51
|
Das D, Hervé M, Feuerhelm J, Farr CL, Chiu HJ, Elsliger MA, Knuth MW, Klock HE, Miller MD, Godzik A, Lesley SA, Deacon AM, Mengin-Lecreulx D, Wilson IA. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein. PLoS One 2011; 6:e17624. [PMID: 21445265 PMCID: PMC3060825 DOI: 10.1371/journal.pone.0017624] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Mireille Hervé
- Université Paris-Sud, Laboratoire des Enveloppes Bactériennes et Antibiotiques, Orsay, France
- Centre National de la Recherche Scientifique, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Orsay, France
| | - Julie Feuerhelm
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Carol L. Farr
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Marc-André Elsliger
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mark W. Knuth
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Heath E. Klock
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Mitchell D. Miller
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Adam Godzik
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
- Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Scott A. Lesley
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ashley M. Deacon
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Dominique Mengin-Lecreulx
- Université Paris-Sud, Laboratoire des Enveloppes Bactériennes et Antibiotiques, Orsay, France
- Centre National de la Recherche Scientifique, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Orsay, France
| | - Ian A. Wilson
- Joint Center for Structural Genomics (http://www.jcsg.org)
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
52
|
Das D, Finn RD, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Chiu M, Clayton T, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Xu Q, Yeh A, Zhou J, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu. Protein Sci 2011; 19:2131-40. [PMID: 20836087 PMCID: PMC3005784 DOI: 10.1002/pro.497] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics. http://www.jcsg.org
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hwang J, Kim Y, Kang HB, Jaroszewski L, Deacon AM, Lee H, Choi WC, Kim KJ, Kim CH, Kang BS, Lee JO, Oh TK, Kim JW, Wilson IA, Kim MH. Crystal structure of the human N-Myc downstream-regulated gene 2 protein provides insight into its role as a tumor suppressor. J Biol Chem 2011; 286:12450-60. [PMID: 21247902 PMCID: PMC3069448 DOI: 10.1074/jbc.m110.170803] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Considerable attention has recently been paid to the N-Myc downstream-regulated gene (NDRG) family because of its potential as a tumor suppressor in many human cancers. Primary amino acid sequence information suggests that the NDRG family proteins may belong to the α/β-hydrolase (ABH) superfamily; however, their functional role has not yet been determined. Here, we present the crystal structures of the human and mouse NDRG2 proteins determined at 2.0 and 1.7 Å resolution, respectively. Both NDRG2 proteins show remarkable structural similarity to the ABH superfamily, despite limited sequence similarity. Structural analysis suggests that NDRG2 is a nonenzymatic member of the ABH superfamily, because it lacks the catalytic signature residues and has an occluded substrate-binding site. Several conserved structural features suggest NDRG may be involved in molecular interactions. Mutagenesis data based on the structural analysis support a crucial role for helix α6 in the suppression of TCF/β-catenin signaling in the tumorigenesis of human colorectal cancer, via a molecular interaction.
Collapse
Affiliation(s)
- Jungwon Hwang
- Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Berger MA, Decker JH, Mathews II. Diffraction study of protein crystals grown in cryoloops and micromounts. J Appl Crystallogr 2010; 43:1513-1518. [PMID: 22477781 PMCID: PMC3253742 DOI: 10.1107/s0021889810040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/08/2010] [Indexed: 11/11/2022] Open
Abstract
Protein crystals are usually grown in hanging or sitting drops and generally get transferred to a loop or micromount for cryocooling and data collection. This paper describes a method for growing crystals on cryoloops for easier manipulation of the crystals for data collection. This study also investigates the steps for the automation of this process and describes the design of a new tray for the method. The diffraction patterns and the structures of three proteins grown by both the new method and the conventional hanging-drop method are compared. The new setup is optimized for the automation of the crystal mounting process. Researchers could prepare nanolitre drops under ordinary laboratory conditions by growing the crystals directly in loops or micromounts. As has been pointed out before, higher levels of supersaturation can be obtained in very small volumes, and the new method may help in the exploration of additional crystallization conditions.
Collapse
Affiliation(s)
- Michael A. Berger
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, SSRL MS 99, Menlo Park, CA 94025, USA
| | - Johannes H. Decker
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, SSRL MS 99, Menlo Park, CA 94025, USA
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, SSRL MS 99, Menlo Park, CA 94025, USA
| |
Collapse
|
55
|
Xu Q, Eguchi T, Mathews II, Rife CL, Chiu HJ, Farr CL, Feuerhelm J, Jaroszewski L, Klock HE, Knuth MW, Miller MD, Weekes D, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase, an essential enzyme in the biosynthesis of archaeal membrane lipids. J Mol Biol 2010; 404:403-17. [PMID: 20869368 DOI: 10.1016/j.jmb.2010.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/20/2022]
Abstract
Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD.
