51
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
52
|
Kruyer A, Kalivas PW. Astrocytes as cellular mediators of cue reactivity in addiction. Curr Opin Pharmacol 2021; 56:1-6. [PMID: 32862045 PMCID: PMC7910316 DOI: 10.1016/j.coph.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Relapse to addictive drug use remains a major medical problem worldwide. In rodents, glutamate release in the nucleus accumbens core triggers reinstated drug seeking in response to stress, and drug-associated cues and contexts. Glutamatergic dysregulation in addiction results in part from long-lasting adaptations in accumbens astroglia, including downregulation of the glutamate transporter GLT-1 and retraction from synapses after withdrawal from psychostimulants and opioids. While their capacity to clear glutamate is disrupted by drug use and withdrawal, accumbens astrocytes undergo rapid, transient plasticity in response to drug-associated cues that reinstate seeking. Cued reinstatement of heroin seeking, for example, restores synaptic proximity of astrocyte processes through ezrin phosphorylation, and enhances GLT-1 surface expression. These adaptations limit drug seeking behavior and largely occur on non-overlapping populations of astroglia. Here we review the growing literature supporting a critical role for accumbens astrocytes in modulating glutamate transmission during drug seeking in rodent models of relapse.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States.
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States
| |
Collapse
|
53
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
54
|
Abstract
Animal behavior was classically considered to be determined exclusively by neuronal activity, whereas surrounding glial cells such as astrocytes played only supportive roles. However, astrocytes are as numerous as neurons in the mammalian brain, and current findings indicate a chemically based dialog between astrocytes and neurons. Activation of astrocytes by synaptically released neurotransmitters converges on regulating intracellular Ca2+ in astrocytes, which then can regulate the efficacy of near and distant tripartite synapses at diverse timescales through gliotransmitter release. Here, we discuss recent evidence on how diverse behaviors are impacted by this dialog. These recent findings support a paradigm shift in neuroscience, in which animal behavior does not result exclusively from neuronal activity but from the coordinated activity of both astrocytes and neurons. Decoding how astrocytes and neurons interact with each other in various brain circuits will be fundamental to fully understanding how behaviors originate and become dysregulated in disease.
Collapse
Affiliation(s)
- Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
55
|
Raghu G, Berk M, Campochiaro PA, Jaeschke H, Marenzi G, Richeldi L, Wen FQ, Nicoletti F, Calverley PMA. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr Neuropharmacol 2021; 19:1202-1224. [PMID: 33380301 PMCID: PMC8719286 DOI: 10.2174/1570159x19666201230144109] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress, which results in the damage of diverse biological molecules, is a ubiquitous cellular process implicated in the etiology of many illnesses. The sulfhydryl-containing tripeptide glutathione (GSH), which is synthesized and maintained at high concentrations in all cells, is one of the mechanisms by which cells protect themselves from oxidative stress. N-acetylcysteine (NAC), a synthetic derivative of the endogenous amino acid L-cysteine and a precursor of GSH, has been used for several decades as a mucolytic and as an antidote to acetaminophen (paracetamol) poisoning. As a mucolytic, NAC breaks the disulfide bonds of heavily cross-linked mucins, thereby reducing mucus viscosity. In vitro, NAC has antifibrotic effects on lung fibroblasts. As an antidote to acetaminophen poisoning, NAC restores the hepatic GSH pool depleted in the drug detoxification process. More recently, improved knowledge of the mechanisms by which NAC acts has expanded its clinical applications. In particular, the discovery that NAC can modulate the homeostasis of glutamate has prompted studies of NAC in neuropsychiatric diseases characterized by impaired glutamate homeostasis. This narrative review provides an overview of the most relevant and recent evidence on the clinical application of NAC, with a focus on respiratory diseases, acetaminophen poisoning, disorders of the central nervous system (chronic neuropathic pain, depression, schizophrenia, bipolar disorder, and addiction), cardiovascular disease, contrast-induced nephropathy, and ophthalmology (retinitis pigmentosa).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter M. A. Calverley
- Address correspondence to this author at Clinical Science Centre, University Hospital Aintree, Longmoor Lane, Liverpool UK L9 7AL; Tel: +44 151 529 5886, Fax: +44 151 529 5888; E-mail:
| |
Collapse
|
56
|
Wright WJ, Dong Y. Psychostimulant-Induced Adaptations in Nucleus Accumbens Glutamatergic Transmission. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039255. [PMID: 31964644 DOI: 10.1101/cshperspect.a039255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carrying different aspects of emotional and motivational signals, glutamatergic synaptic projections from multiple limbic and paralimbic brain regions converge to the nucleus accumbens (NAc), in which these arousing signals are processed and prioritized for behavioral output. In animal models of drug addiction, some key drug-induced alterations at NAc glutamatergic synapses underlie important cellular and circuit mechanisms that promote subsequent drug taking, seeking, and relapse. With the focus of cocaine, we review changes at NAc glutamatergic synapses that occur after different drug procedures and abstinence durations, and the behavioral impact of these changes.
Collapse
Affiliation(s)
- William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
57
|
Weiss HJ, Angiari S. Metabolite Transporters as Regulators of Immunity. Metabolites 2020; 10:E418. [PMID: 33086598 PMCID: PMC7603148 DOI: 10.3390/metabo10100418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
In the past decade, the rise of immunometabolism has fundamentally reshaped the face of immunology. As the functions and properties of many (immuno)metabolites have now been well described, their exchange among cells and their environment have only recently sparked the interest of immunologists. While many metabolites bind specific receptors to induce signaling cascades, some are actively exchanged between cells to communicate, or induce metabolic reprograming. In this review, we give an overview about how active metabolite transport impacts immune cell function and shapes immunological responses. We present some examples of how specific transporters feed into metabolic pathways and initiate intracellular signaling events in immune cells. In particular, we focus on the role of metabolite transporters in the activation and effector functions of T cells and macrophages, as prototype adaptive and innate immune cell populations.
