51
|
An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121. THE NEW PHYTOLOGIST 2017; 214:1245-1259. [PMID: 28134437 DOI: 10.1111/nph.14442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/16/2016] [Indexed: 05/17/2023]
Abstract
Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
52
|
Wang N, Stelinski LL, Pelz-Stelinski KS, Graham JH, Zhang Y. Tale of the Huanglongbing Disease Pyramid in the Context of the Citrus Microbiome. PHYTOPATHOLOGY 2017; 107:380-387. [PMID: 28095208 DOI: 10.1094/phyto-12-16-0426-rvw] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Huanglongbing (HLB) disease pyramid is composed of Liberibacters, psyllid vectors, citrus hosts, and the environment. The epidemiological outcomes for Liberibacter-associated plant diseases are collectively determined by the inherent relationships among plant-Liberibacters-psyllids, and how various environmental factors affect plant-Liberibacter-psyllid interactions. Citrus-Liberibacter-psyllid interactions occur in a complex microbiome system. In this review, we focus on the progress in understanding the HLB disease pyramid, and how the microbiome affects the HLB disease pyramid including the interaction between HLB and the citrus microbiome; the interaction between Liberibacters and psyllids; the interaction between Liberibacters and gut microbiota in psyllids; and the effect of HLB on selected above- and belowground citrus pathogens. Their implications for HLB management are also discussed.
Collapse
Affiliation(s)
- Nian Wang
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - Lukasz L Stelinski
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - Kirsten S Pelz-Stelinski
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - James H Graham
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - Yunzeng Zhang
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| |
Collapse
|
53
|
Calil IP, Fontes EPB. Plant immunity against viruses: antiviral immune receptors in focus. ANNALS OF BOTANY 2017; 119:711-723. [PMID: 27780814 PMCID: PMC5604577 DOI: 10.1093/aob/mcw200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/05/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. SCOPE AND CONCLUSION This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement.
Collapse
Affiliation(s)
- Iara P. Calil
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
- For correspondence. E-mail
| |
Collapse
|
54
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
55
|
Nie P, Li X, Wang S, Guo J, Zhao H, Niu D. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:238. [PMID: 28293243 PMCID: PMC5329000 DOI: 10.3389/fpls.2017.00238] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/08/2017] [Indexed: 05/18/2023]
Abstract
Induced resistance response is a potent and cost effective plant defense against pathogen attack. The effectiveness and underlying mechanisms of the suppressive ability by Bacillus cereus AR156 to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis has been investigated previously; however, the strength of induced systemic resistance (ISR) activity against Botrytis cinerea remains unknown. Here, we show that root-drench application of AR156 significantly reduces disease incidence through activation of ISR. This protection is accompanied with multilayered ISR defense response activated via enhanced accumulation of PR1 protein expression in a timely manner, hydrogen peroxide accumulation and callose deposition, which is significantly more intense in plants with both AR156 pretreatment and B. cinerea inoculation than that in plants with pathogen inoculation only. Moreover, AR156 can trigger ISR in sid2-2 and NahG mutants, but not in jar1, ein2 and npr1 mutant plants. Our results indicate that AR156-induced ISR depends on JA/ET-signaling pathway and NPR1, but not SA. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1/WRKY53 gene expression, both of which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). The results indicate that AR156 can induce ISR by the JA/ET-signaling pathways in an NPR1-dependent manner and involves multiple PTI components.
Collapse
Affiliation(s)
- Pingping Nie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Xia Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Shune Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| |
Collapse
|
56
|
Hoysted GA, Lilley CJ, Field KJ, Dickinson M, Hartley SE, Urwin PE. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid. FRONTIERS IN PLANT SCIENCE 2017; 8:1897. [PMID: 29209337 PMCID: PMC5701616 DOI: 10.3389/fpls.2017.01897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/19/2017] [Indexed: 05/22/2023]
Abstract
Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L.) host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida), and a phloem-sucking herbivore (Myzus persicae). The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA) increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.
Collapse
Affiliation(s)
- Grace A. Hoysted
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Katie J. Field
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Sue E. Hartley
- Department of Biology, University of York, York, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- *Correspondence: Peter E. Urwin,
| |
Collapse
|
57
|
Lv S, Wang Z, Yang X, Guo L, Qiu D, Zeng H. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1818. [PMID: 27990152 PMCID: PMC5131010 DOI: 10.3389/fpls.2016.01818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/18/2016] [Indexed: 05/05/2023]
Abstract
MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
58
|
Molla KA, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Datta K. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:105-114. [PMID: 27457988 DOI: 10.1016/j.plantsci.2016.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 05/20/2023]
Abstract
Rice sheath blight disease, caused by the fungus Rhizoctonia solani, is considered the second most important disease of rice after blast. NPR1 (non expressor of PR1) is the central regulator of systemic acquired resistance (SAR) conferring broad spectrum resistance to various pathogens. Previous reports have indicated that constitutive expression of the Arabidopsis thaliana NPR1 (AtNPR1) gene results in disease resistance in rice but has a negative impact on growth and agronomic traits. Here, we report that green tissue-specific expression of AtNPR1 in rice confers resistance to the sheath blight pathogen, with no concomitant abnormalities in plant growth and yield parameters. Elevated levels of NPR1 activated the defence pathway in the transgenic plants by inducing expression of endogenous genes such as PR1b, RC24, and PR10A. Enhanced sheath blight resistance of the transgenic plants was evaluated using three different bioassay systems. A partially isolated toxin from R. solani was used in the bioassays to measure the resistance level. Studies of the phenotype and yield showed that the transgenic plants did not exhibit any kind of phenotypic imbalances. Our results demonstrate that green tissue-specific expression of AtNPR1 is an effective strategy for controlling the sheath blight pathogen. The present work in rice can be extended to other crop plants severely damaged by the pathogen.