Collapse
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Molecular basis of vancomycin dependence in VanA-type Staphylococcus aureus VRSA-9. J Bacteriol 2010; 192:5465-71. [PMID: 20729361 DOI: 10.1128/jb.00613-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vancomycin-resistant Staphylococcus aureus VRSA-9 clinical isolate was partially dependent on glycopeptide for growth. The responsible vanA operon had the same organization as that of Tn1546 and was located on a plasmid. The chromosomal D-Ala:D-Ala ligase (ddl) gene had two point mutations that led to Q260K and A283E substitutions, resulting in a 200-fold decrease in enzymatic activity compared to that of the wild-type strain VRSA-6. To gain insight into the mechanism of enzyme impairment, we determined the crystal structure of VRSA-9 Ddl and showed that the A283E mutation induces new ion pair/hydrogen bond interactions, leading to an asymmetric rearrangement of side chains in the dimer interface. The Q260K substitution is located in an exposed external loop and did not induce any significant conformational change. The VRSA-9 strain was susceptible to oxacillin due to synthesis of pentadepsipeptide precursors ending in D-alanyl-D-lactate which are not substrates for the β-lactam-resistant penicillin binding protein PBP2'. Comparison with the partially vancomycin-dependent VRSA-7, whose Ddl is 5-fold less efficient than that of VRSA-9, indicated that the levels of vancomycin dependence and susceptibility to β-lactams correlate with the degree of Ddl impairment. Ddl drug targeting could therefore be an effective strategy against vancomycin-resistant S. aureus.
Collapse
|
57
|
Matsumoto Y, Xu Q, Miyazaki S, Kaito C, Farr CL, Axelrod HL, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Sekimizu K, Wilson IA. Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module. Structure 2010; 18:537-47. [PMID: 20399190 DOI: 10.1016/j.str.2010.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 12/01/2022]
Abstract
CvfB is a conserved regulatory protein important for the virulence of Staphylococcus aureus. We show here that CvfB binds RNA. The crystal structure of the CvfB ortholog from Streptococcus pneumoniae at 1.4 A resolution reveals a unique RNA binding protein that is formed from a concatenation of well-known structural modules that bind nucleic acids: three consecutive S1 RNA binding domains and a winged helix (WH) domain. The third S1 and the WH domains are required for cooperative RNA binding and form a continuous surface that likely contributes to the RNA interaction. The WH domain is critical to CvfB function and contains a unique sequence motif. Thus CvfB represents a novel assembly of modules for binding RNA.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Scheeff ED, Axelrod HL, Miller MD, Chiu HJ, Deacon AM, Wilson IA, Manning G. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases. Proteins 2010; 78:1470-82. [PMID: 20077512 PMCID: PMC2860764 DOI: 10.1002/prot.22663] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial spore formation is a complex process of fundamental relevance to biology and human disease. The spore coat structure is complex and poorly understood, and the roles of many of the protein components remain unclear. We describe a new family of spore coat proteins, the bacterial spore kinases (BSKs), and the first crystal structure of a BSK, YtaA (CotI) from Bacillus subtilis. BSKs are widely distributed in spore-forming Bacillus and Clostridium species, and have a dynamic evolutionary history. Sequence and structure analyses indicate that the BSKs are CAKs, a prevalent group of small molecule kinases in bacteria that is distantly related to the eukaryotic protein kinases. YtaA has substantial structural similarity to CAKs, but also displays distinctive features that broaden our understanding of the CAK group. Evolutionary constraint analysis of the protein surfaces indicates that members of the BSK family have distinct clade-conserved patterns in the substrate binding region, and probably bind and phosphorylate distinct targets. Several classes of BSKs have apparently independently lost catalytic activity to become pseudokinases, indicating that the family also has a major noncatalytic function. Proteins 2010. © 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Eric D Scheeff
- Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 2010; 107:10708-12. [PMID: 20498078 DOI: 10.1073/pnas.1006284107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cadherin superfamily encodes more than 100 receptors with diverse functions in tissue development and homeostasis. Classical cadherins mediate adhesion by binding interactions that depend on their N-terminal extracellular cadherin (EC) domains, which swap N-terminal beta-strands. Sequence alignments suggest that the strand-swap binding mode is not commonly used by functionally divergent cadherins. Here, we have determined the structure of the EC1-EC2 domains of cadherin 23 (CDH23), which binds to protocadherin 15 (PCDH15) to form tip links of mechanosensory hair cells. Unlike classical cadherins, the CDH23 N terminus contains polar amino acids that bind Ca(2+). The N terminus of PCDH15 also contains polar amino acids. Mutations in polar amino acids within EC1 of CDH23 and PCDH15 abolish interaction between the two cadherins. PCDH21 and PCDH24 contain similarly charged N termini, suggesting that a subset of cadherins share a common interaction mechanism that differs from the strand-swap binding mode of classical cadherins.
