51
|
Zhang W, Shi H, Zhou Y, Liang X, Luo X, Xiao C, Li Y, Xu P, Wang J, Gong W, Zou Q, Tao L, Kang Z, Tang R, Li Z, Yang J, Fu S. Rapid and Synchronous Breeding of Cytoplasmic Male Sterile and Maintainer Line Through Mitochondrial DNA Rearrangement Using Doubled Haploid Inducer in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:871006. [PMID: 35557722 PMCID: PMC9087798 DOI: 10.3389/fpls.2022.871006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
When homozygously fertile plants were induced using doubled haploid (DH) induction lines Y3380 and Y3560, the morphology of the induced F1 generation was basically consistent with the female parent, but the fertility was separated, showing characteristics similar to cytoplasmic male sterile (CMS) and maintainer lines. In this study, the morphology, fertility, ploidy, and cytoplasm genotype of the induced progeny were identified, and the results showed that the sterile progeny was polima cytoplasm sterile (pol CMS) and the fertile progeny was nap cytoplasm. The molecular marker and test-cross experimental results showed that the fertile progeny did not carry the restorer gene of pol CMS and the genetic distance between the female parent and the offspring was 0.002. This suggested that those inductions which produced sterile and fertile progeny were coordinated to CMS and maintainer lines. Through the co-linearity analysis of the mitochondrial DNA (mtDNA), it was found that the rearrangement of mtDNA by DH induction was the key factor that caused the transformation of fertility (nap) into sterility (pol). Also, when heterozygous females were induced with DH induction lines, the induction F2 generation also showed the segregation of fertile and sterile lines, and the genetic distance between sterile and fertile lines was approximately 0.075. Therefore, the induction line can induce different types of female parents, and the breeding of the sterile line and the maintainer line can be achieved through the rapid synchronization of sister crosses and self-crosses. The induction of DH inducer in B. napus can provide a new model for the innovation of germplasm resources and open up a new way for its application.
Collapse
Affiliation(s)
- Wei Zhang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Ying Zhou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuan Luo
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yun Li
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jisheng Wang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Wanzhuo Gong
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Qiong Zou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Lanrong Tao
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zeming Kang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Rong Tang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zhuang Li
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Jin Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Shaohong Fu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| |
Collapse
|
52
|
Kang X, Wei H. Breeding polyploid Populus: progress and perspective. FORESTRY RESEARCH 2022; 2:4. [PMID: 39525419 PMCID: PMC11524227 DOI: 10.48130/fr-2022-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2024]
Abstract
Populus is a genus of 25-30 species of deciduous flowering plants in the family Salicaceae, which are primarily planted in short-rotation planations for producing timber, pulpwood, wooden products as well as bioenergy feedstock; they are also widely planted in agricultural fields and along roadsides as shelter forest belts for windbreak, decoration, and reduction of pollutants and noise. Moreover, their fast-growth and good adaptation to marginal lands enable them to provide some critical ecosystem services at various phytoremediation sites for land restoration and reclaimation. Thanks to their important roles, breeding for fast growing poplar trees has been one of the most important objectives for nearly a century. One of the most demonstrated, documented achievements in this aspect is polyploid breeding, especially triploid breeding. This paper critically reviews the various techniques used in inducing triploid plants, including natural 2n formation, artificial induction of 2n male and female gemmates through chemical or physical treatments, trait characterization of the triploid and tetraploid breeding populations, unveiling the molecular mechanisms underpinning the significantly improved traits, and identification and selection of the best triploid progenies. This review also recapitulated the challenges and strategies facing the future of triploid breeding in Populus, including amelioration of 2n gamete induction techniques and efficiency, selection of the best parents and identification of the best progrenies, utilization of the huge amount of genomic, transcriptomic, proteomic, metabolomic, and other omics data for selecting parents for improving target traits.
Collapse
Affiliation(s)
- Xiangyang Kang
- Beijing Forestry Molecular Design and Breeding Advanced Innovation Center, National Engineering Laboratory of Forestry Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education Beijing 100083, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
53
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
54
|
He F, Wang W, Rutter WB, Jordan KW, Ren J, Taagen E, DeWitt N, Sehgal D, Sukumaran S, Dreisigacker S, Reynolds M, Halder J, Sehgal SK, Liu S, Chen J, Fritz A, Cook J, Brown-Guedira G, Pumphrey M, Carter A, Sorrells M, Dubcovsky J, Hayden MJ, Akhunova A, Morrell PL, Szabo L, Rouse M, Akhunov E. Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat Commun 2022; 13:826. [PMID: 35149708 PMCID: PMC8837796 DOI: 10.1038/s41467-022-28453-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.
Collapse
Affiliation(s)
- Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA
| | - William B Rutter
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC, USA
| | - Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Ellie Taagen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Noah DeWitt
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jason Cook
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Gina Brown-Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Mike Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Mark Sorrells
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Matthew J Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Les Szabo
- USDA-ARS Cereal Disease Lab, St. Paul, MN, USA
| | | | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA. .,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
55
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
56
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
57
|
Xiao L, Lu L, Zeng W, Shang X, Cao S, Yan H. DNA Methylome and LncRNAome Analysis Provide Insights Into Mechanisms of Genome-Dosage Effects in Autotetraploid Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:915056. [PMID: 35860527 PMCID: PMC9289687 DOI: 10.3389/fpls.2022.915056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 05/16/2023]
Abstract
Whole genome duplication (WGD) increases the dosage of all coding and non-coding genes, yet the molecular implications of genome-dosage effects remain elusive. In this study, we generated integrated maps of the methylomes and lncRNAomes for diploid and artificially generated autotetraploid cassava (Manihot esculenta Crantz). We found that transposable elements (TEs) suppressed adjacent protein coding gene (PCG)-expression levels, while TEs activated the expression of nearby long non-coding RNAs (lncRNAs) in the cassava genome. The hypermethylation of DNA transposons in mCG and mCHH sites may be an effective way to suppress the expression of nearby PCGs in autotetraploid cassava, resulting in similar expression levels for most of PCGs between autotetraploid and diploid cassava. In the autotetraploid, decreased methylation levels of retrotransposons at mCHG and mCHH sites contributed to reduced methylation of Gypsy-neighboring long intergenic non-coding RNAs, potentially preserving diploid-like expression patterns in the major of lncRNAs. Collectively, our study highlighted that WGD-induced DNA methylation variation in DNA transposons and retrotransposons may be as direct adaptive responses to dosage of all coding-genes and lncRNAs, respectively.
Collapse
Affiliation(s)
- Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Huabing Yan,
| |
Collapse
|
58
|
Huang Y, Liu Y, Liu C, Birchler JA, Han F. Prospects and challenges of epigenomics in crop improvement. Genes Genomics 2021; 44:251-257. [PMID: 34837632 DOI: 10.1007/s13258-021-01187-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome from these multiomics measures allows investigations of cis-regulatory elements on a genome-scale. Mapping of chromatin state, chromatin accessibility dynamics, and higher-order chromatin structure enables a new level of understanding of cell fate determination, identity and function in normal growth and development, disease resistance, and yield. OBJECTIVE In this paper, the recent advances in epigenomics research of rice, maize, and wheat are reviewed, and the development trends of epigenomics of major crops in the coming years are projected. METHODS We highlight the role of epigenomics in regulating growth and development and identifying potential distal cis-regulatory elements in three major crops, and discuss the prospects and challenges for new epigenetics-mediated breeding technologies in crop improvement. CONCLUSION In this review, we summarize and analyze recent epigenomic advances in three major crops epigenomics and discuss possibilities and challenges for future research in the field.
Collapse
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
59
|
Hu M, Li M, Wang J. Comprehensive Analysis of the SUV Gene Family in Allopolyploid Brassica napus and Its Diploid Ancestors. Genes (Basel) 2021; 12:genes12121848. [PMID: 34946800 PMCID: PMC8701781 DOI: 10.3390/genes12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
SUV (the Suppressor of variegation [Su(var)] homologs and related) gene family is a subgroup of the SET gene family. According to the SRA domain and WIYLD domain distributions, it can be divided into two categories, namely SUVH (the Suppressor of variegation [Su(var)] homologs) and SUVR (the Suppressor of variegation [Su(var)] related). In this study, 139 SUV genes were identified in allopolyploid Brassica napus and its diploid ancestors, and their evolutionary relationships, protein properties, gene structures, motif distributions, transposable elements, cis-acting elements and gene expression patterns were analyzed. Our results showed that the SUV gene family of B. napus was amplified during allopolyploidization, in which the segmental duplication and TRD played critical roles. After the separation of Brassica and Arabidopsis lineages, orthologous gene analysis showed that many SUV genes were lost during the evolutionary process in B. rapa, B. oleracea and B. napus. The analysis of the gene and protein structures and expression patterns of 30 orthologous gene pairs which may have evolutionary relationships showed that most of them were conserved in gene structures and protein motifs, but only four gene pairs had the same expression patterns.