Collapse
Affiliation(s)
- Kutubuddin Ali Molla
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Palas Kumar Chanda
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Center for Diabetes Research, The Methodist Hospital Research Institute, 6670 Bertner, Houston, TX 77030, USA
| | - Sailendra Nath Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Swapan Kumar Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Visva Bharati University, Santiniketan, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
59
|
Ko M, Cho JH, Seo HH, Lee HH, Kang HY, Nguyen TS, Soh HC, Kim YS, Kim JI. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. PLANTA 2016; 244:379-92. [PMID: 27074836 DOI: 10.1007/s00425-016-2514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/30/2016] [Indexed: 05/10/2023]
Abstract
Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.
Collapse
Affiliation(s)
- Moonkyung Ko
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Jung Hyun Cho
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyo-Hyoun Seo
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyun-Hwa Lee
- Department of Biology, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Ha-Young Kang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Thai Son Nguyen
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyun Cheol Soh
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
60
|
Herrera Paredes S, Lebeis SL. Giving back to the community: microbial mechanisms of plant–soil interactions. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12684] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sur Herrera Paredes
- Department of Biology Howard Hughes Medical Institute, Curriculum in Bioinformatics and Computational Biology University of North Carolina Chapel Hill North Carolina 27599‐3280 USA
| | - Sarah L. Lebeis
- Department of Microbiology University of Tennessee Knoxville Tennessee 37996‐0845 USA
| |
Collapse
|
61
|
Langenbach C, Campe R, Beyer SF, Mueller AN, Conrath U. Fighting Asian Soybean Rust. FRONTIERS IN PLANT SCIENCE 2016; 7:797. [PMID: 27375652 PMCID: PMC4894884 DOI: 10.3389/fpls.2016.00797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/22/2016] [Indexed: 05/18/2023]
Abstract
Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a major threat to global soybean production. Though several R genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed for SBR control. In this article, we discuss the different approaches for fighting SBR and their potential, disadvantages, and advantages over other measures. These encompass conventional breeding for SBR resistance, transgenic approaches, exploitation of transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS, and biocontrol strategies. It seems that an integrating approach exploiting different measures is likely to provide the best possible means for the effective control of SBR.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Ruth Campe
- BASF Plant Science Company GmbHLimburgerhof, Germany
| | | | - André N. Mueller
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
62
|
A 2-Cys peroxiredoxin in response to oxidative stress in the pine wood nematode, Bursaphelenchus xylophilus. Sci Rep 2016; 6:27438. [PMID: 27271000 PMCID: PMC4895224 DOI: 10.1038/srep27438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2) and salicylic acid levels. Correspondingly, the expression of an antioxidative enzyme, 2-Cysteine peroxiredoxin (BxPrx), was elevated in B. xylophilus following the H2O2 treatments. Recombinant BxPrx, a thermal stabile and pH tolerant enzyme, exhibited high level of antioxidant activity against H2O2, suggesting that it is capable of protecting cells from free radical attacks. Immunohistochemical localization study showed that BxPrx was broadly expressed across different tissues and could be secreted outside the nematode. Finally, the number of BxPrx homologs in both dauer-like and fungi-feeding B. xylophilus were comparable based on bioinformatics analysis of existing EST libraries, indicating a potential role of BxPrx in both propagative and dispersal nematodes. These combined results suggest that BxPrx is a key genetic factor facilitating the infestation and distribution of B. xylophilus within pine hosts, and consequently the spread of pine wilt disease.
Collapse
|
63
|
Garroum I, Bidzinski P, Daraspe J, Mucciolo A, Humbel BM, Morel JB, Nawrath C. Cuticular Defects in Oryza sativa ATP-binding Cassette Transporter G31 Mutant Plants Cause Dwarfism, Elevated Defense Responses and Pathogen Resistance. PLANT & CELL PHYSIOLOGY 2016; 57:1179-88. [PMID: 27121976 DOI: 10.1093/pcp/pcw066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/23/2016] [Indexed: 05/23/2023]
Abstract
The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between plant and environment. Homologs of the ATP-binding cassette (ABC) transporter AtABCG32/HvABCG31 clade are necessary for the formation of a functional cuticle in both monocots and dicots. Here we characterize the osabcg31 knockout mutant and hairpin RNA interference (RNAi)-down-regulated OsABCG31 plant lines having reduced plant growth and a permeable cuticle. The reduced content of cutin in leaves and structural alterations in the cuticle and at the cuticle-cell wall interface in plants compromised in OsABCG31 expression explain the cuticle permeability. Effects of modifications of the cuticle on plant-microbe interactions were evaluated. The cuticular alterations in OsABCG31-compromised plants did not cause deficiencies in germination of the spores or the formation of appressoria of Magnaporthe oryzae on the leaf surface, but a strong reduction of infection structures inside the plant. Genes involved in pathogen resistance were constitutively up-regulated in OsABCG31-compromised plants, thus being a possible cause of the resistance to M. oryzae and the dwarf growth phenotype. The findings show that in rice an abnormal cuticle formation may affect the signaling of plant growth and defense.