Collapse
Affiliation(s)
- Hauke J. Weiss
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | | |
Collapse
|
58
|
Cano-Cebrián MJ, Fernández-Rodríguez S, Hipólito L, Granero L, Polache A, Zornoza T. Efficacy of N-acetylcysteine in the prevention of alcohol relapse-like drinking: Study in long-term ethanol-experienced male rats. J Neurosci Res 2020; 99:638-648. [PMID: 33063355 DOI: 10.1002/jnr.24736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Alcohol use disorders are chronic and highly relapsing disorders, thus alcoholic patients have a high rate of recidivism for drug use even after long periods of abstinence. The literature points to the potential usefulness of N-acetylcysteine (NAC) in the management of several substance use disorders probably due to its capacity to restore brain homeostasis of the glutamate system disrupted in addiction. However, there is little evidence in the case of alcohol. The aim of this study was to explore the potential anti-relapse efficacy of NAC using the alcohol deprivation effect (ADE) model in long-term experienced rats. Two experiments were performed in male Wistar rats to: (a) test the efficacy of NAC to prevent relapse and (b) discriminate the best administration schedule (intermittent vs. continuous) for NAC. In the first experiment, animals were implanted with mini-osmotic pumps delivering 0 or 1 mg/hr NAC during 14 days. In a second experiment, rats received 0, 60, or 100 mg/kg once daily by subcutaneous injection. The efficacy to prevent ADE was evaluated in both experiments. NAC subcutaneously administered, either by continuous infusion or by intermittent injections regimen, is able to block the ADE. The best results were obtained after using 60 mg/kg NAC dose. Our findings support the hypothesis that NAC may represent a valuable therapy in the management of alcohol relapse.
Collapse
Affiliation(s)
- María José Cano-Cebrián
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Sandra Fernández-Rodríguez
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Lucia Hipólito
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Luis Granero
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Ana Polache
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| |
Collapse
|
59
|
Smaga I, Gawlińska K, Frankowska M, Wydra K, Sadakierska-Chudy A, Suder A, Piechota M, Filip M. Extinction Training after Cocaine Self-Administration Influences the Epigenetic and Genetic Machinery Responsible for Glutamatergic Transporter Gene Expression in Male Rat Brain. Neuroscience 2020; 451:99-110. [PMID: 33065231 DOI: 10.1016/j.neuroscience.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Glutamate is a key excitatory neurotransmitter in the central nervous system. The balance of glutamatergic transporter proteins allows long-term maintenance of glutamate homeostasis in the brain, which is impaired during cocaine use disorder. The aim of this study was to investigate changes in the gene expression of SLC1A2 (encoding GLT-1), and SLC7A11 (encoding xCT), in rat brain structures after short-term (3 days) and long-term (10 days) extinction training using microarray analysis and quantitative real-time PCR. Furthermore, we analyzed the expression of genes encoding transcription factors, i.e., NFKB1 and NFKB2 (encoding NF-κB), PAX6, (encoding Pax6), and NFE2L2 (encoding Nrf2), to verify the correlation between changes in glutamatergic transporters and changes in their transcriptional factors and microRNAs (miRNAs; miR-124a, miR-543-3p and miR-342-3p) and confirm the epigenetic mechanism. We found reduced GLT-1 transcript and mRNA level in the prefrontal cortex (PFCTX) and dorsal striatum (DSTR) in rats that had previously self-administered cocaine after 3 days of extinction training, which was associated with downregulation of PAX6 (transcript and mRNA) and NFKB2 (mRNA) level in the PFCTX and with upregulation of miR-543-3p and miR-342-3p in the DSTR. The xCT mRNA level was reduced in the PFCTX and DSTR, and NFE2L2 transcript level in the PFCTX was decreased on the 3rd day of extinction training. In conclusion, 3-day drug-free period modulates GLT-1 and xCT gene expression through genetic and epigenetic mechanisms, and such changes in expression seem to be potential molecular targets for developing a treatment for cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland.
| | - Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Karolina Wydra
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Anna Sadakierska-Chudy
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Agata Suder
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, Smętna 12, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
60
|
Namba MD, Kupchik YM, Spencer SM, Garcia‐Keller C, Goenaga JG, Powell GL, Vicino IA, Hogue IB, Gipson CD. Accumbens neuroimmune signaling and dysregulation of astrocytic glutamate transport underlie conditioned nicotine-seeking behavior. Addict Biol 2020; 25:e12797. [PMID: 31330570 PMCID: PMC7323912 DOI: 10.1111/adb.12797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Nicotine self-administration is associated with decreased expression of the glial glutamate transporter (GLT-1) and the cystine-glutamate exchange protein xCT within the nucleus accumbens core (NAcore). N-acetylcysteine (NAC) has been shown to restore these proteins in a rodent model of drug addiction and relapse. However, the specific molecular mechanisms driving its inhibitory effects on cue-induced nicotine reinstatement are unknown. Here, we confirm that extinction of nicotine-seeking behavior is associated with impaired NAcore GLT-1 function and expression and demonstrates that reinstatement of nicotine seeking rapidly enhances membrane fraction GLT-1 expression. Extinction and cue-induced reinstatement of nicotine seeking was also associated with increased tumor necrosis factor alpha (TNFα) and decreased glial fibrillary acidic protein (GFAP) expression in the NAcore. NAC treatment (100 mg/kg/day, i.p., for 5 d) inhibited cue-induced nicotine seeking and suppressed AMPA to NMDA current ratios, suggesting that NAC reduces NAcore postsynaptic excitability. In separate experiments, rats received NAC and an antisense vivo-morpholino to selectively suppress GLT-1 expression in the NAcore during extinction and were subsequently tested for cue-induced reinstatement of nicotine seeking. NAC treatment rescued NAcore GLT-1 expression and attenuated cue-induced nicotine seeking, which was blocked by GLT-1 antisense. NAC also reduced TNFα expression in the NAcore. Viral manipulation of the NF-κB pathway, which is downstream of TNFα, revealed that cue-induced nicotine seeking is regulated by NF-κB pathway signaling in the NAcore independent of GLT-1 expression. Ultimately, these results are the first to show that immunomodulatory mechanisms may regulate known nicotine-induced alterations in glutamatergic plasticity that mediate cue-induced nicotine-seeking behavior.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of PsychologyArizona State University Tempe AZ USA
| | - Yonatan M. Kupchik
- Department of Medical NeurobiologyHebrew University of Jerusalem Jerusalem Israel
| | - Sade M. Spencer
- Department of PharmacologyUniversity of Minnesota Minneapolis MN USA
| | | | | | - Gregory L. Powell
- Department of PsychologyArizona State University Tempe AZ USA
- School of Life SciencesArizona State University Tempe AZ USA
| | - Ian A. Vicino
- School of Life SciencesArizona State University Tempe AZ USA