Collapse
Affiliation(s)
- Meimei Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
- Correspondence:
| |
Collapse
|
60
|
Jiang X, Song Q, Ye W, Chen ZJ. Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nat Ecol Evol 2021; 5:1382-1393. [PMID: 34413505 PMCID: PMC8484014 DOI: 10.1038/s41559-021-01523-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
During evolution successful allopolyploids must overcome 'genome shock' between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsis thaliana (TT) and Arabidopsis arenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
61
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
62
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
63
|
Boideau F, Pelé A, Tanguy C, Trotoux G, Eber F, Maillet L, Gilet M, Lodé-Taburel M, Huteau V, Morice J, Coriton O, Falentin C, Delourme R, Rousseau-Gueutin M, Chèvre AM. A Modified Meiotic Recombination in Brassica napus Largely Improves Its Breeding Efficiency. BIOLOGY 2021; 10:biology10080771. [PMID: 34440003 PMCID: PMC8389541 DOI: 10.3390/biology10080771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Simple Summary The selection of varieties more resilient to disease and climate change requires generating new genetic diversity for breeding. The main mechanism for reshuffling genetic information is through the recombination of chromosomes during meiosis. We showed in oilseed rape (Brassica napus, AACC, 2n = 4x = 38), which is a natural hybrid formed from a cross between turnip (B. rapa, AA, 2n = 2x = 20) and cabbage (B. oleracea, CC, 2n = 2x = 18), that there is significantly more crossovers occurring along the entire A chromosomes in allotriploid AAC (crossbetween B. napus and B. rapa) than in diploid AA or allotetraploid AACC hybrids. We demonstrated that these allotriploid AAC hybrids are highly efficient to introduce new variability within oilseed rape varieties, notably by enabling the introduction of small genomic regions carrying genes controlling agronomically interesting traits. Abstract Meiotic recombination is the main tool used by breeders to generate biodiversity, allowing genetic reshuffling at each generation. It enables the accumulation of favorable alleles while purging deleterious mutations. However, this mechanism is highly regulated with the formation of one to rarely more than three crossovers, which are not randomly distributed. In this study, we showed that it is possible to modify these controls in oilseed rape (Brassica napus, AACC, 2n = 4x = 38) and that it is linked to AAC allotriploidy and not to polyploidy per se. To that purpose, we compared the frequency and the distribution of crossovers along A chromosomes from hybrids carrying exactly the same A nucleotide sequence, but presenting three different ploidy levels: AA, AAC and AACC. Genetic maps established with 202 SNPs anchored on reference genomes revealed that the crossover rate is 3.6-fold higher in the AAC allotriploid hybrids compared to AA and AACC hybrids. Using a higher SNP density, we demonstrated that smaller and numerous introgressions of B. rapa were present in AAC hybrids compared to AACC allotetraploid hybrids, with 7.6 Mb vs. 16.9 Mb on average and 21 B. rapa regions per plant vs. nine regions, respectively. Therefore, this boost of recombination is highly efficient to reduce the size of QTL carried in cold regions of the oilseed rape genome, as exemplified here for a QTL conferring blackleg resistance.
Collapse
Affiliation(s)
- Franz Boideau
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Alexandre Pelé
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Coleen Tanguy
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Marie Gilet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Maryse Lodé-Taburel
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Régine Delourme
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Mathieu Rousseau-Gueutin
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
- Correspondence: ; Tel.: +33-2-23-48-51-31
| |
Collapse
|
64
|
Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and Characterization of the ERF Subfamily B3 Group Revealed GhERF13.12 Improves Salt Tolerance in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:705883. [PMID: 34434208 PMCID: PMC8382128 DOI: 10.3389/fpls.2021.705883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 06/12/2023]
Abstract
The APETALA2 (AP2)/ethylene response factor plays vital functions in response to environmental stimulus. The ethylene response factor (ERF) subfamily B3 group belongs to the AP2/ERF superfamily and contains a single AP2/ERF domain. Phylogenetic analysis of the ERF subfamily B3 group genes from Arabdiposis thaliana, Gossypium arboreum, Gossypium hirsutum, and Gossypium raimondii made it possible to divide them into three groups and showed that the ERF subfamily B3 group genes are conserved in cotton. Collinearity analysis identified172 orthologous/paralogous gene pairs between G. arboreum and G. hirsutum; 178 between G. hirsutum and G. raimondii; and 1,392 in G. hirsutum. The GhERF subfamily B3 group gene family experienced massive gene family expansion through either segmental or whole genome duplication events, with most genes showing signature compatible with the action of purifying selection during evolution. Most G. hirsutum ERF subfamily B3 group genes are responsive to salt stress. GhERF13.12 transgenic Arabidopsis showed enhanced salt stress tolerance and exhibited regulation of related biochemical parameters and enhanced expression of genes participating in ABA signaling, proline biosynthesis, and ROS scavenging. In addition, the silencing of the GhERF13.12 gene leads to increased sensitivity to salt stress in cotton. These results indicate that the ERF subfamily B3 group had remained conserved during evolution and that GhERF13.12 induces salt stress tolerance in Arabidopsis and cotton.
Collapse
Affiliation(s)
- Lili Lu
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Li
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mengli Pu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Guoquan Chen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Shengdong Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Wang
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Milosavljevic S, Kuo T, Decarli S, Mohn L, Sese J, Shimizu KK, Shimizu-Inatsugi R, Robinson MD. ARPEGGIO: Automated Reproducible Polyploid EpiGenetic GuIdance workflOw. BMC Genomics 2021; 22:547. [PMID: 34273949 PMCID: PMC8285871 DOI: 10.1186/s12864-021-07845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome duplication (WGD) events are common in the evolutionary history of many living organisms. For decades, researchers have been trying to understand the genetic and epigenetic impact of WGD and its underlying molecular mechanisms. Particular attention was given to allopolyploid study systems, species resulting from an hybridization event accompanied by WGD. Investigating the mechanisms behind the survival of a newly formed allopolyploid highlighted the key role of DNA methylation. With the improvement of high-throughput methods, such as whole genome bisulfite sequencing (WGBS), an opportunity opened to further understand the role of DNA methylation at a larger scale and higher resolution. However, only a few studies have applied WGBS to allopolyploids, which might be due to lack of genomic resources combined with a burdensome data analysis process. To overcome these problems, we developed the Automated Reproducible Polyploid EpiGenetic GuIdance workflOw (ARPEGGIO): the first workflow for the analysis of epigenetic data in polyploids. This workflow analyzes WGBS data from allopolyploid species via the genome assemblies of the allopolyploid's parent species. ARPEGGIO utilizes an updated read classification algorithm (EAGLE-RC), to tackle the challenge of sequence similarity amongst parental genomes. ARPEGGIO offers automation, but more importantly, a complete set of analyses including spot checks starting from raw WGBS data: quality checks, trimming, alignment, methylation extraction, statistical analyses and downstream analyses. A full run of ARPEGGIO outputs a list of genes showing differential methylation. ARPEGGIO was made simple to set up, run and interpret, and its implementation ensures reproducibility by including both package management and containerization. RESULTS We evaluated ARPEGGIO in two ways. First, we tested EAGLE-RC's performance with publicly available datasets given a ground truth, and we show that EAGLE-RC decreases the error rate by 3 to 4 times compared to standard approaches. Second, using the same initial dataset, we show agreement between ARPEGGIO's output and published results. Compared to other similar workflows, ARPEGGIO is the only one supporting polyploid data. CONCLUSIONS The goal of ARPEGGIO is to promote, support and improve polyploid research with a reproducible and automated set of analyses in a convenient implementation. ARPEGGIO is available at https://github.com/supermaxiste/ARPEGGIO .
Collapse
Affiliation(s)
- Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Tony Kuo
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Samuele Decarli
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Lucas Mohn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jun Sese
- AIST Artificial Intelligence Research Center, Tokyo, Japan
- Humanome Lab Inc., Chuo-ku, Tokyo, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
66
|
Yin L, Zhu Z, Huang L, Luo X, Li Y, Xiao C, Yang J, Wang J, Zou Q, Tao L, Kang Z, Tang R, Wang M, Fu S. DNA repair- and nucleotide metabolism-related genes exhibit differential CHG methylation patterns in natural and synthetic polyploids (Brassica napus L.). HORTICULTURE RESEARCH 2021; 8:142. [PMID: 34193846 PMCID: PMC8245426 DOI: 10.1038/s41438-021-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Polyploidization plays a crucial role in the evolution of angiosperm species. Almost all newly formed polyploids encounter genetic or epigenetic instabilities. However, the molecular mechanisms contributing to genomic instability in synthetic polyploids have not been clearly elucidated. Here, we performed a comprehensive transcriptomic and methylomic analysis of natural and synthetic polyploid rapeseeds (Brassica napus). Our results showed that the CHG methylation levels of synthetic rapeseed in different genomic contexts (genes, transposon regions, and repeat regions) were significantly lower than those of natural rapeseed. The total number and length of CHG-DMRs between natural and synthetic polyploids were much greater than those of CG-DMRs and CHH-DMRs, and the genes overlapping with these CHG-DMRs were significantly enriched in DNA damage repair and nucleotide metabolism pathways. These results indicated that CHG methylation may be more sensitive than CG and CHH methylation in regulating the stability of the polyploid genome of B. napus. In addition, many genes involved in DNA damage repair, nucleotide metabolism, and cell cycle control were significantly differentially expressed between natural and synthetic rapeseeds. Our results highlight that the genes related to DNA repair and nucleotide metabolism display differential CHG methylation patterns between natural and synthetic polyploids and reveal the potential connection between the genomic instability of polyploid plants with DNA methylation defects and dysregulation of the DNA repair system. In addition, it was found that the maintenance of CHG methylation in B. napus might be partially regulated by MET1. Our study provides novel insights into the establishment and evolution of polyploid plants and offers a potential idea for improving the genomic stability of newly formed Brassica polyploids.