Collapse
Affiliation(s)
- Imène Garroum
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Przemyslaw Bidzinski
- INRA, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France Present address: INRA, SupAgro, UMR-BPMP, Bat. 7, 2 place Pierre Viala, 34060 Montpellier, Cedex 2, France
| | - Jean Daraspe
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Bruno M Humbel
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jean-Benoit Morel
- INRA, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
64
|
Jiang CH, Fan ZH, Xie P, Guo JH. Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis. Front Microbiol 2016; 7:664. [PMID: 27242694 PMCID: PMC4876362 DOI: 10.3389/fmicb.2016.00664] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 01/30/2023] Open
Abstract
Non-host resistance (NHR) is a broad-spectrum plant defense. Upon colonizing on the surface on the root or leaves of non-host species, pathogens initial encounter preform and induce defense response in plant, such as induced hypersensitive response, PAMPs triggered immunity (PTI), and effector triggered immunity (ETI). The ability of plants to develop an induced systemic response (ISR) in reaction to the colonization by non-pathogenic rhizobacterium depends on interactions between host plants and the colonizing rhizobacterium, and the ISR also can be defined as a NHR. However, how the colonization signal is and how systemic resistance to pathogens is developed is still unclear. In this study, we demonstrated that the extracellular polysaccharides (EPSs) of Bacillus cereus AR156 could act as novel microbe-associated molecular patterns (MAMPs) and function in the early perception status of the ISR of B. cereus AR156. The results revealed that B. cereus AR156 EPS could induce systemic resistance to Pst DC3000 in Arabidopsis. Cellular defense response markers such as hydrogen peroxide accumulation, callose deposition, and defense-associated enzyme were induced upon challenge inoculation in the leaves primed by EPS. Moreover, the defense-related genes PR1, PR2, and PR5 and mitogen-activated kinases (MAPK) cascade marker gene MPK6 were concurrently expressed in the leaves of EPS-treated plants and induced higher resistance to Pst DC3000 in Col-0 than that in the jar1 or etr1 mutants. The protection was absent in the NahG transgenic plants and npr1 mutant, suggesting an activation of the salicylic acid (SA)- and the MAPK-dependent signaling pathways with NPR1-dependent by B. cereus AR156 EPS. In conclusion, B. cereus AR156 EPS play an important role in MAMP perception during the process of rhizobacteria-triggered NHR. This study is the first to illustrate how AR156 induces systemic resistance to Pst DC3000 in Arabidopsis. It also provides the first explanation of how plants perceive colonization of non-pathogenic bacteria and how rhizobacteria trigger ISR to plant pathogens.
Collapse
Affiliation(s)
- Chun-Hao Jiang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing Agricultural University Nanjing, China
| | - Zhi-Hang Fan
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing Agricultural University Nanjing, China
| | - Ping Xie
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing Agricultural University Nanjing, China
| | - Jian-Hua Guo
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
65
|
Buono RA, Paez-Valencia J, Miller ND, Goodman K, Spitzer C, Spalding EP, Otegui MS. Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. PLANT PHYSIOLOGY 2016; 171:251-64. [PMID: 26983994 PMCID: PMC4854716 DOI: 10.1104/pp.16.00240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 05/19/2023]
Abstract
SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1-12). Within the ISTL1-6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julio Paez-Valencia
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan D Miller
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kaija Goodman
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Christoph Spitzer
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edgar P Spalding
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
66
|
Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR, Wang Y, James GV, Griebel T, Alcázar R, Tsuda K, Schneeberger K, Parker JE. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genet 2016; 12:e1005990. [PMID: 27082651 PMCID: PMC4833295 DOI: 10.1371/journal.pgen.1005990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. Plants tune their cellular and developmental programs to different environmental stimuli. Central players in the plant biotic stress response network are intracellular NLR receptors which intercept specific disease-inducing molecules (effectors) produced by pathogenic microbes. Variation in NLR gene repertoires between plant genetic lines is driven by pathogen selection pressure. One evolutionary question is how new, functional NLRs are assembled within a plant genome without mis-activating defense pathways, which can have strong negative effects on growth and fitness. This study focuses on a large, polymorphic sub-class of NLR receptors called TNLs present in dicotyledenous plant lineages. TNL receptors confer immunity to a broad range of pathogens. They also frequently underlie autoimmunity caused by their mis-regulation or deleterious allelic interactions with other genes in crosses between different genetic lines (hybrid incompatibility, HI). TNL pathogen-triggered and autoimmune responses require the conserved nucleocytoplasmic protein EDS1 to transcriptionally reprogram cells for defense. We discover in Arabidopsis thaliana that high levels of nuclear-enriched EDS1 induce transcriptional activation of defenses and growth inhibition without a pathogen effector stimulus. In a mutational screen, we identify one rapidly evolving TNL gene, DM2hLer, as a driver of nuclear EDS1 autoimmunity. DM2hLer also contributes to two separate cases of EDS1-dependent autoimmunity. Genetic cooperation between DM2hLer and EDS1 suggests a functional relationship in the transcriptional feed-forward regulation of defense pathways.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
- * E-mail: (JS); (JEP)
| | - Nora Peine
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana V. Garcia
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christine Wagner
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Sayan R. Choudhury
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Griebel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail: (JS); (JEP)
| |
Collapse
|
67
|
Dong OX, Meteignier LV, Plourde MB, Ahmed B, Wang M, Jensen C, Jin H, Moffett P, Li X, Germain H. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:247-57. [PMID: 26713351 DOI: 10.1094/mpmi-11-15-0246-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.