Collapse
|
60
|
Dermoun Z, Foulon A, Miller MD, Harrington DJ, Deacon AM, Sebban-Kreuzer C, Roche P, Lafitte D, Bornet O, Wilson IA, Dolla A. TM0486 from the hyperthermophilic anaerobe Thermotoga maritima is a thiamin-binding protein involved in response of the cell to oxidative conditions. J Mol Biol 2010; 400:463-76. [PMID: 20471400 DOI: 10.1016/j.jmb.2010.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/28/2010] [Accepted: 05/07/2010] [Indexed: 11/28/2022]
Abstract
The COG database was used for a comparative genome analysis with genomes from anaerobic and aerobic microorganisms with the aim of identifying proteins specific to the anaerobic way of life. A total of 33 COGs were identified, five of which correspond to proteins of unknown function. We focused our study on TM0486 from Thermotoga maritima, which belongs to one of these COGs of unknown function, namely COG0011. The crystal structure of the protein was determined at 2 A resolution. The structure adopts a beta alpha beta beta alpha beta ferredoxin-like fold and assembles as a homotetramer. The structure also revealed the presence of a pocket in each monomer that bound an unidentified ligand. NMR and calorimetry revealed that TM0486 specifically bound thiamin with a K(d) of 1.58 microM, but not hydroxymethyl pyrimidine (HMP), which has been implicated as a potential ligand. We demonstrated that the TM0486 gene belongs to the same multicistronic unit as TM0483, TM0484 and TM0485. Although these three genes have been assigned to the transport of HMP, with TM0484 being the periplasmic thiamin/HMP-binding protein and TM0485 and TM0483 the transmembrane and the ATPase components, respectively, our results led us to conclude that this operon encodes an ABC transporter dedicated to thiamin, with TM0486 transporting charged thiamin in the cytoplasm. Given that this transcriptional unit was up-regulated when T. maritima was exposed to oxidative conditions, we propose that, by chelating cytoplasmic thiamin, TM0486 and, by extension, proteins belonging to COG0011 are involved in the response mechanism to stress that could arise during aerobic conditions.
Collapse
Affiliation(s)
- Zorah Dermoun
- IMR-CNRS, IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Li G, Chen Q, Li J, Hu X, Zhao J. A Compact Disk-Like Centrifugal Microfluidic System for High-Throughput Nanoliter-Scale Protein Crystallization Screening. Anal Chem 2010; 82:4362-9. [DOI: 10.1021/ac902904m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gang Li
- Nanotechnology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China, and Department of Physiology and Biophysics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Qiang Chen
- Nanotechnology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China, and Department of Physiology and Biophysics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Junjun Li
- Nanotechnology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China, and Department of Physiology and Biophysics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xiaojian Hu
- Nanotechnology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China, and Department of Physiology and Biophysics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jianlong Zhao
- Nanotechnology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China, and Department of Physiology and Biophysics, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
62
|
Das D, Moiani D, Axelrod HL, Miller MD, McMullan D, Jin KK, Abdubek P, Astakhova T, Burra P, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Ernst D, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Tainer JA, Wilson IA. Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair. J Mol Biol 2010; 397:647-63. [PMID: 20122942 DOI: 10.1016/j.jmb.2010.01.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
Abstract
Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only approximately 20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain. J Mol Biol 2009; 396:31-46. [PMID: 19913036 PMCID: PMC2817789 DOI: 10.1016/j.jmb.2009.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/23/2022]
Abstract
Pleckstrin homology (PH) domains have been identified only in eukaryotic proteins to date. We have determined crystal structures for three members of an uncharacterized protein family (Pfam PF08000), which provide compelling evidence for the existence of PH-like domains in bacteria (PHb). The first two structures contain a single PHb domain that forms a dome-shaped, oligomeric ring with C(5) symmetry. The third structure has an additional helical hairpin attached at the C-terminus and forms a similar but much larger ring with C(12) symmetry. Thus, both molecular assemblies exhibit rare, higher-order, cyclic symmetry but preserve a similar arrangement of their PHb domains, which gives rise to a conserved hydrophilic surface at the intersection of the beta-strands of adjacent protomers that likely mediates protein-protein interactions. As a result of these structures, additional families of PHb domains were identified, suggesting that PH domains are much more widespread than originally anticipated. Thus, rather than being a eukaryotic innovation, the PH domain superfamily appears to have existed before prokaryotes and eukaryotes diverged.
Collapse
|
64
|
|
65
|
Krishna SS, Tautz L, Xu Q, McMullan D, Miller MD, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Elsliger MA, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Morse AT, Mustelin T, Nigoghossian E, Oommachen S, Reyes R, Rife CL, van den Bedem H, Weekes D, White A, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of NMA1982 from Neisseria meningitidis at 1.5 angstroms resolution provides a structural scaffold for nonclassical, eukaryotic-like phosphatases. Proteins 2009; 69:415-21. [PMID: 17636569 DOI: 10.1002/prot.21314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S Sri Krishna
- Burnham Institute for Medical Research, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zubieta C, Krishna SS, Kapoor M, Kozbial P, McMullan D, Axelrod HL, Miller MD, Abdubek P, Ambing E, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Hampton E, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif. Proteins 2009; 69:223-33. [PMID: 17654545 DOI: 10.1002/prot.21550] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein).
