51
|
Jia Y, Tao F, Li W. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One 2013; 8:e65687. [PMID: 23762411 PMCID: PMC3676348 DOI: 10.1371/journal.pone.0065687] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD) activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1) retards abscisic acid (ABA)-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE) 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ) was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO) plants. Dramatic increases in phosphatidic acid (PA) and decreases in phosphatidylcholine (PC) during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.
Collapse
Affiliation(s)
- Yanxia Jia
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faqing Tao
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weiqi Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- * E-mail:
| |
Collapse
|
52
|
Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E. Phosphoglycerolipids are master players in plant hormone signal transduction. PLANT CELL REPORTS 2013; 32:839-51. [PMID: 23471417 DOI: 10.1007/s00299-013-1399-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 05/18/2023]
Abstract
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Collapse
Affiliation(s)
- Martin Janda
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, 160 000 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2013; 126:415-25. [PMID: 23203352 DOI: 10.1007/s10265-012-0532-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/20/2012] [Indexed: 05/06/2023]
Abstract
Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chuan Wu
- College of Life Sciences, Heilongjiang University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
54
|
Du SY, Zhang XF, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang XF, Zhang DP. Roles of the different components of magnesium chelatase in abscisic acid signal transduction. PLANT MOLECULAR BIOLOGY 2012; 80:519-37. [PMID: 23011401 PMCID: PMC3472068 DOI: 10.1007/s11103-012-9965-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/26/2012] [Indexed: 05/12/2023]
Abstract
The H subunit of Mg-chelatase (CHLH) was shown to regulate abscisic acid (ABA) signaling and the I subunit (CHLI) was also reported to modulate ABA signaling in guard cells. However, it remains essentially unknown whether and how the Mg-chelatase-catalyzed Mg-protoporphyrin IX-production differs from ABA signaling. Using a newly-developed surface plasmon resonance system, we showed that ABA binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4. A new rtl1 mutant allele of the CHLH gene in Arabidopsis thaliana showed ABA-insensitive phenotypes in both stomatal movement and seed germination. Upregulation of CHLI1 resulted in ABA hypersensitivity in seed germination, while downregulation of CHLI conferred ABA insensitivity in stomatal response in Arabidopsis. We showed that CHLH and CHLI, but not CHLD, regulate stomatal sensitivity to ABA in tobacco (Nicotiana benthamiana). The overexpression lines of the CHLD gene showed wild-type ABA sensitivity in Arabidopsis. Both the GUN4-RNA interference and overexpression lines of Arabidopsis showed wild-type phenotypes in the major ABA responses. These findings provide clear evidence that the Mg-chelatase-catalyzed Mg-ProtoIX production is distinct from ABA signaling, giving information to understand the mechanism by which the two cellular processes differs at the molecular level.
Collapse
Affiliation(s)
- Shu-Yuan Du
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiao-Feng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zekuan Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Xin
- College of Biological Sciences, China Agricultural University, Beijing, 100094 China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Tao Jiang
- College of Biological Sciences, China Agricultural University, Beijing, 100094 China
| | - Yan Lu
- College of Biological Sciences, China Agricultural University, Beijing, 100094 China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
55
|
Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ. N-Acylethanolamines and related compounds: aspects of metabolism and functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:129-140. [PMID: 22284717 DOI: 10.1016/j.plantsci.2011.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
N-Acylethanolamines (NAE) are fatty acid derivates that are linked with an ethanolamine group via an amide bond. NAE can be characterized as lipid mediators in the plant and animal kingdoms owing to the diverse functions throughout the eukaryotic domain. The functions of NAE have been widely investigated in animal tissues in part due to their abilities to interact with the cannabinoid receptors, vanilloid receptors or peroxisome proliferator activated receptors. However, the interest of studying the functions of these lipids in plants is progressively becoming more apparent. The number of publications about the functions related to NAE and to structural analogs (homoserine lactone and alkamides) is greatly increasing, showing the importance of these lipids in various plant physiological processes. This review sheds light on their role in different processes such as seedling development, plant pathogen interaction, phospholipase D alpha inhibition and senescence of cut flowers, and underlines the interaction between NAE and NAE-related molecules with plant hormone signaling. The different metabolic pathways promoting the synthesis and degradation of NAE are also discussed, in particular the oxygenation of polyunsaturated N-acylethanolamines, which leads to NAE-oxylipins, a new family of bioactive lipids.
Collapse
Affiliation(s)
- Denis Coulon
- Laboratoire de Biogenèse Membranaire, Univ. de Bordeaux, UMR 5200, F-33000 Bordeaux, France.
| | | | | | | | | |
Collapse
|
56
|
Yang WY, Zheng Y, Bahn SC, Pan XQ, Li MY, Vu HS, Roth MR, Scheu B, Welti R, Hong YY, Wang XM. The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:452-60. [PMID: 22259021 PMCID: PMC3351082 DOI: 10.1093/mp/ssr118] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid. pPLAIIα-deficient plants displayed a higher level of jasmonic acid and methyl jasmonate, as well as the oxylipin-biosynthetic intermediates 13-hydroperoxylinolenic acid and 12-oxophytodienoic acid than wild-type (WT) plants. The expression of genes involved in oxylipin production was also higher in the pPLAIIα-deficient mutant than in WT plants. The mutant plants lost water more quickly than WT plants. The stomata of WT and mutant plants responded similarly to abscisic acid. In response to desiccation, the mutant and WT leaves produced abscisic acid at the same rate, but, after 4 h of desiccation, the jasmonic acid level was much higher in mutant than WT leaves. These results indicate that pPLAIIα negatively regulates oxylipin production and suggest a role in the removal of oxidatively modified fatty acids from membranes.
Collapse
Affiliation(s)
- Wen-Yu Yang
- Department of Biology, University of Missouri, St Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Yong Zheng
- Department of Biology, University of Missouri, St Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China
| | - Sung Chul Bahn
- Department of Biology, University of Missouri, St Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Xiang-Qing Pan
- Department of Biology, University of Missouri, St Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Mao-Yin Li
- Department of Biology, University of Missouri, St Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Hieu Sy Vu
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mary R. Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Brad Scheu
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yue-Yun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Min Wang
- Department of Biology, University of Missouri, St Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- To whom correspondence should be addressed. E-mail , fax 314-587-1519
| |
Collapse
|
57
|
Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL. Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:311-8. [PMID: 22024734 DOI: 10.1016/j.jplph.2011.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 05/21/2023]
Abstract
Monodehydroascorbate reductase (MDHAR), an important enzyme of the ascorbate-glutathione cycle, is involved in salt tolerance of plants through scavenging of reactive oxygen species (ROS). In this study, a cDNA encoding MDHAR from the mangrove plant Acanthus ebracteatus was introduced into rice to examine its role in salt tolerance. Three stable transgenic lines (MT22, MT24 and MT25) overexpressing AeMDHAR were selected in vitro using hygromycin and confirmed by PCR, quantitative reverse-transcription (qRT) PCR and enzyme assay. The transgenic line MT24 was predicted to possess a single copy of the transgene while the other two transgenic lines were predicted to have multiple transgene integrations. The AeMDHAR transcripts were detected only in transgenic rice lines but not in untransformed rice. The abundance of AeMDHAR transcripts in transgenic lines MT22 and MT25 was approximately 2.75 times the amount found in MT24. The transgenic rice lines overexpressing AeMDHAR showed a significant increase in MDHAR enzyme activity compared to untransformed plants under both NaCl and control conditions. All transgenic lines showed better yield attributes such as a higher tiller number and increased 1000-grain weight compared to non-transgenics. They also showed tolerance to salt at germination and seedling stages. The transgenic line MT24, which harbors a single copy of AeMDHAR, displayed a lower rate of sterility, a higher number of tillers and longer panicle compared to untransformed plants when subjected to salt stress.
