51
|
Krishnathas GM, Strödke B, Mittmann L, Zech T, Berger LM, Reichel CA, Rösser S, Schmid T, Knapp S, Müller S, Bracher F, Fürst R, Bischoff-Kont I. C81-evoked inhibition of the TNFR1-NFκB pathway during inflammatory processes for stabilization of the impaired vascular endothelial barrier for leukocytes. FASEB J 2021; 35:e21656. [PMID: 34042211 DOI: 10.1096/fj.202100037r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Chronic inflammation-related diseases are characterized by persistent leukocyte infiltration into the underlying tissue. The vascular endothelium plays a major role in this pathophysiological condition. Only few therapeutic strategies focus on the vascular endothelium as a major target for an anti-inflammatory approach. In this study, we present the natural compound-derived carbazole derivative C81 as chemical modulator interfering with leukocyte-endothelial cell interactions. An in vivo assay employing intravital microscopy to monitor leukocyte trafficking after C81 treatment in postcapillary venules of a murine cremaster muscle was performed. Moreover, in vitro assays using HUVECs and monocytes were implemented. The impact of C81 on cell adhesion molecules and the NFκB signaling cascade was analyzed in vitro in endothelial cells. Effects of C81 on protein translation were determined by incorporation of a puromycin analog-based approach and polysome profiling. We found that C81 significantly reduced TNF-activated leukocyte trafficking in postcapillary venules. Similar results were obtained in vitro when C81 reduced leukocyte-endothelial cell interactions by down-regulating cell adhesion molecules. Focusing on the NFκB signaling cascade, we found that C81 reduced the activation on multiple levels of the cascade through promoted IκBα recovery by attenuation of IκBα ubiquitination and through reduced protein levels of TNFR1 caused by protein translation inhibition. We suggest that C81 might represent a promising lead compound for interfering with inflammation-related processes in endothelial cells by down-regulation of IκBα ubiquitination on the one hand and inhibition of translation on the other hand without exerting cytotoxic effects.
Collapse
Affiliation(s)
| | - Benjamin Strödke
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Laura Mittmann
- Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Thomas Zech
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt/Main, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt/Main, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt/Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt/Main, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt/Main, Germany
| | - Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
52
|
Frenkel N, Poghosyan S, Alarcón CR, García SB, Queiroz K, van den Bent L, Laoukili J, Rinkes IB, Vulto P, Kranenburg O, Hagendoorn J. Long-Lived Human Lymphatic Endothelial Cells to Study Lymphatic Biology and Lymphatic Vessel/Tumor Coculture in a 3D Microfluidic Model. ACS Biomater Sci Eng 2021; 7:3030-3042. [PMID: 34185991 DOI: 10.1021/acsbiomaterials.0c01378] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lymphatic system is essential in maintaining tissue fluid homeostasis as well as antigen and immune cell transport to lymph nodes. Moreover, lymphatic vasculature plays an important role in various pathological processes, such as cancer. Fundamental to this research field are representative in vitro models. Here we present a microfluidic lymphatic vessel model to study lymphangiogenesis and its interaction with colon cancer organoids using a newly developed lymphatic endothelial cell (LEC) line. We generated immortalized human LECs by lentiviral transduction of human telomerase (hTERT) and BMI-1 expression cassettes into primary LECs. Immortalized LECs showed an increased growth potential, reduced senescence, and elongated lifespan with maintenance of typical LEC morphology and marker expression for over 12 months while remaining nontransformed. Immortalized LECs were introduced in a microfluidic chip, comprising a free-standing extracellular matrix, where they formed a perfusable vessel-like structure against the extracellular matrix. A gradient of lymphangiogenic factors over the extracellular matrix gel induced the formation of luminated sprouts. Adding mouse colon cancer organoids adjacent to the lymphatic vessel resulted in a stable long-lived coculture model in which cancer cell-induced lymphangiogenesis and cancer cell motility can be investigated. Thus, the development of a stable immortalized lymphatic endothelial cell line in a membrane-free, perfused microfluidic chip yields a highly standardized lymphangiogenesis and lymphatic vessel-tumor cell coculture assay.
Collapse
Affiliation(s)
- Nicola Frenkel
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Susanna Poghosyan
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Carmen Rubio Alarcón
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | | | | | - Lotte van den Bent
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Jamila Laoukili
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Inne Borel Rinkes
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Paul Vulto
- Mimetas BV, JH Oortweg 19, Leiden, The Netherlands
| | - Onno Kranenburg
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Jeroen Hagendoorn
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
53
|
Czamara K, Stojak M, Pacia MZ, Zieba A, Baranska M, Chlopicki S, Kaczor A. Lipid Droplets Formation Represents an Integral Component of Endothelial Inflammation Induced by LPS. Cells 2021; 10:cells10061403. [PMID: 34204022 PMCID: PMC8227392 DOI: 10.3390/cells10061403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial inflammation is the hallmark of vascular pathology often proceeding with cardiovascular diseases. Here, we adopted a multiparameter approach combining various imaging techniques at the nano- and microscale (Raman, AFM and fluorescence) to investigate endothelial inflammation in response to lipopolysaccharides (LPS) in vitro in human microvascular endothelial cells (HMEC-1) with a focus on lipid droplets (LDs) formation. Our results show that LPS-induced LDs in HMEC-1 have a composition depending on LPS-incubation time and their formation requires the presence of serum. Robust endothelial inflammation induced by LPS was linked to LDs composed of highly unsaturated lipids, as well as prostacyclin release. LPS-induced LDs were spatially associated with nanostructural changes in the cell membrane architecture. In summary, LDs formation represents an integral component of endothelial inflammation induced by LPS.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Marta Stojak
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Marta Z. Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Alicja Zieba
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Malgorzata Baranska
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefan Chlopicki
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Pharmacology Department, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
- Correspondence:
| |
Collapse
|
54
|
Gutiérrez LM, Valenzuela Alvarez M, Yang Y, Spinelli F, Cantero MJ, Alaniz L, García MG, Kleinerman ES, Correa A, Bolontrade MF. Up-regulation of pro-angiogenic molecules and events does not relate with an angiogenic switch in metastatic osteosarcoma cells but to cell survival features. Apoptosis 2021; 26:447-459. [PMID: 34024019 DOI: 10.1007/s10495-021-01677-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 01/22/2023]
Abstract
Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.
Collapse
Affiliation(s)
- Luciana M Gutiérrez
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina
| | - Matías Valenzuela Alvarez
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina
| | - Yuanzheng Yang
- Division of Pediatrics and Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #853, Houston, TX, 77030, USA
| | | | - María José Cantero
- Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CITNOBA CONICET-UNNOBA, Jorge Newbery 261, B6000, Junín, Argentina
| | - Mariana G García
- Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Eugenie S Kleinerman
- Division of Pediatrics and Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #853, Houston, TX, 77030, USA
| | | | - Marcela F Bolontrade
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina.
| |
Collapse
|
55
|
Belperain S, Kang ZY, Dunphy A, Priebe B, Chiu NHL, Jia Z. Anti-Inflammatory Effect and Cellular Uptake Mechanism of Carbon Nanodots in in Human Microvascular Endothelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1247. [PMID: 34068511 PMCID: PMC8151002 DOI: 10.3390/nano11051247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease (CVD) has become an increasingly important topic in the field of medical research due to the steadily increasing rates of mortality caused by this disease. With recent advancements in nanotechnology, a push for new, novel treatments for CVD utilizing these new materials has begun. Carbon Nanodots (CNDs), are a new form of nanoparticles that have been coveted due to the green synthesis method, biocompatibility, fluorescent capabilities and potential anti-antioxidant properties. With much research pouring into CNDs being used as bioimaging and drug delivery tools, few studies have been completed on their anti-inflammatory potential, especially in the cardiovascular system. CVD begins initially by endothelial cell inflammation. The cause of this inflammation can come from many sources; one being tumor necrosis factor (TNF-α), which can not only trigger inflammation but prolong its existence by causing a storm of pro-inflammatory cytokines. This study investigated the ability of CNDs to attenuate TNF-α induced inflammation in human microvascular endothelial cells (HMEC-1). Results show that CNDs at non-cytotoxic concentrations reduce the expression of pro-inflammatory genes, mainly Interleukin-8 (IL-8), and interleukin 1 beta (IL-1β). The uptake of CNDs by HMEC-1s was examined. Results from the studies involving channel blockers and endocytosis disruptors suggest that uptake takes place by endocytosis. These findings provide insights on the interaction CNDs and endothelial cells undergoing TNF-α induced cellular inflammation.
Collapse
Affiliation(s)
- Sarah Belperain
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.B.); (Z.Y.K.); (A.D.); (B.P.)
| | - Zi Yae Kang
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.B.); (Z.Y.K.); (A.D.); (B.P.)
| | - Andrew Dunphy
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.B.); (Z.Y.K.); (A.D.); (B.P.)
| | - Brandon Priebe
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.B.); (Z.Y.K.); (A.D.); (B.P.)
| | - Norman H. L. Chiu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.B.); (Z.Y.K.); (A.D.); (B.P.)
| |
Collapse
|
56
|
Anquetil T, Solinhac R, Jaffre A, Chicanne G, Viaud J, Darcourt J, Orset C, Geuss E, Kleinschnitz C, Vanhaesebroeck B, Vivien D, Hnia K, Larrue V, Payrastre B, Gratacap MP. PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep 2021; 22:e51299. [PMID: 33880878 DOI: 10.15252/embr.202051299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3-kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2β) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2β in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2β showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2β in human cerebral microvascular endothelial cells stabilized homotypic cell-cell junctions by increasing Rab11-dependent VE-cadherin recycling. These results identify PI3KC2β as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.
Collapse
Affiliation(s)
- Typhaine Anquetil
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Romain Solinhac
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Aude Jaffre
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Gaëtan Chicanne
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Julien Viaud
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Jean Darcourt
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Cyrille Orset
- INSERM, UMR-S U1237 and Caen-Normandie University, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Eva Geuss
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | - Denis Vivien
- INSERM, UMR-S U1237 and Caen-Normandie University, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, Caen University Hospital, Caen, France
| | - Karim Hnia
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Vincent Larrue
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Bernard Payrastre
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France.,Laboratoire d'Hématologie, CHU de Toulouse, Toulouse Cedex, France
| | - Marie-Pierre Gratacap
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| |
Collapse
|
57
|
Patel JG, Narra HP, Sepuru KM, Sahni A, Golla SR, Sahni A, Singh A, Schroeder CLC, Chowdhury IH, Popov VL, Sahni SK. Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii. Biol Chem 2021; 401:249-262. [PMID: 31299006 DOI: 10.1515/hsz-2018-0389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.
Collapse
Affiliation(s)
- Jignesh G Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandhya R Golla
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aishwarya Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amber Singh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Imran H Chowdhury
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
58
|
Céspedes MA, Saénz DA, Calvo GH, González M, MacRobert AJ, Battah S, Casas AG, Di Venosa GM. Apoptotic cell death induced by dendritic derivatives of aminolevulinic acid in endothelial and foam cells co-cultures. Photochem Photobiol Sci 2021; 20:489-499. [PMID: 33825180 DOI: 10.1007/s43630-021-00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
Photodynamic therapy (PDT) is an effective procedure for the treatment of lesions diseases based on the selectivity of a photosensitising compound with the ability to accumulate in the target cell. Atherosclerotic plaque is a suitable target for PDT because of the preferential accumulation of photosensitisers in atherosclerotic plaques. Dendrimers are hyperbranched polymers conjugated to drugs. The dendrimers of ALA hold ester bonds that inside the cells are cleaved and release ALA, yielding PpIX production. The dendrimer 6m-ALA was chosen to perform this study since in previous studies it induced the highest porphyrin macrophage: endothelial cell ratio (Rodriguez et al. in Photochem Photobiol Sci 14:1617-1627, 2015). We transformed Raw 264.7 macrophages to foam cells by exposure to oxidised LDLs, and we employed a co-culture model of HMEC-1 endothelial cells and foam cells to study the affinity of ALA dendrimers for the foam cells. In this work it was proposed an in vitro model of atheromatous plaque, the aim was to study the selectivity of an ALA dendrimer for the foam cells as compared to the endothelial cells in a co-culture system and the type of cell death triggered by the photodynamic treatment. The ALA dendrimer 6m-ALA showed selectivity PDT response for foam cells against endothelial cells. A light dose of 1 J/cm2 eliminate foam cells, whereas less than 50% of HMEC-1 is killed, and apoptosis cell death is involved in this process, and no necrosis is present. We propose the use of ALA dendrimers as pro-photosensitisers to be employed in photoangioplasty to aid in the treatment of obstructive cardiovascular diseases, and these molecules can also be employed as a theranostic agent.