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign InstituteArizona State University Tempe AZ USA
| | - Ian B. Hogue
- School of Life SciencesArizona State University Tempe AZ USA
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign InstituteArizona State University Tempe AZ USA
| | | |
Collapse
|
61
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
62
|
Logan CN, Bechard AR, Hamor PU, Wu L, Schwendt M, Knackstedt LA. Ceftriaxone and mGlu2/3 interactions in the nucleus accumbens core affect the reinstatement of cocaine-seeking in male and female rats. Psychopharmacology (Berl) 2020; 237:2007-2018. [PMID: 32382781 PMCID: PMC8587483 DOI: 10.1007/s00213-020-05514-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 11/25/2022]
Abstract
RATIONALE The beta-lactam antibiotic ceftriaxone reliably attenuates the reinstatement of cocaine seeking. While the restoration of nucleus accumbens core (NA core) GLT-1 expression is necessary for ceftriaxone to attenuate reinstatement, AAV-mediated GLT-1 overexpression is not sufficient to attenuate reinstatement and does not prevent glutamate efflux during reinstatement. AIMS Here, we test the hypothesis that ceftriaxone attenuates reinstatement through interactions with glutamate autoreceptors mGlu2 and mGlu3 in the NA core. METHODS Male and female rats self-administered cocaine for 12 days followed by 2-3 weeks of extinction training. During the last 6-10 days of extinction, rats received ceftriaxone (200 mg/kg IP) or vehicle. In experiment 1, rats were killed, and NA core tissue was biotinylated for assessment of total and surface expression of mGlu2 and mGlu3 via western blotting. In experiment 2, we tested the hypothesis that mGlu2/3 signaling is necessary for ceftriaxone to attenuate cue- and cocaine-primed reinstatement by administering bilateral intra-NA core infusion of mGlu2/3 antagonist LY341495 or vehicle immediately prior to reinstatement testing. RESULTS mGlu2 expression was reduced by cocaine and restored by ceftriaxone. There were no effects of cocaine or ceftriaxone on mGlu3 expression. We observed no effects of estrus on expression of either protein. The antagonism of mGlu2/3 in the NA core during both cue- and cocaine-primed reinstatement tests prevented ceftriaxone from attenuating reinstatement. CONCLUSIONS These results indicate that ceftriaxone's effects depend on mGlu2/3 function and possibly mGlu2 receptor expression. Future work will test this hypothesis by manipulating mGlu2 expression in pathways that project to the NA core.
Collapse
Affiliation(s)
- Carly N Logan
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Allison R Bechard
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611-2250, USA
| | - Peter U Hamor
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lizhen Wu
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611-2250, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr, Gainesville, FL, 32611-2250, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
63
|
Hammad AM, Sari Y. Effects of Cocaine Exposure on Astrocytic Glutamate Transporters and Relapse-Like Ethanol-Drinking Behavior in Male Alcohol-Preferring Rats. Alcohol Alcohol 2020; 55:254-263. [PMID: 32099993 PMCID: PMC7171926 DOI: 10.1093/alcalc/agaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
AIM Glutamate has been considered as neurotransmitter that is critical in triggering relapse to drugs of abuse, including ethanol and cocaine. Extracellular glutamate concentrations are tightly regulated by several mechanisms, including reuptake through glutamate transporters. Glutamate transporter type 1 (GLT-1) is responsible for clearing the majority of extracellular glutamate. The astrocytic cystine/glutamate antiporter (xCT) regulates also glutamate homeostasis. In this study, we investigated the effects of cocaine exposure and ampicillin/sulbactam (AMP/SUL), a β-lactam antibiotic known to upregulate GLT-1 and xCT, on relapse-like ethanol intake and the expression of astrocytic glutamate transporters in mesocorticolimbic brain regions. METHODS Male alcohol-preferring (P) rats had free access to ethanol for 5 weeks. On Week 6, rats were exposed to either cocaine (20 mg/kg, i.p.) or saline for 12 consecutive days. Ethanol bottles were then removed for 7 days; during the last 5 days, either AMP/SUL (100 or 200 mg/kg, i.p.) or saline was administered to the P rats. Ethanol bottles were reintroduced, and ethanol intake was measured for 4 days. RESULTS Cocaine exposure induced an alcohol deprivation effect (ADE), which was associated in part by a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc) core. AMP/SUL (100 mg/kg, i.p.) attenuated the ADE, while AMP/SUL (200 mg/kg, i.p.) reduced ethanol intake during 4 days of ethanol re-exposure and upregulated GLT-1 and xCT expression in the NAc core, NAc shell and dorsomedial prefrontal cortex (dmPFC). CONCLUSION This study suggests that these astrocytic glutamate transporters might be considered as potential targets for the treatment of polysubstance abuse.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman, 11733, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave, Toledo, OH, USA
| |
Collapse
|
64
|
Back SE, Gray K, Santa Ana E, Jones JL, Jarnecke AM, Joseph JE, Prisciandaro J, Killeen T, Brown DG, Taimina L, Compean E, Malcolm R, Flanagan JC, Kalivas PW. N-acetylcysteine for the treatment of comorbid alcohol use disorder and posttraumatic stress disorder: Design and methodology of a randomized clinical trial. Contemp Clin Trials 2020; 91:105961. [PMID: 32087337 PMCID: PMC7333883 DOI: 10.1016/j.cct.2020.105961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) and posttraumatic stress disorder (PTSD) are two prevalent psychiatric conditions in the U.S. The co-occurrence of AUD and PTSD is also common, and associated with a more severe clinical presentation and worse treatment outcomes across the biopsychosocial spectrum (e.g., social and vocational functioning, physical health) as compared to either disorder alone. Despite the high co-occurrence and negative outcomes, research on effective medications for AUD/PTSD is sparse and there is little empirical evidence to guide treatment decisions. The study described in this paper addresses this knowledge gap by testing the efficacy of N-acetylcysteine (NAC) in reducing alcohol use and PTSD symptoms. Animal studies and prior clinical research suggest a role for NAC in the treatment of substance use disorders and PTSD via glutamate modulation. NAC is a cysteine pro-drug that stimulates the cystine-glutamate exchanger, normalizes glial glutamate transporters, and restores glutamatergic tone on presynaptic receptors in reward regions of the brain. Moreover, NAC is available over-the-counter, has a long-established safety record, and does not require titration to achieve the target dose. This paper describes the rationale, study design, and methodology of a 12-week, randomized, double-blind, placebo-controlled trial of NAC (2400 mg/day) among adults with co-occurring AUD and PTSD. Functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy (1H-MRS) are utilized to investigate the neural circuitry and neurochemistry underlying comorbid AUD/PTSD and identify predictors of treatment outcome. This study is designed to determine the efficacy of NAC in the treatment of co-occurring AUD/PTSD and provide new information regarding mechanisms of action implicated in co-occurring AUD/PTSD.