Collapse
Affiliation(s)
- Shahanaz Sultana
- Department of Cell and Molecular Biology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
58
|
Lee J, Welti R, Roth M, Schapaugh WT, Li J, Trick HN. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:164-73. [PMID: 21895945 PMCID: PMC3728994 DOI: 10.1111/j.1467-7652.2011.00650.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
59
|
Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. BIOCHEMISTRY (MOSCOW) 2012; 77:1-14. [DOI: 10.1134/s0006297912010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X, Cheng J, Lou Y. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice. PLANT PHYSIOLOGY 2011; 157:1987-99. [PMID: 21984727 PMCID: PMC3327179 DOI: 10.1104/pp.111.183749] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
Collapse
|
61
|
Bhaskaran S, Savithramma DL. Co-expression of Pennisetum glaucum vacuolar Na⁺/H⁺ antiporter and Arabidopsis H⁺-pyrophosphatase enhances salt tolerance in transgenic tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5561-5570. [PMID: 21841179 DOI: 10.1093/jxb/err237] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Salinity is one of the major abiotic stresses affecting plant productivity. Tomato (Solanum lycopersicum L.), an important and widespread crop in the world, is sensitive to moderate levels of salt in the soil. To generate tomato plants that can adapt to saline soil, AVP1, a vacuolar H(+)-pyrophosphatase gene from Arabidopsis thaliana, and PgNHX1, a vacuolar Na(+)/H(+) antiporter gene from Pennisetum glaucum, were co-expressed by Agrobacterium tumefaciens-mediated transformation. A sample of transformants was self-pollinated, and progeny were evaluated for salt tolerance in vitro and in vivo. It is reported here that co-expression of AVP1 and PgNHX1 confers enhanced salt tolerance to the transformed tomato compared with the AVP1 and PgNHX1 single gene transgenic plants and the wild-type. These transgenic plants grew well in the presence of 200 mM NaCl while wild-type plants exhibited chlorosis and died within 3 weeks. The transgenic line co-expressing AVP1 and PgNHX1 retained more chlorophyll and accumulated 1.4 times more proline as a response to stress than single gene transformants. Moreover, these transgenic plants accumulated a 1.5 times higher Na(+) content in their leaf tissue than the single gene transformants. The toxic effect of Na(+) accumulation in the cytosol is reduced by its sequestration into the vacuole. The physiological analysis of the transgenic lines clearly demonstrates that co-expression of AVP1 and PgNHX1 improved the osmoregulatory capacity of double transgenic lines by enhanced sequestration of ions into the vacuole by increasing the availability of protons and thus alleviating the toxic effect of Na(+).
Collapse
Affiliation(s)
- Shimna Bhaskaran
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, GKVK, Bangalore 560-065, India
| | | |
Collapse
|
62
|
Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0135-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Lee J, Welti R, Schapaugh WT, Trick HN. Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:359-72. [PMID: 20796246 PMCID: PMC4393948 DOI: 10.1111/j.1467-7652.2010.00562.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phospholipase D (PLD) is capable of hydrolyzing membrane phospholipids, producing phosphatidic acid. To alter phospholipid profiles in soybean seed, we attenuated PLD enzyme activity by an RNA interference construct using the partial sequence from a soybean PLDα gene. Two transgenic soybean lines were established by particle inflow gun (PIG) bombardment by co-bombarding with pSPLDi and pHG1 vectors. The lines were evaluated for the presence and expression of transgenes thoroughly through the T(4) generation. PLD-suppressed soybean lines were characterized by decreased PLDα enzyme activity and decreased PLDα protein both during seed development and in mature seeds. There was no change in total phospholipid amount; however, the PLD-attenuated transgenic soybean seed had higher levels of di18:2 (dilinoleoyl)-phosphatidylcholine (PC) and -phosphatidylethanolamine (PE) in seeds than the non-transgenic lines. The increased polyunsaturation was at the expense of PC and PE species containing monounsaturated or saturated fatty acids. In addition to increased unsaturation in the phospholipids, there was a decrease in unsaturation of the triacylglycerol (TAG) fraction of the soybean seeds. Considering recent evidence for the notion that desaturation of fatty acids occurs in the PC fraction and that the PC→DAG (diacylglycerol)→TAG pathway is the major route of TAG biosynthesis in developing soybean seed, the current data suggest that PLDα suppression slows the conversion of PC to TAG. This would be consistent with PLD playing a positive role in that conversion. The data indicate that soybean PLD attenuation is a potentially useful approach to altering properties of edible and industrial soybean lecithin.
Collapse
MESH Headings
- Blotting, Southern
- Gene Expression Regulation, Plant
- Lysophosphatidylcholines/metabolism
- Phospholipase D/genetics
- Phospholipase D/metabolism
- Phospholipids/metabolism
- Plant Oils/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Quantitative Trait, Heritable
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Restriction Mapping
- Reverse Transcriptase Polymerase Chain Reaction
- Seeds/enzymology
- Seeds/genetics
- Glycine max/enzymology
- Glycine max/genetics
- Spectrometry, Mass, Electrospray Ionization
- Suppression, Genetic
- Transformation, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Plant Pathology, Kansas State University, Manhattan, KN, USA
| | | | | | | |
Collapse
|
64
|
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2349-61. [PMID: 21430291 DOI: 10.1093/jxb/err079] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Collapse
Affiliation(s)
- Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
65
|
Peng Y, Zhang J, Cao G, Xie Y, Liu X, Lu M, Wang G. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. PLANT CELL REPORTS 2010; 29:793-802. [PMID: 20490504 DOI: 10.1007/s00299-010-0865-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/02/2010] [Accepted: 04/20/2010] [Indexed: 05/02/2023]
Abstract
Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.