Collapse
Affiliation(s)
- Liqin Yin
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Zhendong Zhu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Liangjun Huang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Xuan Luo
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Yun Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
| |
Collapse
|
67
|
Hou J, Lu D, Mason AS, Li B, An S, Li G, Cai D. Distribution of MITE family Monkey King in rapeseed (Brassica napus L) and its influence on gene expression. Genomics 2021; 113:2934-2943. [PMID: 34182079 DOI: 10.1016/j.ygeno.2021.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are a group of class II transposable elements. The MITE Monkey King (MK) was first discovered upstream of BnFLC.A10. In this study, genome resequencing of four selected B. napus accessions, revealed more than 4000 distributed copies of MKs constituting ~2.4 Mb of the B. napus genomic sequence and caused 677 polymorphisms among the four accessions. MK -polymorphism-related markers across 128 natural and 58 synthetic accessions revealed more polymorphic MKs in natural than synthetic accessions. Ten MK -induced indels significantly affected the expression levels of the nearest gene based on RNAseq analysis, six of these effects were subsequently confirmed using qRT-PCR. Decreased expression pattern of MK -derived miRNA-bna-miR6031 was also observed under various stress treatments. Further research focused on the MITE families should promote not only our understanding of gene regulatory networks but also inform crop improvement efforts.
Collapse
Affiliation(s)
- Jinna Hou
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Dandan Lu
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Annaliese S Mason
- Chair of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
| | - Baoquan Li
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Sufang An
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaoyuan Li
- Bioinformatic Institute, Huazhong Agricultural University, Wuhan 430071, China.
| | - Dongfang Cai
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
68
|
Ferreira de Carvalho J, Stoeckel S, Eber F, Lodé-Taburel M, Gilet MM, Trotoux G, Morice J, Falentin C, Chèvre AM, Rousseau-Gueutin M. Untangling structural factors driving genome stabilization in nascent Brassica napus allopolyploids. THE NEW PHYTOLOGIST 2021; 230:2072-2084. [PMID: 33638877 DOI: 10.1111/nph.17308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 05/28/2023]
Abstract
Allopolyploids have globally higher fitness than their diploid progenitors; however, by comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome. Elucidating the evolutionary processes promoting genome stabilization and fertility is thus essential to comprehend allopolyploid success. Using the Brassica model, we mimicked the speciation process of a nascent allopolyploid species by resynthesizing allotetraploid Brassica napus and systematically selecting for euploid individuals over eight generations in four independent allopolyploidization events with contrasted genetic backgrounds, cytoplasmic donors, and polyploid formation type. We evaluated the evolution of meiotic behavior and fertility and identified rearrangements in S1 to S9 lineages to explore the positive consequences of euploid selection on B. napus genome stability. Recurrent selection of euploid plants for eight generations drastically reduced the percentage of aneuploid progenies as early as the fourth generation, concomitantly with a decrease in number of newly fixed homoeologous rearrangements. The consequences of homoeologous rearrangements on meiotic behavior and seed number depended strongly on the genetic background and cytoplasm donor. The combined use of both self-fertilization and recurrent euploid selection allowed identification of genomic regions associated with fertility and meiotic behavior, providing complementary evidence to explain B. napus speciation success.
Collapse
Affiliation(s)
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | | | | | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | | |
Collapse
|
69
|
Yu X, Wang P, Li J, Zhao Q, Ji C, Zhu Z, Zhai Y, Qin X, Zhou J, Yu H, Cheng X, Isshiki S, Jahn M, Doyle JJ, Ottosen C, Bai Y, Cai Q, Cheng C, Lou Q, Huang S, Chen J. Whole-Genome Sequence of Synthesized Allopolyploids in Cucumis Reveals Insights into the Genome Evolution of Allopolyploidization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004222. [PMID: 33977063 PMCID: PMC8097326 DOI: 10.1002/advs.202004222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Indexed: 05/16/2023]
Abstract
The importance of allopolyploidy in plant evolution has been widely recognized. The genetic changes triggered by allopolyploidy, however, are not yet fully understood due to inconsistent phenomena reported across diverse species. The construction of synthetic polyploids offers a controlled approach to systematically reveal genomic changes that occur during the process of polyploidy. This study reports the first fully sequenced synthetic allopolyploid constructed from a cross between Cucumis sativus and C. hystrix, with high-quality assembly. The two subgenomes are confidently partitioned and the C. sativus-originated subgenome predominates over the C. hystrix-originated subgenome, retaining more sequences and showing higher homeologous gene expression. Most of the genomic changes emerge immediately after interspecific hybridization. Analysis of a series of genome sequences from several generations (S0, S4-S13) of C. ×hytivus confirms that genomic changes occurred in the very first generations, subsequently slowing down as the process of diploidization is initiated. The duplicated genome of the allopolyploid with double genes from both parents broadens the genetic base of C. ×hytivus, resulting in enhanced phenotypic plasticity. This study provides novel insights into plant polyploid genome evolution and demonstrates a promising strategy for the development of a wide array of novel plant species and varieties through artificial polyploidization.
Collapse
Affiliation(s)
- Xiaqing Yu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Panqiao Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Qinzheng Zhao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Changmian Ji
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
- Biomarker TechnologiesBeijing101300China
| | - Zaobing Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Yufei Zhai
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xiaodong Qin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Junguo Zhou
- College of Horticulture and LandscapeHenan Institute of Science and TechnologyXinxiang453000China
| | - Haiyan Yu
- Biomarker TechnologiesBeijing101300China
| | | | - Shiro Isshiki
- Faculty of AgricultureSaga UniversitySaga840‐8502Japan
| | - Molly Jahn
- Jahn Research GroupUSDA/FPLMadisonWI53726USA
| | - Jeff J. Doyle
- Section of Plant Breeding and GeneticsSchool of Integrated Plant SciencesCornell UniversityIthacaNY14853USA
| | | | - Yuling Bai
- Department of Plant SciencesWageningen University and ResearchWageningen6700 AJNetherlands
| | - Qinsheng Cai
- College of Life ScienceNanjing Agricultural UniversityNanjing210095China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Sanwen Huang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
70
|
Zhao L, Xie D, Fan C, Zhang S, Huang L, Ning S, Jiang B, Zhang L, Yuan Z, Liu D, Hao M. Chromosome Stability of Synthetic-Natural Wheat Hybrids. FRONTIERS IN PLANT SCIENCE 2021; 12:654382. [PMID: 33815455 PMCID: PMC8010257 DOI: 10.3389/fpls.2021.654382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Primary allopolyploids are not only ideal materials to study species evolution, but also important bridges in incorporating genetic diversity of wild species into crops. Primary allopolyploids typically exhibit chromosome instability that a disadvantage trait in crop breeding. Newly synthesized hexaploid wheat has been widely used in wheat genetics and breeding studies. To better understand the cytological and genetic basis of chromosome instability, this study investigated the chromosomes of a large number of seeds derived from the synthetic wheat SHW-L1 and its hybrids with natural wheat. SHW-L1 exhibited persistent chromosome instability since we observed a high frequent chromosome variation de novo generated from euploid SHW-L1 plants at the 14th generation of selfing (F14). High frequent chromosome variations were also observed in the F2 hybrids and most of the analyzed recombinant inbred lines (RILs) at F14, derived from the cross of SHW-L1 with common wheat variety Chuanmai 32. Chromosome instability was associated with frequent univalency during meiotic metaphase I. The experiment on reciprocal crosses between SHW-L1 and Chuanmai 32 indicated that cytoplasm has not obvious effects on chromosome instability. An analysis on 48 F14 RILs revealed chromosome variation frequency was not associated with the Ph1 alleles from either SHW-L1 or Chuanmai 32, rejecting the hypothesis that chromosome instability was due to the Ph1 role of synthetic wheat. In the analyzed RILs, chromosome instability influences the phenotype uniformity, showing as obvious trait differences among plants within a RIL. However, the analyzed commercial varieties only containing ∼12.5% genomic components of synthetic wheat were chromosomally stable, indicating that chromosome instability caused by synthetic wheat can be effectively overcome by increasing the genetic background of common wheat.
Collapse
Affiliation(s)
- Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Wheat Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Die Xie
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shujie Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
71
|
Lv Z, Li Z, Wang M, Zhao F, Zhang W, Li C, Gong L, Zhang Y, Mason AS, Liu B. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol 2021; 19:42. [PMID: 33750361 PMCID: PMC7944620 DOI: 10.1186/s12915-021-00985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.
Collapse
Affiliation(s)
- Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yijng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
72
|
Ye X, Hu H, Zhou H, Jiang Y, Gao S, Yuan Z, Stiller J, Li C, Chen G, Liu Y, Wei Y, Zheng YL, Wang YG, Liu C. Differences between diploid donors are the main contributing factor for subgenome asymmetry measured in either gene ratio or relative diversity in allopolyploids. Genome 2021; 64:847-856. [PMID: 33661713 DOI: 10.1139/gen-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subgenome asymmetry (SA) has routinely been attributed to different responses between the subgenomes of a polyploid to various stimuli during evolution. Here, we compared subgenome differences in gene ratio and relative diversity between artificial and natural genotypes of several allopolyploid species. Surprisingly, consistent differences were not detected between these two types of polyploid genotypes, although they differ in times exposed to evolutionary selection. The estimated ratio of shared genes between a subgenome and its diploid donor was invariably higher for the artificial allopolyploid genotypes than those for the natural genotypes, which is expected as it is now well-known that many genes in a species are not shared among all individuals. As the exact diploid parent for a given subgenome is unknown, the estimated ratios of shared genes for the natural genotypes would also include difference among individual genotypes of the diploid donor species. Further, we detected the presence of SA in genotypes before the completion of the polyploidization events as well as in those which were not formed via polyploidization. These results indicate that SA may, to a large degree, reflect differences between its diploid donors or that changes occurred during polyploid evolution are defined by their donor genomes.