Collapse
Affiliation(s)
- Mariela A Céspedes
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martin, Universidad de Buenos Aires and CONICET, Avenida Córdoba 2351, 1er subsuelo, 1120 AAF, Autonomous City of Buenos Aires, Argentina
| | - Daniel A Saénz
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martin, Universidad de Buenos Aires and CONICET, Avenida Córdoba 2351, 1er subsuelo, 1120 AAF, Autonomous City of Buenos Aires, Argentina
| | - Gustavo H Calvo
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martin, Universidad de Buenos Aires and CONICET, Avenida Córdoba 2351, 1er subsuelo, 1120 AAF, Autonomous City of Buenos Aires, Argentina
| | - Marina González
- Facultad de Ciencias Médicas, Centro Científico Tecnológico La Plata, Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina
| | - Alexander J MacRobert
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Sinan Battah
- The School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Adriana G Casas
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martin, Universidad de Buenos Aires and CONICET, Avenida Córdoba 2351, 1er subsuelo, 1120 AAF, Autonomous City of Buenos Aires, Argentina.
| | - Gabriela M Di Venosa
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martin, Universidad de Buenos Aires and CONICET, Avenida Córdoba 2351, 1er subsuelo, 1120 AAF, Autonomous City of Buenos Aires, Argentina.
| |
Collapse
|
59
|
Blasco M, Guillén E, Quintana LF, Garcia-Herrera A, Piñeiro G, Poch E, Carreras E, Campistol JM, Diaz-Ricart M, Palomo M. Thrombotic microangiopathies assessment: mind the complement. Clin Kidney J 2021; 14:1055-1066. [PMID: 33841853 PMCID: PMC8023218 DOI: 10.1093/ckj/sfaa195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
When faced with microangiopathic haemolytic anaemia, thrombocytopenia and organ dysfunction, clinicians should suspect thrombotic microangiopathy (TMA). The endothelial damage that leads to this histological lesion can be triggered by several conditions or diseases, hindering an early diagnosis and aetiological treatment. However, due to systemic involvement in TMA and its low incidence, an accurate early diagnosis is often troublesome. In the last few decades, major improvements have been made in the pathophysiological knowledge of TMAs such as thrombotic thrombocytopenic purpura [TTP, caused by ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin Type 1 motif, member 13) deficiency] and atypical haemolytic uraemic syndrome (aHUS, associated with dysregulation of the alternative complement pathway), together with enhancements in patient management due to new diagnostic tools and treatments. However, diagnosis of aHUS requires the exclusion of all the other entities that can cause TMA, delaying the introduction of terminal complement blockers, which have shown high efficacy in haemolysis control and especially in avoiding organ damage if used early. Importantly, there is increasing evidence that other forms of TMA could present overactivation of the complement system, worsening their clinical progression. This review addresses the diagnostic and therapeutic approach when there is clinical suspicion of TMA, emphasizing complement evaluation as a potential tool for the inclusive diagnosis of aHUS, as well as for the improvement of current knowledge of its pathophysiological involvement in other TMAs. The development of both new complement activation biomarkers and inhibitory treatments will probably improve the management of TMA patients in the near future, reducing response times and improving patient outcomes.
Collapse
Affiliation(s)
- Miquel Blasco
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Elena Guillén
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Luis F Quintana
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | | | - Gastón Piñeiro
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Josep M Campistol
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Barcelona Endothelium Team, Barcelona, Spain
- Department of Pathology, Hematopathology Unit, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- Department of Pathology, Hematopathology Unit, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
60
|
Li L, Bayer AS, Cheung A, Lu L, Abdelhady W, Donegan NP, Hong JI, Yeaman MR, Xiong YQ. The Stringent Response Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection Through the Purine Biosynthetic Pathway. J Infect Dis 2021; 222:1188-1198. [PMID: 32333768 DOI: 10.1093/infdis/jiaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/02/2023] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinical-therapeutic challenge. Of particular concern is antibiotic treatment failure in infections caused by MRSA that are "susceptible" to antibiotic in vitro. In the current study, we investigate specific purine biosynthetic pathways and stringent response mechanism(s) related to this life-threatening syndrome using genetic matched persistent and resolving MRSA clinical bacteremia isolates (PB and RB, respectively), and isogenic MRSA strain sets. We demonstrate that PB isolates (vs RB isolates) have significantly higher (p)ppGpp production, phenol-soluble-modulin expression, polymorphonuclear leukocyte lysis and survival, fibronectin/endothelial cell (EC) adherence, and EC damage. Importantly, an isogenic strain set, including JE2 parental, relP-mutant and relP-complemented strains, translated the above findings into significant outcome differences in an experimental endocarditis model. These observations indicate a significant regulation of purine biosynthesis on stringent response, and suggest the existence of a previously unknown adaptive genetic mechanism in persistent MRSA infection.
Collapse
Affiliation(s)
- Liang Li
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arnold S Bayer
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ambrose Cheung
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lou Lu
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wessam Abdelhady
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Niles P Donegan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Michael R Yeaman
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Yan Q Xiong
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
61
|
Zhang Z, Song C, Wang T, Sun L, Qin L, Ju J. miR-139-5p promotes neovascularization in diabetic retinopathy by regulating the phosphatase and tensin homolog. Arch Pharm Res 2021; 44:205-218. [PMID: 33609236 DOI: 10.1007/s12272-021-01308-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Pathological retinal neovascularization is a driver of the progression of diabetic retinopathy (DR). The present study sought to identify the microRNAs (miRNAs) that are differentially expressed during the progression of DR as well as to explore the specific regulatory mechanism of those miRNAs in retinal neovascularization. Using a microarray data set and a diabetic mouse model, it was determined that miR-139-5p was significantly upregulated during the progression of DR. The in vitro investigation revealed an elevation in the miR-139-5p level in both the high glucose (HG)-treated mouse retinal microvascular endothelial cells (mRMECs) and the HG-treated human RMECs (hRMECs). The miR-139-5p overexpression elevated cell migration, facilitated tube formation, and increased vascular endothelial growth factor (VEGF) protein level in the hRMECs. While the angiogenic effect of miR-139-5p overexpression was halted by an anti-VEGF antibody. Meanwhile, the miR-139-5p knockdown eliminated the VEGF-induced cell migration and tube formation in the hRMECs. The phosphatase and tensin homolog (PTEN) was the target gene of the miR-139-5p. PTEN overexpression removed the angiogenic effect of miR-139-5p overexpression, which led to reduced cell migration and tube formation. In the diabetic mice, the miR-139-5p antagomir effectively decreased the acellular capillaries and suppressed the formation of aberrant blood vessels in the retinal tissues. Taken together, miR-139-5p promotes retinal neovascularization by repressing PTEN expression.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Caiping Song
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Tao Wang
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Lei Sun
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Ling Qin
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Jianghua Ju
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, People's Republic of China.
| |
Collapse
|
62
|
Youssef L, Miranda J, Blasco M, Paules C, Crovetto F, Palomo M, Torramade-Moix S, García-Calderó H, Tura-Ceide O, Dantas AP, Hernandez-Gea V, Herrero P, Canela N, Campistol JM, Garcia-Pagan JC, Diaz-Ricart M, Gratacos E, Crispi F. Complement and coagulation cascades activation is the main pathophysiological pathway in early-onset severe preeclampsia revealed by maternal proteomics. Sci Rep 2021; 11:3048. [PMID: 33542402 PMCID: PMC7862439 DOI: 10.1038/s41598-021-82733-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal morbidity and mortality. The exact pathogenesis of this multifactorial disease remains poorly defined. We applied proteomics analysis on maternal blood samples collected from 14 singleton pregnancies with early-onset severe preeclampsia and 6 uncomplicated pregnancies to investigate the pathophysiological pathways involved in this specific subgroup of preeclampsia. Maternal blood was drawn at diagnosis for cases and at matched gestational age for controls. LC-MS/MS proteomics analysis was conducted, and data were analyzed by multivariate and univariate statistical approaches with the identification of differential pathways by exploring the global human protein-protein interaction network. The unsupervised multivariate analysis (the principal component analysis) showed a clear difference between preeclamptic and uncomplicated pregnancies. The supervised multivariate analysis using orthogonal partial least square discriminant analysis resulted in a model with goodness of fit (R2X = 0.99, p < 0.001) and a strong predictive ability (Q2Y = 0.8, p < 0.001). By univariate analysis, we found 17 proteins statistically different after 5% FDR correction (q-value < 0.05). Pathway enrichment analysis revealed 5 significantly enriched pathways whereby the activation of the complement and coagulation cascades was on top (p = 3.17e-07). To validate these results, we assessed the deposits of C5b-9 complement complex and on endothelial cells that were exposed to activated plasma from an independent set of 4 cases of early-onset severe preeclampsia and 4 uncomplicated pregnancies. C5b-9 and Von Willbrand factor deposits were significantly higher in early-onset severe preeclampsia. Future studies are warranted to investigate potential therapeutic targets for early-onset severe preeclampsia within the complement and coagulation pathway.
Collapse
Affiliation(s)
- Lina Youssef
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jezid Miranda
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miquel Blasco
- Nephrology and Renal Transplantation Department, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Cristina Paules
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona Campus, Barcelona, Spain
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team (BET), Barcelona, Spain
| | - Sergi Torramade-Moix
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Héctor García-Calderó
- Barcelona Hepatic Hemodynamics Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Girona Biomedical Research Institute - IDIBGI, Girona, Spain
| | - Ana Paula Dantas
- Cardiovascular Institute, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamics Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204, Reus, Spain
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204, Reus, Spain
| | - Josep Maria Campistol
- Nephrology and Renal Transplantation Department, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Joan Carles Garcia-Pagan
- Barcelona Hepatic Hemodynamics Laboratory, Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team (BET), Barcelona, Spain
| | - Eduard Gratacos
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain.
- Department of Maternal-Fetal Medicine (ICGON), Hospital Clínic, Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Fatima Crispi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| |
Collapse
|
63
|
Endothelial Cells as Tools to Model Tissue Microenvironment in Hypoxia-Dependent Pathologies. Int J Mol Sci 2021; 22:ijms22020520. [PMID: 33430201 PMCID: PMC7825710 DOI: 10.3390/ijms22020520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) lining the blood vessels are important players in many biological phenomena but are crucial in hypoxia-dependent diseases where their deregulation contributes to pathology. On the other hand, processes mediated by ECs, such as angiogenesis, vessel permeability, interactions with cells and factors circulating in the blood, maintain homeostasis of the organism. Understanding the diversity and heterogeneity of ECs in different tissues and during various biological processes is crucial in biomedical research to properly develop our knowledge on many diseases, including cancer. Here, we review the most important aspects related to ECs’ heterogeneity and list the available in vitro tools to study different angiogenesis-related pathologies. We focus on the relationship between functions of ECs and their organo-specificity but also point to how the microenvironment, mainly hypoxia, shapes their activity. We believe that taking into account the specific features of ECs that are relevant to the object of the study (organ or disease state), especially in a simplified in vitro setting, is important to truly depict the biology of endothelium and its consequences. This is possible in many instances with the use of proper in vitro tools as alternative methods to animal testing.