Collapse
Affiliation(s)
- Chloe Zubieta
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Xu Q, Traag BA, Willemse J, McMullan D, Miller MD, Elsliger MA, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Chruszcz M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Minor W, Mommaas AM, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Wang S, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA, van Wezel GP. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. J Biol Chem 2009; 284:25268-79. [PMID: 19567872 DOI: 10.1074/jbc.m109.018564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Das D, Kozbial P, Axelrod HL, Miller MD, McMullan D, Krishna SS, Abdubek P, Acosta C, Astakhova T, Burra P, Carlton D, Chen C, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Ernst D, Farr C, Feuerhelm J, Grzechnik A, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Johnson HA, Klock HE, Knuth MW, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Sudek S, Tien H, Trame C, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of a novel Sm-like protein of putative cyanophage origin at 2.60 A resolution. Proteins 2009; 75:296-307. [PMID: 19173316 DOI: 10.1002/prot.22360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ECX21941 represents a very large family (over 600 members) of novel, ocean metagenome-specific proteins identified by clustering of the dataset from the Global Ocean Sampling expedition. The crystal structure of ECX21941 reveals unexpected similarity to Sm/LSm proteins, which are important RNA-binding proteins, despite no detectable sequence similarity. The ECX21941 protein assembles as a homopentamer in solution and in the crystal structure when expressed in Escherichia coli and represents the first pentameric structure for this Sm/LSm family of proteins, although the actual oligomeric form in vivo is currently not known. The genomic neighborhood analysis of ECX21941 and its homologs combined with sequence similarity searches suggest a cyanophage origin for this protein. The specific functions of members of this family are unknown, but our structure analysis of ECX21941 indicates nucleic acid-binding capabilities and suggests a role in RNA and/or DNA processing.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics, 2 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Xu Q, Carlton D, Miller MD, Elsliger MA, Krishna SS, Abdubek P, Astakhova T, Burra P, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Trame C, Trout CV, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. J Mol Biol 2009; 390:686-98. [PMID: 19450606 DOI: 10.1016/j.jmb.2009.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
Cell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity.
Collapse
|
70
|
Das D, Krishna SS, McMullan D, Miller MD, Xu Q, Abdubek P, Acosta C, Astakhova T, Axelrod HL, Burra P, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Ernst D, Feuerhelm J, Grzechnik A, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Tien H, Trame CB, Trout CV, van den Bedem H, Weekes D, White A, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of the Fic (Filamentation induced by cAMP) family protein SO4266 (gi|24375750) from Shewanella oneidensis MR-1 at 1.6 A resolution. Proteins 2009; 75:264-71. [PMID: 19127588 DOI: 10.1002/prot.22338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Xu Q, Rife CL, Carlton D, Miller MD, Krishna SS, Elsliger MA, Abdubek P, Astakhova T, Chiu HJ, Clayton T, Duan L, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, van den Bedem H, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus. Proteins 2009; 74:1041-9. [PMID: 19089981 DOI: 10.1002/prot.22325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
A decade of structural genomics, the large-scale determination of protein structures, has generated a wealth of data and many important lessons for structural biology and for future large-scale projects. These lessons include a confirmation that it is possible to construct large-scale facilities that can determine the structures of a hundred or more proteins per year, that these structures can be of high quality, and that these structures can have an important impact. Technology development has played a critical role in structural genomics, the difficulties at each step of determining a structure of a particular protein can be quantified, and validation of technologies is nearly as important as the technologies themselves. Finally, rapid deposition of data in public databases has increased the impact and usefulness of the data and international cooperation has advanced the field and improved data sharing.
Collapse
|
73
|
Xu Q, McMullan D, Abdubek P, Astakhova T, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Hale J, Han GW, Jaroszewski L, Jin KK, Johnson HA, Klock HE, Knuth MW, Kozbial P, Sri Krishna S, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Trame C, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. A structural basis for the regulatory inactivation of DnaA. J Mol Biol 2008; 385:368-80. [PMID: 19000695 DOI: 10.1016/j.jmb.2008.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/18/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
Abstract
Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.
Collapse
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wampler RD, Kissick DJ, Dehen CJ, Gualtieri EJ, Grey JL, Wang HF, Thompson DH, Cheng JX, Simpson GJ. Selective detection of protein crystals by second harmonic microscopy. J Am Chem Soc 2008; 130:14076-7. [PMID: 18831587 DOI: 10.1021/ja805983b] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unique symmetry properties of second harmonic generation (SHG) microscopy enabled sensitive and selective imaging of protein microcrystals with negligible contributions from solvated proteins or amorphous protein aggregates. In studies of microcrystallites of green fluorescent protein (GFP) prepared in 500 pL droplets, the SHG intensities rivaled those of fluorescence, but with superb selectivity for crystalline regions. GFP in amorphous aggregates and in solution produced substantial background fluorescence, but no detectable SHG. The ratio of the forward-to-backward detected SHG provides a measure of the particle size, suggesting detection limits down to crystallites 100 nm in diameter under low magnification (10x). In addition to being sensitive and highly selective, second-order nonlinear optical imaging of chiral crystals (SONICC) is directly compatibility with virtually all common protein crystallization platforms.