Collapse
Affiliation(s)
- Oliver X Dong
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | | | - Melodie B Plourde
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Bulbul Ahmed
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Ming Wang
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | | | - Hailing Jin
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | - Peter Moffett
- 3 Department of Biology, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Xin Li
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | - Hugo Germain
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| |
Collapse
|
68
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
69
|
Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, Zhao H. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1 -and SA-dependent signaling pathway. Biochem Biophys Res Commun 2016; 469:120-125. [DOI: 10.1016/j.bbrc.2015.11.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
|
70
|
Jiang CH, Huang ZY, Xie P, Gu C, Li K, Wang DC, Yu YY, Fan ZH, Wang CJ, Wang YP, Guo YH, Guo JH. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:157-74. [PMID: 26433201 DOI: 10.1093/jxb/erv445] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The activation of both the SA and JA/ETsignalling pathways may lead to more efficient general and broad resistance to Pst DC3000 by non-pathogenic rhizobacteria. However, the mechanisms that govern this simultaneous activation are unclear. Using Arabidopsis as a model system, two transcription factors, WRKY11 and WRKY70, were identified as important regulators involved in Induced Systemic Resistance (ISR) triggered by Bacillus cereus AR156. The results revealed that AR156 treatment significantly stimulated the transcription of WRKY70, but suppressed that of WRKY11 in Arabidopsis leaves. Furthermore, they were shown to be required for AR156 enhancing the activation of cellular defence responses and the transcription level of the plant defence response gene. Overexpression of the two transcription factors in Arabidopsis also showed that they were essential for AR156 to elicit ISR. AR156-triggered ISR was completely abolished in the double mutant of the two transcription factors, but still partially retained in the single mutants, indicating that the regulation of the two transcription factors depend on two different pathways. The target genes of the two transcription factors and epistasis analysis suggested that WRKY11 regulated AR156-triggered ISR through activating the JA signalling pathway, and WRKY70 regulated the ISR through activating the SA signalling pathway. In addition, both WRKY11 and WRKY70 modulated AR156-triggered ISR in a NPR1-dependent manner. In conclusion, WRKY11 and WRKY70 played an important role in regulating the signalling transduction pathways involved in AR156-triggered ISR. This study is the first to illustrate the mechanism by which a single rhizobacterium elicits ISR by simultaneously activating both the SA and JA/ET signalling pathways.
Collapse
Affiliation(s)
- Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Zi-Yang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Ping Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Chun Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Ke Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Da-Chen Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Zhi-Hang Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Chun-Juan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China Plant Protection Station of Guangxi Zhuang Autonomous Region, Nanning Guangxi 530022, People's Republic of China
| | - Yun-Peng Wang
- Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Ya-Hui Guo
- Agriculture Institute, Hebei University of Engineering, Handan 056021, People's Republic of China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| |
Collapse
|
71
|
Kato H, Komeda Y, Saito T, Ito H, Kato A. Role of the ACL2 locus in flower stalk elongation in Arabidopsis thaliana. Genes Genet Syst 2015; 90:163-74. [PMID: 26510571 DOI: 10.1266/ggs.90.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The acaulis2 (acl2) mutant of Arabidopsis thaliana shows a defect in flower stalk elongation. We identified the mutation point of acl2 by map-based cloning. The ACL2 locus is located within an approximately 320-kb region at around 100 map units on chromosome 1. One nucleotide substitution was detected in this region in the acl2 mutant, but no significant open reading frames were found around this mutation point. When wild-type DNA fragments containing the mutation point were introduced into acl2 mutant plants, some transgenic plants partially or almost completely recovered from the defect in flower stalk elongation. 3'-RACE experiments showed that bidirectional transcripts containing the acl2 mutation point were expressed, and the Plant MPSS database revealed that several small RNAs were produced from this region. Microarray analysis showed that transcription of many genes is activated in flower stalks of acl2 mutant plants. Overexpression of some of these genes caused a dwarf phenotype in wild-type plants. These results suggest the following novel mechanism for control of the elongation of flower stalks. Bidirectional non-coding RNAs are transcribed from the ACL2 locus, and small RNAs are generated from them in flower stalks. These small RNAs repress the transcription of a set of genes whose expression represses flower stalk elongation, and flower stalks are therefore fully elongated.
Collapse
Affiliation(s)
- Hiroaki Kato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University
| | | | | | | | | |
Collapse
|
72
|
Profile of Xinnian Dong. Proc Natl Acad Sci U S A 2015; 112:11144-5. [PMID: 26305971 DOI: 10.1073/pnas.1514692112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
73
|
Meur G, Shukla P, Dutta-Gupta A, Kirti P. Characterization of Brassica juncea–Alternaria brassicicola interaction and jasmonic acid carboxyl methyl transferase expression. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
74
|
Mozgová I, Wildhaber T, Liu Q, Abou-Mansour E, L'Haridon F, Métraux JP, Gruissem W, Hofius D, Hennig L. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. NATURE PLANTS 2015; 1:15127. [PMID: 27250680 DOI: 10.1038/nplants.2015.127] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/03/2015] [Indexed: 05/21/2023]
Abstract
Plants have evolved efficient defence systems against pathogens that often rely on specific transcriptional responses. Priming is part of the defence syndrome, by establishing a hypersensitive state of defence genes such as after a first encounter with a pathogen. Because activation of defence responses has a fitness cost, priming must be tightly controlled to prevent spurious activation of defence. However, mechanisms that repress defence gene priming are poorly understood. Here, we show that the histone chaperone CAF-1 is required to establish a repressed chromatin state at defence genes. Absence of CAF-1 results in spurious activation of a salicylic acid-dependent pathogen defence response in plants grown under non-sterile conditions. Chromatin at defence response genes in CAF-1 mutants under non-inductive (sterile) conditions is marked by low nucleosome occupancy and high H3K4me3 at transcription start sites, resembling chromatin in primed wild-type plants. We conclude that CAF-1-mediated chromatin assembly prevents the establishment of a primed state that may under standard non-sterile growth conditions result in spurious activation of SA-dependent defence responses and consequential reduction of plant vigour.