Collapse
Affiliation(s)
- Yunling Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
66
|
Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. THE PLANT CELL 2010; 6:802-4. [PMID: 20442372 PMCID: PMC2899868 DOI: 10.1105/tpc.110.075333] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/07/2010] [Accepted: 04/17/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, a family of six genes (ACBP1 to ACBP6) encodes acyl-CoA binding proteins (ACBPs). Investigations on ACBP3 reported here show its upregulation upon dark treatment and in senescing rosettes. Transgenic Arabidopsis overexpressing ACBP3 (ACBP3-OEs) displayed accelerated leaf senescence, whereas an acbp3 T-DNA insertional mutant and ACBP3 RNA interference transgenic Arabidopsis lines were delayed in dark-induced leaf senescence. Acyl-CoA and lipid profiling revealed that the overexpression of ACBP3 led to an increase in acyl-CoA and phosphatidylethanolamine (PE) levels, whereas ACBP3 downregulation reduced PE content. Moreover, significant losses in phosphatidylcholine (PC) and phosphatidylinositol, and gains in phosphatidic acid (PA), lysophospholipids, and oxylipin-containing galactolipids (arabidopsides) were evident in 3-week-old dark-treated and 6-week-old premature senescing ACBP3-OEs. Such accumulation of PA and arabidopsides (A, B, D, E, and G) resulting from lipid peroxidation in ACBP3-OEs likely promoted leaf senescence. The N-terminal signal sequence/transmembrane domain in ACBP3 was shown to be essential in ACBP3-green fluorescent protein targeting and in promoting senescence. Observations that recombinant ACBP3 binds PC, PE, and unsaturated acyl-CoAs in vitro and that ACBP3 overexpression enhances degradation of the autophagy (ATG)-related protein ATG8 and disrupts autophagosome formation suggest a role for ACBP3 as a phospholipid binding protein involved in the regulation of leaf senescence by modulating membrane phospholipid metabolism and ATG8 stability in Arabidopsis. Accelerated senescence in ACBP3-OEs is dependent on salicylic acid but not jasmonic acid signaling.
Collapse
Affiliation(s)
- Shi Xiao
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei Gao
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Suk-Wah Chan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shu-Xiao Zheng
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jinyu Ma
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Mee-Len Chye
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- Address correspondence to
| |
Collapse
|
67
|
Moreno-Pérez AJ, Martínez-Force E, Garcés R, Salas JJ. Phospholipase Dalpha from sunflower (Helianthus annuus): cloning and functional characterization. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:503-511. [PMID: 20116883 DOI: 10.1016/j.jplph.2009.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 05/28/2023]
Abstract
D type phospholipases (PLD) are enzymes that hydrolyze the head group of phospholipids to produce phosphatidic acid. This activity is ubiquitous in plant tissues, and has been isolated and characterized from different species and organs. Several families of these proteins have been described in plants on the basis of their gene sequences (PLD alpha, beta, gamma, delta, zeta and epsilon). They have been shown to be involved in many metabolic events, such as response to abiotic stress, signal transduction, and membrane lipid turnover and degradation. In the present study, PLD activity was measured in the soluble fractions isolated from different organs of this plant. A PLD of alpha type was cloned from leaf cDNA that was responsible for most of this activity. The gene encoding this 810 aa protein was heterologously expressed in E. coli. This protein was not lethal for the eukaryotic host, although it altered its phospholipid profile. PLDalpha was purified to almost homogeneity by His-tag affinity chromatography, displaying an optimum pH of 6.5 and strong dependence on the presence of Ca(2+) and SDS in the assay medium. The enzyme was active towards phosphatidylcholine, Phosphatidylethanolamine and phosphatidylglycerol. Furthermore, the HaPLDalpha gene was found to be expressed at high levels in leaf and stem tissues.
Collapse
Affiliation(s)
- A J Moreno-Pérez
- Instituto de la Grasa (CSIC), Av. Padre García Tejero 4, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
68
|
|
69
|
Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:261-73. [PMID: 19854800 PMCID: PMC2791123 DOI: 10.1093/jxb/erp300] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a programmed developmental process governed by various endogenous and exogenous factors, such as the plant developmental stage, leaf age, phytohormone levels, darkness, and exposure to stresses. It was found that, in addition to its well-documented role in the enhancement of plant frost tolerance, overexpression of the C-repeat/dehydration responsive element binding factor 2 (CBF2) gene in Arabidopsis delayed the onset of leaf senescence and extended the life span of the plants by approximately 2 weeks. This phenomenon was exhibited both during developmental leaf senescence and during senescence of detached leaves artificially induced by either darkness or phytohormones. Transcriptome analysis using the Affymetrix ATH1 genome array revealed that overexpression of CBF2 significantly influenced the expression of 286 genes in mature leaf tissue. In addition to 30 stress-related genes, overexpression of CBF2 also affected the expression of 24 transcription factor (TF) genes, and 20 genes involved in protein metabolism, degradation, and post-translational modification. These results indicate that overexpression of CBF2 not only increases frost tolerance, but also affects other developmental processes, most likely through interactions with additional TFs and protein modification genes. The present findings shed new light on the crucial relationship between plant stress tolerance and longevity, as reported for other eukaryotic organisms.
Collapse
Affiliation(s)
- Michal Sharabi-Schwager
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Alon Samach
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, the Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Charles L. Guy
- Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Ron Porat
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- To whom correspondence should addressed: E-mail:
| |
Collapse
|
70
|
|
71
|
An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:18837-42. [PMID: 19833868 DOI: 10.1073/pnas.0908848106] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The polyunsaturated fatty acids (PUFAs) linoleic acid (18:2) and alpha-linolenic acid (18:3) in triacylglycerols (TAG) are major factors affecting the quality of plant oils for human health, as well as for biofuels and other renewable applications. These PUFAs are essential fatty acids for animals and plants, but also are the source of unhealthy trans fats during the processing of many foodstuffs. PUFAs 18:2 and 18:3 are synthesized in developing seeds by the desaturation of oleic acid (18:1) esterified on the membrane lipid phosphatidylcholine (PC) on the endoplasmic reticulum. The reactions and fluxes involved in this metabolism are incompletely understood, however. Here we show that a previously unrecognized enzyme, phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), encoded by the Arabidopsis ROD1 gene, is a major reaction for the transfer of 18:1 into PC for desaturation and also for the reverse transfer of 18:2 and 18:3 into the TAG synthesis pathway. The PDCT enzyme catalyzes transfer of the phosphocholine headgroup from PC to diacylglycerol, and mutation of rod1 reduces 18:2 and 18:3 accumulation in seed TAG by 40%. Our discovery of PDCT is important for understanding glycerolipid metabolism in plants and other organisms, and provides tools to modify the fatty acid compositions of plant oils for improved nutrition, biofuel, and other purposes.