Collapse
Affiliation(s)
- Xueling Ye
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Haiyan Hu
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Hong Zhou
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yunfeng Jiang
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Shang Gao
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Zhongwei Yuan
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Chengwei Li
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| |
Collapse
|
73
|
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:3281-3293. [PMID: 33020949 PMCID: PMC7984352 DOI: 10.1111/nph.16986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Ensuring faithful homologous recombination in allopolyploids is essential to maintain optimal fertility of the species. Variation in the ability to control aberrant pairing between homoeologous chromosomes in Brassica napus has been identified. The current study exploited the extremes of such variation to identify genetic factors that differentiate newly resynthesised B. napus, which is inherently unstable, and established B. napus, which has adapted to largely control homoeologous recombination. A segregating B. napus mapping population was analysed utilising both cytogenetic observations and high-throughput genotyping to quantify the levels of homoeologous recombination. Three quantitative trait loci (QTL) were identified that contributed to the control of homoeologous recombination in the important oilseed crop B. napus. One major QTL on BnaA9 contributed between 32 and 58% of the observed variation. This study is the first to assess homoeologous recombination and map associated QTLs resulting from deviations in normal pairing in allotetraploid B. napus. The identified QTL regions suggest candidate meiotic genes that could be manipulated in order to control this important trait and further allow the development of molecular markers to utilise this trait to exploit homoeologous recombination in a crop.
Collapse
Affiliation(s)
- Erin E. Higgins
- Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKS7N 0X2Canada
| | - Elaine C. Howell
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Susan J. Armstrong
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
74
|
Sourdille P, Jenczewski E. Homoeologous exchanges in allopolyploids: how Brassica napus established self-control! THE NEW PHYTOLOGIST 2021; 229:3041-3043. [PMID: 33616960 DOI: 10.1111/nph.17222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Pierre Sourdille
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
75
|
Zhang J, Wu F, Yan Q, John UP, Cao M, Xu P, Zhang Z, Ma T, Zong X, Li J, Liu R, Zhang Y, Zhao Y, Kanzana G, Lv Y, Nan Z, Spangenberg G, Wang Y. The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:532-547. [PMID: 32964579 PMCID: PMC7955882 DOI: 10.1111/pbi.13483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/13/2020] [Indexed: 05/24/2023]
Abstract
Cleistogenes songorica (2n = 4x = 40) is a desert grass with a unique dimorphic flowering mechanism and an ability to survive extreme drought. Little is known about the genetics underlying drought tolerance and its reproductive adaptability. Here, we sequenced and assembled a high-quality chromosome-level C. songorica genome (contig N50 = 21.28 Mb). Complete assemblies of all telomeres, and of ten chromosomes were derived. C. songorica underwent a recent tetraploidization (~19 million years ago) and four major chromosomal rearrangements. Expanded genes were significantly enriched in fatty acid elongation, phenylpropanoid biosynthesis, starch and sucrose metabolism, and circadian rhythm pathways. By comparative transcriptomic analysis we found that conserved drought tolerance related genes were expanded. Transcription of CsMYB genes was associated with differential development of chasmogamous and cleistogamous flowers, as well as drought tolerance. Furthermore, we found that regulation modules encompassing miRNA, transcription factors and target genes are involved in dimorphic flower development, validated by overexpression of CsAP2_9 and its targeted miR172 in rice. Our findings enable further understanding of the mechanisms of drought tolerance and flowering in C. songorica, and provide new insights into the adaptability of native grass species in evolution, along with potential resources for trait improvement in agronomically important species.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Fan Wu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi Yan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Ulrik P John
- Agriculture Victoria Research, Department of Jobs, Precincts and RegionsAgriBio, Centre for AgriBioscience, La Trobe UniversityVictoriaAustralia
| | - Mingshu Cao
- AgResearch Limited, Grasslands Research CentrePalmerston NorthNew Zealand
| | - Pan Xu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Tiantian Ma
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Xifang Zong
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Jie Li
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Ruijuan Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Yufei Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Gisele Kanzana
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yanyan Lv
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - German Spangenberg
- Agriculture Victoria Research, Department of Jobs, Precincts and RegionsAgriBio, Centre for AgriBioscience, La Trobe UniversityVictoriaAustralia
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
76
|
Shin H, Park HR, Park JE, Yu SH, Yi G, Kim JH, Koh W, Kim HH, Lee SS, Huh JH. Reduced fertility caused by meiotic defects and micronuclei formation during microsporogenesis in xBrassicoraphanus. Genes Genomics 2021; 43:251-258. [PMID: 33555504 PMCID: PMC7966196 DOI: 10.1007/s13258-021-01050-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
Background Hybridization and polyploidization events are important driving forces in plant evolution. Allopolyploids formed between different species can be naturally or artificially created but often suffer from genetic instability and infertility in successive generations. xBrassicoraphanus is an intergeneric allopolyploid obtained from a cross between Brassica rapa and Raphanus sativus, providing a useful resource for genetic and genomic study in hybrid species. Objective The current study aims to understand the cause of hybrid sterility and pollen abnormality in different lines of synthetic xBrassicoraphanus from the cytogenetic perspective. Methods Alexander staining was used to assess the pollen viability. Cytogenetic analysis was employed to monitor meiotic chromosome behaviors in pollen mother cells (PMCs). Origins of parental chromosomes in xBrassicoraphanus meiocytes were determined by genome in situ hybridization analysis. Results The xBrassicoraphanus lines BB#4 and BB#6 showed high rates of seed abortion and pollen deformation. Abnormal chromosome behaviors were observed in their PMCs, frequently forming univalents and inter-chromosomal bridges during meiosis. A positive correlation also exists between meiotic defects and the formation of micronuclei, which is conceivably responsible for unbalanced gamete production and pollen sterility. Conclusion These results suggest that unequal segregation of meiotic chromosomes, due in part to non-homologous interactions, is responsible for micronuclei and unbalanced gamete formation, eventually leading to pollen degeneration and inferior fertility in unstable xBrassicoraphanus lines.
Collapse
Affiliation(s)
- Hosub Shin
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, South Korea
| | - Hye Rang Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, South Korea
| | - Jeong Eun Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, South Korea
| | - Seung Hwa Yu
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gibum Yi
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, South Korea
| | - Jung Hyo Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Wonjun Koh
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea
| | | | - Jin Hoe Huh
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, South Korea. .,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea. .,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, South Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
77
|
Xiong Z, Gaeta RT, Edger PP, Cao Y, Zhao K, Zhang S, Pires JC. Chromosome inheritance and meiotic stability in allopolyploid Brassica napus. G3-GENES GENOMES GENETICS 2021; 11:6044140. [PMID: 33704431 PMCID: PMC8022990 DOI: 10.1093/g3journal/jkaa011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022]
Abstract
Homoeologous recombination, aneuploidy, and other genetic changes are common in resynthesized allopolyploid Brassica napus. In contrast, the chromosomes of cultivars have long been considered to be meiotically stable. To gain a better understanding of the underlying mechanisms leading to stabilization in the allopolyploid, the behavior of chromosomes during meiosis can be compared by unambiguous chromosome identification between resynthesized and natural B. napus. Compared with natural B. napus, resynthesized lines show high rates of nonhomologous centromere association, homoeologous recombination leading to translocation, homoeologous chromosome replacement, and association and breakage of 45S rDNA loci. In both natural and resynthesized B. napus, we observed low rates of univalents, A–C bivalents, and early sister chromatid separations. Reciprocal homoeologous chromosome exchanges and double reductions were photographed for the first time in meiotic telophase I. Meiotic errors were non-uniformly distributed across the genome in resynthesized B. napus, and in particular homoeologs sharing synteny along their entire length exhibited multivalents at diakinesis and polysomic inheritance at telophase I. Natural B. napus appeared to resolve meiotic errors mainly by suppressing homoeologous pairing, resolving nonhomologous centromere associations and 45S rDNA associations before diakinesis, and reducing homoeologous cross-overs.