Collapse
Affiliation(s)
- Iva Mozgová
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich CH-8092, Switzerland
| | - Qinsong Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Eliane Abou-Mansour
- Department of Biology, University of Fribourg, Ch. du Musée 10, Fribourg 1700, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Ch. du Musée 10, Fribourg 1700, Switzerland
| | - Jean-Pierre Métraux
- Department of Biology, University of Fribourg, Ch. du Musée 10, Fribourg 1700, Switzerland
| | - Wilhelm Gruissem
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich CH-8092, Switzerland
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| |
Collapse
|
75
|
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015; 349:860-4. [PMID: 26184915 DOI: 10.1126/science.aaa8764] [Citation(s) in RCA: 661] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.
Collapse
Affiliation(s)
- Sarah L Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA. Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - Sur Herrera Paredes
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Derek S Lundberg
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Natalie Breakfield
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Jase Gehring
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Meredith McDonald
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Stephanie Malfatti
- Joint Genome Institute, U.S. Department of Energy, Walnut Creek, CA, USA
| | | | - Corbin D Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Susannah G Tringe
- Joint Genome Institute, U.S. Department of Energy, Walnut Creek, CA, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
76
|
Domínguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. PLANT PHYSIOLOGY 2015; 168:1106-21. [PMID: 25944825 PMCID: PMC4741324 DOI: 10.1104/pp.15.00537] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 05/02/2023]
Abstract
The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-interacting receptor-like kinase) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of suppressor of BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.
Collapse
Affiliation(s)
- Ana Domínguez-Ferreras
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Marta Kiss-Papp
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Anna Kristina Jehle
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Georg Felix
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Delphine Chinchilla
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| |
Collapse
|
77
|
Jiménez-Guerrero I, Pérez-Montaño F, Monreal JA, Preston GM, Fones H, Vioque B, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:790-9. [PMID: 25775271 DOI: 10.1094/mpmi-01-15-0020-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.
Collapse
Affiliation(s)
| | | | - José Antonio Monreal
- 2 Departamento de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Gail M Preston
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Helen Fones
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Blanca Vioque
- 4 Departamento de Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Avda. Padre García Tejero, 4, 41012, Sevilla, Spain
| | | | | |
Collapse
|
78
|
Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. MOLECULAR PLANT PATHOLOGY 2015; 16:529-40. [PMID: 25220680 PMCID: PMC6638471 DOI: 10.1111/mpp.12204] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones.
Collapse
Affiliation(s)
- Mazen Alazem
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan
| | | |
Collapse
|
79
|
Reitz MU, Gifford ML, Schäfer P. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2187-97. [PMID: 25821072 PMCID: PMC4986725 DOI: 10.1093/jxb/erv106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 05/27/2023]
Abstract
Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.
Collapse
Affiliation(s)
- M U Reitz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - M L Gifford
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - P Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
80
|
Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC. Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 2015; 15:506-13. [PMID: 24721578 DOI: 10.1016/j.chom.2014.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 11/27/2013] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
In plants, the activation of immunity is often inversely correlated with growth. Mechanisms that control plant growth in the context of pathogen challenge and immunity are unclear. Investigating Arabidopsis infection with the powdery mildew fungus, we find that the Arabidopsis atypical E2F DEL1, a transcriptional repressor known to promote cell proliferation, represses accumulation of the hormone salicylic acid (SA), an established regulator of plant immunity. DEL1-deficient plants are more resistant to pathogens and slightly smaller than wild-type. The resistance and size phenotypes of DEL1-deficient plants are due to the induction of SA and activation of immunity in the absence of pathogen challenge. Moreover, Enhanced Disease Susceptibility 5 (EDS5), a SA transporter required for elevated SA and immunity, is a direct repressed target of DEL1. Together, these findings indicate that DEL1 control of SA levels contributes to regulating the balance between growth and immunity in developing leaves.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Joshua Rickert
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Yingxiang Huang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Michael A Steinwand
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Sharon K Marr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
81
|
Antignani V, Klocko AL, Bak G, Chandrasekaran SD, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. THE PLANT CELL 2015; 27:243-61. [PMID: 25634989 PMCID: PMC4330583 DOI: 10.1105/tpc.114.134262] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/28/2014] [Accepted: 01/09/2015] [Indexed: 05/19/2023]
Abstract
Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses.
Collapse
Affiliation(s)
- Vincenzo Antignani
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amy L Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suma D Chandrasekaran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Taylor Dunivin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
82
|
Gargul JM, Mibus H, Serek M. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:51-61. [PMID: 25082411 DOI: 10.1111/pbi.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 05/02/2023]
Abstract
The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR.
Collapse
Affiliation(s)
- Joanna Maria Gargul
- Horticulture Production Systems, Section Floriculture, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | | | | |
Collapse
|
83
|
Furniss JJ, Spoel SH. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:154. [PMID: 25821454 PMCID: PMC4358073 DOI: 10.3389/fpls.2015.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 05/19/2023]
Abstract
Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.
Collapse
Affiliation(s)
| | - Steven H. Spoel
- *Correspondence: Steven H. Spoel, Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
84
|
Vos IA, Moritz L, Pieterse CMJ, Van Wees SCM. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:639. [PMID: 26347758 PMCID: PMC4538242 DOI: 10.3389/fpls.2015.00639] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/02/2015] [Indexed: 05/18/2023]
Abstract
The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA) are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses.
Collapse
Affiliation(s)
| | | | | | - Saskia C. M. Van Wees
- *Correspondence: Saskia C. M. Van Wees, Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P. O. Box 800.56, Kruyt Building, Padualaan 8, 3508 TB Utrecht, Netherlands,
| |
Collapse
|
85
|
Huang PY, Zimmerli L. Enhancing crop innate immunity: new promising trends. FRONTIERS IN PLANT SCIENCE 2014; 5:624. [PMID: 25414721 PMCID: PMC4222232 DOI: 10.3389/fpls.2014.00624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/22/2014] [Indexed: 05/23/2023]
Abstract
Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI) response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs), plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signaling.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Laurent Zimmerli
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
86
|
Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16955-60. [PMID: 25368167 DOI: 10.1073/pnas.1410031111] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life.