Collapse
Affiliation(s)
- Ronald D Wampler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Protein crystallization in restricted geometry: advancing old ideas for modern times in structural proteomics. Methods Mol Biol 2008; 426:363-76. [PMID: 18542876 DOI: 10.1007/978-1-60327-058-8_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In the structural genomics period traditional methods for protein crystallization have been eclipsed by automation using batch or vapor diffusion equilibration to find conditions conducive for protein crystal growth. Although many globular and soluble proteins predominantly from prokaryotes have been crystallized and their structures solved by high throughput approaches, the remaining difficult proteins require more systematic and reflective methods combining miniaturization and integration of modern and traditional crystallography techniques. One of these conventional methods is growing crystals in restricted geometry, which is a historically well-known concept and a practical technique under-used by today's crystallographers. This chapter presents practical guidelines to use capillaries for microbatch crystallization screening and counter-diffusion crystallization as valuable techniques to obtain protein crystals in confined volumes. The emphasis in the authors' application is to perform broad-based screening with a microgram amount of protein, optimize crystal growth in a supersaturation gradient, and undergo in situ x-ray data analysis for x-ray crystallography without invasive manipulation. Applications and concepts presented here bring to light future prerequisites for the next generation of automation for structural genomics.
Collapse
|
76
|
Xu Q, Kozbial P, McMullan D, Krishna SS, Brittain SM, Ficarro SB, DiDonato M, Miller MD, Abdubek P, Axelrod HL, Chiu HJ, Clayton T, Duan L, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Klock HE, Morse AT, Nigoghossian E, Paulsen J, Reyes R, Rife CL, van den Bedem H, White A, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of an ADP-ribosylated protein with a cytidine deaminase-like fold, but unknown function (TM1506), from Thermotoga maritima at 2.70 A resolution. Proteins 2008; 71:1546-52. [PMID: 18275082 DOI: 10.1002/prot.21992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Saikatendu KS, Joseph JS, Subramanian V, Clayton T, Griffith M, Moy K, Velasquez J, Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3. Structure 2008; 13:1665-75. [PMID: 16271890 PMCID: PMC7126892 DOI: 10.1016/j.str.2005.07.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/26/2005] [Accepted: 07/31/2005] [Indexed: 11/19/2022]
Abstract
The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 Å resolution. The structure of this “X” domain, seen in many single-stranded RNA viruses, reveals a three-layered α/β/α core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1″-phosphate (Appr-1″-p). The SARS nsP3 domain readily removes the 1″ phosphate group from Appr-1″-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1″-p.
Collapse
Affiliation(s)
- Kumar Singh Saikatendu
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Kozbial P, Xu Q, Chiu HJ, McMullan D, Krishna SS, Miller MD, Abdubek P, Acosta C, Astakhova T, Axelrod HL, Carlton D, Clayton T, Deller M, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Spraggon G, Trout CV, van den Bedem H, Weekes D, White A, Wolf G, Zubieta C, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structures of MW1337R and lin2004: representatives of a novel protein family that adopt a four-helical bundle fold. Proteins 2008; 71:1589-96. [PMID: 18324683 DOI: 10.1002/prot.22020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Piotr Kozbial
- Joint Center for Structural Genomics, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Mathews II, McMullan D, Miller MD, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, McPhillips TM, Morse AT, Quijano K, Rife CL, Schwarzenbacher R, Spraggon G, Stevens RC, van den Bedem H, Weekes D, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of 2-keto-3-deoxygluconate kinase (TM0067) from Thermotoga maritima at 2.05 A resolution. Proteins 2008; 70:603-8. [PMID: 18004772 DOI: 10.1002/prot.21842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Axelrod HL, McMullan D, Krishna SS, Miller MD, Elsliger MA, Abdubek P, Ambing E, Astakhova T, Carlton D, Chiu HJ, Clayton T, Duan L, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rife CL, van den Bedem H, Weekes D, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of AICAR transformylase IMP cyclohydrolase (TM1249) fromThermotoga maritima at 1.88 Å resolution. Proteins 2008; 71:1042-9. [DOI: 10.1002/prot.21967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
81
|
Cornell E, Fisher WW, Nordmeyer R, Yegian D, Dong M, Biggin MD, Celniker SE, Jin J. Automating fruit fly Drosophila embryo injection for high throughput transgenic studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:013705. [PMID: 18248037 DOI: 10.1063/1.2827516] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To decipher and manipulate the 14 000 identified Drosophila genes, there is a need to inject a large number of embryos with transgenes. We have developed an automated instrument for high throughput injection of Drosophila embryos. It was built on an inverted microscope, equipped with a motorized xy stage, autofocus, a charge coupled device camera, and an injection needle mounted on a high speed vertical stage. A novel, micromachined embryo alignment device was developed to facilitate the arrangement of a large number of eggs. The control system included intelligent and dynamic imaging and analysis software and an embryo injection algorithm imitating a human operator. Once the injection needle and embryo slide are loaded, the software automatically images and characterizes each embryo and subsequently injects DNA into all suitable embryos. The ability to program needle flushing and monitor needle status after each injection ensures reliable delivery of biomaterials. Using this instrument, we performed a set of transformation injection experiments. The robot achieved injection speeds and transformation efficiencies comparable to those of a skilled human injector. Because it can be programed to allow injection at various locations in the embryo, such as the anterior pole or along the dorsal or ventral axes, this system is also suitable for injection of general biochemicals, including drugs and RNAi.