Collapse
|
64
|
Boudhabhay I, Grunenwald A, Roumenina LT. Complement C3 Deposition on Endothelial Cells Revealed by Flow Cytometry. Methods Mol Biol 2021; 2227:97-105. [PMID: 33847934 DOI: 10.1007/978-1-0716-1016-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The three pathways of the complement system converge toward the cleavage of the central complement component C3 into its activated fragments, with C3b being able to bind covalently to the activating surface. The endothelial cells are among the major targets for complement attack in pathological conditions, as the atypical hemolytic uremic syndrome. Therefore, study of complement C3 deposition on endothelial cells by flow cytometry is a sensitive test to measure complement activation. This test can be used as a research or clinical tool to test complement activation induced by patients' sera or to test the functional consequences of newly discovered complement mutations as well as different triggers of endothelial cells injury.
Collapse
Affiliation(s)
- Idris Boudhabhay
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.
| |
Collapse
|
65
|
Abstract
Periodontitis is increasingly associated with increased risk of cardiovascular and other systemic diseases. The Gram-negative anaerobe, Porphyromonas gingivalis, is a key periodontal pathogen, and several lines of evidence link the presence of this bacterium in the circulation with vascular disease. The outer membrane vesicles (OMVs) produced by P. gingivalis have been shown to play a role in periodontitis, although, to date, little is known about their interaction with the vasculature; therefore, this study assessed the effects of P. gingivalis OMVs on the endothelium. OMVs were isolated from wild-type strain W83 and the gingipain-deficient strain ΔK/R-ab. Immunoblotting along with cryo-EM showed gingipain expression in W83 but not ΔK/R-ab-derived OMVs, where gingipains were localized to the cell wall surface. Confluent endothelial cell monolayers infected with either W83 or W83-derived OMV displayed significantly increased dextran permeability over those infected with ΔK/R-ab or its OMV. Moreover, W83-derived OMVs induced significantly more vascular disease in a zebrafish larvae systemic infection model over 72 h compared to those injected with gingipain-deficient OMVs or controls. In line with these data, human microvascular endothelial cells (HMEC-1) displayed an OMV-associated, gingipain-dependent decrease in cell surface levels of the intercellular adhesion molecule PECAM-1 (CD31) when examined by flow cytometry. These data show, for the first time, that OMVs from P. gingivalis mediate increased vascular permeability, leading to a diseased phenotype both in vitro and in vivo. Moreover, these data strongly implicate gingipains present on the OMV surface in mediating these vascular events, most likely via a mechanism that involves proteolytic cleavage of endothelial cell-cell adhesins such as PECAM-1. These data provide important evidence for the role of bacterial-derived OMVs in mediating systemic disease.
Collapse
Affiliation(s)
- C. Farrugia
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - G.P. Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - C. Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
66
|
Boyles JS, Beidler CB, Strifler BA, Girard DS, Druzina Z, Durbin JD, Swearingen ML, Lee LN, Kikly K, Chintharlapalli S, Witcher DR. Discovery and characterization of a neutralizing pan-ELR+CXC chemokine monoclonal antibody. MAbs 2020; 12:1831880. [PMID: 33183151 PMCID: PMC7671035 DOI: 10.1080/19420862.2020.1831880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CXCR1 and CXCR2 signaling play a critical role in neutrophil migration, angiogenesis, and tumorigenesis and are therefore an attractive signaling axis to target in a variety of indications. In human, a total of seven chemokines signal through these receptors and comprise the ELR+CXC chemokine family, so named because of the conserved ELRCXC N-terminal motif. To fully antagonize CXCR1 and CXCR2 signaling, an effective therapeutic should block either both receptors or all seven ligands, yet neither approach has been fully realized clinically. In this work, we describe the generation and characterization of LY3041658, a humanized monoclonal antibody that binds and neutralizes all seven human and cynomolgus monkey ELR+CXC chemokines and three of five mouse and rat ELR+CXC chemokines with high affinity. LY3041658 is able to block ELR+CXC chemokine-induced Ca2+ mobilization, CXCR2 internalization, and chemotaxis in vitro as well as neutrophil mobilization in vivo without affecting other neutrophil functions. In addition to the in vitro and in vivo activity, we characterized the epitope and structural basis for binding in detail through alanine scanning, crystallography, and mutagenesis. Together, these data provide a robust preclinical characterization of LY3041658 for which the efficacy and safety is being evaluated in human clinical trials for neutrophilic skin diseases.
Collapse
Affiliation(s)
- Jeffrey S Boyles
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Catherine B Beidler
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company , San Diego, CA, USA
| | - Beth A Strifler
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Daniel S Girard
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company , San Diego, CA, USA
| | - Zhanna Druzina
- Discovery Chemistry Research Technologies, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Jim D Durbin
- Discovery Chemistry Research Technologies, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Michelle L Swearingen
- Oncology Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Linda N Lee
- Oncology Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | - Kristine Kikly
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| | | | - Derrick R Witcher
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, IN, USA
| |
Collapse
|
67
|
Koban R, Lam T, Schwarz F, Kloke L, Bürge S, Ellerbrok H, Neumann M. Simplified Bioprinting-Based 3D Cell Culture Infection Models for Virus Detection. Viruses 2020; 12:E1298. [PMID: 33198291 PMCID: PMC7698278 DOI: 10.3390/v12111298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Studies of virus-host interactions in vitro may be hindered by biological characteristics of conventional monolayer cell cultures that differ from in vivo infection. Three-dimensional (3D) cell cultures show more in vivo-like characteristics and may represent a promising alternative for characterisation of infections. In this study, we established easy-to-handle cell culture platforms based on bioprinted 3D matrices for virus detection and characterisation. Different cell types were cultivated on these matrices and characterised for tissue-like growth characteristics regarding cell morphology and polarisation. Cells developed an in vivo-like morphology and long-term cultivation was possible on the matrices. Cell cultures were infected with viruses which differed in host range, tissue tropism, cytopathogenicity, and genomic organisation and virus morphology. Infections were characterised on molecular and imaging level. The transparent matrix substance allowed easy optical monitoring of cells and infection even via live-cell microscopy. In conclusion, we established an enhanced, standardised, easy-to-handle bioprinted 3D-cell culture system. The infection models are suitable for sensitive monitoring and characterisation of virus-host interactions and replication of different viruses under physiologically relevant conditions. Individual cell culture models can further be combined to a multicellular array. This generates a potent diagnostic tool for propagation and characterisation of viruses from diagnostic samples.
Collapse
Affiliation(s)
- Robert Koban
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| | - Tobias Lam
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (T.L.); (L.K.)
| | - Franziska Schwarz
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| | - Lutz Kloke
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (T.L.); (L.K.)
| | - Silvio Bürge
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany;
| | - Heinz Ellerbrok
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| | - Markus Neumann
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| |
Collapse
|
68
|
Vasculogenesis from Human Dental Pulp Stem Cells Grown in Matrigel with Fully Defined Serum-Free Culture Media. Biomedicines 2020; 8:biomedicines8110483. [PMID: 33182239 PMCID: PMC7695282 DOI: 10.3390/biomedicines8110483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
The generation of vasculature is one of the most important challenges in tissue engineering and regeneration. Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types to induce vasculogenesis and angiogenesis as they not only secrete vascular endothelial growth factor (VEGF) but can also differentiate in vitro into both endotheliocytes and pericytes in serum-free culture media. Moreover, hDPSCs can generate complete blood vessels containing both endothelial and mural layers in vivo, upon transplantation into the adult brain. However, many of the serum free media employed for the growth of hDPSCs contain supplements of an undisclosed composition. This generates uncertainty as to which of its precise components are necessary and which are dispensable for the vascular differentiation of hDPSCs, and also hinders the transfer of basic research findings to clinical cell therapy. In this work, we designed and tested new endothelial differentiation media with a fully defined composition using standard basal culture media supplemented with a mixture of B27, heparin and growth factors, including VEGF-A165 at different concentrations. We also optimized an in vitro Matrigel assay to characterize both the ability of hDPSCs to differentiate to vascular cells and their capacity to generate vascular tubules in 3D cultures. The description of a fully defined serum-free culture medium for the induction of vasculogenesis using human adult stem cells highlights its potential as a relevant innovation for tissue engineering applications. In conclusion, we achieved efficient vasculogenesis starting from hDPSCs using serum-free culture media with a fully defined composition, which is applicable for human cell therapy purposes.
Collapse
|
69
|
Zouboulis CC, Yoshida GJ, Wu Y, Xia L, Schneider MR. Sebaceous gland: Milestones of 30‐year modelling research dedicated to the “brain of the skin”. Exp Dermatol 2020; 29:1069-1079. [DOI: 10.1111/exd.14184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - Go J. Yoshida
- Department of Immunological Diagnosis Juntendo University School of Medicine Bunkyo‐ku, Tokyo Japan
| | - Yaojiong Wu
- Shenzhen Key Laboratory of Health Sciences and Technology Tsinghua Shenzhen International Graduate School and Tsinghua‐Berkeley Shenzhen Institute Tsinghua University Beijing China
| | - Longqing Xia
- Department of Dermatology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Marlon R. Schneider
- German Federal Institute for Risk Assessment (BfR) German Centre for the Protection of Laboratory Animals (Bf3R) Berlin Germany
| |
Collapse
|
70
|
Ingelfinger R, Henke M, Roser L, Ulshöfer T, Calchera A, Singh G, Parnham MJ, Geisslinger G, Fürst R, Schmitt I, Schiffmann S. Unraveling the Pharmacological Potential of Lichen Extracts in the Context of Cancer and Inflammation With a Broad Screening Approach. Front Pharmacol 2020; 11:1322. [PMID: 33013369 PMCID: PMC7509413 DOI: 10.3389/fphar.2020.01322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Lichen-forming fungi are symbiotic organisms that synthesize unique natural products with potential for new drug leads. Here, we explored the pharmacological activity of six lichen extracts (Evernia prunastri, Pseudevernia furfuracea, Umbilicaria pustulata, Umbilicaria crustulosa, Flavoparmelia caperata, Platismatia glauca) in the context of cancer and inflammation using a comprehensive set of 11 functional and biochemical in vitro screening assays. We assayed intracellular Ca2+ levels and cell migration. For cancer, we measured tumor cell proliferation, cell cycle distribution and apoptosis, as well as the angiogenesis-associated proliferation of endothelial cells (ECs). Targeting inflammation, we assayed leukocyte adhesion onto ECs, EC adhesion molecule expression, as well as nitric oxide production and prostaglandin (PG)E2 synthesis in leukocytes. Remarkably, none of the lichen extracts showed any detrimental influence on the viability of ECs. We showed for the first time that extracts of F. caperata induce Ca2+ signaling. Furthermore, extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca reduced cell migration. Interestingly, F. caperata extracts strongly decreased tumor cell survival. The proliferation of ECs was significantly reduced by E. prunastri, P. furfuracea, and F. caperata extracts. The extracts did not inhibit the activity of inflammatory processes in ECs. However, the pro-inflammatory activation of leukocytes was inhibited by extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca. After revealing the potential biological activities of lichen extracts by an array of screening tests, a correlation analysis was performed to evaluate particular roles of abundant lichen secondary metabolites, such as atranorin, physodic acid, and protocetraric acid as well as usnic acid in various combinations. Overall, some of the lichen extracts tested in this study exhibit significant pharmacological activity in the context of inflammation and/or cancer, indicating that the group lichen-forming fungi includes promising members for further testing.