Collapse
Affiliation(s)
- Sudie E Back
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Kevin Gray
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Elizabeth Santa Ana
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Jennifer L Jones
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Amber M Jarnecke
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Jane E Joseph
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - James Prisciandaro
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Therese Killeen
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Delisa G Brown
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Linda Taimina
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Ebele Compean
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Malcolm
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Julianne C Flanagan
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Peter W Kalivas
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
65
|
Giacometti LL, Barker JM. Sex differences in the glutamate system: Implications for addiction. Neurosci Biobehav Rev 2020; 113:157-168. [PMID: 32173404 DOI: 10.1016/j.neubiorev.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical research have identified sex differences in substance use and addiction-related behaviors. Historically, substance use disorders are more prevalent in men than women, though this gap is closing. Despite this difference, women appear to be more susceptible to the effects of many drugs and progress to substance abuse treatment more quickly than men. While the glutamate system is a key regulator of addiction-related behaviors, much of the work implicating glutamate signaling and glutamatergic circuits has been conducted in men and male rodents. An increasing number of studies have identified sex differences in drug-induced glutamate alterations as well as sex and estrous cycle differences in drug seeking behaviors. This review will describe sex differences in the glutamate system with an emphasis on implications for substance use disorders, highlighting the gaps in our current understanding of how innate and drug-induced alterations in the glutamate system may contribute to sex differences in addiction-related behaviors.
Collapse
Affiliation(s)
- L L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| | - J M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
66
|
Siemsen BM, McFaddin JA, Haigh K, Brock AG, Nan Leath M, Hooker KN, McGonegal LK, Scofield MD. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core. J Neurochem 2020; 153:599-616. [PMID: 31901130 PMCID: PMC7593647 DOI: 10.1111/jnc.14952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022]
Abstract
Cue-induced reinstatement of cocaine seeking after self-administration (SA) and extinction relies on glutamate release in the nucleus accumbens core (NAcore), which activates neuronal nitric oxide synthase interneurons. Nitric oxide (NO) is required for structural plasticity in NAcore medium spiny neurons, as well as cued cocaine seeking. However, NO release in the NAcore during reinstatement has yet to be directly measured. Furthermore, the temporal relationship between glutamate release and the induction of an NO response also remains unknown. Using wireless amperometric recordings in awake behaving rats, we quantified the magnitude and temporal dynamics of novel context- and cue-induced reinstatement-evoked glutamate and NO release in the NAcore. We found that re-exposure to cocaine-conditioned stimuli following SA and extinction increased extracellular glutamate, leading to release of NO in the NAcore. In contrast, exposing drug-naïve rats to a novel context led to a lower magnitude rise in glutamate in the NAcore relative to cue-induced reinstatement. Interestingly, novel context exposure evoked a higher magnitude NO response relative to cue-induced reinstatement. Despite differences in magnitude, novel context evoked-NO release in the NAcore was also temporally delayed when compared to glutamate. These results demonstrate a dissociation between the magnitude of cocaine cue- and novel context-evoked glutamate and NO release in the NAcore, yet similarity in the temporal dynamics of their release. Together, these data contribute to a greater understanding of the relationship between glutamate and NO, two neurotransmitters implicated in encoding the valence of distinct contextual stimuli.
Collapse
Affiliation(s)
- Benjamin M Siemsen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John A McFaddin
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Keiana Haigh
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley G Brock
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Nan Leath
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N Hooker
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lilly K McGonegal
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
67
|
Stennett BA, Padovan-Hernandez Y, Knackstedt LA. Sequential cocaine-alcohol self-administration produces adaptations in rat nucleus accumbens core glutamate homeostasis that are distinct from those produced by cocaine self-administration alone. Neuropsychopharmacology 2020; 45:441-450. [PMID: 31266052 PMCID: PMC6969168 DOI: 10.1038/s41386-019-0452-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
There are currently no FDA-approved medications to reduce cocaine relapse. The majority of preclinical studies aimed at identifying the neurobiology underlying relapse involve the self-administration of cocaine alone, whereas many, if not a majority, of cocaine users engage in polysubstance use. Here we developed a rat model of sequential cocaine and alcohol self-administration to test the hypothesis that this combination produces distinct neuroadaptations relative to those produced by cocaine alone. Male rats underwent intravenous cocaine self-administration (2 h/day) followed by 6 h access to unsweetened alcohol (20% v/v) for 12 days. After extinction training, we assessed surface expression of the glutamate transporter GLT-1 and glutamate efflux in the nucleus accumbens (NA) core during the reinstatement of cocaine-seeking. We also tested the ability of ceftriaxone to attenuate the reinstatement of cocaine-seeking and assessed reinstatement-induced Fos expression in several regions critical for reinstatement. Alcohol consumption did not alter cocaine intake, nor did access to cocaine alter alcohol consumption. However, we noted significant changes in glutamate homeostasis in the NA core of cocaine + alcohol rats relative to rats consuming cocaine alone, such as increased surface GLT-1 expression and a lack of increase in glutamate efflux during reinstatement of cocaine-seeking. A history of cocaine + alcohol also altered patterns of reinstatement-induced Fos expression. These changes likely account for the inability of ceftriaxone to attenuate cocaine relapse in cocaine + alcohol rats, while it does so in rats consuming only cocaine. As such glutamate neuroadaptations are targeted by medications to reduce cocaine relapse, preclinical models should consider polysubstance use.