Collapse
|
72
|
Hong JH, Chung G, Cowan AK. Delayed leaf senescence by exogenous lyso-phosphatidylethanolamine: towards a mechanism of action. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:526-534. [PMID: 19167900 DOI: 10.1016/j.plaphy.2008.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/11/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
Exogenous application of the lysophospholipid, lyso-phosphatidylethanolamine (LPE) is purported to delay leaf senescence in plants. However, lyso-phospholipids are well known to possess detergent-like activity and application of LPE to plant tissues might be expected to rather elicit a wound-like response and enhance senescence progression. Since phosphatidic acid (PA) accumulation and leaf cell death are a consequence of wounding, PA- and hormone-induced senescence was studied in leaf discs from Philodendron cordatum (Vell.) Kunth plants in the presence or absence of egg-derived 18:0-LPE and senescence progression quantified by monitoring both lipid peroxidation (as the change in malondialdehyde concentration), and by measuring retention of total chlorophyll (Chl(a+b)) and carotenoids (C(c+x)). Only abscisic acid (ABA) stimulated lipid peroxidation whereas ABA, 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene (ETH), and 16:0-18:2-PA stimulated loss of chloroplast pigments. Results using primary alcohols as attenuators of the endogenous PA signal confirmed a role for PA as an intermediate in both ABA- and ETH-mediated senescence progression. Exogenous 18:0-LPE did not appear to influence senescence progression and was unable to reverse hormone-induced senescence progression. However, when supplied together with 16:0-18:2-PA at 1:1 (mol:mol), activity of phosphatidylglycerol (PG) hydrolase, chlorophyllase (E.C. 3.1.1.14), and progression of leaf senescence were negated. This apparent anti-senescence activity of exogenous 18:0-LPE was associated with induction of the pathogenesis-related protein, extracellular acid invertase (Ac INV, E.C. 3.2.1.26) suggesting that 18:0-LPE like 16:0-18:2-PA functions as an elicitor.
Collapse
Affiliation(s)
- Ji Heun Hong
- Biotech Institute, Glonet BU, Doosan Corporation, Yongin, South Korea
| | | | | |
Collapse
|
73
|
Jain D, Roy N, Chattopadhyay D. CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One 2009; 4:e5154. [PMID: 19365545 PMCID: PMC2664467 DOI: 10.1371/journal.pone.0005154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/13/2009] [Indexed: 01/19/2023] Open
Abstract
Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF) that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum) and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p) and Calcineurin (CAN), a Ca(2+)/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE) to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance.
Collapse
Affiliation(s)
- Deepti Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Nilanjan Roy
- National Institute for Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | | |
Collapse
|
74
|
Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR. Overexpression of Thellungiella halophila H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. PLANTA 2009; 229:899-910. [PMID: 19130078 DOI: 10.1007/s00425-008-0880-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/18/2008] [Indexed: 05/23/2023]
Abstract
An H(+)-PPase gene, TsVP from Thellungiella halophila, was transferred into two cotton (Gossypium hirsutum) varieties (Lumianyan19 and Lumianyan 21) and southern and northern blotting analysis showed the foreign gene was integrated into the cotton genome and expressed. The measurement of isolated vacuolar membrane vesicles demonstrated that the transgenic plants had higher V-H(+)-PPase activity compared with wild-type plants (WT). Overexpressing TsVP in cotton improved shoot and root growth, and transgenic plants were much more resistant to osmotic/drought stress than the WT. Under drought stress conditions, transgenic plants had higher chlorophyll content, improved photosynthesis, higher relative water content of leaves and less cell membrane damage than WT. We ascribe these properties to improved root development and the lower solute potential resulting from higher solute content such as soluble sugars and free amino acids in the transgenic plants. In this study, the average seed cotton yields of transgenic plants from Lumianyan 19 and Lumianyan 21 were significantly increased compared with those of WT after exposing to drought stress for 21 days at flowering stage. The average seed cotton yields were 51 and 40% higher than in their WT counterparts, respectively. This study benefits efforts to improve cotton yields in arid and semiarid regions.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Blotting, Northern
- Blotting, Southern
- Brassicaceae/enzymology
- Brassicaceae/genetics
- DNA, Plant/genetics
- Droughts
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Gossypium/genetics
- Gossypium/growth & development
- Gossypium/metabolism
- Inorganic Pyrophosphatase/genetics
- Inorganic Pyrophosphatase/metabolism
- Osmotic Pressure
- Photosynthesis/genetics
- Photosynthesis/physiology
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/metabolism
- Plant Shoots/genetics
- Plant Shoots/growth & development
- Plant Shoots/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Seedlings/genetics
- Seedlings/growth & development
- Seedlings/metabolism
- Time Factors
- Transgenes/genetics
Collapse
Affiliation(s)
- Su-Lian Lv
- School of Life Science, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | | | | | | | | | | |
Collapse
|
75
|
El-kereamy A, Jayasankar S, Taheri A, Errampalli D, Paliyath G. Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection. PLANT CELL REPORTS 2009; 28:95-102. [PMID: 18815787 DOI: 10.1007/s00299-008-0612-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/03/2008] [Accepted: 09/09/2008] [Indexed: 05/26/2023]
Abstract
Plant PR10 is one of the pathogenesis related proteins, induced upon exposure to different stress conditions including fungal infection. PR10 proteins have been implicated in fungal disease resistance in some species; however its transcriptional regulation is not well understood. In the present work we cloned a PR10 gene from European plums (Prunus domestica L.) and monitored the quantitative changes in its transcript levels as a result of fungal infection in two varieties. We also studied the possible involvement of the membrane degrading enzyme phospholipase D-alpha (PLDalpha). In the susceptible variety, 'Veeblue', infection with the brown rot fungus Monilinia fructicola induced PLDalpha and PR10 expression, while in the resistant variety, 'Violette', a constitutive expression of PLDalpha and PR10 transcripts levels were observed. Resistance to M. fructicola also coincides with a sharp decrease in the expression of ABI1, a protein phosphatase and elevated hydrogen peroxide content after infection. Further, inhibition of PLDalpha by hexanal treatment, up-regulated ABI1 and decreased PR10 expression, suggesting a possible relationship between the two. We further confirm these results in Arabidopsis abi1 mutant that shows a higher level of PR10 transcripts.
Collapse
Affiliation(s)
- Ashraf El-kereamy
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, L0R2E0, Canada
| | | | | | | | | |
Collapse
|
76
|
Malladi A, Burns JK. CsPLDalpha1 and CsPLDgamma1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3729-39. [PMID: 18799715 PMCID: PMC2561145 DOI: 10.1093/jxb/ern224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/26/2008] [Accepted: 08/04/2008] [Indexed: 05/23/2023]
Abstract
Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. 'Valencia'. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDalpha1 and CsPLDgamma1, were isolated and their role was examined. CsPLDalpha1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDgamma1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDalpha1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDgamma1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDalpha1 expression appeared to be light-entrained in leaves, CsPLDgamma1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDgamma1. The results indicate differential regulation of CsPLDalpha1 and CsPLDgamma1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus.
Collapse
Affiliation(s)
| | - Jacqueline K. Burns
- University of Florida/IFAS, Horticultural Sciences Department, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
77
|
Testerink C, Larsen PB, McLoughlin F, van der Does D, van Himbergen JAJ, Munnik T. PA, a stress-induced short cut to switch-on ethylene signalling by switching-off CTR1? PLANT SIGNALING & BEHAVIOR 2008; 3:681-3. [PMID: 19704825 PMCID: PMC2634556 DOI: 10.4161/psb.3.9.5814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 02/28/2008] [Indexed: 05/23/2023]
Abstract
Constitutive triple response 1 (CTR1) is a protein kinase that represses plant responses to ethylene. Recently, we have shown that CTR1 function is negatively regulated by the lipid second messenger phosphatidic acid (PA) in vitro.1 PA was shown to inhibit (1) CTR1's protein kinase activity, (2) the intramolecular interaction between N-terminus and kinase domain, and (3) the interaction of CTR1 with the ethylene receptor ETR1. PA typically accumulates within minutes in response to biotic or abiotic stresses, which are known to induce ethylene formation. Although long-term treatment with ethephon does stimulate PA accumulation, our results show no fast increase in PA in response to ethylene. A speculative model is presented which explains how stress-induced PA formation could switch on downstream ethylene responses via interaction of the lipid with CTR1.