Collapse
Affiliation(s)
- Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China.,Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Robert T Gaeta
- Bayer's Crop Science Division, Chesterfield, MO 63017, USA
| | - Patrick P Edger
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.,Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Siqi Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
78
|
Yu H, Li Q, Li Y, Yang H, Lu Z, Wu J, Zhang Z, Shahid MQ, Liu X. Genomics Analyses Reveal Unique Classification, Population Structure and Novel Allele of Neo-Tetraploid Rice. RICE (NEW YORK, N.Y.) 2021; 14:16. [PMID: 33547986 PMCID: PMC7867503 DOI: 10.1186/s12284-021-00459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/28/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Neo-tetraploid rice (NTR) is a useful new germplasm that developed from the descendants of the autotetraploid rice (ATR) hybrids. NTR showed improved fertility and yield potential, and produced high yield heterosis when crossed with indica ATR for commercial utilization. However, their classification, population structure and genomic feature remain elusive. RESULTS Here, high-depth genome resequencing data of 15 NTRs and 18 ATRs, together with 38 publicly available data of diploid rice accessions, were analyzed to conduct classification, population structure and haplotype analyses. Five subpopulations were detected and NTRs were clustered into one independent group that was adjacent to japonica subspecies, which maybe the reason for high heterosis when NTRs crossed with indica ATRs. Haplotype patterns of 717 key genes that associated with yield and other agronomic traits were revealed in these NTRs. Moreover, a novel specific SNP variation was detected in the first exon of HSP101, a known heat-inducible gene, which was conserved in all NTRs but absent in ATRs, 3KRG and RiceVarMap2 databases. The novel allele was named as HSP101-1, which was confirmed to be a heat response factor by qRT-PCR, and knockout of HSP101-1 significantly decreased the thermotolerance capacity of NTR. Interestingly, HSP101-1 was also specifically expressed in the anthers of NTR at pre-meiotic and meiosis stages under optimal environment without heat stress, and its loss-of-function mutant showed significant decrease in fertility of NTR. CONCLUSION The construction of first genomic variation repository and the revelation of population structure provide invaluable information for optimizing the designs of tetraploid rice breeding. The detection of specific genomic variations offered useful genomic markers and new directions to resolve high fertility mechanism of NTR.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qihang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yudi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Huijing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
79
|
Wei Y, Li G, Zhang S, Zhang S, Zhang H, Sun R, Zhang R, Li F. Analysis of Transcriptional Changes in Different Brassica napus Synthetic Allopolyploids. Genes (Basel) 2021; 12:82. [PMID: 33440604 PMCID: PMC7827416 DOI: 10.3390/genes12010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Allopolyploidy is an evolutionary and mechanistically intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the gene expression patterns of eight F2 synthetic Brassica napus using RNA sequencing. We found that B. napus allopolyploid formation was accompanied by extensive changes in gene expression. A comparison between F2 and the parent shows a certain proportion of differentially expressed genes (DEG) and activation\silent gene, and the two genomes (female parent (AA)\male parent (CC) genomes) showed significant differences in response to whole-genome duplication (WGD); non-additively expressed genes represented a small portion, while Gene Ontology (GO) enrichment analysis showed that it played an important role in responding to WGD. Besides, genome-wide expression level dominance (ELD) was biased toward the AA genome, and the parental expression pattern of most genes showed a high degree of conservation. Moreover, gene expression showed differences among eight individuals and was consistent with the results of a cluster analysis of traits. Furthermore, the differential expression of waxy synthetic pathways and flowering pathway genes could explain the performance of traits. Collectively, gene expression of the newly formed allopolyploid changed dramatically, and this was different among the selfing offspring, which could be a prominent cause of the trait separation. Our data provide novel insights into the relationship between the expression of differentially expressed genes and trait segregation and provide clues into the evolution of allopolyploids.
Collapse
Affiliation(s)
- Yunxiao Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| |
Collapse
|
80
|
Liu J, Rana K, McKay J, Xiong Z, Yu F, Mei J, Qian W. Investigating genetic relationship of Brassica juncea with B. nigra via virtual allopolyploidy and hexaploidy strategy. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:5. [PMID: 37309524 PMCID: PMC10231560 DOI: 10.1007/s11032-020-01197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/21/2020] [Indexed: 06/14/2023]
Abstract
Brassica juncea is an important economic crop of the world; however, the narrow genetic base of this crop has tremendously decreased its crop productivity. As an ancestral species of B. juncea, B. nigra is of great importance in widening the genetic diversity of B. juncea. In the present study, 42 SSR markers were employed to screen the genetic diversity among 83 B. nigra, 16 B. juncea, and other Brassica accessions. The molecular characteristics of 498 virtual B. juncea lines were deduced based on the bands of B. nigra and B. rapa via a virtual allopolyploid strategy, and then compared with natural B. juncea accessions. It was found that B. nigra had rich genetic diversity and could be classified into four subgroups, of which subgroup B-III and subgroup B-IV exhibited the closest and the most distant genetic relationship with B. juncea, respectively. To verify this, a hexaploidy strategy was applied to generated synthetic B. juncea from 20 B. nigra accessions, resulting in 45 new-type B. juncea genotypes. The genetic analyses detected that synthetic B. juncea derived from B. nigra in subgroup B-III was close to natural B. juncea, while B. juncea synthesized with B. nigra from subgroup B-IV exhibited wide genetic diversity and was most distant with current B. juncea. This study revealed a great potential of B. nigra in widening genetic diversity of B. juncea particularly using B. nigra in subgroup B-IV, and is helpful in better understanding of the genetic relationship between B. nigra and B. juncea. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-020-01197-7.
Collapse
Affiliation(s)
- Jin Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400716 China
| | - Kusum Rana
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400716 China
| | - John McKay
- Department of Bioagricultural Sciences and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523 USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400716 China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400716 China
| |
Collapse
|
81
|
Tomaszewska P. Understanding polyploid banana origins. A commentary on: 'Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas'. ANNALS OF BOTANY 2021; 127:iv-v. [PMID: 33289497 PMCID: PMC7750713 DOI: 10.1093/aob/mcaa183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/09/2023]
Abstract
This article comments on: Alberto Cenci, Julie Sardos, Yann Hueber, Guillaume Martin, Catherine Breton, Nicolas Roux, Rony Swennen, Sebastien Christian Carpentier and Mathieu Rouard, Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas, Annals of Botany, Volume 127, Issue 1, 01 January 2021, Pages 7–20, https://doi.org/10.1093/aob/mcaa032
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
82
|
Global Profiling of lncRNAs Expression Responsive to Allopolyploidization in Cucumis. Genes (Basel) 2020; 11:genes11121500. [PMID: 33322817 PMCID: PMC7763881 DOI: 10.3390/genes11121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical regulatory roles in various biological processes. However, the presence of lncRNAs and how they function in plant polyploidy are still largely unknown. Hence, we examined the profile of lncRNAs in a nascent allotetraploid Cucumis hytivus (S14), its diploid parents, and the F1 hybrid, to reveal the function of lncRNAs in plant-interspecific hybridization and whole genome duplication. Results showed that 2206 lncRNAs evenly transcribed from all 19 chromosomes were identified in C. hytivus, 44.6% of which were from intergenic regions. Based on the expression trend in allopolyploidization, we found that a high proportion of lncRNAs (94.6%) showed up-regulated expression to varying degrees following hybridization. However, few lncRNAs (33, 2.1%) were non-additively expressed after genome duplication, suggesting the significant effect of hybridization on lncRNAs, rather than genome duplication. Furthermore, 253 cis-regulated target genes were predicted for these differentially expressed lncRNAs in S14, which mainly participated in chloroplast biological regulation (e.g., chlorophyll synthesis and light harvesting system). Overall, this study provides new insight into the function of lncRNAs during the processes of hybridization and polyploidization in plant evolution.
Collapse
|
83
|
Wu Y, Lin F, Zhou Y, Wang J, Sun S, Wang B, Zhang Z, Li G, Lin X, Wang X, Sun Y, Dong Q, Xu C, Gong L, Wendel JF, Zhang Z, Liu B. Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids. Natl Sci Rev 2020; 8:nwaa277. [PMID: 34691642 PMCID: PMC8288387 DOI: 10.1093/nsr/nwaa277] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/03/2023] Open
Abstract
Allopolyploidy is an important process in plant speciation, yet newly formed allopolyploid species typically suffer from extreme genetic bottlenecks. One escape from this impasse might be homoeologous meiotic pairing, during which homoeologous exchanges (HEs) generate phenotypically variable progeny. However, the immediate genome-wide patterns and resulting phenotypic diversity generated by HEs remain largely unknown. Here, we analyzed the genome composition of 202 phenotyped euploid segmental allopolyploid individuals from the fourth selfed generation following chromosomal doubling of reciprocal F1 hybrids of crosses between rice subspecies, using whole-genome sequencing. We describe rampant occurrence of HEs that, by overcoming incompatibility or conferring superiority of hetero-cytonuclear interactions, generate extensive and individualized genomic mosaicism across the analyzed tetraploids. We show that the resulting homoeolog copy number alteration in tetraploids affects known-function genes and their complex genetic interactions, in the process creating extraordinary phenotypic diversity at the population level following a single initial hybridization. Our results illuminate the immediate genomic landscapes possible in a tetraploid genomic environment, and underscore HE as an important mechanism that fuels rapid phenotypic diversification accompanying the initial stages of allopolyploid evolution.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Fan Lin
- Brightseed Inc., San Francisco, CA 94107, USA
| | - Yao Zhou
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Zhiwu Zhang
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
84
|
Yin L, Zhu Z, Luo X, Huang L, Li Y, Mason AS, Yang J, Ge X, Long Y, Wang J, Zou Q, Tao L, Kang Z, Tang R, Wang M, Fu S. Genome-Wide Duplication of Allotetraploid Brassica napus Produces Novel Characteristics and Extensive Ploidy Variation in Self-Pollinated Progeny. G3 (BETHESDA, MD.) 2020; 10:3687-3699. [PMID: 32753368 PMCID: PMC7534442 DOI: 10.1534/g3.120.401493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 01/27/2023]
Abstract
Whole genome duplications (WGDs) have played a major role in angiosperm species evolution. Polyploid plants have undergone multiple cycles of ancient WGD events during their evolutionary history. However, little attention has been paid to the additional WGD of the existing allopolyploids. In this study, we explored the influences of additional WGD on the allopolyploid Brassica napus Compared to tetraploid B. napus, octoploid B. napus (AAAACCCC, 2n = 8x =76) showed significant differences in phenotype, reproductive ability and the ploidy of self-pollinated progeny. Genome duplication also altered a key reproductive organ feature in B. napus, that is, increased the number of pollen apertures. Unlike autopolyploids produced from the diploid Brassica species, the octoploid B. napus produced from allotetraploid B. napus had a relatively stable meiotic process, high pollen viability and moderate fertility under self-pollination conditions, indicating that sub-genomic interactions may be important for the successful establishment of higher-order polyploids. Doubling the genome of B. napus provided us with an opportunity to gain insight into the flexibility of the Brassica genomes. The genome size of self-pollinated progeny of octoploid B. napus varied greatly, and was accompanied by extensive genomic instability, such as aneuploidy, mixed-ploidy and mitotic abnormality. The octoploid B. napus could go through any of genome reduction, equilibrium or expansion in the short-term, thus providing a novel karyotype library for the Brassica genus. Our results reveal the short-term evolutionary consequences of recurrent polyploidization events, and help to deepen our understanding of polyploid plant evolution.