Collapse
Affiliation(s)
- Bethany A Stennett
- Psychology Department, University of Florida, Gainesville, FL, USA
- Center for Addiction Research, University of Florida, Gainesville, FL, USA
| | - Yasmin Padovan-Hernandez
- Psychology Department, University of Florida, Gainesville, FL, USA
- Center for Addiction Research, University of Florida, Gainesville, FL, USA
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, USA.
- Center for Addiction Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
68
|
Goenaga J, Powell GL, Leyrer-Jackson JM, Piña J, Phan S, Prakapenka AV, Koebele SV, Namba MD, McClure EA, Bimonte-Nelson HA, Gipson CD. N-acetylcysteine yields sex-specific efficacy for cue-induced reinstatement of nicotine seeking. Addict Biol 2020; 25:e12711. [PMID: 30734439 PMCID: PMC6685767 DOI: 10.1111/adb.12711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022]
Abstract
Women report greater craving during certain phases of the menstrual cycle. As well, research indicates that pharmacotherapies for smoking may be less efficacious in women compared with men, which may be due to interactions with natural fluctuations in ovarian hormone levels. N-Acetylcysteine (NAC) is a glutamatergic compound that has shown some efficacy in treating substance use disorders and aids in the prevention of relapse. However, it is unclear whether NAC has sex-specific effectiveness for nicotine relapse treatment. Given that NAC has shown promise to reduce nicotine reinstatement in preclinical models using male rats, the exploration of potential sex differences in the efficacy of NAC is warranted. Using a rat model, we first investigated the ability of NAC treatment (100 mg/kg, ip) during nicotine withdrawal with extinction training to reduce cue-induced nicotine seeking in male and female rats. Next, we assessed whether NAC's effects were estrous cycle-dependent for female rats. Results show that following NAC treatment during extinction, reinstatement of nicotine seeking was significantly decreased in males but not females, indicating a sex-specific effect of NAC. Furthermore, for females, both vehicle- and NAC-treated groups significantly reinstated nicotine-seeking behavior compared with extinction, regardless of estrous cycle phase. These results suggest that NAC is inefficacious in reducing nicotine relapse in females regardless of estrous cycle phase at the dose evaluated here. These collective findings could have important clinical implications for use and efficacy of NAC as a pharmacotherapy for freely cycling women smokers.
Collapse
Affiliation(s)
| | | | | | - Jose Piña
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Sandy Phan
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Alesia V. Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ
- Arizona Alzheimer’s Consortium, Phoenix, AZ
| | - Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, AZ
- Arizona Alzheimer’s Consortium, Phoenix, AZ
| | - Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Erin A. McClure
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ
- Arizona Alzheimer’s Consortium, Phoenix, AZ
| | | |
Collapse
|
69
|
Kruyer A, Chioma VC, Kalivas PW. The Opioid-Addicted Tetrapartite Synapse. Biol Psychiatry 2020; 87:34-43. [PMID: 31378302 PMCID: PMC6898767 DOI: 10.1016/j.biopsych.2019.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Opioid administration in preclinical models induces long-lasting adaptations in reward and habit circuitry. The latest research demonstrates that in the nucleus accumbens, opioid-induced excitatory synaptic plasticity involves presynaptic and postsynaptic elements as well as adjacent astroglial processes and the perisynaptic extracellular matrix. We outline opioid-induced modifications within each component of the tetrapartite synapse and provide a neurobiological perspective on how these adaptations converge to produce addiction-related behaviors in rodent models. By incorporating changes observed at each of the excitatory synaptic compartments into a unified framework of opioid-induced glutamate dysregulation, we highlight new avenues for restoring synaptic homeostasis that might limit opioid craving and relapse vulnerability.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
70
|
Skupio U, Tertil M, Bilecki W, Barut J, Korostynski M, Golda S, Kudla L, Wiktorowska L, Sowa JE, Siwiec M, Bobula B, Pels K, Tokarski K, Hess G, Ruszczycki B, Wilczynski G, Przewlocki R. Astrocytes determine conditioned response to morphine via glucocorticoid receptor-dependent regulation of lactate release. Neuropsychopharmacology 2020; 45:404-415. [PMID: 31254970 PMCID: PMC6901448 DOI: 10.1038/s41386-019-0450-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine. Specifically, we show that targeted knockdown of the GR in the NAc astrocytes enhanced conditioned responses to morphine, with a concomitant inhibition of morphine-induced neuronal excitability and plasticity. Interestingly, GR knockdown did not influence sensitivity to cocaine. Further analyses revealed GR-dependent regulation of astroglial metabolism. Notably, GR knockdown inhibited induced by glucocorticoids lactate release in astrocytes. Finally, lactate administration outbalanced conditioned responses to morphine in astroglial GR knockdown mice. These findings demonstrate a role of GR-dependent regulation of astrocytic metabolism in the NAc and a key role of GR-expressing astrocytes in opioid reward processing.