Collapse
|
87
|
Carstens M, McCrindle TK, Adams N, Diener A, Guzha DT, Murray SL, Parker JE, Denby KJ, Ingle RA. Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature. PLoS One 2014; 9:e109853. [PMID: 25303634 PMCID: PMC4193848 DOI: 10.1371/journal.pone.0109853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/04/2014] [Indexed: 11/20/2022] Open
Abstract
The Arabidopsis constitutive induced resistance 1 (cir1) mutant displays salicylic acid (SA)-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4). We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network. In light of this finding we examined EDS1 expression in cir1 and observed increased protein, but not mRNA levels in this mutant, suggesting that CIR1 might act as a negative regulator of EDS1 via a post-transcriptional mechanism. Finally, as environmental temperature is known to influence the outcome of plant-pathogen interactions, we analysed cir1 plants grown at 18, 22 or 25°C. We found that susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 is modulated by temperature in cir1. Greatest resistance to this pathogen (relative to PR-1:LUC control plants) was observed at 18°C, while at 25°C no difference in susceptibility between cir1 and control plants was apparent. The increase in resistance to Pst DC3000 at 18°C correlated with a stunted growth phenotype, suggesting that activation of defence responses may be enhanced at lower temperatures in the cir1 mutant.
Collapse
Affiliation(s)
- Maryke Carstens
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Tyronne K. McCrindle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Nicolette Adams
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Anastashia Diener
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Delroy T. Guzha
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Shane L. Murray
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Jane E. Parker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Katherine J. Denby
- School of Life Sciences and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- * E-mail:
| |
Collapse
|
88
|
Wang Q, Liu Y, He J, Zheng X, Hu J, Liu Y, Dai H, Zhang Y, Wang B, Wu W, Gao H, Zhang Y, Tao X, Deng H, Yuan D, Jiang L, Zhang X, Guo X, Cheng X, Wu C, Wang H, Yuan L, Wan J. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun 2014; 5:4768. [PMID: 25203424 PMCID: PMC4164775 DOI: 10.1038/ncomms5768] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Rice stripe virus (RSV) causes one of the most serious viral diseases of rice (Oryza sativa L.), but the molecular basis of RSV resistance has remained elusive. Here we show that the resistant allele of rice STV11 (STV11-R) encodes a sulfotransferase (OsSOT1) catalysing the conversion of salicylic acid (SA) into sulphonated SA (SSA), whereas the gene product encoded by the susceptible allele STV11-S loses this activity. Sequence analyses suggest that the STV11-R and STV11-S alleles were predifferentiated in different geographic populations of wild rice, Oryza rufipogon, and remained prevalent in cultivated indica and japonica rice varieties, respectively. Introgression of the STV11-R allele into susceptible cultivars or heterologous transfer of STV11-R into tobacco plants confers effective resistance against RSV. Our results shed new insights into plant viral defense mechanisms and suggest effective means of breeding RSV-resistant crops using molecular marker-assisted selection or genetic engineering.
Collapse
Affiliation(s)
- Qi Wang
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- These authors contributed equally to this work
| | - Yuqiang Liu
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- These authors contributed equally to this work
| | - Jun He
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinlong Hu
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanling Liu
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Dai
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingxin Zhang
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoxiang Wang
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixun Wu
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - He Gao
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhui Zhang
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huafeng Deng
- National Hybrid Rice R&D Center, Changsha 410125, China
| | - Dingyang Yuan
- National Hybrid Rice R&D Center, Changsha 410125, China
| | - Ling Jiang
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianian Cheng
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Longping Yuan
- National Hybrid Rice R&D Center, Changsha 410125, China
| | - Jianmin Wan
- National key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
89
|
Sade D, Sade N, Shriki O, Lerner S, Gebremedhin A, Karavani A, Brotman Y, Osorio S, Fernie AR, Willmitzer L, Czosnek H, Moshelion M. Water Balance, Hormone Homeostasis, and Sugar Signaling Are All Involved in Tomato Resistance to Tomato Yellow Leaf Curl Virus. PLANT PHYSIOLOGY 2014; 165:1684-1697. [PMID: 24989233 PMCID: PMC4119048 DOI: 10.1104/pp.114.243402] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/01/2014] [Indexed: 05/22/2023]
Abstract
Vacuolar water movement is largely controlled by membrane channels called tonoplast-intrinsic aquaporins (TIP-AQPs). Some TIP-AQP genes, such as TIP2;2 and TIP1;1, are up-regulated upon exposure to biotic stress. Moreover, TIP1;1 transcript levels are higher in leaves of a tomato (Solanum lycopersicum) line resistant to Tomato yellow leaf curl virus (TYLCV) than in those of a susceptible line with a similar genetic background. Virus-induced silencing of TIP1;1 in the tomato resistant line and the use of an Arabidopsis (Arabidopsis thaliana) tip1;1 null mutant showed that resistance to TYLCV is severely compromised in the absence of TIP1:1. Constitutive expression of tomato TIP2;2 in transgenic TYLCV-susceptible tomato and Arabidopsis plants was correlated with increased TYLCV resistance, increased transpiration, decreased abscisic acid levels, and increased salicylic acid levels at the early stages of infection. We propose that TIP-AQPs affect the induction of leaf abscisic acid, which leads to increased levels of transpiration and gas exchange, as well as better salicylic acid signaling.