Collapse
Affiliation(s)
- Rebecca Ingelfinger
- Faculty of Biochemistry, Institute of Pharmaceutical Biology, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany
| | - Marina Henke
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Luise Roser
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Thomas Ulshöfer
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Garima Singh
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Gerd Geisslinger
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany.,pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Faculty of Biochemistry, Institute of Pharmaceutical Biology, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany
| | - Imke Schmitt
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| |
Collapse
|
71
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
72
|
Cohen EB, Geck RC, Toker A. Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia. PLoS One 2020; 15:e0232072. [PMID: 32645038 PMCID: PMC7347218 DOI: 10.1371/journal.pone.0232072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
The vasculature within a tumor is highly disordered both structurally and functionally. Endothelial cells that comprise the vasculature are poorly connected causing vessel leakage and exposing the endothelium to a hypoxic microenvironment. Therefore, most anti-angiogenic therapies are generally inefficient and result in acquired resistance to increased hypoxia due to elimination of the vasculature. Recent studies have explored the efficacy of targeting metabolic pathways in tumor cells in combination with anti-angiogenic therapy. However, the metabolic alterations of endothelial cells in response to hypoxia have been relatively unexplored. Here, we measured polar metabolite levels in microvascular endothelial cells exposed to short- and long-term hypoxia with the goal of identifying metabolic vulnerabilities that can be targeted to normalize tumor vasculature and improve drug delivery. We found that many amino acid-related metabolites were altered by hypoxia exposure, especially within alanine-aspartate-glutamate, serine-threonine, and cysteine-methionine metabolism. Additionally, there were significant changes in de novo pyrimidine synthesis as well as glutathione and taurine metabolism. These results provide key insights into the metabolic alterations that occur in endothelial cells in response to hypoxia, which serve as a foundation for future studies to develop therapies that lead to vessel normalization and more efficient drug delivery.
Collapse
Affiliation(s)
- Emily B. Cohen
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Renee C. Geck
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
73
|
Gerardi C, D'amico L, Migoni D, Santino A, Salomone A, Carluccio MA, Giovinazzo G. Strategies for Reuse of Skins Separated From Grape Pomace as Ingredient of Functional Beverages. Front Bioeng Biotechnol 2020; 8:645. [PMID: 32671043 PMCID: PMC7333169 DOI: 10.3389/fbioe.2020.00645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Wine grape pomace, the by-product of wine making, is a source of polyphenols, metals, and organic acids, and may be exploited for the production of functional beverages. Among red wines, Primitivo and Negramaro varieties possess an interesting amount of polyphenolic compounds and other chemicals. Consequently, study of the biological activity of Primitivo and Negramaro vinification by-products is of great interest as well as optimizing the extraction of its bioactive components. In order to stabilize the grape pomace, different methods of drying grape pomace were tested. After stabilization of the pomace, the grape skins were manually separated from the seeds and any woody parts. The chemical characterizations of acidified alcoholic (methanol/ethanol) and water extracts and either microwave-assisted or ultrasound-assisted extractions of separated grape skins were compared. Besides that, the in vitro antioxidant activity of wine pomace skin extracts was also investigated as Trolox equivalents antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC). Overall, the alcoholic extractions were found to be the most effective for recovering phenolic compounds, when compared with those in water. Ultrasound- and microwave-assisted extraction of pomace skin using acidified water allowed the highest TEAC value. Taking into account the water extraction result, in order to reuse grape pomace skins to produce a functional beverage, we utilized them in combination with black tea, karkadè (Hibiscus sabdariffa L.), or rooibos (Aspalathus linearis Burm.) to produce an infusion. The combination of grape skins and black tea showed the highest ratio of total phenol content to antioxidant activity. Moreover, skin isolated from pomace, with or without black tea infusions, were shown to have anti-inflammatory capacity in human cell culture. Our results raise the value of grape skin pomace as a rich source of bioactive compounds with antioxidant and anti-inflammatory activity and suggest its exploitation as an ingredient for functional beverages.
Collapse
Affiliation(s)
- Carmela Gerardi
- CNR-ISPA, Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | - Leone D'amico
- CNR-ISPA, Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Angelo Santino
- CNR-ISPA, Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | - Antonio Salomone
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria A. Carluccio
- CNR-IFC, Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Giovanna Giovinazzo
- CNR-ISPA, Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| |
Collapse
|
74
|
Dietinger V, García de Durango CR, Wiechmann S, Boos SL, Michl M, Neumann J, Hermeking H, Kuster B, Jung P. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Cell Commun Signal 2020; 18:102. [PMID: 32586342 PMCID: PMC7315491 DOI: 10.1186/s12964-020-00561-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wnt signaling drives epithelial self-renewal and disease progression in human colonic epithelium and colorectal cancer (CRC). Characterization of Wnt effector pathways is key for our understanding of these processes and for developing therapeutic strategies that aim to preserve tissue homeostasis. O-glycosylated cell surface proteins, such as α-dystroglycan (α-DG), mediate cellular adhesion to extracellular matrix components. We revealed a Wnt/LARGE2/α-DG signaling pathway which triggers this mode of colonic epithelial cell-to-matrix interaction in health and disease. METHODS Next generation sequencing upon shRNA-mediated silencing of adenomatous polyposis coli (APC), and quantitative chromatin immunoprecipitation (qChIP) combined with CRISPR/Cas9-mediated transcription factor binding site targeting characterized LARGE2 as a Wnt target gene. Quantitative mass spectrometry analysis on size-fractionated, glycoprotein-enriched samples revealed functional O-glycosylation of α-DG by LARGE2 in CRC. The biology of Wnt/LARGE2/α-DG signaling was assessed by affinity-based glycoprotein enrichment, laminin overlay, CRC-to-endothelial cell adhesion, and transwell migration assays. Experiments on primary tissue, human colonic (tumor) organoids, and bioinformatic analysis of CRC cohort data confirmed the biological relevance of our findings. RESULTS Next generation sequencing identified the LARGE2 O-glycosyltransferase encoding gene as differentially expressed upon Wnt activation in CRC. Silencing of APC, conditional expression of oncogenic β-catenin and endogenous β-catenin-sequestration affected LARGE2 expression. The first intron of LARGE2 contained a CTTTGATC motif essential for Wnt-driven LARGE2 expression, showed occupation by the Wnt transcription factor TCF7L2, and Wnt activation triggered LARGE2-dependent α-DG O-glycosylation and laminin-adhesion in CRC cells. Colonic crypts and organoids expressed LARGE2 mainly in stem cell-enriched subpopulations. In human adenoma organoids, activity of the LARGE2/α-DG axis was Wnt-dose dependent. LARGE2 expression was elevated in CRC and correlated with the Wnt-driven molecular subtype and intestinal stem cell features. O-glycosylated α-DG represented a Wnt/LARGE2-dependent feature in CRC cell lines and patient-derived tumor organoids. Modulation of LARGE2/α-DG signaling affected CRC cell migration through laminin-coated membranes and adhesion to endothelial cells. CONCLUSIONS We conclude that the LARGE2 O-glycosyltransferase-encoding gene represents a direct target of canonical Wnt signaling and mediates functional O-glycosylation of α-dystroglycan (α-DG) in human colonic stem/progenitor cells and Wnt-driven CRC. Our work implies that aberrant Wnt activation augments CRC cell-matrix adhesion by increasing LARGE/α-DG-mediated laminin-adhesiveness. Video abstract.
Collapse
Affiliation(s)
- Vanessa Dietinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cira R García de Durango
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Svenja Wiechmann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sophie L Boos
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlies Michl
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Kuster
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany. .,DKTK AG Oncogenic Signal Transduction Pathways in Colorectal/Pancreatic Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, DKTK Partnerstandort München, Institut für Pathologie der Ludwig-Maximilians-Universität (LMU) München, Thalkirchner Straße 36, D-80337, Munich, Germany.
| |
Collapse
|
75
|
ESR Method in Monitoring of Nanoparticle Endocytosis in Cancer Cells. Int J Mol Sci 2020; 21:ijms21124388. [PMID: 32575638 PMCID: PMC7352947 DOI: 10.3390/ijms21124388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic nanoparticles are extensively studied for their use in diagnostics and medical therapy. The behavior of nanoparticles after adding them to cell culture is an essential factor (i.e., whether they attach to a cell membrane or penetrate the membrane and enter into the cell). The present studies aimed to demonstrate the application of electron spin resonance (ESR) as a suitable technique for monitoring of nanoparticles entering into cells during the endocytosis process. The model nanoparticles were composed of magnetite iron (II, III) oxide core functionalized with organic unit containing nitroxide radical 4-hydroxy-TEMPO (TEMPOL). The research studies included breast cancer cells, as well as model yeast and human microvascular endothelial cells. The results confirmed that the ESR method is suitable for studying the endocytosis process of nanoparticles in the selected cells. It also allows for direct monitoring of radical cellular processes.
Collapse
|
76
|
Cheng HM, Kuo YZ, Chang CY, Chang CH, Fang WY, Chang CN, Pan SC, Lin JY, Wu LW. The anti-TH17 polarization effect of Indigo naturalis and tryptanthrin by differentially inhibiting cytokine expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112760. [PMID: 32173427 DOI: 10.1016/j.jep.2020.112760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal medicine Qing-Dai (also known as Indigo naturalis) extracted from indigo-bearing plants including Baphicacanthus cusia (Ness) Bremek was previously reported to exhibit anti-psoriatic effects in topical treatment. TH17 was later established as a key player in the pathogenesis of psoriasis. We investigated the anti-TH17 effect of Indigo naturalis and its active compounds. The aim of this study is to evaluate the toxicity of Indigo naturalis (IN) and its derivatives on five cell types involved in psoriasis, and to study the anti-inflammatory mechanism for the toxicity. MATERIALS AND METHODS Following the fingerprint and quantity analysis of indirubin, indigo, and tryptanthrin in IN extract, we used MTS kits to measure the anti-proliferative effect of IN and three active compounds on five different cell types identified in psoriatic lesions. Quantitative RT-PCR analysis was used to measure the expression of various genes identified in the activated keratinocytes and TH17 polarized gene expression in RORγt-expressing T cells. RESULTS We showed that IN differentially inhibited the proliferation of keratinocytes and endothelial cells but not monocytes, fibroblasts nor Jurkat T cells. Among three active compounds identified in IN, tryptanthrin was the most potent compound to reduce their proliferation. In addition to differentially reducing IL6 and IL8 expression, both IN and tryptanthrin also potently decreased the expression of anti-microbial S100A9 peptide, CCL20 chemokine, IL1B and TNFA cytokines, independent of NF-κB-p65-activation. Their attenuating effect was also detected on the expression of signature cytokines or chemokines induced during RORγT-induced TH17 polarization. CONCLUSIONS We were the first to confirm a direct anti-TH17 effect of both IN herbal extract and tryptanthrin.