Collapse
Affiliation(s)
- Christa Testerink
- Section of Plant Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam, the Netherlands
| | - Paul B Larsen
- Department of Biochemistry; University of California-Riverside; Riverside, California USA
| | - Fionn McLoughlin
- Section of Plant Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam, the Netherlands
| | - Dieuwertje van der Does
- Section of Plant Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam, the Netherlands
| | - John AJ van Himbergen
- Section of Plant Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam, the Netherlands
| | - Teun Munnik
- Section of Plant Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam, the Netherlands
| |
Collapse
|
78
|
Hong Y, Pan X, Welti R, Wang X. Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. THE PLANT CELL 2008; 20:803-16. [PMID: 18364466 PMCID: PMC2329935 DOI: 10.1105/tpc.107.056390] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/30/2008] [Accepted: 03/02/2008] [Indexed: 05/17/2023]
Abstract
Rapid activation of phospholipase D (PLD), which hydrolyzes membrane lipids to generate phosphatidic acid (PA), occurs under various hyperosmotic conditions, including salinity and water deficiency. The Arabidopsis thaliana PLD family has 12 members, and the function of PLD activation in hyperosmotic stress responses has remained elusive. Here, we show that knockout (KO) and overexpression (OE) of previously uncharacterized PLDalpha3 alter plant response to salinity and water deficit. PLDalpha3 uses multiple phospholipids as substrates with distinguishable preferences, and alterations of PLDalpha3 result in changes in PA level and membrane lipid composition. PLDalpha3-KO plants display increased sensitivities to salinity and water deficiency and also tend to induce abscisic acid-responsive genes more readily than wild-type plants, whereas PLDalpha3-OE plants have decreased sensitivities. In addition, PLDalpha3-KO plants flower later than wild-type plants in slightly dry conditions, whereas PLDalpha3-OE plants flower earlier. These data suggest that PLDalpha3 positively mediates plant responses to hyperosmotic stresses and that increased PLDalpha3 expression and associated lipid changes promote root growth, flowering, and stress avoidance.
Collapse
Affiliation(s)
- Yueyun Hong
- Department of Biology, University of Missouri, St. Louis, Missouri 63121, USA
| | | | | | | |
Collapse
|
79
|
Kaniuga Z. Chilling response of plants: importance of galactolipase, free fatty acids and free radicals. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:171-84. [PMID: 18304191 DOI: 10.1111/j.1438-8677.2007.00019.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The chilling response of plants is complex and based on the interplay of two important metabolic processes--lipolytic degradation of membrane lipids and a set of oxidative reactions leading to lipid peroxidation and membrane damage evoked in chilling-sensitive (CS) plants subjected to low temperature and light. The effects of chilling of detached leaves and intact plants differ and are often neglected during experiments. In closely-related species, the activity of several constitutive enzymes (i.e. superoxide dismutase, ascorbate peroxidase and glutathione reductase) appears to be higher in chilling-tolerant (CT) than in CS species; while in several native, closely-related CS species, lipid acyl hydrolase (galactolipase) activity is higher than in CT species. Moreover, in chilling-insensitive (CI) plants, galactolipase activity is very low and is neither activated by detachment of leaves nor under stress conditions in growing plants. Dark and low-temperature treatments of detached leaves of CS species and post-chilling recovery of growing plants in the light activate galactolipase, which is responsible for the release of free fatty acids (FFA), the main substrates of peroxidation by lipoxygenase and free radicals. In several CS species, increased galactolipase activity is an important factor contributing to chilling susceptibility. Thus, it seems likely that enhancement of chilling tolerance may be achieved by genetically suppressing galactolipase in order to reduce both the degradation of chloroplast lipids and the level of released FFA, and thereby avoiding the deleterious action of their peroxidation products on plant tissues.
Collapse
Affiliation(s)
- Z Kaniuga
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
80
|
Castillo MC, León J. Expression of the beta-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2171-9. [PMID: 18441338 PMCID: PMC2413277 DOI: 10.1093/jxb/ern079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 05/20/2023]
Abstract
The onset of leaf senescence is regulated by a complex mechanism involving positive and negative regulators. Among positive regulators, jasmonic acid (JA) accumulates in senescing leaves and the JA-insensitive coi1-1 mutant displays delayed leaf senescence in Arabidopsis. A strong activated expression of the gene coding for the JA-biosynthetic beta-oxidation enzyme 3-ketoacyl-CoA thiolase 2 (KAT2) in natural and dark-induced senescing leaves of Arabidopsis thaliana is reported here. By using KAT2::GUS and KAT2::LUC transgenic plants, it was observed that dark-induced KAT2 activation occurred both in excised leaves as well as in whole darkened plants. The KAT2 activation associated with dark-induced senescence occurred soon after a move to darkness, and it preceded the detection of symptoms and the expression of senescence-associated gene (SAG) markers. Transgenic plants with reduced expression of the KAT2 gene showed a significant delayed senescence both in natural and dark-induced processes. The rapid induction of the KAT2 gene in senescence-promoting conditions as well as the delayed senescence phenotype and the reduced SAG expression in KAT2 antisense transgenic plants, point to KAT2 as an essential component for the timely onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
| | - José León
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Castillo MC, León J. Expression of the beta-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008. [PMID: 18441338 DOI: 10.1093/jxb/em079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The onset of leaf senescence is regulated by a complex mechanism involving positive and negative regulators. Among positive regulators, jasmonic acid (JA) accumulates in senescing leaves and the JA-insensitive coi1-1 mutant displays delayed leaf senescence in Arabidopsis. A strong activated expression of the gene coding for the JA-biosynthetic beta-oxidation enzyme 3-ketoacyl-CoA thiolase 2 (KAT2) in natural and dark-induced senescing leaves of Arabidopsis thaliana is reported here. By using KAT2::GUS and KAT2::LUC transgenic plants, it was observed that dark-induced KAT2 activation occurred both in excised leaves as well as in whole darkened plants. The KAT2 activation associated with dark-induced senescence occurred soon after a move to darkness, and it preceded the detection of symptoms and the expression of senescence-associated gene (SAG) markers. Transgenic plants with reduced expression of the KAT2 gene showed a significant delayed senescence both in natural and dark-induced processes. The rapid induction of the KAT2 gene in senescence-promoting conditions as well as the delayed senescence phenotype and the reduced SAG expression in KAT2 antisense transgenic plants, point to KAT2 as an essential component for the timely onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ciudad Politécnica de la Innovación, Edificio 8E, Avenida del Ingeniero Fausto Elio s/n, E-46022 Valencia, Spain
| | | |
Collapse
|
82
|
Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 2007; 32:621-8. [PMID: 17536181 DOI: 10.1007/s12038-007-0061-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Salt stress is an environmental factor that severely impairs plant growth and productivity. We have cloned a novel isoform of a vacuolar Na+/H+ antiporter from Pennisetum glaucum (PgNHX1) that contains 5 transmembrane domains in contrast to AtNHX1 and OsNHX1 which have 9 transmembrane domains. Recently we have shown that PgNHX1 could confer high level of salinity tolerance when overexpressed in Brassica juncea. Here,we report the functional validation of this antiporter in crop plant rice. Overexpression of PgNHX1 conferred high level of salinity tolerance in rice. Transgenic rice plants overexpressing PgNHX1 developed more extensive root system and completed their life cycle by setting flowers and seeds in the presence of 150 mM NaCl. Our data demonstrate the potential of PgNHX1 for imparting enhanced salt tolerance capabilities to salt-sensitive crop plants for growing in high saline areas.
