanistic connectivity between clock genes and with output processes has substantially broadened through genomic (cDNA libraries, yeast one-hybrid, protein binding microarrays, and ChIP-seq), transcriptomic (microarrays, RNA-seq), proteomic (mass spectrometry and chemical libraries), and metabolomic (mass spectrometry) approaches. This evolution in research will undoubtedly enhance our understanding of how the circadian clock optimizes growth and fitness.
Collapse
Affiliation(s)
- Brenda Y Chow
- Section of Cell and Developmental Biology and Center for Chronobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | | |
Collapse
|
95
|
Hong S, Kim SA, Guerinot ML, McClung CR. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:893-903. [PMID: 23250624 PMCID: PMC3561027 DOI: 10.1104/pp.112.208603] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
In plants, iron (Fe) uptake and homeostasis are critical for survival, and these processes are tightly regulated at the transcriptional and posttranscriptional levels. Circadian clocks are endogenous oscillating mechanisms that allow an organism to anticipate environmental changes to coordinate biological processes both with one another and with the environmental day/night cycle. The plant circadian clock controls many physiological processes through rhythmic expression of transcripts. In this study, we examined the expression of three Fe homeostasis genes (IRON REGULATED TRANSPORTER1 [IRT1], BASIC HELIX LOOP HELIX39, and FERRITIN1) in Arabidopsis (Arabidopsis thaliana) using promoter:LUCIFERASE transgenic lines. Each of these promoters showed circadian regulation of transcription. The circadian clock monitors a number of clock outputs and uses these outputs as inputs to modulate clock function. We show that this is also true for Fe status. Fe deficiency results in a lengthened circadian period. We interrogated mutants impaired in the Fe homeostasis response, including irt1-1, which lacks the major high-affinity Fe transporter, and fit-2, which lacks Fe deficiency-induced TRANSCRIPTION FACTOR1, a basic helix-loop-helix transcription factor necessary for induction of the Fe deficiency response. Both mutants exhibit symptoms of Fe deficiency, including lengthened circadian period. To determine which components are involved in this cross talk between the circadian and Fe homeostasis networks, we tested clock- or Fe homeostasis-related mutants. Mutants defective in specific clock gene components were resistant to the change in period length under different Fe conditions observed in the wild type, suggesting that these mutants are impaired in cross talk between Fe homeostasis and the circadian clock.
Collapse
|
96
|
Proveniers MCG, van Zanten M. High temperature acclimation through PIF4 signaling. TRENDS IN PLANT SCIENCE 2013; 18:59-64. [PMID: 23040086 DOI: 10.1016/j.tplants.2012.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 09/05/2012] [Indexed: 05/03/2023]
Abstract
Ambient temperature has direct consequences for plant functioning. Many plant species are able to adjust reproductive timing and development to optimize fitness to changes in ambient temperatures. Understanding the molecular networks of how plants cope with high temperatures is essential to counteract the effects of global warming and to secure future crop productivity. Several recent papers reported that Arabidopsis thaliana responses to changing light conditions and high temperature, and their underlying signaling mechanisms are highly similar and involve the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4). In this opinion article we discuss the mechanisms of PIF4-mediated acclimation to increased ambient temperature with focus on timing of flowering and morphological acclimation.
Collapse
Affiliation(s)
- Marcel C G Proveniers
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
97
|
Abstract
Plant growth is tightly controlled through the integration of environmental cues with the physiological status of the seedling. A recent study now proposes a model explaining how the plant hormone ethylene triggers opposite growth responses depending on the light environment.
Collapse
Affiliation(s)
- Séverine Lorrain
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
98
|
Wang Y, Folta KM. Contributions of green light to plant growth and development. AMERICAN JOURNAL OF BOTANY 2013; 100:70-8. [PMID: 23281393 DOI: 10.3732/ajb.1200354] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Light passing through or reflected from adjacent foliage provides a developing plant with information that is used to guide specific genetic and physiological processes. Changes in gene expression underlie adaptation to, or avoidance of, the light-compromised environment. These changes have been well described and are mostly attributed to a decrease in the red light to far-red light ratio and/or a reduction in blue light fluence rate. In most cases, these changes rely on the integration of red/far-red/blue light signals, leading to changes in phytohormone levels. Studies over the last decade have described distinct responses to green light and/or a shift of the blue-green, or red-green ratio. Responses to green light are typically low-light responses, suggesting that they may contribute to the adaptation to growth under foliage or within close proximity to other plants. This review summarizes the growth responses in artificially manipulated light environments with an emphasis on the roles of green wavebands. The information may be extended to understanding the influence of green light in shade avoidance responses as well as other plant developmental and physiological processes.
Collapse
Affiliation(s)
- Yihai Wang
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 USA
| | | |
Collapse
|
99
|
Moghaddam MRB, den Ende WV. Sugars, the clock and transition to flowering. FRONTIERS IN PLANT SCIENCE 2013; 4:22. [PMID: 23420760 PMCID: PMC3572515 DOI: 10.3389/fpls.2013.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
Sugars do not only act as source of energy, but they also act as signals in plants. This mini review summarizes the emerging links between sucrose-mediated signaling and the cellular networks involved in flowering time control and defense. Cross-talks with gibberellin and jasmonate signaling pathways are highlighted. The circadian clock fulfills a crucial role at the heart of cellular networks and the bilateral relation between sugar signaling and the clock is discussed. It is proposed that important factors controlling plant growth (DELLAs, PHYTOCHROME INTERACTING FACTORS, invertases, and trehalose-6-phosphate) might fulfill central roles in the transition to flowering as well. The emerging concept of "sweet immunity," modulated by the clock, might at least partly rely on a sucrose-specific signaling pathway that needs further exploration.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- *Correspondence: Wim Van den Ende, Laboratory of Molecular Plant Biology, The Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium. e-mail:
| |
Collapse
|
100
|
Lilley JLS, Gee CW, Sairanen I, Ljung K, Nemhauser JL. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. PLANT PHYSIOLOGY 2012; 160:2261-70. [PMID: 23073695 PMCID: PMC3510146 DOI: 10.1104/pp.112.205575] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/10/2012] [Indexed: 05/18/2023]
Abstract
The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing pathway via the PHYTOCHROME-INTERACTING FACTOR (PIF) family of transcription factors, as plants grown in elevated carbon dioxide showed the same PIF-dependent growth promotion. Overexpression of PIF5 was sufficient to suppress photosynthetic rate, enhance response to elevated carbon dioxide, and prolong seedling survival in nitrogen-limiting conditions. Thus, PIF transcription factors integrate growth with metabolic demands and thereby facilitate functional equilibrium during photomorphogenesis.
Collapse
Affiliation(s)
| | | | - Ilkka Sairanen
- Department of Biology, University of Washington, Seattle, Washington 98195 (J.L.S.L., C.W.G., J.L.N.); Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (I.S., K.L.)
| | - Karin Ljung
- Department of Biology, University of Washington, Seattle, Washington 98195 (J.L.S.L., C.W.G., J.L.N.); Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (I.S., K.L.)
| | - Jennifer L. Nemhauser
- Department of Biology, University of Washington, Seattle, Washington 98195 (J.L.S.L., C.W.G., J.L.N.); Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (I.S., K.L.)
| |
Collapse
|