Collapse
Affiliation(s)
- Hui-Man Cheng
- Department of Integration of Traditional Chinese & Western Medicine, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 40447, Taiwan, ROC; School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC
| | - Yi-Zih Kuo
- Department of Otolaryngology, College of Medicine, National Cheng Kung University, Tainan, 70428, Taiwan, ROC
| | - Che-Ying Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan, ROC
| | - Chun-Han Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan, ROC
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan, ROC
| | - Chen-Ni Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan, ROC
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, ROC
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan, ROC; Department of Laboratory Science and Technology, Kaohsiung Medical University, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan, ROC.
| |
Collapse
|
77
|
Peroutka RJ, Buzza MS, Mukhopadhyay S, Johnson TA, Driesbaugh KH, Antalis TM. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS One 2020; 15:e0234407. [PMID: 32511276 PMCID: PMC7279603 DOI: 10.1371/journal.pone.0234407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/24/2020] [Indexed: 01/06/2023] Open
Abstract
Testisin (encoded by PRSS21) is a membrane anchored serine protease, which is tethered to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor. While testisin is found in abundance in spermatozoa, it is also expressed in microvascular endothelial cells where its function is unknown. Here we identify testisin as a novel regulator of physiological hormone-induced angiogenesis and microvascular endothelial permeability. Using a murine model of rapid physiological angiogenesis during corpus luteal development in the ovary, we found that mice genetically deficient in testisin (Prss21-/-) show a substantially increased incidence of hemorrhages which are significantly more severe than in littermate control Prss21+/+ mice. This phenotype was associated with increased vascular leakiness, demonstrated by a greater accumulation of extravasated Evans blue dye in Prss21-/- ovaries. Live cell imaging of in vitro cultured microvascular endothelial cells depleted of testisin by siRNA knockdown revealed that loss of testisin markedly impaired reorganization and tubule-like formation on Matrigel basement membranes. Moreover testisin siRNA knockdown increased the paracellular permeability to FITC-albumin across endothelial cell monolayers, which was associated with decreased expression of the adherens junction protein VE-cadherin and increased levels of phospho(Tyr658)-VE-cadherin, without affecting the levels of the tight junction proteins occludin and claudin-5, or ZO-1. Decreased expression of VE-cadherin in the neovasculature of Prss21-/- ovaries was also observed without marked differences in endothelial cell content, vascular claudin-5 expression or pericyte recruitment. Together, these data identify testisin as a novel regulator of VE-cadherin adhesions during angiogenesis and indicate a potential new target for regulating neovascular integrity and associated pathologies.
Collapse
Affiliation(s)
- Raymond J. Peroutka
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Marguerite S. Buzza
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Subhradip Mukhopadhyay
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Tierra A. Johnson
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
| | - Kathryn H. Driesbaugh
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Toni M. Antalis
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| |
Collapse
|
78
|
Li L, Wang G, Cheung A, Abdelhady W, Seidl K, Xiong YQ. MgrA Governs Adherence, Host Cell Interaction, and Virulence in a Murine Model of Bacteremia Due to Staphylococcus aureus. J Infect Dis 2020; 220:1019-1028. [PMID: 31177268 DOI: 10.1093/infdis/jiz219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/26/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND MgrA is an important global virulence gene regulator in Staphylococcus aureus. In the present study, the role of mgrA in host-pathogen interactions related to virulence was explored in both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. METHODS In vitro susceptibilities to human defense peptides (HDPs), adherence to fibronectin (Fn) and endothelial cells (ECs), EC damage, α-toxin production, expression of global regulator (eg, agr RNAIII) and its downstream effectors (eg, α-toxin [hla] and Fn binding protein A [fnbA]), MgrA binding to fnbA promoter, and the effect on HDP-induced mprF and dltA expression were analyzed. The impact of mgrA on virulence was evaluated using a mouse bacteremia model. RESULTS mgrA mutants displayed significantly higher susceptibility to HDPs, which might be related to the decreased HDP-induced mprF and dltA expression but decreased Fn and EC adherence, EC damage, α-toxin production, agr RNAIII, hla and fnbA expression, and attenuated virulence in the bacteremia model as compared to their respective parental and mgrA-complemented strains. Importantly, direct binding of MgrA to the fnbA promoter was observed. CONCLUSIONS These results suggest that mgrA mediates host-pathogen interactions and virulence and may provide a novel therapeutic target for invasive S. aureus infections.
Collapse
Affiliation(s)
- Liang Li
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance
| | - Genzhu Wang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance
| | | | - Wessam Abdelhady
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance
| | - Kati Seidl
- University Hospital of Zurich, Switzerland
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance.,David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
79
|
Venturini W, Olate-Briones A, Valenzuela C, Méndez D, Fuentes E, Cayo A, Mancilla D, Segovia R, Brown NE, Moore-Carrasco R. Platelet Activation Is Triggered by Factors Secreted by Senescent Endothelial HMEC-1 Cells In Vitro. Int J Mol Sci 2020; 21:ijms21093287. [PMID: 32384773 PMCID: PMC7246568 DOI: 10.3390/ijms21093287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the main risk factors for the development of chronic diseases, with both the vascular endothelium and platelets becoming functionally altered. Cellular senescence is a form of permanent cell cycle arrest initially described in primary cells propagated in vitro, although it can also be induced by anticancer drugs and other stressful stimuli. Attesting for the complexity of the senescent phenotype, senescent cells synthesize and secrete a wide variety of bioactive molecules. This “senescence-associated secretory phenotype” (SASP) endows senescent cells with the ability to modify the tissue microenvironment in ways that may be relevant to the development of various physiological and pathological processes. So far, however, the direct role of factors secreted by senescent endothelial cells on platelet function remains unknown. In the present work, we explore the effects of SASP factors derived from senescent endothelial cells on platelet function. To this end, we took advantage of a model in which immortalized endothelial cells (HMEC-1) were induced to senesce following exposure to doxorubicin, a chemotherapeutic drug widely used in the clinic. Our results indicate that (1) low concentrations of doxorubicin induce senescence in HMEC-1 cells; (2) senescent HMEC-1 cells upregulate the expression of selected components of the SASP and (3) the media conditioned by senescent endothelial cells are capable of inducing platelet activation and aggregation. These results suggest that factors secreted by senescent endothelial cells in vivo could have a relevant role in the platelet activation observed in the elderly or in patients undergoing therapeutic stress.
Collapse
Affiliation(s)
- Whitney Venturini
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Alexandra Olate-Briones
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7500000, Chile
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Núcleo Científico Multidisciplinario, Universidad de Talca, Talca 3460000, Chile
| | - Diego Méndez
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000 Chile
| | - Eduardo Fuentes
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000 Chile
| | - Angel Cayo
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Daniel Mancilla
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
| | - Raul Segovia
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Nelson E. Brown
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile
- Correspondence: (N.E.B.); (R.M.-C.)
| | - Rodrigo Moore-Carrasco
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile
- Correspondence: (N.E.B.); (R.M.-C.)
| |
Collapse
|
80
|
Kračun D, Klop M, Knirsch A, Petry A, Kanchev I, Chalupsky K, Wolf CM, Görlach A. NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess. Redox Biol 2020; 34:101536. [PMID: 32413743 PMCID: PMC7226895 DOI: 10.1016/j.redox.2020.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular side effects are frequent problems accompanying systemic glucocorticoid therapy, although the underlying mechanisms are not fully resolved. Reactive oxygen species (ROS) have been shown to promote various cardiovascular diseases although the link between glucocorticoid and ROS signaling has been controversial. As the family of NADPH oxidases has been identified as important source of ROS in the cardiovascular system we investigated the role of NADPH oxidases in response to the synthetic glucocorticoid dexamethasone in the cardiovascular system in vitro and in vivo in mice lacking functional NADPH oxidases due to a mutation in the gene coding for the essential NADPH oxidase subunit p22phox. We show that dexamethasone induced NADPH oxidase-dependent ROS generation, leading to vascular proliferation and angiogenesis due to activation of the transcription factor hypoxia-inducible factor-1 (HIF1). Chronic treatment of mice with low doses of dexamethasone resulted in the development of systemic hypertension, cardiac hypertrophy and left ventricular dysfunction, as well as in pulmonary hypertension and pulmonary vascular remodeling. In contrast, mice deficient in p22phox-dependent NADPH oxidases were protected against these cardiovascular side effects. Mechanistically, dexamethasone failed to upregulate HIF1α levels in these mice, while vascular HIF1α deficiency prevented pulmonary vascular remodeling. Thus, p22phox-dependent NADPH oxidases and activation of the HIF pathway are critical elements in dexamethasone-induced cardiovascular pathologies and might provide interesting targets to limit cardiovascular side effects in patients on chronic glucocorticoid therapy.
Collapse
Affiliation(s)
- Damir Kračun
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Mathieu Klop
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Anna Knirsch
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Ivan Kanchev
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Karel Chalupsky
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Cordula M Wolf
- Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
81
|
Chluba C, Siemsen K, Bechtold C, Zamponi C, Selhuber-Unkel C, Quandt E, Lima de Miranda R. Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments. Biosens Bioelectron 2020; 153:112034. [PMID: 31989946 DOI: 10.1016/j.bios.2020.112034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
State of the art minimally invasive treatments and diagnostics of neurological and cardiovascular diseases demand for flexible instruments and implants that enable sensing and stimulation of bioelectric signals. Besides medical applications, implantable bioelectronic brain-computer interfaces are envisioned as the next step in communication and data transfer. Conventional microelectrode arrays used for these types of applications are based on polymer substrates that are not suitable for biostable, rigid and self-expanding devices. Here, we present fully integrated bioelectrodes on superelastic NiTi carriers fabricated by microsystem technology processes. The insulation between the metallic NiTi structure and the Pt electrode layer is realized by different oxide layers (SiOx, TaOx and Yttrium stabilized Zirconia YSZ). Key properties of bioelectronic implants such as dissolution in body fluids, biocompatibility, mechanical properties and bioelectrical sensing/stimulation capabilities have been investigated by in vitro methods. Particular devices with YSZ are biostable and biocompatible, enabling sensing and stimulation. The major advantage of this system is the combination of medically approved materials and novel fabrication technology that enables miniaturization and integration beyond the state-of-the-art processes. The results demonstrate that this functionalization of superelastic NiTi is an enabling technology for the development of new kinds of bioelectronic devices.
Collapse
Affiliation(s)
- C Chluba
- Institute for Materials Science, Kiel University, Germany; Acquandas GmbH, Kiel, Germany.
| | - K Siemsen
- Institute for Materials Science, Kiel University, Germany
| | | | - C Zamponi
- Institute for Materials Science, Kiel University, Germany; Acquandas GmbH, Kiel, Germany
| | | | - E Quandt
- Institute for Materials Science, Kiel University, Germany
| | | |
Collapse
|
82
|
Hypergravity Activates a Pro-Angiogenic Homeostatic Response by Human Capillary Endothelial Cells. Int J Mol Sci 2020; 21:ijms21072354. [PMID: 32231163 PMCID: PMC7177524 DOI: 10.3390/ijms21072354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Capillary endothelial cells are responsible for homeostatic responses to organismic and environmental stimulations. When malfunctioning, they may cause disease. Exposure to microgravity is known to have negative effects on astronauts’ physiology, the endothelium being a particularly sensitive organ. Microgravity-related dysfunctions are striking similar to the consequences of sedentary life, bed rest, and ageing on Earth. Among different countermeasures implemented to minimize the effects of microgravity, a promising one is artificial gravity. We examined the effects of hypergravity on human microvascular endothelial cells of dermal capillary origin (HMEC-1) treated at 4 g for 15 min, and at 20 g for 15 min, 3 and 6 h. We evaluated cell morphology, gene expression and 2D motility and function. We found a profound rearrangement of the cytoskeleton network, dose-dependent increase of Focal Adhesion kinase (FAK) phosphorylation and Yes-associated protein 1 (YAP1) expression, suggesting cell stiffening and increased proneness to motility. Transcriptome analysis showed expression changes of genes associated with cardiovascular homeostasis, nitric oxide production, angiogenesis, and inflammation. Hypergravity-treated cells also showed significantly improved motility and function (2D migration and tube formation). These results, expanding our knowledge about the homeostatic response of capillary endothelial cells, show that adaptation to hypergravity has opposite effect compared to microgravity on the same cell type.