Collapse
Affiliation(s)
- Dheeraj Verma
- Plant Molecular Biology, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 10067, India
| | | | | | | | | |
Collapse
|
83
|
Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 2007; 17:171-80. [PMID: 17387627 DOI: 10.1007/s11248-007-9082-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 02/26/2007] [Indexed: 11/25/2022]
Abstract
Earlier we have shown the role of glyoxalase overexpression in conferring salinity tolerance in transgenic tobacco. We now demonstrate the feasibility of same in a crop like rice through overproduction of glyoxalase II. The rice glyoxalase II was cloned in pCAMBIA1304 and transformed into rice (Oryza sativa cv PB1) via Agrobacterium. The transgenic plants showed higher constitutive activity of glyoxalase II that increased further upon salt stress, reflecting the upregulation of endogenous glyoxalase II. The transgenic rice showed higher tolerance to toxic concentrations of methylglyoxal (MG) and NaCl. Compared with non-transgenics, transgenic plants at the T1 generation exhibited sustained growth and more favorable ion balance under salt stress conditions.
Collapse
Affiliation(s)
- Sneh L Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | | | | | | | |
Collapse
|
84
|
Chong BF, Bonnett GD, Glassop D, O'Shea MG, Brumbley SM. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:240-53. [PMID: 17309679 DOI: 10.1111/j.1467-7652.2006.00235.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp.
Collapse
Affiliation(s)
- Barrie Fong Chong
- David North Plant Research Centre, BSES Limited, PO Box 86, Indooroopilly, Qld 4068, Australia.
| | | | | | | | | |
Collapse
|
85
|
Li G, Xue HW. Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. THE PLANT CELL 2007; 19:281-95. [PMID: 17259265 PMCID: PMC1820954 DOI: 10.1105/tpc.106.041426] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phospholipase D (PLD) and its product, phosphatidic acid (PA), play key roles in cellular processes, including stress and hormonal responses, vesicle trafficking, and cytoskeletal rearrangements. We isolated and functionally characterized Arabidopsis thaliana PLDzeta2, which is expressed in various tissues and enhanced by auxin. A PLDzeta2-defective mutant, pldzeta2, and transgenic plants deficient in PLDzeta2 were less sensitive to auxin, had reduced root gravitropism, and suppressed auxin-dependent hypocotyl elongation at 29 degrees C, whereas transgenic seedlings overexpressing PLDzeta2 showed opposite phenotypes, suggesting that PLDzeta2 positively mediates auxin responses. Studies on the expression of auxin-responsive genes and observation of the beta-glucuronidase (GUS) expression in crosses between pldzeta2 and lines containing DR5-GUS indicated that PLDzeta2, or PA, stimulated auxin responses. Observations of the membrane-selective dye FM4-64 showed suppressed vesicle trafficking under PLDzeta2 deficiency or by treatment with 1-butanol, a PLD-specific inhibitor. By contrast, vesicle trafficking was enhanced by PA or PLDzeta2 overexpression. Analyses of crosses between pldzeta2 and lines containing PIN-FORMED2 (PIN2)-enhanced green fluorescent protein showed that PLDzeta2 deficiency had no effect on the localization of PIN2 but blocked the inhibition of brefeldin A on PIN2 cycling. These results suggest that PLDzeta2 and PA are required for the normal cycling of PIN2-containing vesicles as well as for function in auxin transport and distribution, and hence auxin responses.
Collapse
Affiliation(s)
- Gang Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
86
|
Lers A, Sonego L, Green PJ, Burd S. Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission. PLANT PHYSIOLOGY 2006; 142:710-21. [PMID: 16920876 PMCID: PMC1586048 DOI: 10.1104/pp.106.080135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although present in different organisms and conserved in their protein sequence, the biological functions of T2 ribonucleases (RNase) are generally unknown. Tomato (Lycopersicon esculentum) LX is a T2/S-like RNase and its expression is known to be associated with phosphate starvation, ethylene responses, and senescence and programmed cell death. In this study, LX function was investigated using antisense tomato plants in which the LX protein level was reduced. LX protein levels normally become elevated when leaves senesce and antisense inhibition of LX retarded the progression of senescence. Moreover, we observed a marked delay of leaf abscission in LX-deficient plants. This correlated with specific induction of LX protein in the tomato mature abscission zone tissue. LX RNase gene regulation and the consequences of antisense inhibition indicate that LX has an important functional role in both abscission and senescence.
Collapse
Affiliation(s)
- Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | |
Collapse
|
87
|
Bargmann BO, Munnik T. The role of phospholipase D in plant stress responses. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:515-22. [PMID: 16877031 DOI: 10.1016/j.pbi.2006.07.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
Phospholipase D (PLD) has been implicated in multiple plant stress responses. Its gene transcription and activity increase upon exposure to various stresses, and manipulation of PLD protein levels leads to altered stress tolerance. The plant PLD family is relatively large and heterogeneous, and different PLD isoforms are involved in separate stress responses. PLD and its product, phosphatidic acid, exert their effects by functioning in signal transduction cascades and by influencing the biophysical state of lipid membranes.
Collapse
Affiliation(s)
- Bastiaan O Bargmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | | |
Collapse
|
88
|
Rajashekar CB, Zhou HE, Zhang Y, Li W, Wang X. Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and osmolyte accumulation. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:916-26. [PMID: 16949955 DOI: 10.1016/j.jplph.2005.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 05/25/2005] [Accepted: 08/08/2005] [Indexed: 05/11/2023]
Abstract
Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.
Collapse
Affiliation(s)
- C B Rajashekar
- Division of Horticulture, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | |
Collapse
|
89
|
Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. PHYTOCHEMISTRY 2006; 67:1907-24. [PMID: 16843506 DOI: 10.1016/j.phytochem.2006.06.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 04/28/2006] [Accepted: 06/02/2006] [Indexed: 05/10/2023]
Abstract
Lipid profiling is a targeted metabolomics platform that provides a comprehensive analysis of lipid species with high sensitivity. Profiling based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides quantitative data and is adaptable to high throughput analyses. Here we report the profiling of 140 apparent molecular species of polar glycerolipids in Arabidopsis leaves, flower stalks, flowers, siliques, roots, and seeds. Considerable differences in lipid species occur among these organs, providing insights into the different lipid metabolic activities in a specific organ. In addition, comparative profiling between wild-type and a knockout mutant pldalpha1 (locus ID: AT3G15730) provides insight into the metabolic function of phospholipase D (PLD) in different organs. PLDalpha1 contributes significantly to phosphatidic acid (PA) levels in roots, seeds, flowers, and flower stalks, but little to basal PA levels in siliques and leaves. In seeds of the pldalpha1 mutant plants, levels of PA, lysophosphatidylcholine, and lysophosphatidylethanolamine were significantly lower than those of wild-type seeds, suggesting a role for PLDalpha1 in membrane lipid degradation in seeds.