Collapse
Affiliation(s)
- Urszula Skupio
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Tertil
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wiktor Bilecki
- 0000 0001 1958 0162grid.413454.3Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Justyna Barut
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Michal Korostynski
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Slawomir Golda
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Kudla
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Wiktorowska
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna E. Sowa
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marcin Siwiec
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Bartosz Bobula
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pels
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland ,0000 0001 1943 2944grid.419305.aDepartment of Neurophysiology, Nencki Institute, Warsaw, Poland
| | - Krzysztof Tokarski
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Hess
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Blazej Ruszczycki
- 0000 0001 1943 2944grid.419305.aDepartment of Neurophysiology, Nencki Institute, Warsaw, Poland
| | - Grzegorz Wilczynski
- 0000 0001 1943 2944grid.419305.aDepartment of Neurophysiology, Nencki Institute, Warsaw, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
71
|
Althobaiti YS, Almalki A, Alsaab H, Alsanie W, Gaber A, Alhadidi Q, Hardy AMG, Nasr A, Alzahrani O, Stary CM, Shah ZA. Pregabalin: Potential for Addiction and a Possible Glutamatergic Mechanism. Sci Rep 2019; 9:15136. [PMID: 31641170 PMCID: PMC6805907 DOI: 10.1038/s41598-019-51556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Drug addiction remains a prevalent and fatal disease worldwide that carries significant social and economic impacts. Recent reports suggest illicit pregabalin (Lyrica) use may be increasing among youth, however the addictive potential of pregabalin has not been well established. Drug seeking behavior and chronic drug use are associated with deficits in glutamate clearance and activation of postsynaptic glutamatergic receptors. In the current study, we investigated the abuse potential of pregabalin using conditioned place preference (CPP) paradigm. Different doses of pregabalin (30, 60, 90, and 120 mg/kg) were used to assess the seeking behavior in mice. Glutamate homeostasis is maintained by glutamate transporter type-1 (GLT-1), which plays a vital role in clearing the released glutamate from synapses and drug seeking behavior. Therefore, we investigated the role of glutamate in pregabalin-seeking behavior with ceftriaxone (CEF), a potent GLT-1 upregulator. Mice treated with pregabalin 60 and 90 mg/kg doses demonstrated drug seeking-like behavior, which was significantly blocked by CEF pretreatment. These results suggest that pregabalin-induced CPP was successfully modulated by CEF which could serve as a lead compound for developing treatment for pregabalin abuse.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia. .,Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.
| | - Atiah Almalki
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, College of Pharmacy, Department of Pharmaceutical chemistry, Taif, Saudi Arabia
| | - Hashem Alsaab
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, College of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Taif, Saudi Arabia
| | - Walaa Alsanie
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, Faculty of Applied Medical Sciences, Department of Clinical Laboratories Sciences, Taif, Saudi Arabia
| | - Ahmed Gaber
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, Faculty of Sciences, Department of Biology, Taif, Saudi Arabia
| | - Qasim Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medical School, Stanford University, CA, USA
| | - Ana Maria Gregio Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, OH, USA
| | - Abdulrahman Nasr
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia
| | - Omar Alzahrani
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medical School, Stanford University, CA, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| |
Collapse
|
72
|
Reversing Cocaine-Induced Plasticity with Zeta Inhibitory Peptide. J Neurosci 2019; 39:7801-7809. [PMID: 31409665 DOI: 10.1523/jneurosci.1367-19.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 11/21/2022] Open
Abstract
Cocaine-induced plasticity persists during abstinence and is thought to underlie cue-evoked craving. Reversing this plasticity could provide an opportunity for therapeutic intervention. Converging evidence suggest that zeta inhibitory peptide (ZIP) eliminates memories for experience-dependent behaviors, including conditioned drug associations. However, the effect of ZIP on reward seeking and drug-induced plasticity is unknown. The current study examined the effect of ZIP administration in the nucleus accumbens on reinstatement (RI) of cocaine seeking, a rodent model of relapse. We demonstrate that intra-accumbal ZIP administration blocks cocaine-primed RI in rats when administered 24 h or 1 week before testing. These effects of ZIP on drug seeking are specific, as we did not see any effect of ZIP on RI of sucrose seeking. ZIP is a synthetic compound designed to inhibit the atypical PKC, PKMζ, a protein implicated in learning and memory. However, recent evidence from PKMζ-knock-out (KO) mice suggests that ZIP may function through alternative mechanisms. In support of this, we found that ZIP was able to block cue-induced RI in PKMζ-KO mice. One possible mechanism underlying addictive phenotypes is the ability of cocaine to block further plasticity. We hypothesized that ZIP may be working to reverse this anaplasticity. Although ZIP has no effect on accumbal LTD in slices from naive or yoked saline mice, it is able to restore both NMDA-dependent and mGluR5-dependent LTD in animals after cocaine self-administration and withdrawal. These findings demonstrate that intra-accumbal ZIP persistently reverses cocaine-induced behavioral and synaptic plasticity in male and female rodents.SIGNIFICANCE STATEMENT Zeta-inhibitory peptide (ZIP) has been shown to disrupt memory maintenance for experience-dependent behaviors. We examined the effect of ZIP infused into the nucleus accumbens on the reinstatement (RI) of cocaine seeking. We found that intra-accumbal ZIP blocked RI of cocaine seeking 24 h and 1 week later. This effect was specific to RI of cocaine seeking as ZIP did not disrupt RI of food seeking. In conjunction with these behavioral studies we examined the ability of ZIP to reverse cocaine-induced deficits in LTD. We found that ZIP was able to rescue two forms of LTD in cocaine-experienced mice. These studies demonstrate that ZIP is able to reverse cocaine-induced behavioral and synaptic plasticity in a persistent manner.