Collapse
|
83
|
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 2020; 17:22. [PMID: 32178700 PMCID: PMC7077137 DOI: 10.1186/s12987-020-00183-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a fundamental component of the central nervous system. Its functional and structural integrity is vital in maintaining the homeostasis of the brain microenvironment. On the other hand, the BBB is also a major hindering obstacle for the delivery of effective therapies to treat disorders of the Central Nervous System (CNS). Over time, various model systems have been established to simulate the complexities of the BBB. The development of realistic in vitro BBB models that accurately mimic the physiological characteristics of the brain microcapillaries in situ is of fundamental importance not only in CNS drug discovery but also in translational research. Successful modeling of the Neurovascular Unit (NVU) would provide an invaluable tool that would aid in dissecting out the pathological factors, mechanisms of action, and corresponding targets prodromal to the onset of CNS disorders. The field of BBB in vitro modeling has seen many fundamental changes in the last few years with the introduction of novel tools and methods to improve existing models and enable new ones. The development of CNS organoids, organ-on-chip, spheroids, 3D printed microfluidics, and other innovative technologies have the potential to advance the field of BBB and NVU modeling. Therefore, in this review, summarize the advances and progress in the design and application of functional in vitro BBB platforms with a focus on rapidly advancing technologies.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
84
|
miR-27b promotes angiogenesis and skin repair in scalded rats through regulating VEGF-C expression. Lasers Med Sci 2020; 35:1577-1588. [PMID: 32170506 DOI: 10.1007/s10103-020-02991-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
In this study, the effects of miR-27b on angiogenesis in skin repair procedure in rats with deep II degree scald were explored. The rat model of deep II scald was established. miR-27b mimics and inhibitor were injected daily at the wound site for 3 weeks. The healing of scald was observed at 0, 3, 7, 14, and 21 days after the model was established, and the pathological changes of skin were observed by HE and Masson's trichrome stains. Skin tissues were taken 14 days after the operation; CD31 and Ki-67 immunohistochemistry was exerted to evaluate neovascularization and proliferation. Human microvascular endothelial cells (HMEC-1) cells were cultured in vitro. miR-27b mimics or inhibitor was transfected to construct over-expression or inhibition cell lines. MTT assay, scratch test, and angiogenesis test were used to evaluate cell proliferation, migration, and vascular regeneration. Finally, RT-PCR and Western blot were exerted to determine the expression of vascular endothelial growth factor C (VEGF-C), epidermal growth factor (EGF) mRNAs, and protein, respectively. Control, inhibitor, mi-NC, VEGF-C, inhibitor + si-NC, and inhibitor + VEGF-C siRNA groups were used to further analyze the mechanism of miR-27b on VEGF-C; the above experiments were repeated. In contrast to model group, miR-27b inhibitor could significantly promote the healing of scalded skin, alleviate the pathological status of scalded, and promote the angiogenesis and proliferation (p < 0.05). In vitro, miR-27b inhibitor evidently promoted cell proliferation, migration, and angiogenesis and increased the expression of VEGF-C, EGF genes, and protein, while miR-27b mimics significantly reversed the above trends. Further studies shown that downregulation of miR-27b expression can promote the proliferation, migration, and angiogenesis of HMEC-1 cells by promoting the expression of VEGF-C. miR-27b promotes angiogenesis and skin repair in scalded rats through regulating VEGF-C expression.
Collapse
|
85
|
Sheen YS, Lin MH, Tzeng WC, Chu CY. Purpuric drug eruptions induced by EGFR tyrosine kinase inhibitors are associated with IQGAP1-mediated increase in vascular permeability. J Pathol 2020; 250:452-463. [PMID: 32030757 DOI: 10.1002/path.5393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 01/19/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used as a treatment for non-small-cell lung cancer. There have been some reports of EGFR-TKIs being associated with vascular adverse events. We found that EGFR-TKIs decreased the proliferation of HMEC-1s (immortalized human dermal microvascular endothelial cells) and HMVECs (human dermal microvascular endothelial cells), and also inhibited the phosphorylation of EGFR and ERK. We examined the mRNA expression profile of erlotinib-treated HMEC-1s and identified IQ motif containing GTPase activating protein 1 (IQGAP1) as the most consistently up-regulated transcript and protein. IQGAP1 was also overexpressed and co-localized with endothelial cells in the lesional skin. Notably, increased IQGAP1 expression was associated with decreased transendothelial electrical resistance and increased vascular permeability in vitro. Erlotinib treatment enriched the staining of IQGAP1 and reduced the intensities of α-catenin at the sites of cell-cell contact. In conclusion, erlotinib induces adherens junction dysfunction by modulating the expression of IQGAP1 in dermal endothelial cells. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Wen-Chia Tzeng
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
86
|
The GEF Cytohesin-2/ARNO Mediates Resistin induced Phenotypic Switching in Vascular Smooth Muscle Cells. Sci Rep 2020; 10:3672. [PMID: 32111889 PMCID: PMC7048779 DOI: 10.1038/s41598-020-60446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
The pro-inflammatory adipokine resistin induces a phenotypic switch of vascular smooth muscle cells (VSMC), a process decisive for atherosclerosis, including morphological changes, increased synthetic activity, proliferation and migration. The guanine-exchange factor ARNO (Cytohesin-2) has been shown to be important for morphological changes and migration of other cell types. In this study we dissected the role of ARNO in resistin induced VSMC phenotypic switching and signalling. Firstly, treatment with the cytohesin inhibitor Secin H3 prevented the resistin mediated induction of morphological changes in VSMC. Secondly, Secin H3 treatment as well as expression of an inactive ARNO (EK) reduced resistin induced VSMC synthetic activity, as assessed by matrix metalloproteinase 2 (MMP-2) expression, as well as the migration into a wound in vitro compared to ARNO WT expression. Thirdly, we found ARNO to influence MMP-2 expression and migration via activation of p38 MAPK and the JNK/AP-1 pathway. Interestingly, these processes were shown to be dependent on the binding of PIP3, as mutation of the ARNO PH-domain inhibited VSMC migration, MMP-2 expression as well as p38 MAPK and JNK signalling. Thus, we demonstrate that ARNO is an important link in resistin dependent cell signalling leading to morphological changes, MMP-2 production and migration of VSMC.
Collapse
|
87
|
Bogert NV, Werner I, Kornberger A, Vahl CF, Beiras-Fernandez A. Effect of Rewarming on Leukocyte-Endothelial Interaction After Deep Hypothermic Preservation. Ann Transplant 2020; 25:e919540. [PMID: 32080161 PMCID: PMC7057734 DOI: 10.12659/aot.919540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The preservation of harvested organs plays an essential role in transplantation. Cold hypothermia is frequently applied but may lead to graft compromise resulting from reperfusion and rewarming injury. This study investigates the effect of deep hypothermia and posterior rewarming on leukocyte-endothelial interactions and junctional adhesion molecules. MATERIAL AND METHODS We established an in vitro model to investigate the transendothelial migration of leukocytes (TEM) during deep hypothermia (4°C) as well as during the post-hypothermic rewarming process. Additionally, leukocyte-endothelial interactions were analyzed by quantifying surface expression of the junctional adhesion molecules A (JAMA-A and JAM-B). RESULTS While deep hypothermia at 4°C was associated with reduced leukocyte infiltration, rewarming after hypothermic preservation resulted in a significant increase in TEM. This process is mainly triggered by activation of endothelial cells. Post-hypothermic rewarming caused a significant downregulation of JAM-A, whereas JAM-B was not altered through temperature modulation. CONCLUSIONS Hypothermia exerts a protective effect consisting of reduced leukocyte-endothelial interaction. Rewarming after hypothermic preservation, however, causes considerable upregulation of leukocyte infiltration. Downregulation of JAM-A may play a role in modulating TEM during hypothermia and rewarming. We conclude that the rewarming process is an essential but underestimated aspect during transplantation.
Collapse
Affiliation(s)
- Nicolai V Bogert
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - Isabella Werner
- Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Angela Kornberger
- Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Johannes-Gutenberg University, Mainz, Germany
| | - Christian-Friedrich Vahl
- Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Johannes-Gutenberg University, Mainz, Germany
| | - Andres Beiras-Fernandez
- Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Johannes-Gutenberg University, Mainz, Germany
| |
Collapse
|
88
|
Escate R, Padró T, Suades R, Camino S, Muñiz O, Diaz-Diaz JL, Sionis A, Mata P, Badimon L. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc Res 2020; 117:109-122. [PMID: 32061123 DOI: 10.1093/cvr/cvaa039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Presentation of acute events in patients with atherosclerosis remains unpredictable even after controlling for classical risk factors. MicroRNAs (miRNAs) measured in liquid biopsies could be good candidate biomarkers to improve risk prediction. Here, we hypothesized that miRNAs could predict atherosclerotic plaque progression and clinical event presentation in familial hypercholesterolaemia (FH) patients. METHODS AND RESULTS Circulating miRNAs (plasma, exosomes, and microvesicles) were investigated by TaqMan Array and RT-qPCR assays. Patients with genetic diagnosis of FH and healthy relatives from the SAFEHEART cohort were included. A differential signature of 10 miRNA was obtained by comparing two extreme phenotypes consisting of FH patients suffering a cardiovascular event (CVE) within a 8-year follow-up period (FH-CVE, N = 42) and non-FH hypercholesterolaemic relatives from the same cohort, matched for age and treatment, without CVE during the same period (nFH-nCVE, N = 30). The validation studies included two independent groups of patients with FH background (discovery group, N = 89, validation group N = 196), developing a future CVE (FH-CVE) or not (FH-nCVE) within the same time period of follow-up. Of the 10 miRNAs initially selected, miR-133a was significantly higher in FH-CVE than in FH-nCVE patients. Receiver operating characteristic analysis confirmed miR-133a as the best microRNA for predicting CVE in FH patients (0.76 ± 0.054; P < 0.001). Furthermore, Kaplan-Meier and COX analysis showed that high plasma miR-133a levels associated to the higher risk of presenting a CVE within the next 8 years (hazard ratio 3.89, 95% confidence interval 1.88-8.07; P < 0.001). In silico analysis of curate biological interactions related miR-133a with target genes involved in regulation of the cell-membrane lipid-receptor LRP6 and inflammatory cytokines (CXCL8, IL6, and TNF). These predictions were experimentally proven in human macrophages and endothelial cells transfected with agomiR-133a. CONCLUSION Elevated levels of miR-133a in the circulation anticipate those FH patients that are going to present a clinical CVE within the next 2 years (average). Mechanistically, miR-133a is directly related with lipid- and inflammatory signalling in key cells for atherosclerosis progression.
Collapse
Affiliation(s)
- Rafael Escate
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Padró
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Suades
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Sandra Camino
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ovidio Muñiz
- Servicio de Medicina Interna, Hospital Virgen del Rocío, Sevilla, España, Spain
| | | | - Alessandro Sionis
- Cardiology Department, Acute and Intensive Cardiac Care Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
89
|
Isolation of an Anti-Tumour Disintegrin: Dabmaurin-1, a Peptide Lebein-1-Like, from Daboia mauritanica Venom. Toxins (Basel) 2020; 12:toxins12020102. [PMID: 32033352 PMCID: PMC7076848 DOI: 10.3390/toxins12020102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
In the soft treatment of cancer tumours, consequent downregulation of the malignant tissue angiogenesis constitutes an efficient way to stifle tumour development and metastasis spreading. As angiogenesis requires integrin–promoting endothelial cell adhesion, migration, and vessel tube formation, integrins represent potential targets of new therapeutic anti–angiogenic agents. Our work is a contribution to the research of such therapeutic disintegrins in animal venoms. We report isolation of one peptide, named Dabmaurin–1, from the hemotoxic venom of snake Daboia mauritanica, and we evaluate its potential anti–tumour activity through in vitro inhibition of the human vascular endothelial cell HMECs functions involved in tumour angiogenesis. Dabmaurin–1 altered, in a dose–dependent manner, without any significant cytotoxicity, HMEC proliferation, adhesion, and their mesenchymal migration onto various extracellular matrix proteins, as well as formation of capillary–tube mimics on MatrigelTM. Via experiments involving HMEC or specific cancers cells integrins, we demonstrated that the above Dabmaurin–1 effects are possibly due to some anti–integrin properties. Dabmaurin–1 was demonstrated to recognize a broad panel of prooncogenic integrins (αvβ6, αvβ3 or αvβ5) and/or particularly involved in control of angiogenesis (α5β1, α6β4, αvβ3 or αvβ5). Furthermore, mass spectrometry and partial N–terminal sequencing of this peptide revealed, it is close to Lebein–1, a known anti–β1 disintegrin from Macrovipera lebetina venom. Therefore, our results show that if Dabmaurin–1 exhibits in vitro apparent anti–angiogenic effects at concentrations lower than 30 nM, it is likely because it acts as an anti–tumour disintegrin.