Collapse
Affiliation(s)
- Liqin Yin
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Zhendong Zhu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Xuan Luo
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Liangjun Huang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Yu Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35396 Giessen, Germany
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, China
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| |
Collapse
|
85
|
Landis JB, Kurti A, Lawhorn AJ, Litt A, McCarthy EW. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes (Basel) 2020; 11:E1097. [PMID: 32961813 PMCID: PMC7563459 DOI: 10.3390/genes11091097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Floral organ size, especially the size of the corolla, plays an important role in plant reproduction by facilitating pollination efficiency. Previous studies have outlined a hypothesized organ size pathway. However, the expression and function of many of the genes in the pathway have only been investigated in model diploid species; therefore, it is unknown how these genes interact in polyploid species. Although correlations between ploidy and cell size have been shown in many systems, it is unclear whether there is a difference in cell size between naturally occurring and synthetic polyploids. To address these questions comparing floral organ size and cell size across ploidy, we use natural and synthetic polyploids of Nicotiana tabacum (Solanaceae) as well as their known diploid progenitors. We employ a comparative transcriptomics approach to perform analyses of differential gene expression, focusing on candidate genes that may be involved in floral organ size, both across developmental stages and across accessions. We see differential expression of several known floral organ candidate genes including ARF2, BIG BROTHER, and GASA/GAST1. Results from linear models show that ploidy, cell width, and cell number positively influence corolla tube circumference; however, the effect of cell width varies by ploidy, and diploids have a significantly steeper slope than both natural and synthetic polyploids. These results demonstrate that polyploids have wider cells and that polyploidy significantly increases corolla tube circumference.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- Department of Biology, SUNY Cortland, Cortland, NY 13045, USA
| |
Collapse
|
86
|
Mason AS, Wendel JF. Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution. Front Genet 2020; 11:1014. [PMID: 33005183 PMCID: PMC7485112 DOI: 10.3389/fgene.2020.01014] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Polyploidy is a major force in plant evolution and speciation. In newly formed allopolyploids, pairing between related chromosomes from different subgenomes (homoeologous chromosomes) during meiosis is common. The initial stages of allopolyploid formation are characterized by a spectrum of saltational genomic and regulatory alterations that are responsible for evolutionary novelty. Here we highlight the possible effects and roles of recombination between homoeologous chromosomes during the early stages of allopolyploid stabilization. Homoeologous exchanges (HEs) have been reported in young allopolyploids from across the angiosperms. Although all lineages undergo karyotype change via chromosome rearrangements over time, the early generations after allopolyploid formation are predicted to show an accelerated rate of genomic change. HEs can also cause changes in allele dosage, genome-wide methylation patterns, and downstream phenotypes, and can hence be responsible for speciation and genome stabilization events. Additionally, we propose that fixation of duplication - deletion events resulting from HEs could lead to the production of genomes which appear to be a mix of autopolyploid and allopolyploid segments, sometimes termed "segmental allopolyploids." We discuss the implications of these findings for our understanding of the relationship between genome instability in novel polyploids and genome evolution.
Collapse
Affiliation(s)
- Annaliese S. Mason
- Plant Breeding Department, Justus Liebig University Giessen, Giessen, Germany
| | - Jonathan F. Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA, United States
| |
Collapse
|
87
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
88
|
Li J, Ye C. Genome-wide analysis of microsatellite and sex-linked marker identification in Gleditsia sinensis. BMC PLANT BIOLOGY 2020; 20:338. [PMID: 32680463 PMCID: PMC7367340 DOI: 10.1186/s12870-020-02551-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Leguminosae), a dioecious perennial arbor, demonstrates important medicinal properties and economic value. These properties can be harnessed depending on the sex of the plant. However, the sex of the plants is difficult to identify accurately through morphological methods before the flowering. RESULTS We used bulked segregant analysis to screen sex-specific simple sequence repeat (SSR) markers in G. sinensis. Five male and five female plants were pooled to form the male and female bulks, respectively, and subjected to whole-genome sequencing. After high-throughput sequencing, 5,350,359 sequences were obtained, in which 2,065,210 SSRs were searched. Among them, the number of duplicated SSRs was the highest. The male plants could reach 857,874, which accounted for 60.86% of the total number of male plants. The female plants could reach 1,447,603, which accounted for 56.25% of the total model of the female plants. Among all the nucleotide repeat types, the A/T-rich motif was the most abundant. A total of 309,516 female strain-specific SSRs were selected by clustering. After designing the primers, the male and female gene pools were amplified, and five pairs of primers (i.e., 27, 34, 36, 39, and 41) were found to amplify the differential bands in the male and female gene pools. Using the five pairs of primers, we performed PCR verification on 10 individuals of known sex, which constructed the gene pool. The female plants amplified a single fragment of lengths (i.e., 186, 305, 266, 203, and 260 bp) and no male plant strip, thereby completing the identification of the male and female sexes of the G. sinensis. CONCLUSIONS This study provides accurate sex identification strategies between female and male plants, thus improving the utilization rate of G. sinensis resources.
Collapse
Affiliation(s)
- Jianjun Li
- College of Life Science, Henan Normal University, Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| | - Chenglin Ye
- College of Life Science, Henan Normal University, Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| |
Collapse
|
89
|
Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblies in Gossypium arboreum. BMC Genomics 2020; 21:470. [PMID: 32640982 PMCID: PMC7346634 DOI: 10.1186/s12864-020-06814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.
Collapse
|
90
|
Zhang F, Xiao X, Wu X. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110613. [PMID: 32304923 DOI: 10.1016/j.ecoenv.2020.110613] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contaminated soil has threatened plant growth and human health. Rapeseed (Brassica napus L.), an ideal plant for phytoremediation, is an important source of edible vegetable oil, vegetable, animal fodder, green manure and biodiesel. For safe utilization of Cd polluted soil, physiological, biochemical, and molecular techniques have been used to understand mechanisms of Cd tolerance in B. napus. However, most of these researches have concentrated on vegetative and adult stages, just a few reports focus on the initial growth stage. Here, the partitioning of cadmium, gene expression level and activity of enzymatic antioxidants of H18 (tolerant genotype) and P9 (sensitive genotype) were investigated under 0 and 30 mg/L Cd stress at seedling establishment stage. Results shown that the radicle length of H18 and P9 under Cd stress were decreased by 30.33 (0.01 < P < 0.05) and 88.89% (P < 0.01) respectively. Cd concentration at cotyledon not radicle and hypocotyl in P9 was significantly higher than that in H18. The expression level of BnaHMA4c, which plays a key role in root-to-shoot translocation of Cd, was extremely higher in P9 than in H18 under both normal and Cd stress conditions. We also found that SOD, CAT and POD were more active in responding to Cd stress after 48 h, and the activity of SOD and CAT in H18 were higher than that in P9 at all observed time points. In conclusion, high activity of enzymatic antioxidants at initial Cd stress stage is the main detoxification mechanism in Cd-tolerant rapeseed, while the higher Cd transfer coefficient, driven by higher expression level of BnaHMA4c is the main mechanism for surviving radicle from initial Cd toxicity in Cd-sensitive rapeseed.