Collapse
Affiliation(s)
- E Cornell
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Trace fluorescent labeling, typically less than 1%, can be a powerful aid in macromolecule crystallization. Precipitation concentrates a solute, and crystals are the most densely packed solid form. The more densely packed the fluorescing material, the brighter the emission from it; thus, fluorescence intensity of a solid phase is a good indication of whether or not one has crystals. The more brightly fluorescing crystalline phase is easily distinguishable, even when embedded in an amorphous precipitate. This approach conveys several distinct advantages: one can see what the protein is doing in response to the imposed conditions, and distinguishing between amorphous and microcrystalline precipitated phases is considerably simpler. The higher fluorescence intensity of the crystalline phase led the authors to test if they could derive crystallization conditions from screen outcomes that had no obvious crystalline material, but simply "bright spots" in the precipitated phase. Preliminary results show that the presence of these bright spots, not observable under white light, is indeed a good indicator of potential crystallization conditions.
Collapse
|
83
|
Premkumar L, Rife CL, Sri Krishna S, McMullan D, Miller MD, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Canaves JM, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Elsliger MA, Feuerhelm J, Floyd R, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kovarik JS, Kreusch A, Levin I, McPhillips TM, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rezezadeh F, Rodionov D, Schwarzenbacher R, Spraggon G, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of TM1030 from Thermotoga maritima at 2.3 A resolution reveals molecular details of its transcription repressor function. Proteins 2007; 68:418-24. [PMID: 17444523 DOI: 10.1002/prot.21436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Xu Q, Saikatendu KS, Krishna SS, McMullan D, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod HL, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Miller MD, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Schwarzenbacher R, van den Bedem H, White A, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of MtnX phosphatase fromBacillus subtilisat 2.0 Å resolution provides a structural basis for bipartite phosphomonoester hydrolysis of 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate. Proteins 2007; 69:433-9. [PMID: 17654724 DOI: 10.1002/prot.21602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Zubieta C, Krishna SS, McMullan D, Miller MD, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod HL, Carlton D, Chiu HJ, Clayton T, Deller M, DiDonato M, Duan L, Elsliger MA, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kumar A, Marciano D, Morse AT, Nigoghossian E, Oommachen S, Reyes R, Rife CL, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of homoserine O-succinyltransferase from Bacillus cereus at 2.4 Å resolution. Proteins 2007; 68:999-1005. [PMID: 17546672 DOI: 10.1002/prot.21208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chloe Zubieta
- Joint Center for Structural Genomics, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Weekes D, Miller MD, Krishna SS, McMullan D, McPhillips TM, Acosta C, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Morse AT, Quijano K, Spraggon G, van den Bedem H, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of a transcription regulator (TM1602) from Thermotoga maritima at 2.3 A resolution. Proteins 2007; 67:247-52. [PMID: 17256761 DOI: 10.1002/prot.21221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
87
|
Joseph JS, Saikatendu KS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch. J Virol 2007; 81:6700-8. [PMID: 17409150 PMCID: PMC1900129 DOI: 10.1128/jvi.02817-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.
Collapse
Affiliation(s)
- Jeremiah S Joseph
- Department of Cell Biology, 10550 N. Torrey Pines Road, CB265, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Xu Q, Krishna SS, McMullan D, Schwarzenbacher R, Miller MD, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod HL, Canaves JM, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rife CL, Spraggon G, Stevens RC, van den Bedem H, White A, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of an ORFan protein (TM1622) from Thermotoga maritima at 1.75 A resolution reveals a fold similar to the Ran-binding protein Mog1p. Proteins 2007; 65:777-82. [PMID: 16948158 DOI: 10.1002/prot.21015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
89
|
Abola E, Carlton DD, Kuhn P, Stevens RC. Five Years of Increasing Structural Biology Throughput - A Retrospective Analysis. STRUCTURE-BASED DRUG DISCOVERY 2007. [PMCID: PMC7122022 DOI: 10.1007/1-4020-4407-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
90
|
Abstract
The main effort in the area of crystallization for structural genomics is currently being invested in automation of high-throughput screening procedures to identify potential crystallization conditions. However, screening in itself, even in massive quantities, is not enough; it has to be complemented by an equally important procedure in crystal production, namely crystal optimization. This chapter describes optimization methods for turning low-quality crystals into useful diffracting ones and presents practical ways of automating such methods and adapting them to high throughput. The methods enable the control of the crystallization environment as the trial takes place. They include the use of oils, gels, and the uncoupling of the nucleation and growth phases of crystallization.