Collapse
|
90
|
Zhang Z, Wu Y, Wu B, Qi Q, Li H, Lu H, Fan C, Feng C, Zuo J, Niu L, Tang W. DZ2002 ameliorates fibrosis, inflammation, and vasculopathy in experimental systemic sclerosis models. Arthritis Res Ther 2019; 21:290. [PMID: 31842999 PMCID: PMC6916442 DOI: 10.1186/s13075-019-2074-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Systemic sclerosis is a multisystem inflammatory and vascular lesion leading to extensive tissue fibrosis. A reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, DZ2002, modulates the pathologic processes of various inflammatory diseases and autoimmune diseases. This study is designed to investigate the therapeutic potentiality of DZ2002 for experimental systemic sclerosis models. METHODS The anti-inflammatory and anti-fibrotic features of DZ2002 and its mechanisms were investigated in a bleomycin (BLM)-induced dermal fibrosis mice model. The effects of DZ2002 on expression of extracellular matrix components and TGF-β signaling in human dermal fibroblasts were analyzed. Simultaneously, the effects of DZ2002 on macrophage activation and endothelial cell adhesion molecule expression were also evaluated. RESULTS DZ2002 significantly attenuated dermal fibrosis in BLM-induced mice. Consistently, DZ2002 inhibited the expression of various molecules associated with dermal fibrosis, including transforming growth factor β1, connective tissue growth factor, tumor necrosis factor-α, interferon-γ, IL-1β, IL-4, IL-6, IL-10, IL-12p40, IL-17A, and monocyte chemotactic protein 1 in the lesional skin of BLM-induced mice. Furthermore, DZ2002 decreased the proportion of macrophages, neutrophils, and T cells (especially T helper cells) in the skin tissue of BLM-induced mice. In addition, DZ2002 attenuated both M1 macrophage and M2 macrophage differentiation in vivo and in vitro. Importantly, DZ2002 directly reversed the profibrotic phenotype of transforming growth factor-β1-treated dermal fibroblasts and suppressed ICAM-1, VCAM-1, VEGF, bFGF, and ET-1 expression in endothelial cells. Finally, our investigations showed that DZ2002 relieved systemic sclerosis by regulating fibrosis TGF-β/Smad signaling pathway. CONCLUSIONS DZ2002 prevents the development of experimental dermal fibrosis by reversing the profibrotic phenotype of various cell types and would be a potential drug for the treatment of systemic sclerosis.
Collapse
Affiliation(s)
- Zongwang Zhang
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai, 200444, China
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qi
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Lu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Fan
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunlan Feng
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lili Niu
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai, 200444, China.
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
91
|
Gorzkiewicz M, Konopka M, Janaszewska A, Tarasenko II, Sheveleva NN, Gajek A, Neelov IM, Klajnert-Maculewicz B. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 2019; 95:103504. [PMID: 31864904 DOI: 10.1016/j.bioorg.2019.103504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Malgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - Nadezhda N Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851 Lappeenranta, Finland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Igor M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz-Institut für Polymerforschung Dresden e.V., 6 Hohe St., 01069 Dresden, Germany.
| |
Collapse
|
92
|
Bastounis EE, Yeh YT, Theriot JA. Subendothelial stiffness alters endothelial cell traction force generation while exerting a minimal effect on the transcriptome. Sci Rep 2019; 9:18209. [PMID: 31796790 PMCID: PMC6890669 DOI: 10.1038/s41598-019-54336-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells respond to changes in subendothelial stiffness by altering their migration and mechanics, but whether those responses are due to transcriptional reprogramming remains largely unknown. We measured traction force generation and also performed gene expression profiling for two endothelial cell types grown in monolayers on soft or stiff matrices: primary human umbilical vein endothelial cells (HUVEC) and immortalized human microvascular endothelial cells (HMEC-1). Both cell types respond to changes in subendothelial stiffness by increasing the traction stresses they exert on stiffer as compared to softer matrices, and exhibit a range of altered protein phosphorylation or protein conformational changes previously implicated in mechanotransduction. However, the transcriptome has only a minimal role in this conserved biomechanical response. Only few genes were differentially expressed in each cell type in a stiffness-dependent manner, and none were shared between them. In contrast, thousands of genes were differentially regulated in HUVEC as compared to HMEC-1. HUVEC (but not HMEC-1) upregulate expression of TGF-β2 on stiffer matrices, and also respond to application of exogenous TGF-β2 by enhancing their endogenous TGF-β2 expression and their cell-matrix traction stresses. Altogether, these findings provide insights into the relationship between subendothelial stiffness, endothelial mechanics and variation of the endothelial cell transcriptome, and reveal that subendothelial stiffness, while critically altering endothelial cells’ mechanical behavior, minimally affects their transcriptome.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195-1800, USA
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195-1800, USA.
| |
Collapse
|
93
|
Palomo M, Blasco M, Molina P, Lozano M, Praga M, Torramade-Moix S, Martinez-Sanchez J, Cid J, Escolar G, Carreras E, Paules C, Crispi F, Quintana LF, Poch E, Rodas L, Goma E, Morelle J, Espinosa M, Morales E, Avila A, Cabello V, Ariceta G, Chocron S, Manrique J, Barros X, Martin N, Huerta A, Fraga-Rodriguez GM, Cao M, Martin M, Romera AM, Moreso F, Manonelles A, Gratacos E, Pereira A, Campistol JM, Diaz-Ricart M. Complement Activation and Thrombotic Microangiopathies. Clin J Am Soc Nephrol 2019; 14:1719-1732. [PMID: 31694864 PMCID: PMC6895490 DOI: 10.2215/cjn.05830519] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Atypical hemolytic uremic syndrome is a form of thrombotic microangiopathy caused by dysregulation of the alternative complement pathway. There is evidence showing complement activation in other thrombotic microangiopathies. The aim of this study was to evaluate complement activation in different thrombotic microangiopathies and to monitor treatment response. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Complement activation was assessed by exposing endothelial cells to sera or activated-patient plasma-citrated plasma mixed with a control sera pool (1:1)-to analyze C5b-9 deposits by immunofluorescence. Patients with atypical hemolytic uremic syndrome (n=34) at different stages of the disease, HELLP syndrome (a pregnancy complication characterized by hemolysis, elevated liver enzymes, and low platelet count) or severe preeclampsia (n=10), and malignant hypertension (n=5) were included. RESULTS Acute phase atypical hemolytic uremic syndrome-activated plasma induced an increased C5b-9 deposition on endothelial cells. Standard and lower doses of eculizumab inhibited C5b-9 deposition in all patients with atypical hemolytic uremic syndrome, except in two who showed partial remission and clinical relapse. Significant fibrin formation was observed together with C5b-9 deposition. Results obtained using activated-plasma samples were more marked and reproducible than those obtained with sera. C5b-9 deposition was also increased with samples from patients with HELLP (all cases) and preeclampsia (90%) at disease onset. This increase was sustained in those with HELLP after 40 days, and levels normalized in patients with both HELLP and preeclampsia after 6-9 months. Complement activation in those with malignant hypertension was at control levels. CONCLUSIONS The proposed methodology identifies complement overactivation in patients with atypical hemolytic uremic syndrome at acute phase and in other diseases such as HELLP syndrome and preeclampsia. Moreover, it is sensitive enough to individually assess the efficiency of the C5 inhibition treatment.
Collapse
Affiliation(s)
- Marta Palomo
- Josep Carreras Leukaemia Research Institute; .,Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Miquel Blasco
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Universitat de Barcelona, Spain.,Group of nephro-urological diseases and renal transplantation (IDIBAPS), Barcelona, Spain
| | - Patricia Molina
- Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Miquel Lozano
- Apheresis Unit, Department of Hemotherapy and Hemostasis, Institut Clinic de Malalties Hematologiques i Oncologiques (ICMHO), IDIBAPS, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Praga
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Sergi Torramade-Moix
- Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Josep Carreras Leukaemia Research Institute.,Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Joan Cid
- Apheresis Unit, Department of Hemotherapy and Hemostasis, Institut Clinic de Malalties Hematologiques i Oncologiques (ICMHO), IDIBAPS, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Gines Escolar
- Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute.,Barcelona Endothelium Team, Barcelona, Spain
| | - Cristina Paules
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic de Barcelona and Hospital Sant Joan de Deu), ICGON, IDIBAPS, Universitat de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic de Barcelona and Hospital Sant Joan de Deu), ICGON, IDIBAPS, Universitat de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Barcelona, Spain
| | - Luis F Quintana
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Universitat de Barcelona, Spain.,Group of nephro-urological diseases and renal transplantation (IDIBAPS), Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Universitat de Barcelona, Spain.,Group of nephro-urological diseases and renal transplantation (IDIBAPS), Barcelona, Spain
| | - Lida Rodas
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Universitat de Barcelona, Spain
| | - Emma Goma
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Universitat de Barcelona, Spain
| | - Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Mario Espinosa
- Department of Nephrology, Hospital Universitario Reina Sofía e Instituto Maimonides de Investigaciones Biológicas de Córdoba (IMIBIC), Córdoba, Spain
| | - Enrique Morales
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Ana Avila
- Department of Nephrology and Renal Transplantation, Hospital Universitario Dr Peset, Valencia, Spain
| | - Virginia Cabello
- Department of Nephrology, Hospital Virgen del Rocio, Sevilla, Spain
| | - Gema Ariceta
- Department of Pediatric Nephrology, Hospital Materno-Infantil, Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sara Chocron
- Department of Pediatric Nephrology, Hospital Materno-Infantil, Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joaquin Manrique
- Department of Nephrology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Xoana Barros
- Department of Nephrology, Hospital Universitari Josep Trueta, Girona, Spain
| | - Nadia Martin
- Department of Nephrology, Hospital Universitari Josep Trueta, Girona, Spain
| | - Ana Huerta
- Department of Nephrology, Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | - Gloria M Fraga-Rodriguez
- Department of Pediatric Nephrology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Mercedes Cao
- Department of Nephrology, Complejo Hospitalario Universitario A Coruña, Coruña, Spain
| | - Marisa Martin
- Department of Nephrology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Ana Maria Romera
- Department of Nephrology, Hospital General Universitario, Ciudad Real, Spain
| | - Francesc Moreso
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Anna Manonelles
- Kidney Transplant Unit, Department of Nephrology, Hospital de Bellvitge, Universitat de Barcelona, Barcelona, Spain; and
| | - Eduard Gratacos
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic de Barcelona and Hospital Sant Joan de Deu), ICGON, IDIBAPS, Universitat de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Barcelona, Spain
| | | | - Josep M Campistol
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona, Universitat de Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| |
Collapse
|
94
|
Huo YN, Yeh SD, Lee WS. Androgen receptor activation reduces the endothelial cell proliferation through activating the cSrc/AKT/p38/ERK/NFκB-mediated pathway. J Steroid Biochem Mol Biol 2019; 194:105459. [PMID: 31470108 DOI: 10.1016/j.jsbmb.2019.105459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The effect of androgen on angiogenesis has been documented. However, its underlying molecular mechanisms have not been well illustrated. Here, we show that treatment with an androgen receptor (AR) agonist, metribolone (R1881; 0.05-5 nM), or dihydrotestosterone (DHT; 0.5-2 nM), concentration- and time-dependently inhibited proliferation in human umbilical venous endothelial cells (HUVEC). This inhibitory effect was confirmed in human microvascular endothelial cells (HMEC-1). Flow cytometric analysis demonstrated that R1881 induced G0/G1 phase cell cycle arrest in HUVEC. Blockade of the AR activity by pre-treatment with an AR antagonist, hydroxyflutamide (HF), or knockdown of AR expression using the shRNA technique abolished the R1881-induced HUVEC proliferation inhibition, suggesting that AR activation can inhibit endothelial cell proliferation. We further investigated the signaling pathway contributing to the proliferation inhibition induced by AR activation. Our data suggest that R1881 reduced the proliferation rate of HUVEC through activating the AR/cSrc/AKT/p38/ERK/NFκB pathway, subsequently up-regulating p53 expression, which in turn increased the levels of p21 and p27 protein, hence decreasing the activities of cyclin-dependent kinase 2 (CDK2) and CDK4, and finally reduced the cell proliferation rate. An extra-nuclear pathway involved in the proliferation inhibition induced by AR activation in vascular endothelial cells was confirmed by showing that membrane-impermeable testosterone-bovine serum albumin (BSA) treatment significantly increased the levels of p53, p27 and p21 protein and reduced cell proliferation. These data highlight the underlying molecular mechanisms by which AR activation induced proliferation inhibition in vascular endothelial cells.