Collapse
Affiliation(s)
- Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
91
|
Qiu T, Liu Z, Liu B. The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Mol Biol Rep 2020; 47:5549-5558. [PMID: 32572735 DOI: 10.1007/s11033-020-05597-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Polyploidy is a pervasive and recurring phenomenon across the tree of life, which occurred at variable time scales, ecological amplitudes and cell types, and is especially prominent in the evolutionary histories of plants. Importantly, many of the world's most important crops and noxious invasive weeds are recent polyploids. Polyploidy includes two major types, autopolyploidy, referring to doubling of a single species genome, and allopolyploidy referring to doubling of two or more merged genomes via biological hybridization of distinct but related species. The prevalence of both types of polyploidy implies that both genome doubling alone and doubling coupled with hybridization confer selective advantages over their diploid progenitors under specific circumstances. In cases of allopolyploidy, the two events, genome doubling and hybridization, have both advantages and disadvantages. Accumulated studies have established that, in allopolyploidy, some advantage(s) of doubling may compensate for the disadvantage(s) of hybridity and vice versa, although further study is required to validate generality of this trend. Some studies have also revealed a variety of non-Mendelian genetic and genomic consequences induced by doubling and hybridization separately or concertedly in nascent allopolyploidy; however, the significance of which to the immediate establishment and longer-term evolutionary success of allopolyploid species remain to be empirically demonstrated and ecologically investigated. This review aims to summarize recent advances in our understanding of the roles of hybridization and genome doubling, in separation and combination, in the evolution of allopolyploid genomes, as well as fruitful future research directions that are emerging from these studies.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.,Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhiyuan Liu
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
92
|
Park HR, Park JE, Kim JH, Shin H, Yu SH, Son S, Yi G, Lee SS, Kim HH, Huh JH. Meiotic Chromosome Stability and Suppression of Crossover Between Non-homologous Chromosomes in x Brassicoraphanus, an Intergeneric Allotetraploid Derived From a Cross Between Brassica rapa and Raphanus sativus. FRONTIERS IN PLANT SCIENCE 2020; 11:851. [PMID: 32612629 PMCID: PMC7309133 DOI: 10.3389/fpls.2020.00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Hybridization and polyploidization are major driving forces in plant evolution. Allopolyploids can be occasionally formed from a cross between distantly related species but often suffer from chromosome instability and infertility. xBrassicoraphanus is an intergeneric allotetraploid (AARR; 2n = 38) derived from a cross between Brassica rapa (AA; 2n = 20) and Raphanus sativus (RR; 2n = 18). xBrassicoraphanus is fertile and genetically stable, while retaining complete sets of both B. rapa and R. sativus chromosomes. Precise control of meiotic recombination is essential for the production of balanced gametes, and crossovers (COs) must occur exclusively between homologous chromosomes. Many interspecific hybrids have problems with meiotic division at early generations, in which interactions between non-homologous chromosomes often bring about aneuploidy and unbalanced gamete formation. We analyzed meiotic chromosome behaviors in pollen mother cells (PMCs) of allotetraploid and allodiploid F1 individuals of newly synthesized xBrassicoraphanus. Allotetraploid xBrassicoraphanus PMCs showed a normal diploid-like meiotic behavior. By contrast, allodiploid xBrassicoraphanus PMCs displayed abnormal segregation of chromosomes mainly due to the absence of homologous pairs. Notably, during early stages of meiosis I many of allodiploid xBrassicoraphanus chromosomes behave independently with few interactions between B. rapa and R. sativus chromosomes, forming many univalent chromosomes before segregation. Chromosomes were randomly assorted at later stages of meiosis, and tetrads with unequal numbers of chromosomes were formed at completion of meiosis. Immunolocalization of HEI10 protein mediating meiotic recombination revealed that COs were more frequent in synthetic allotetraploid xBrassicoraphanus than in allodiploid, but less than in the stabilized line. These findings suggest that structural dissimilarity between B. rapa and R. sativus chromosomes prevents non-homologous interactions between the parental chromosomes in allotetraploid xBrassicoraphanus, allowing normal diploid-like meiosis when homologous pairing partners are present. This study also suggests that CO suppression between non-homologous chromosomes is required for correct meiotic progression in newly synthesized allopolyploids, which is important for the formation of viable gametes and reproductive success in the hybrid progeny.
Collapse
Affiliation(s)
- Hye Rang Park
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Jeong Eun Park
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Jung Hyo Kim
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hosub Shin
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Seung Hwa Yu
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Sehyeok Son
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Gibum Yi
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | | | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
93
|
Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 2020; 117:14561-14571. [PMID: 32518116 DOI: 10.1073/pnas.2003505117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination between homeologous chromosomes, also known as homeologous exchange (HE), plays a significant role in shaping genome structure and gene expression in interspecific hybrids and allopolyploids of several plant species. However, the molecular mechanisms that govern HEs are not well understood. Here, we studied HE events in the progeny of a nascent allotetraploid (genome AADD) derived from two diploid progenitors of hexaploid bread wheat using cytological and whole-genome sequence analyses. In total, 37 HEs were identified and HE junctions were mapped precisely. HEs exhibit typical patterns of homologous recombination hotspots, being biased toward low-copy, subtelomeric regions of chromosome arms and showing association with known recombination hotspot motifs. But, strikingly, while homologous recombination preferentially takes place upstream and downstream of coding regions, HEs are highly enriched within gene bodies, giving rise to novel recombinant transcripts, which in turn are predicted to generate new protein fusion variants. To test whether this is a widespread phenomenon, a dataset of high-resolution HE junctions was analyzed for allopolyploid Brassica, rice, Arabidopsis suecica, banana, and peanut. Intragenic recombination and formation of chimeric genes was detected in HEs of all species and was prominent in most of them. HE thus provides a mechanism for evolutionary novelty in transcript and protein sequences in nascent allopolyploids.
Collapse
|
94
|
Fujiwara T, Watano Y. Independent allopatric polyploidizations shaped the geographical structure and initial stage of reproductive isolation in an allotetraploid fern, Lepisorus nigripes (Polypodiaceae). PLoS One 2020; 15:e0233095. [PMID: 32433707 PMCID: PMC7239481 DOI: 10.1371/journal.pone.0233095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022] Open
Abstract
Although polyploidy is pervasive and its evolutionary significance has been recognized, it remains unclear how newly formed polyploid species become established. In particular, the impact of multiple origins on genetic differentiation among populations of a polyploid species and whether lineages of independent origins have different evolutionary potentials remain open questions. We used population genetic and phylogenetic approaches to identify genetic differentiation between lineages with independent origins within an allotetraploid fern, Lepisorus nigripes. A total of 352 individuals from 51 populations were collected throughout the distribution range. To examine the genetic structure, multilocus genotyping, Bayesian population structure analysis, and neighbor-net analysis were carried out using single-copy nuclear genes. Phylogenetic trees were constructed to detect recurrent polyploid origins. Proportions of abortive spores were analysed as the measure of postzygotic reproductive isolation. Two genetically distinct lineages, the East-type and the West-type, were distributed mainly in the eastern and western parts, respectively, of the Japanese archipelago. Phylogenetic analyses indicated independent origins of these types and detected additional independent origins within each type. We also revealed limited genetic recombination between both types, even in their sympatric regions. F1 hybrids between the East- and West-types showed a reduction in fertility. It is likely that the East- and West-types formed independently in the eastern and western parts of Japan, respectively. The limited genetic recombination and reduced fertility of hybrids suggest that the two types are at an incipient stage of speciation. Two polyploid lineages with independent geographic origins could develop reproductive isolation barrier(s).
Collapse
Affiliation(s)
- Tao Fujiwara
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
- * E-mail:
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
95
|
Li M, Wang R, Wu X, Wang J. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC Genomics 2020; 21:330. [PMID: 32349676 PMCID: PMC7191788 DOI: 10.1186/s12864-020-6747-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background Allopolyploidy is widespread in angiosperms, and they can coordinate two or more different genomes through genetic and epigenetic modifications to exhibit stronger vigor and adaptability. To explore the changes in homologous gene expression patterns in the natural allotetraploid Brassica napus (AnAnCnCn) relative to its two diploid progenitors, B. rapa (ArAr) and B. oleracea (CoCo), after approximately 7500 years of domestication, the global gene pair expression patterns in four major tissues (stems, leaves, flowers and siliques) of these three species were analyzed using an RNA sequencing approach. Results The results showed that the ‘transcriptomic shock’ phenomenon was alleviated in natural B. napus after approximately 7500 years of natural domestication, and most differentially expressed genes (DEGs) in B. napus were downregulated relative to those in its two diploid progenitors. The KEGG analysis indicated that three pathways related to photosynthesis were enriched in both comparison groups (AnAnCnCn vs ArAr and AnAnCnCn vs CoCo), and these pathways were all downregulated in four tissues of B. napus. In addition, homoeolog expression bias and expression level dominance (ELD) in B. napus were thoroughly studied through analysis of expression levels of 27,609 B. rapa-B. oleracea orthologous gene pairs. The overwhelming majority of gene pairs (an average of 86.7%) in B. napus maintained their expression pattern in two diploid progenitors, and approximately 78.1% of the gene pairs showed expression bias with a preference toward the A subgenome. Overall, an average of 48, 29.7 and 22.3% homologous gene pairs exhibited additive expression, ELD and transgressive expression in B. napus, respectively. The ELD bias varies from tissue to tissue; specifically, more gene pairs in stems and siliques showed ELD-A, whereas the opposite was observed in leaves and flowers. More transgressive upregulation, rather than downregulation, was observed in gene pairs of B. napus. Conclusions In general, these results may provide a comprehensive understanding of the changes in homologous gene expression patterns in natural B. napus after approximately 7500 years of evolution and domestication and may enhance our understanding of allopolyploidy.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
96
|
Sosnowska K, Majka M, Majka J, Bocianowski J, Kasprowicz M, Książczyk T, Szała L, Cegielska-Taras T. Chromosome instabilities in resynthesized Brassica napus revealed by FISH. J Appl Genet 2020; 61:323-335. [PMID: 32318927 PMCID: PMC7413880 DOI: 10.1007/s13353-020-00557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022]
Abstract
Brassica napus is an allopolyploid plant, derived from spontaneous hybridization between Brassica rapa and Brassica oleracea. Intensive breeding has led to a significant reduction in genetic and phenotypic diversity within this species. Newly resynthesized hybrids from progenitor species may restore some diversity in B. napus, but they often are chromosomally and phenotypically unstable. Using fluorescence in situ hybridization, we tested chromosome constitutions in a range of new allopolyploids resynthesized from various parental species. A majority of these allopolyploids were euploid, with the expected chromosome numbers and constitutions, but deviations were also identified. We detected a low level of intergenomic rearrangements in analyzed hybrids and a high level of changes in rDNA loci. Our study revealed a significant effect of maternal cross combination on loss of 35S rDNA loci, especially when B. rapa was the maternal parent. The studied lines were characterized by diversified of pollen viability. In the analyzed hybrids, the erucic acid level in the seed oil ranged from 0 to 43.4% and total glucosinolate content in seeds ranged from 24.3 to 119.2 μmol g−1. Our study shows that cytogenetic analysis of B. napus resynthesized hybrids would be useful in breeding for the selection of lines with important agricultural characters and genetically stable stock seed production.