Collapse
Affiliation(s)
- Naomi E Chayen
- Biological Structure and Function Section, Division of Biomedical Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
91
|
Kosloff M, Han GW, Krishna SS, Schwarzenbacher R, Fasnacht M, Elsliger MA, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod HL, Canaves JM, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Feuerhelm J, Grittini C, Grzechnik SK, Hale J, Hampton E, Haugen J, Jaroszewski L, Jin KK, Johnson H, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Levin I, McMullan D, Miller MD, Morse AT, Moy K, Nigoghossian E, Okach L, Oommachen S, Page R, Paulsen J, Quijano K, Reyes R, Rife CL, Sims E, Spraggon G, Sridhar V, Stevens RC, van den Bedem H, Velasquez J, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Comparative structural analysis of a novel glutathioneS-transferase (ATU5508) fromAgrobacterium tumefaciensat 2.0 Å resolution. Proteins 2006; 65:527-37. [PMID: 16988933 DOI: 10.1002/prot.21130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutathione S-transferases (GSTs) comprise a diverse superfamily of enzymes found in organisms from all kingdoms of life. GSTs are involved in diverse processes, notably small-molecule biosynthesis or detoxification, and are frequently also used in protein engineering studies or as biotechnology tools. Here, we report the high-resolution X-ray structure of Atu5508 from the pathogenic soil bacterium Agrobacterium tumefaciens (atGST1). Through use of comparative sequence and structural analysis of the GST superfamily, we identified local sequence and structural signatures, which allowed us to distinguish between different GST classes. This approach enables GST classification based on structure, without requiring additional biochemical or immunological data. Consequently, analysis of the atGST1 crystal structure suggests a new GST class, distinct from previously characterized GSTs, which would make it an attractive target for further biochemical studies.
Collapse
Affiliation(s)
- Mickey Kosloff
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
DiDonato M, Krishna SS, Schwarzenbacher R, McMullan D, Agarwalla S, Brittain SM, Miller MD, Abdubek P, Ambing E, Axelrod HL, Canaves JM, Chiu HJ, Deacon AM, Duan L, Elsliger MA, Godzik A, Grzechnik SK, Hale J, Hampton E, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Lesley SA, Levin I, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rife CL, Spraggon G, Stevens RC, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA. Crystal structure of 2-phosphosulfolactate phosphatase (ComB) fromClostridium acetobutylicumat 2.6 Å resolution reveals a new fold with a novel active site. Proteins 2006; 65:771-6. [PMID: 16927339 DOI: 10.1002/prot.20978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
93
|
Xu Q, Schwarzenbacher R, Krishna SS, McMullan D, Agarwalla S, Quijano K, Abdubek P, Ambing E, Axelrod H, Biorac T, Canaves JM, Chiu HJ, Elsliger MA, Grittini C, Grzechnik SK, DiDonato M, Hale J, Hampton E, Han GW, Haugen J, Hornsby M, Jaroszewski L, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Miller MD, Moy K, Nigoghossian E, Paulsen J, Reyes R, Rife C, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, White A, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of acireductone dioxygenase (ARD) from Mus musculus at 2.06 angstrom resolution. Proteins 2006; 64:808-13. [PMID: 16783794 DOI: 10.1002/prot.20947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qingping Xu
- The Joint Center for Structural Genomics, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Mathews II, Krishna SS, Schwarzenbacher R, McMullan D, Jaroszewski L, Miller MD, Abdubek P, Agarwalla S, Ambing E, Axelrod HL, Canaves JM, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Elsliger MA, Grzechnik SK, Hale J, Hampton E, Haugen J, Jin KK, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Levin I, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rife CL, Spraggon G, Stevens RC, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of phosphoribosylformyl-glycinamidine synthase II, PurS subunit (TM1244) from Thermotoga maritima at 1.90 A resolution. Proteins 2006; 65:249-54. [PMID: 16865708 DOI: 10.1002/prot.21024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Joseph JS, Saikatendu KS, Subramanian V, Neuman BW, Brooun A, Griffith M, Moy K, Yadav MK, Velasquez J, Buchmeier MJ, Stevens RC, Kuhn P. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol 2006; 80:7894-901. [PMID: 16873246 PMCID: PMC1563791 DOI: 10.1128/jvi.00467-06] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) possesses a large 29.7-kb positive-stranded RNA genome. The first open reading frame encodes replicase polyproteins 1a and 1ab, which are cleaved to generate 16 "nonstructural" proteins, nsp1 to nsp16, involved in viral replication and/or RNA processing. Among these, nsp10 plays a critical role in minus-strand RNA synthesis in a related coronavirus, murine hepatitis virus. Here, we report the crystal structure of SARS-CoV nsp10 at a resolution of 1.8 A as determined by single-wavelength anomalous dispersion using phases derived from hexatantalum dodecabromide. nsp10 is a single domain protein consisting of a pair of antiparallel N-terminal helices stacked against an irregular beta-sheet, a coil-rich C terminus, and two Zn fingers. nsp10 represents a novel fold and is the first structural representative of this family of Zn finger proteins found so far exclusively in coronaviruses. The first Zn finger coordinates a Zn2+ ion in a unique conformation. The second Zn finger, with four cysteines, is a distant member of the "gag-knuckle fold group" of Zn2+-binding domains and appears to maintain the structural integrity of the C-terminal tail. A distinct clustering of basic residues on the protein surface suggests a nucleic acid-binding function. Gel shift assays indicate that in isolation, nsp10 binds single- and double-stranded RNA and DNA with high-micromolar affinity and without obvious sequence specificity. It is possible that nsp10 functions within a larger RNA-binding protein complex. However, its exact role within the replicase complex is still not clear.