Collapse
Affiliation(s)
- Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Nir Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Oz Shriki
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Stephen Lerner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Alem Gebremedhin
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Asaf Karavani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Yariv Brotman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Sonia Osorio
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Alisdair R Fernie
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Lothar Willmitzer
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel (D.S., N.S., O.S., S.L., A.G., A.K., H.C., M.M.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (Y.B., S.O., A.R.F., L.W.)
| |
Collapse
|
90
|
Sašek V, Janda M, Delage E, Puyaubert J, Guivarc'h A, López Maseda E, Dobrev PI, Caius J, Bóka K, Valentová O, Burketová L, Zachowski A, Ruelland E. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. THE NEW PHYTOLOGIST 2014; 203:805-16. [PMID: 24758581 DOI: 10.1111/nph.12822] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/22/2014] [Indexed: 05/08/2023]
Abstract
Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.
Collapse
Affiliation(s)
- Vladimír Sašek
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, Prague, 165 02, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nat Commun 2014; 4:2558. [PMID: 24153405 DOI: 10.1038/ncomms3558] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022] Open
Abstract
Proteins containing nucleotide-binding and leucine-rich repeat domains (NB-LRRs) serve as immune receptors in plants and animals. Negative regulation of immunity mediated by NB-LRR proteins is crucial, as their overactivation often leads to autoimmunity. Here we describe a new mutant, snc1-enhancing (muse) forward genetic screen, targeting unknown negative regulators of NB-LRR-mediated resistance in Arabidopsis. From the screen, we identify MUSE5, which is renamed as AtPAM16 because it encodes the ortholog of yeast PAM16, part of the mitochondrial inner membrane protein import motor. Consistently, AtPAM16-GFP localizes to the mitochondrial inner membrane. AtPAM16L is a paralog of AtPAM16. Double mutant Atpam16-1 Atpam16l is lethal, indicating that AtPAM16 function is essential. Single mutant Atpam16 plants exhibit a smaller size and enhanced resistance against virulent pathogens. They also display elevated reactive oxygen species (ROS) accumulation. Therefore, AtPAM16 seems to be involved in importing a negative regulator of plant immunity into mitochondria, thus protecting plants from over-accumulation of ROS and preventing autoimmunity.
Collapse
|
92
|
Sato Y, Ando S, Takahashi H. Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to Cucumber mosaic virus. PLoS One 2014; 9:e99041. [PMID: 24915153 PMCID: PMC4051679 DOI: 10.1371/journal.pone.0099041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/04/2014] [Indexed: 11/19/2022] Open
Abstract
The accumulation of RCY1 protein, which is encoded by RESISTANCE TO CMV(Y) (RCY1), a CC-NB-LRR class R-gene, is tightly correlated with the strength of the resistance to a yellow strain of Cucumber mosaic virus [CMV(Y)] in Arabidopsis thaliana. In order to enhance resistance to CMV by overexpression of RCY1, A. thaliana was transformed with intron-less RCY1 cDNA construct under the control of strong CaMV35S promoter. Remarkably, a relative amount of RCY1 protein accumulation in the transformants was much lower than that in plants expressing genomic RCY1 under the control of its native promoter. To identify a regulatory element of RCY1 that could cause such differential levels of RCY1 accumulation, a series of RCY1 cDNA and genomic RCY1 constructs were transiently expressed in Nicotiana benthamiana leaves by the Agrobacterium-mediated infiltration method. Comparative analysis of the level of RCY1 accumulation in the leaf tissues transiently expressing each construct indicated that the intron located in the RCY1-coding region of genomic RCY1, but not the native RCY1 genomic promoter or the 5'-and 3'-untranslated regions of RCY1, was indispensable for high level RCY1 accumulation. The increased levels of RCY1 accelerated plant disease defense reactions. Interestingly, such intron-mediated enhancement of RCY1 accumulation depended neither on the abundance of the RCY1 transcript nor on the RCY1 specific-intron sequence. Taken together, intron-mediated RCY1 expression seems to play a key role in the expression of complete resistance to CMV(Y) by maintaining RCY1 accumulation at high levels.
Collapse
Affiliation(s)
- Yukiyo Sato
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Sugihiro Ando
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hideki Takahashi
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
93
|
Rahman A, Kuldau GA, Uddin W. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae. PHYTOPATHOLOGY 2014; 104:614-23. [PMID: 24328494 DOI: 10.1094/phyto-09-13-0268-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae.