Collapse
|
90
|
Zalejski C, Paradis S, Maldiney R, Habricot Y, Miginiac E, Rona JP, Jeannette E. Induction of abscisic acid-regulated gene expression by diacylglycerol pyrophosphate involves Ca2+ and anion currents in Arabidopsis suspension cells. PLANT PHYSIOLOGY 2006; 141:1555-62. [PMID: 16766676 PMCID: PMC1533963 DOI: 10.1104/pp.106.080218] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Diacylglycerol pyrophosphate (DGPP) was recently shown to be a possible intermediate in abscisic acid (ABA) signaling. In this study, reverse transcription-PCR of ABA up-regulated genes was used to evaluate the ability of DGPP to trigger gene expression in Arabidopsis (Arabidopsis thaliana) suspension cells. At5g06760, LTI30, RD29A, and RAB18 were stimulated by ABA and also specifically expressed in DGPP-treated cells. Use of the Ca2+ channel blockers fluspirilene and pimozide and the Ca2+ chelator EGTA showed that Ca2+ was required for ABA induction of DGPP formation. In addition, Ca2+ participated in DGPP induction of gene expression via stimulation of anion currents. Hence, a sequence of Ca2+, DGPP, and anion currents, constituting a core of early ABA-signaling events necessary for gene expression, is proposed.
Collapse
Affiliation(s)
- Christine Zalejski
- Université Pierre et Marie Curie-Paris 6 and Centre National de la Recherche Scientifique, FRE 2846, Physiologie Cellulaire et Moléculaire des Plantes, F-94200 Ivry-sur-Seine, France
| | | | | | | | | | | | | |
Collapse
|
91
|
Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. TRENDS IN PLANT SCIENCE 2005; 10:368-75. [PMID: 16023886 DOI: 10.1016/j.tplants.2005.06.002] [Citation(s) in RCA: 388] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/22/2005] [Accepted: 06/28/2005] [Indexed: 05/03/2023]
Abstract
Phosphatidic acid (PA) has only recently been identified as an important signaling molecule in both plants and animals. Nonetheless, it already promises to rival the importance of the classic second messengers Ca(2+) and cAMP. In plants, its formation is triggered in response to various biotic and abiotic stress factors, including pathogen infection, drought, salinity, wounding and cold. In general, PA signal production is fast (minutes) and transient. Recently, our understanding of the role of PA formation in stress responses as a result of phospholipases C and D activity has greatly increased. Moreover, the first protein targets of PA have been identified. Based on this recent work, potential mechanisms by which PA provokes downstream effects are emerging.
Collapse
Affiliation(s)
- Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | | |
Collapse
|
92
|
Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 2005; 102:509-14. [PMID: 15630095 PMCID: PMC544286 DOI: 10.1073/pnas.0406485102] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus-(35)S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T(0) transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T(0) transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T(1) transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na(+) ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T(1) transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
93
|
Lee HY, Bahn SC, Shin JS, Hwang I, Back K, Doelling JH, Ryu SB. Multiple forms of secretory phospholipase A2 in plants. Prog Lipid Res 2004; 44:52-67. [PMID: 15748654 DOI: 10.1016/j.plipres.2004.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2004] [Accepted: 10/07/2004] [Indexed: 11/26/2022]
Abstract
Multiple secretory phospholipase A2 (sPLA2) genes have been identified in plants and encode isoforms with distinct regulatory and catalytic properties. Elucidation of this genetic and biochemical heterogeneity has provided important clues to the regulation and function of the individual enzymes. An increasing body of evidence shows that their lipid products, lysophospholipids and free fatty acids, mediate a variety of cellular responses, including plant growth, development, and responses to stress and defense. This review discusses the newly-acquired information on plant sPLA2s including the molecular and biochemical characteristics, and signaling functions of each isoform.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
94
|
Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. PLANT & CELL PHYSIOLOGY 2004; 45:1042-52. [PMID: 15356330 DOI: 10.1093/pcp/pch118] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The transcription factors DREB1s/CBFs specifically interact with the DRE/CRT cis-acting element (core motif: G/ACCGAC) and control the expression of many stress-inducible genes in Arabidopsis. We isolated a cDNA for a DREB1/CBF homolog, ZmDREB1A in maize using a yeast one-hybrid system. The ZmDREB1A proteins specifically bound to DRE and the highly conserved valine at the 14th residue in the ERF/AP2 DNA binding domain was a key to determining the specific interaction between this protein and the DRE sequence. Expression of ZmDREB1A was induced by cold stress and slightly increased by high-salinity stress. This gene was also transiently expressed by mechanical attack. ZmDREB1A activated the transcription of the GUS reporter gene driven by DRE in rice protoplasts. Overexpression of ZmDREB1A in transgenic Arabidopsis induced overexpression of target stress-inducible genes of Arabidopsis DREB1A resulting in plants with higher tolerance to drought and freezing stresses. This indicated that ZmDREB1A has functional similarity to DREB1s/CBFs in Arabidopsis. The structure of the ERF/AP2 domain of ZmDREB1A in maize is closely related to DREB1-type ERF/AP2 domains in the monocots as compared with that in the dicots. ZmDREB1A is suggested to be potentially useful for producing transgenic plants that is tolerant to drought, high-salinity and/or cold stresses.
Collapse
Affiliation(s)
- Feng Qin
- Department of Biological Sciences and Biotechnology, Tsinghua University, 100084 Beijing, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Wang YT, Yang CY, Chen YT, Lin Y, Shaw JF. Characterization of senescence-associated proteases in postharvest broccoli florets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:663-670. [PMID: 15331096 DOI: 10.1016/j.plaphy.2004.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 06/09/2004] [Indexed: 05/24/2023]
Abstract
We characterized the senescence-associated proteases of postharvest broccoli (Brassica oleracea L. var Green King) florets, using class-specific protease inhibitors and gelatin-polyacrylamide gel electrophoresis. Different classes of senescence-associated proteases in broccoli florets were partially characterized for the first time. Protease activity of broccoli florets was depressed by all the inhibitors and showed different inhibition curves during postharvest. The hydrolytic activity of metalloprotease (EC 3.4.24. - ) and serine protease (EC 3.4.21. - ) reached a maximum, 1 day after harvest (DAH), then decreased, while the hydrolytic activity of cysteine protease (EC 3.4.22. - ) and aspartic protease (EC 3.4.23. - ) increased throughout the postharvest senescence based on the calculated inhibition percentage of protease activity. The senescence-associated proteases were separated into seven endoprotease (EP) groups by gelatin-polyacryamide gel electrophoresis and classified into EP1 (metalloprotease), EP2 (metalloprotease and cysteine protease), EP3 (serine protease and aspartic protease), EP4, EP5, EP7 (cysteine protease), and EP6 (serine protease) based on the sensitivity of class-specific protease inhibitors. The proteases EP2, EP3, and EP4 were present throughout the postharvest stages. EP3 was the major EP at all times during senescence; EP4 intensity of activity increased after 2 DAH; EP6 and EP7 clearly increased after 4 DAH. Our results suggest that serine protease activity contributes to early stage (0-1 DAH) and late stage (4-5 DAH) of senescence; metalloprotease activity was involved in the early and intermediate stages (0-3 DAH) of senescence; and cysteine protease and aspartic protease activities participated in the whole process of broccoli senescence.