Collapse
Affiliation(s)
- Jeremiah S Joseph
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Han GW, Sri Krishna S, Schwarzenbacher R, McMullan D, Ginalski K, Elsliger MA, Brittain SM, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod H, Canaves JM, Chiu HJ, DiDonato M, Grzechnik SK, Hale J, Hampton E, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Miller MD, Morse AT, Moy K, Nigoghossian E, Oommachen S, Ouyang J, Paulsen J, Quijano K, Reyes R, Rife C, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Wang X, West B, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of the ApbE protein (TM1553) from Thermotoga maritima at 1.58 A resolution. Proteins 2006; 64:1083-90. [PMID: 16779835 DOI: 10.1002/prot.20950] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gye Won Han
- Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Schwarzenbacher R, McMullan D, Krishna SS, Xu Q, Miller MD, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, McPhillips TM, Morse AT, Quijano K, Spraggon G, Stevens RC, van den Bedem H, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of a glycerate kinase (TM1585) from Thermotoga maritima at 2.70 Å resolution reveals a new fold. Proteins 2006; 65:243-8. [PMID: 16865707 DOI: 10.1002/prot.21058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
98
|
Mathews II, Krishna SS, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E, Canaves JM, Chiu HJ, Deacon AM, DiDonato M, Elsliger MA, Godzik A, Grittini C, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Klock HE, Koesema E, Kreusch A, Kuhn P, Lesley SA, Levin I, Miller MD, Moy K, Nigoghossian E, Paulsen J, Quijano K, Reyes R, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA. Crystal structure of phosphoribosylformylglycinamidine synthase II (smPurL) from Thermotoga maritima at 2.15 A resolution. Proteins 2006; 63:1106-11. [PMID: 16544324 DOI: 10.1002/prot.20650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Irimpan I Mathews
- Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Jin KK, Krishna SS, Schwarzenbacher R, McMullan D, Abdubek P, Agarwalla S, Ambing E, Axelrod H, Canaves JM, Chiu HJ, Deacon AM, DiDonato M, Elsliger MA, Feuerhelm J, Godzik A, Grittini C, Grzechnik SK, Hale J, Hampton E, Haugen J, Hornsby M, Jaroszewski L, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Lesley SA, Miller MD, Moy K, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rife C, Stevens RC, Spraggon G, van den Bedem H, Velasquez J, White A, Wolf G, Han GW, Xu Q, Hodgson KO, Wooley J, Wilson IA. Crystal structure of TM1367 from Thermotoga maritima at 1.90 A resolution reveals an atypical member of the cyclophilin (peptidylprolyl isomerase) fold. Proteins 2006; 63:1112-8. [PMID: 16544291 DOI: 10.1002/prot.20894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Kai Jin
- The Joint Center for Structural Genomics, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Peti W, Page R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 2006; 51:1-10. [PMID: 16904906 DOI: 10.1016/j.pep.2006.06.024] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/23/2022]
Abstract
Automation and miniaturization are key issues of high-throughput research projects in the post-genomic era. The implementation of robotics and parallelization has enabled researchers to process large numbers of protein targets for structural studies in a short time with reasonable cost efficiency. However, the cost of implementing the robotics and parallelization often prohibit their use in the traditional academic laboratory. Fortunately, multiple groups have made significant efforts to minimize the cost of heterologous protein expression for the production of protein samples in quantities suitable for high resolution structural studies. In this review, we describe recent efforts to continue to minimize the cost for the parallel processing of multiple protein targets and focus on those materials and strategies that are highly suitable for the traditional academic laboratory.
Collapse
Affiliation(s)
- Wolfgang Peti
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Box G-E3, Providence, RI 02912, USA
| | | |
Collapse
|