Collapse
|
94
|
Ke Y, Liu H, Li X, Xiao J, Wang S. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:619-31. [PMID: 24617729 DOI: 10.1111/tpj.12500] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/15/2014] [Accepted: 02/19/2014] [Indexed: 05/23/2023]
Abstract
The extensively studied Arabidopsis phytoalexin deficient 4 (AtPAD4) gene plays an important role in Arabidopsis disease resistance; however, the function of its sequence ortholog in rice is unknown. Here, we show that rice OsPAD4 appears not to be the functional ortholog of AtPAD4 in host-pathogen interactions, and that the OsPAD4 encodes a plasma membrane protein but that AtPAD4 encodes a cytoplasmic and nuclear protein. Suppression of OsPAD4 by RNA interference (RNAi) increased rice susceptibility to the biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo), which causes bacteria blight disease in local tissue. OsPAD4-RNAi plants also show compromised wound-induced systemic resistance to Xoo. The increased susceptibility to Xoo was associated with reduced accumulation of jasmonic acid (JA) and phytoalexin momilactone A (MOA). Exogenous application of JA complemented the phenotype of OsPAD4-RNAi plants in response to Xoo. The following results suggest that OsPAD4 functions differently than AtPAD4 in response to pathogen infection. First, OsPAD4 plays an important role in wound-induced systemic resistance, whereas AtPAD4 mediates systemic acquired resistance. Second, OsPAD4-involved defense signaling against Xoo is JA-dependent, but AtPAD4-involved defense signaling against biotrophic pathogens is salicylic acid-dependent. Finally, OsPAD4 is required for the accumulation of terpenoid-type phytoalexin MOA in rice-bacterium interactions, but AtPAD4-mediated resistance is associated with the accumulation of indole-type phytoalexin camalexin.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
95
|
Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC PLANT BIOLOGY 2014; 14:96. [PMID: 24739302 PMCID: PMC4021311 DOI: 10.1186/1471-2229-14-96] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. RESULTS Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). CONCLUSIONS Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
Collapse
Affiliation(s)
- Benjamin F Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Sara Kabir
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham M Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Fayoum University, Fayoum, Egypt
| |
Collapse
|
96
|
Ghosh Dasgupta M, George BS, Bhatia A, Sidhu OP. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One 2014; 9:e94803. [PMID: 24739900 PMCID: PMC3989240 DOI: 10.1371/journal.pone.0094803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
- * E-mail:
| | - Blessan Santhosh George
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Om Prakash Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| |
Collapse
|
97
|
Molinari S, Fanelli E, Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. MOLECULAR PLANT PATHOLOGY 2014; 15:255-64. [PMID: 24118790 PMCID: PMC6638815 DOI: 10.1111/mpp.12085] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The expression pattern of pathogenesis-related genes PR-1, PR-2 and PR-5, considered as markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre-treated with SA and subsequently infected with root-knot nematodes (RKNs) (Meloidogyne incognita). PR-1 was up-regulated in both roots and shoots of SA-treated plants, whereas the expression of PR-5 was enhanced only in roots. The over-expression of PR-1 in the whole plant occurred as soon as 1 day after SA treatment. Up-regulation of the PR-1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA-treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR-1, PR-2 and PR-5 was also examined in the roots and shoots of susceptible and Mi-1-carrying resistant tomato plants infected by RKNs. Nematode infection produced a down-regulation of PR genes in both roots and shoots of SA-treated and untreated plants, and in roots of Mi-carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR-1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR-like response to RKNs in tomato.
Collapse
Affiliation(s)
- Sergio Molinari
- Institute of Plant Protection (IPP), National Research Council of Italy (CNR), Via G. Amendola 122/D, 70126, Bari, Italy
| | | | | |
Collapse
|
98
|
Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2014; 15:174-84. [PMID: 24393452 PMCID: PMC6638812 DOI: 10.1111/mpp.12077] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana GOLDEN2-LIKE (GLK1 and 2) transcription factors regulate chloroplast development in a redundant manner. Overexpression of AtGLK1 (35S:AtGLK1) in Arabidopsis also confers resistance to the cereal pathogen Fusarium graminearum. To further elucidate the role of GLK transcription factors in plant defence, the Arabidopsis glk1 glk2 double-mutant and 35S:AtGLK1 plants were challenged with the virulent oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) Noco2. Compared with Col-0, glk1 glk2 plants were highly resistant to Hpa Noco2, whereas 35S:AtGLK1 plants showed enhanced susceptibility to this pathogen. Genetic studies suggested that AtGLK-mediated plant defence to Hpa Noco2 was partially dependent on salicylic acid (SA) accumulation, but independent of the SA signalling protein NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1). Pretreatment with jasmonic acid (JA) dramatically reversed Hpa Noco2 resistance in the glk1 glk2 double mutant, but only marginally affected the 35S:AtGLK1 plants. In addition, overexpression of AtGLK1 in the JA signalling mutant coi1-16 did not increase susceptibility to Hpa Noco2. Together, our GLK gain-of-function and loss-of-function experiments suggest that GLK acts upstream of JA signalling in disease susceptibility to Hpa Noco2. In contrast, glk1 glk2 plants were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, whereas 35S:AtGLK1 plants exhibited heightened resistance which could be maintained in the absence of JA signalling. Together, the data reveal that AtGLK1 is involved in JA-dependent susceptibility to the biotrophic pathogen Hpa Noco2 and in JA-independent resistance to the necrotrophic pathogen B. cinerea.
Collapse
Affiliation(s)
- Jhadeswar Murmu
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6
| | | | | | | | | | | | | |
Collapse
|
99
|
Kim JI, Ciesielski PN, Donohoe BS, Chapple C, Li X. Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools. PLANT PHYSIOLOGY 2014; 164:584-95. [PMID: 24381065 PMCID: PMC3912091 DOI: 10.1104/pp.113.229393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.
Collapse
Affiliation(s)
| | | | | | | | - Xu Li
- Address correspondence to
| |
Collapse
|
100
|
Ruelland E, Pokotylo I, Djafi N, Cantrel C, Repellin A, Zachowski A. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. FRONTIERS IN PLANT SCIENCE 2014; 5:608. [PMID: 25426125 PMCID: PMC4227474 DOI: 10.3389/fpls.2014.00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/19/2014] [Indexed: 05/05/2023]
Abstract
Basal phosphoinositide-dependent phospholipase C (PI-PLC) activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG) from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK) on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA) treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.
Collapse
Affiliation(s)
- Eric Ruelland
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- *Correspondence: Eric Ruelland, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Faculté des Sciences, 61 Avenue du Général de Gaulle, 94010 Créteil, France e-mail:
| | - Igor Pokotylo
- Molecular Mechanisms of Plant Cell Regulation, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of SciencesKyiv, Ukraine
| | - Nabila Djafi
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Catherine Cantrel
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Anne Repellin
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Alain Zachowski
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| |
Collapse
|