Collapse
Affiliation(s)
- Yuh Tai Wang
- Life Science Center, Hsing Wu College, No. 11-2, Fen-Liao Road, Lin-Kou, Taipei 11244, Taiwan, ROC
| | | | | | | | | |
Collapse
|
96
|
Abstract
N-Acylethanolamines (NAEs) are fatty acid amides that are derived from an N-acylated phoshatidylethanolamine presursor, a minor membrane lipid constituent of plant and animal cells. Historically, the formation of N-acylethanolamines was associated with cellular stress and tissue damage in mammals, but more recently has been shown to be part of the endocannabinoid signaling system that regulates a variety of normal physiological functions, including neurotransmission, immune responses, vasodilation, embryo development and implantation, feeding behavior, cell proliferation, etc. The widespread regulation of vertebrate physiology by this class of lipid mediators and the conservation of the mechanisms for NAE formation, perception and degradation in higher plants raises the possibility that the metabolism of NAEs represents an evolutionarily conserved lipid signaling pathway that regulates an array of physiological processes in multicellular eukaryotes. Here the recent information on NAEs in plants is reviewed in the context of the occurrence, metabolism and functions of this bioactive class of lipid mediators.
Collapse
Affiliation(s)
- Kent D Chapman
- Center for Plant Lipid Research, Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, P.O. Box 305220, Denton, 76203-5220, USA.
| |
Collapse
|
97
|
Zhang W, Qin C, Zhao J, Wang X. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 2004; 101:9508-13. [PMID: 15197253 PMCID: PMC439007 DOI: 10.1073/pnas.0402112101] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase D (PLD) and protein phosphatase 2C (PP2C) both play a role in mediating plant responses to abscisic acid (ABA). In this article, we show that PLD alpha 1 and its product, phosphatidic acid (PA), regulate a PP2C, ABI1, which is a negative regulator of ABA responses in Arabidopsis. Leaves from a T-DNA insertional mutant of PLD alpha 1 and PLD alpha 1-antisense plants lose more water than do wild-type plants. The stomatal closure of PLD alpha 1-null leaves is insensitive to ABA but is promoted by PA. ABA treatment promotes an increase in PA from phosphatidylcholine in wild type but not in PLD alpha 1-null cells. PLD alpha 1-derived PA binds to ABI1; the PA-ABI1 binding is demonstrated by coprecipitating PA with ABI1 from plant cells, measuring binding of PA from vesicles to ABI1, and assaying ABI1 bound to PA immobilized on a filter. Deletion and site-specific mutational analyses show that arginine 73 in ABI1 is essential for PA-ABI1 binding. PA binding decreases the phosphatase activity of ABI1. The lack of ABA-induced production of PA in PLD alpha 1-null cells results in a decrease in the association of ABI1 with the plasma membrane in response to ABA. These results indicate that PA produced by PLD alpha 1 inhibits the function of the negative regulator ABI1, thus promoting ABA signaling. The identification of ABI1 as a direct target of the lipid messenger PA provides a functional link between the two families of important signaling enzymes, PLD and PP2C.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Biochemistry, Kansas State University, Manhattan, 66506, USA
| | | | | | | |
Collapse
|
98
|
Lo M, Taylor C, Wang L, Nowack L, Wang TW, Thompson J. Characterization of an ultraviolet B-induced lipase in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:947-58. [PMID: 15181214 PMCID: PMC514129 DOI: 10.1104/pp.103.036376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/29/2004] [Accepted: 01/30/2004] [Indexed: 05/24/2023]
Abstract
An Arabidopsis expressed sequence tag clone, 221D24, encoding a lipase has been characterized using an antisense approach. The lipase gene is expressed during normal growth and development of Arabidopsis rosette leaves but is down-regulated as the leaves senesce. When plants are exposed to sublethal levels of UV-B radiation, expression of the lipase is strongly up-regulated. The lipase protein is localized in the cell cytosol and is present in all organs of Arabidopsis plants. Recombinant lipase protein produced in Escherichia coli preferentially hydrolyzed phospholipids, indicating that the gene encodes a phospholipase. Transgenic plants in which lipase expression is suppressed showed enhanced tolerance to UV-B stress but not osmotic stress and were unable to up-regulate PR-1 expression when irradiated with UV-B. The observations collectively indicate that the lipase is capable of deesterifying membrane phospholipids and is up-regulated in response to UV-B irradiation.
Collapse
Affiliation(s)
- Maisie Lo
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
99
|
Park J, Gu Y, Lee Y, Yang Z, Lee Y. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. PLANT PHYSIOLOGY 2004; 134:129-36. [PMID: 14730067 PMCID: PMC316293 DOI: 10.1104/pp.103.031393] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 09/14/2003] [Accepted: 09/14/2003] [Indexed: 05/18/2023]
Abstract
Phosphatidic acid (PA) level increases during various stress conditions. However, the physiological roles of this lipid in stress response remain largely unknown. In this study, we report that PA induced leaf cell death and elevated the levels of reactive oxygen species (ROS) in the whole leaf and single cells. To further elucidate the mechanism of PA-induced cell death, we then examined whether Rho-related small G protein (ROP) 2, which enhanced ROS production in an in vitro assay, is involved in PA-induced ROS production and cell death. In response to PA, transgenic leaves of Arabidopsis expressing a constitutively active rop2 mutant exhibited earlier cell death and higher levels of ROS than wild type (WT), whereas those expressing a dominant-negative rop2 mutant exhibited later cell death and lower ROS. However, in the absence of exogenous PA, no spontaneous cell death or elevated ROS was observed in constitutively active rop2 plants, suggesting that the activation of ROP GTPase alone is insufficient to activate the ROP-mediated ROS generation pathway. These results suggest that PA modulates an additional factor required for the active ROP-mediated ROS generation pathway. Therefore, PA may be an important regulator of ROP-regulated ROS generation and the cell death process during various stress and defense responses of plants.
Collapse
Affiliation(s)
- Jumok Park
- Division of Molecular Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | |
Collapse
|
100
|
Activation of Cabbage Phospholipase D by Polyamines. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2003. [DOI: 10.5012/jkcs.2003.47.5.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|