Collapse
Affiliation(s)
- Katarzyna Sosnowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute - National Research Institute, Strzeszyńska 36, 60-479, Poznań, Poland.
| | - Maciej Majka
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Joanna Majka
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Marta Kasprowicz
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tomasz Książczyk
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Laurencja Szała
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute - National Research Institute, Strzeszyńska 36, 60-479, Poznań, Poland
| | - Teresa Cegielska-Taras
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute - National Research Institute, Strzeszyńska 36, 60-479, Poznań, Poland
| |
Collapse
|
97
|
Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:969-982. [PMID: 31553100 PMCID: PMC7061875 DOI: 10.1111/pbi.13262] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor-bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R-genes harbour more SNPs than variable genes. More nucleotide binding site-leucine-rich repeat (NBS-LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics-based improvement and improved disease resistance.
Collapse
Affiliation(s)
- Aria Dolatabadian
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Bhavna Hurgobin
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
98
|
Scalabrin S, Toniutti L, Di Gaspero G, Scaglione D, Magris G, Vidotto M, Pinosio S, Cattonaro F, Magni F, Jurman I, Cerutti M, Suggi Liverani F, Navarini L, Del Terra L, Pellegrino G, Ruosi MR, Vitulo N, Valle G, Pallavicini A, Graziosi G, Klein PE, Bentley N, Murray S, Solano W, Al Hakimi A, Schilling T, Montagnon C, Morgante M, Bertrand B. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Sci Rep 2020; 10:4642. [PMID: 32170172 PMCID: PMC7069947 DOI: 10.1038/s41598-020-61216-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
The genome of the allotetraploid species Coffea arabica L. was sequenced to assemble independently the two component subgenomes (putatively deriving from C. canephora and C. eugenioides) and to perform a genome-wide analysis of the genetic diversity in cultivated coffee germplasm and in wild populations growing in the center of origin of the species. We assembled a total length of 1.536 Gbp, 444 Mb and 527 Mb of which were assigned to the canephora and eugenioides subgenomes, respectively, and predicted 46,562 gene models, 21,254 and 22,888 of which were assigned to the canephora and to the eugeniodes subgenome, respectively. Through a genome-wide SNP genotyping of 736 C. arabica accessions, we analyzed the genetic diversity in the species and its relationship with geographic distribution and historical records. We observed a weak population structure due to low-frequency derived alleles and highly negative values of Taijma’s D, suggesting a recent and severe bottleneck, most likely resulting from a single event of polyploidization, not only for the cultivated germplasm but also for the entire species. This conclusion is strongly supported by forward simulations of mutation accumulation. However, PCA revealed a cline of genetic diversity reflecting a west-to-east geographical distribution from the center of origin in East Africa to the Arabian Peninsula. The extremely low levels of variation observed in the species, as a consequence of the polyploidization event, make the exploitation of diversity within the species for breeding purposes less interesting than in most crop species and stress the need for introgression of new variability from the diploid progenitors.
Collapse
Affiliation(s)
- Simone Scalabrin
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Lucile Toniutti
- World Coffee Research, 5 avenue du grand chêne, 34270, Saint-Mathieu-de-Tréviers, France.
| | - Gabriele Di Gaspero
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Davide Scaglione
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Gabriele Magris
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy.,University of Udine, Department of Agricultural Food, Environmental and Animal Sciences, via delle scienze 206, I-33100, Udine, Italy
| | - Michele Vidotto
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Sara Pinosio
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy.,Institute of Biosciences and Bioresources, National Research Council, via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Federica Cattonaro
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Federica Magni
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Irena Jurman
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Mario Cerutti
- Luigi Lavazza S.p.A., Innovation Center, I-10156, Torino, Italy
| | - Furio Suggi Liverani
- Illycaffè S.p.A., Research & Innovation, via Flavia 110, I-34147, Trieste, Italy
| | - Luciano Navarini
- Illycaffè S.p.A., Research & Innovation, via Flavia 110, I-34147, Trieste, Italy
| | - Lorenzo Del Terra
- Illycaffè S.p.A., Research & Innovation, via Flavia 110, I-34147, Trieste, Italy
| | | | | | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giorgio Valle
- CRIBI, Università degli Studi di Padova, viale G. Colombo 3, I-35121, Padova, Italy
| | | | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, I-34148, Trieste, Italy
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Nolan Bentley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Seth Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Amin Al Hakimi
- Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Timothy Schilling
- World Coffee Research, 5 avenue du grand chêne, 34270, Saint-Mathieu-de-Tréviers, France
| | - Christophe Montagnon
- World Coffee Research, 5 avenue du grand chêne, 34270, Saint-Mathieu-de-Tréviers, France
| | - Michele Morgante
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy.,University of Udine, Department of Agricultural Food, Environmental and Animal Sciences, via delle scienze 206, I-33100, Udine, Italy
| | - Benoit Bertrand
- CIRAD, IPME, 34 398, Montpellier, France.,UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398, Montpellier, France
| |
Collapse
|
99
|
Zeng D, Guan J, Luo J, Zhao L, Li Y, Chen W, Zhang L, Ning S, Yuan Z, Li A, Zheng Y, Mao L, Liu D, Hao M. A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC PLANT BIOLOGY 2020; 20:97. [PMID: 32131739 PMCID: PMC7057484 DOI: 10.1186/s12870-020-2309-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND In contrast to most animal species, polyploid plant species are quite tolerant of aneuploidy. Here, the global transcriptome of four aneuploid derivatives of a synthetic hexaploid wheat line was acquired, with the goal of characterizing the relationship between gene copy number and transcript abundance. RESULTS For most of the genes mapped to the chromosome involved in aneuploidy, the abundance of transcripts reflected the gene copy number. Aneuploidy had a greater effect on the strength of transcription of genes mapped to the chromosome present in a noneuploid dose than on that of genes mapped elsewhere in the genome. Overall, changing the copy number of one member of a homeologous set had little effect on the abundance of transcripts generated from the set of homeologs as a whole, consistent with the tolerance of aneuploidy exhibited by allopolyploids, whether in the form of a chromosomal deficit (monosomy) or chromosomal excess (trisomy). CONCLUSIONS Our findings shed new light on the genetic regulation of homeoallele transcription and contribute to a deeper understanding of allopolyploid genome evolution, with implications for the breeding of polyploid crops.
Collapse
Affiliation(s)
- Deying Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Jiantao Guan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, 610066, Sichuan, China
| | - Laibin Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Yazhou Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Wenshuai Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Shunzong Ning
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Zhongwei Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Aili Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Long Mao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
100
|
Akiyama R, Milosavljevic S, Leutenegger M, Shimizu-Inatsugi R. Trait-dependent resemblance of the flowering phenology and floral morphology of the allopolyploid Cardamine flexuosa to those of the parental diploids in natural habitats. JOURNAL OF PLANT RESEARCH 2020; 133:147-155. [PMID: 31925575 PMCID: PMC7026219 DOI: 10.1007/s10265-019-01164-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 12/08/2019] [Indexed: 05/24/2023]
Abstract
Allopolyploids possess complete sets of genomes derived from different parental species and exhibit a range of variation in various traits. Reproductive traits may play a key role in the reproductive isolation between allopolyploids and their parental species, thus affecting the thriving of allopolyploids. However, empirical data, especially in natural habitats, comparing reproductive trait variation between allopolyploids and their parental species remain rare. Here, we documented the flowering phenology and floral morphology of the allopolyploid wild plant Cardamine flexuosa and its diploid parents C. amara and C. hirsuta in their native range in Switzerland. The flowering of C. flexuosa started at an intermediate time compared with those of the parents and the flowering period of C. flexuosa overlapped with those of the parents. Cardamine flexuosa resembled C. hirsuta in the size of flowers and petals and the length/width ratio of petals, while it resembled C. amara in the length/width ratio of flowers. These results provide empirical evidence of the trait-dependent variation of allopolyploid phenotypes in natural habitats at the local scale. They also suggest that the variation in some reproductive traits in C. flexuosa is associated with self-fertilization. Therefore, it is helpful to consider the mating system in furthering the understanding of the processes that may have shaped trait variation in polyploids in nature.
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland
| | - Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland
| | - Matthias Leutenegger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland.
| |
Collapse
|