Collapse
|
73
|
Garcia-Keller C, Neuhofer D, Bobadilla AC, Spencer S, Chioma VC, Monforton C, Kalivas PW. Extracellular Matrix Signaling Through β3 Integrin Mediates Cocaine Cue-Induced Transient Synaptic Plasticity and Relapse. Biol Psychiatry 2019; 86:377-387. [PMID: 31126696 PMCID: PMC6697624 DOI: 10.1016/j.biopsych.2019.03.982] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cue-induced relapse to drug use is a primary symptom of cocaine addiction. Cue-induced transient excitatory synaptic potentiation (t-SP) induced in the nucleus accumbens mediates cued cocaine seeking in rat models of relapse. Cue-induced t-SP depends on extracellular signaling by matrix metalloproteases (MMPs), but it is unknown how this catalytic activity communicates with nucleus accumbens neurons to induce t-SP and cocaine seeking. METHODS Male Sprague Dawley rats (N = 125) were trained to self-administer cocaine, after which self-administration was extinguished and then reinstated by cocaine-conditioned cues. We used a morpholino antisense strategy to knock down the β1 or β3 integrin subunits or inhibitors to prevent phosphorylation of the integrin signaling kinases focal adhesion kinase (FAK) or integrin-linked kinase. We quantified protein changes with immunoblotting and t-SP by measuring dendritic spine morphology and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate glutamate currents. Integrin signaling was stimulated by microinjecting an MMP activator or integrin peptide ligand into the accumbens. RESULTS Knockdown of β3 integrin or FAK inhibitor, but not β1 integrin or integrin-linked kinase inhibitor, prevented cue-induced cocaine seeking but not sucrose seeking. β3 integrin knockdown prevented t-SP as measured by preventing the cue-induced increases in both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate glutamate ratio and spine head diameter. Activating MMP gelatinases with tissue plasminogen activator potentiated cue-induced reinstatement, which was prevented by β3 integrin knockdown and FAK inhibition. Stimulating integrin receptors with the RGD ligand liberated by MMP gelatinase activity also potentiated cued cocaine seeking. CONCLUSIONS Activation of MMP gelatinase in the extracellular space is necessary for and potentiates cued cocaine seeking. This extracellular catalysis stimulates β3 integrins and activates FAK to induce t-SP and promote cue-induced cocaine seeking.
Collapse
Affiliation(s)
- Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| | - Daniela Neuhofer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Sade Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Cara Monforton
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
74
|
Niedzielska-Andres E, Mizera J, Sadakierska-Chudy A, Pomierny-Chamioło L, Filip M. Changes in the glutamate biomarker expression in rats vulnerable or resistant to the rewarding effects of cocaine and their reversal by ceftriaxone. Behav Brain Res 2019; 370:111945. [DOI: 10.1016/j.bbr.2019.111945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
75
|
Oxytocin treatment in the prelimbic cortex reduces relapse to methamphetamine-seeking and is associated with reduced activity in the rostral nucleus accumbens core. Pharmacol Biochem Behav 2019; 183:64-71. [DOI: 10.1016/j.pbb.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
|
76
|
Quintanilla ME, Ezquer F, Morales P, Santapau D, Berríos-Cárcamo P, Ezquer M, Herrera-Marschitz M, Israel Y. Intranasal mesenchymal stem cell secretome administration markedly inhibits alcohol and nicotine self-administration and blocks relapse-intake: mechanism and translational options. Stem Cell Res Ther 2019; 10:205. [PMID: 31286996 PMCID: PMC6615104 DOI: 10.1186/s13287-019-1304-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic consumption of most drugs of abuse leads to brain oxidative stress and neuroinflammation, which inhibit the glutamate transporter GLT-1, proposed to perpetuate drug intake. The present study aimed at inhibiting chronic ethanol and nicotine self-administration and relapse by the non-invasive intranasal administration of antioxidant and anti-inflammatory secretome generated by adipose tissue-derived activated mesenchymal stem cells. The anti-addiction mechanism of stem cell secretome is also addressed. METHODS Rats bred for their alcohol preference ingested alcohol chronically or were trained to self-administer nicotine. Secretome of human adipose tissue-derived activated mesenchymal stem cells was administered intranasally to animals, both (i) chronically consuming alcohol or nicotine and (ii) during a protracted deprivation before a drug re-access leading to relapse intake. RESULTS The intranasal administration of secretome derived from activated mesenchymal stem cells inhibited chronic self-administration of ethanol or nicotine by 85% and 75%, respectively. Secretome administration further inhibited by 85-90% the relapse "binge" intake that occurs after a protracted drug deprivation followed by a 60-min drug re-access. Secretome administration fully abolished the oxidative stress induced by chronic ethanol or nicotine self-administration, shown by the normalization of the hippocampal oxidized/reduced glutathione ratio, and the neuroinflammation determined by astrocyte and microglial immunofluorescence. Knockdown of the glutamate transporter GLT-1 by the intracerebral administration of an antisense oligonucleotide fully abolished the inhibitory effect of the secretome on ethanol and nicotine intake. CONCLUSIONS The non-invasive intranasal administration of secretome generated by human adipose tissue-derived activated mesenchymal stem cells markedly inhibits alcohol and nicotine self-administration, an effect mediated by the glutamate GLT-1 transporter. Translational implications are envisioned.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile.