Collapse
Affiliation(s)
- Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shauh-Der Yeh
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Urology, Taipei Medical University Hospital, Taipei 110, Taiwan; Comprehensive Cancer Center, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Cancer Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taiwan.
| |
Collapse
|
95
|
Martinez-Sanchez J, Hamelmann H, Palomo M, Mir E, Moreno-Castaño AB, Torramade S, Rovira M, Escolar G, Cordes S, Kalupa M, Mertlitz S, Riesner K, Carreras E, Penack O, Diaz-Ricart M. Acute Graft-vs.-Host Disease-Associated Endothelial Activation in vitro Is Prevented by Defibrotide. Front Immunol 2019; 10:2339. [PMID: 31649666 PMCID: PMC6794443 DOI: 10.3389/fimmu.2019.02339] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis and endothelial activation and dysfunction have been associated with acute graft-vs.-host disease (aGVHD), pointing to the endothelium as a potential target for pharmacological intervention. Defibrotide (DF) is a drug with an endothelium-protective effect that has been approved for the treatment of veno-occlusive disease/sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Clinical data suggest that DF also reduces the incidence of aGVHD; however, the mechanisms of DF-mediated aGVHD regulation have not been examined. To investigate possible DF-mediated prophylactic and therapeutic mechanisms in aGVHD, we performed in vitro studies using endothelial cell (EC) lines. We found that DF significantly and dose-dependently suppressed EC proliferation and notably reduced their ability to form vascular tubes in Matrigel. To explore whether DF administered prophylactically or therapeutically has a significant effect on aGVHD endothelial dysfunction, ECs were exposed to media containing sera from patients with aGVHD (n = 22) in the absence or presence of DF and from patients that did not develop aGVHD (n = 13). ECs upregulated adhesion molecules (vascular cell adhesion molecule 1, intercellular adhesion molecule 1), the adherence junction protein VE-cadherin, von Willebrand factor (VWF), and Akt phosphorylation in response to aGVHD sera. These responses were suppressed upon treatment with DF. In summary, DF inhibits vascular angiogenesis and endothelial activation induced by sera from aGVHD patients. Our results support the view that DF has notable positive effects on endothelial biology during aGVHD.
Collapse
Affiliation(s)
- Julia Martinez-Sanchez
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Hannah Hamelmann
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Enrique Mir
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Ana Belen Moreno-Castaño
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Sergi Torramade
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Stem Cell Transplantation Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ginés Escolar
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Steffen Cordes
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Martina Kalupa
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Sarah Mertlitz
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Katarina Riesner
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Olaf Penack
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Maribel Diaz-Ricart
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| |
Collapse
|
96
|
Ravindran D, Cartland SP, Bursill CA, Kavurma MM. Broad-spectrum chemokine inhibition blocks inflammation-induced angiogenesis, but preserves ischemia-driven angiogenesis. FASEB J 2019; 33:13423-13434. [PMID: 31574232 DOI: 10.1096/fj.201900232rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
M3 is a broad-spectrum chemokine-binding protein that inactivates inflammatory chemokines, including CCL2, CCL5, and CX3CL1. The aim of this study was to compare whether M3 could inhibit angiogenesis driven by inflammation or ischemia. Here, apolipoprotein E-/- mice were injected with adenoviral M3 (AdM3) or control adenoviral green fluorescent protein (AdGFP) 3 d prior to stimulating angiogenesis using 2 established models that distinctly represent inflammatory or ischemia-driven angiogenesis, namely the periarterial femoral cuff and hind limb ischemia. AdM3 reduced intimal thickening, adventitial capillary density, and macrophage accumulation in femoral arteries 21 d after periarterial femoral cuff placement compared with AdGFP-treated mice (P < 0.05). AdM3 also reduced mRNA expression of proangiogenic VEGF, inflammatory markers IL-6 and IL-1β, and vascular smooth muscle cell (VSMC)-activated synthetic markers Krüppel-like family of transcription factor 4 (KLF4) and platelet-derived growth factor receptor β (PDGFRβ) in the inflammatory cuff model. In contrast, capillary density, VSMC content, blood flow perfusion, and VEGF gene expression were unaltered between groups in skeletal muscle following hind limb ischemia. In vitro, AdM3 significantly reduced human microvascular endothelial cell 1 proliferation, migration, and tubule formation by ∼17, 71.3, and 8.7% (P < 0.05) in macrophage-conditioned medium associating with reduced VEGF and hypoxia-inducible factor 1α mRNA but not in hypoxia (1% O2). Compared with AdGFP, AdM3 also inhibited VSMC proliferation and migration and reduced mRNA expression of KLF4 and PDGFRβ under inflammatory conditions. In contrast, AdM3 had no effect on VSMC processes in response to hypoxia in vitro. Our findings show that broad-spectrum inhibition of inflammatory chemokines by M3 inhibits inflammatory-driven but not ischemia-driven angiogenesis, presenting a novel strategy for the treatment of diseases associated with inflammatory-driven angiogenesis.-Ravindran, D., Cartland, S. P., Bursill, C. A., Kavurma, M. M. Broad-spectrum chemokine inhibition blocks inflammation-induced angiogenesis, but preserves ischemia-driven angiogenesis.
Collapse
Affiliation(s)
- Dhanya Ravindran
- The Heart Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Siân P Cartland
- The Heart Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Christina A Bursill
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mary M Kavurma
- The Heart Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
97
|
Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. mBio 2019; 10:mBio.02148-19. [PMID: 31575768 PMCID: PMC6775456 DOI: 10.1128/mbio.02148-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that β1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells. Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for β1 integrin-mediated LAP induction. After downregulation of β1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/β1 integrin/NOX2/ROS pathway.
Collapse
|
98
|
Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA, Hube B, Lionakis MS, Murdoch C, Filler SG, Naglik JR. Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. J Infect Dis 2019; 220:1477-1488. [PMID: 31401652 PMCID: PMC6761979 DOI: 10.1093/infdis/jiz322] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. METHODS In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. RESULTS Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. CONCLUSIONS The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Mina Khalaji
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
- Present Affiliation: Department of Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Norma V Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, United Kingdom
| | - Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Present Affiliation: Institute of Immunology and Immunotherapy, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Craig Murdoch
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
| | - Scott G Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, United Kingdom
| |
Collapse
|
99
|
Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. [Loss of human ICOSLG results in combined immunodeficiency]. Med Sci (Paris) 2019; 35:625-628. [PMID: 31532372 DOI: 10.1051/medsci/2019126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucie Roussel
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Marija Landekic
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Makan Golizeh
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Christina Gavino
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratoire d'oncologie moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jun Chen
- Laboratoire d'oncologie moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Denis Faubert
- Plateforme de spectrométrie de masse et protéomique, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Alexis Blanchet-Cohen
- Bio-informatiques, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Dansereau
- Département de médecine interne, Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Marc-Antoine Parent
- Département de médecine familiale, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Sonia Marin
- Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Julia Luo
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Catherine Le
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Brinley R Ford
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Mélanie Langelier
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada
| | - Irah L King
- Laboratoires Meakins-Christie, Centre universitaire de santé McGill, Institut de recherche, Montréal, Québec, Canada. - Département de médecine, Université McGill, Montréal, Québec, Canada
| | - Maziar Divangahi
- Laboratoires Meakins-Christie, Centre universitaire de santé McGill, Institut de recherche, Montréal, Québec, Canada. - Département de médecine, Université McGill, Montréal, Québec, Canada. - Département de microbiologie et immunologie, Université McGill, Montréal, Québec, Canada
| | - William D Foulkes
- Département de médecine génétique, Centre universitaire de santé McGill, Institut de recherche, Montréal, Québec, Canada. - Département de génétique humaine, Université McGill, Montréal, Québec, Canada
| | - André Veillette
- Laboratoire d'oncologie moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada. - Département de médecine, Université McGill, Montréal, Québec, Canada. - Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Donald C Vinh
- Le Programme en maladies infectieuses et immunité en santé mondiale, Centre universitaire de santé McGill, Institut de recherche, 1001 Decarie, H4A3J1 Montréal, Québec, Canada. - Laboratoire d'oncologie moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada. - Département de médecine, Université McGill, Montréal, Québec, Canada. - Département de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
100
|
Maishi N, Kikuchi H, Sato M, Nagao-Kitamoto H, Annan DA, Baba S, Hojo T, Yanagiya M, Ohba Y, Ishii G, Masutomi K, Shinohara N, Hida Y, Hida K. Development of Immortalized Human Tumor Endothelial Cells from Renal Cancer. Int J Mol Sci 2019; 20:ijms20184595. [PMID: 31533313 PMCID: PMC6770423 DOI: 10.3390/ijms20184595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor angiogenesis research and antiangiogenic drug development make use of cultured endothelial cells (ECs) including the human microvascular ECs among others. However, it has been reported that tumor ECs (TECs) are different from normal ECs (NECs). To functionally validate antiangiogenic drugs, cultured TECs are indispensable tools, but are not commercially available. Primary human TECs are available only in small quantities from surgical specimens and have a short life span in vitro due to their cellular senescence. We established immortalized human TECs (h-imTECs) and their normal counterparts (h-imNECs) by infection with lentivirus producing simian virus 40 large T antigen and human telomerase reverse transcriptase to overcome the replication barriers. These ECs exhibited an extended life span and retained their characteristic endothelial morphology, expression of endothelial marker, and ability of tube formation. Furthermore, h-imTECs showed their specific characteristics as TECs, such as increased proliferation and upregulation of TEC markers. Treatment with bevacizumab, an antiangiogenic drug, dramatically decreased h-imTEC survival, whereas the same treatment failed to alter immortalized NEC survival. Hence, these h-imTECs could be a valuable tool for drug screening to develop novel therapeutic agents specific to TECs or functional biological assays in tumor angiogenesis research.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroko Nagao-Kitamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Dorcas A Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Shogo Baba
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Takayuki Hojo
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| |
Collapse
|