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile
| | - Pablo Berríos-Cárcamo
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
77
|
Kangas BD, Doyle RJ, Kohut SJ, Bergman J, Kaufman MJ. Effects of chronic cocaine self-administration and N-acetylcysteine on learning, cognitive flexibility, and reinstatement in nonhuman primates. Psychopharmacology (Berl) 2019; 236:2143-2153. [PMID: 30877326 PMCID: PMC6626691 DOI: 10.1007/s00213-019-05211-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Cocaine use disorder (CUD) is associated with cognitive deficits that have been linked to poor treatment outcomes. An improved understanding of cocaine's deleterious effects on cognition may help optimize pharmacotherapies. Emerging evidence implicates abnormalities in glutamate neurotransmission in CUD and drugs that normalize glutamatergic homeostasis (e.g., N-acetylcysteine [NAC]) may attenuate CUD-related relapse behavior. OBJECTIVES The present studies examined the impact of chronic cocaine exposure on touchscreen-based models of learning (repeated acquisition) and cognitive flexibility (discrimination reversal) and, also, the ability of NAC to modulate cocaine self-administration and its capacity to reinstate drug-seeking behavior. METHODS First, stable repeated acquisition and discrimination reversal performance was established. Next, high levels of cocaine-taking behavior (2.13-3.03 mg/kg/session) were maintained for 150 sessions during which repeated acquisition and discrimination reversal performance was probed periodically. Finally, the effects of NAC treatment were examined on cocaine self-administration and, subsequently, extinction and reinstatement. RESULTS Cocaine self-administration significantly impaired performance under both cognitive tasks; however, discrimination reversal was disrupted considerably more than acquisition. Performance eventually approximated baseline levels during chronic exposure. NAC treatment did not perturb ongoing self-administration behavior but was associated with significantly quicker extinction of drug-lever responding. Cocaine-primed reinstatement did not significantly differ between groups. CONCLUSIONS The disruptive effects of cocaine on learning and cognitive flexibility are profound but performance recovered during chronic exposure. Although the effects of NAC on models of drug-taking and drug-seeking behavior in monkeys are less robust than reported in rodents, they nevertheless suggest a role for glutamatergic modulators in CUD treatment programs.
Collapse
Affiliation(s)
- Brian D Kangas
- Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Rachel J Doyle
- Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jack Bergman
- Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Marc J Kaufman
- Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
78
|
Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, Bergles DE, Bonci A. Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase. Cell Rep 2019; 27:2262-2271.e5. [PMID: 31116973 PMCID: PMC6544175 DOI: 10.1016/j.celrep.2019.04.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 04/22/2019] [Indexed: 11/30/2022] Open
Abstract
Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in the midbrain. Thus, oligodendrocytes support glutamatergic transmission through the actions of GS and may represent a therapeutic target for pathological conditions related to brain glutamate dysregulation.
Collapse
Affiliation(s)
- Wendy Xin
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yevgeniya A Mironova
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hui Shen
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Rosa A M Marino
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Wouter H Lamers
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, 1105 BK Amsterdam, the Netherlands
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Georgetown University Medical Center, School of Medicine, Washington, DC 20007, USA; Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
79
|
Siemsen BM, Reichel CM, Leong KC, Garcia-Keller C, Gipson CD, Spencer S, McFaddin JA, Hooker KN, Kalivas PW, Scofield MD. Effects of Methamphetamine Self-Administration and Extinction on Astrocyte Structure and Function in the Nucleus Accumbens Core. Neuroscience 2019; 406:528-541. [PMID: 30926546 PMCID: PMC6545487 DOI: 10.1016/j.neuroscience.2019.03.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
Astrocytes provide support for neurons, regulate metabolic processes, and influence neuronal communication in a variety of ways, including through the homeostatic regulation of glutamate. Following 2-h cocaine or methamphetamine self-administration (SA) and extinction, rodents display decreased levels of basal glutamate in the nucleus accumbens core (NAcore), which transitions to elevated glutamate levels during drug seeking. We hypothesized that, like cocaine, this glutamate 'overflow' during methamphetamine seeking arises via decreased expression of the astroglial glutamate transporter GLT-1, and withdrawal of perisynaptic astroglial processes (PAPs) from synapses. As expected, methamphetamine self-administration and extinction decreased the level of contact made by PAPs in the NAcore, yet did not impact glutamate uptake, GLT-1 expression, or the general structural characteristics of astrocytes. Interestingly, systemic administration of N-acetylcysteine (NAC), a drug that both upregulates GLT-1 and promotes glial-glutamate release, reduced cued methamphetamine seeking. In order to test the impact of astrocyte activation and the induction of glial glutamate release within the NAcore, we employed astrocyte-specific expression of designer receptors exclusively activated by designer drugs (DREADDs). We show here that acute activation of Gq-coupled DREADDs in this region inhibited cued methamphetamine seeking. Taken together, these data indicate that cued methamphetamine seeking following two-hour SA is not mediated by deficient glutamate clearance in the NAcore, yet can be inhibited by engaging NAcore astrocytes.
Collapse
Affiliation(s)
- B M Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - K C Leong
- Department of Psychology, Trinity University, San Antonio, TX, USA
| | - C Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C D Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - S Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - J A McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K N Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - M D Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
80
|
Bechard AR, Hamor PU, Wu L, Schwendt M, Knackstedt LA. The effects of clavulanic acid and amoxicillin on cue-primed reinstatement of cocaine seeking. Behav Neurosci 2019; 133:247-254. [PMID: 30714803 DOI: 10.1037/bne0000297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Research using the cocaine self-administration and reinstatement animal model of relapse finds that the beta-lactam antibiotic, ceftriaxone, attenuates cocaine-primed reinstatement of cocaine seeking and upregulates two proteins that regulate glutamate release and reuptake (xCT and GLT-1, respectively) in the nucleus accumbens core (NAc). We tested three compounds with beta-lactam rings for their ability to attenuate cue-primed reinstatement and increase GLT-1 and xCT expression in the NAc and prefrontal cortex (PFC). Rats self-administered intravenous cocaine for 1 hr/day for 7 days then 6 hrs/day for 10 days. Cue-primed reinstatement tests began after 8-9 days of extinction training. Rats received oral vehicle, clavulanic acid (CA), amoxicillin (AMX), or CA + AMX (Augmentin; AUG) for 5 days prior to testing. Only AMX-treated rats demonstrated a reduction of cocaine-seeking that trended toward significance, warranting future investigation of a wider range of doses. In the NAc, GLT-1a expression was reduced in vehicle-treated rats relative to cocaine-naïve controls and was not restored by AMX or AUG. CA-treated rats reinstated more than vehicle-treated rats and exhibited GLT-1a and xCT expression intermediate between cocaine-naïve controls and vehicle-treated cocaine rats. In agreement with our previous work, cocaine did not decrease PFC GLT-1a expression. Cocaine reduced xCT expression in the PFC that was unchanged by any of the three compounds. These results indicate that AMX may be another beta-lactam that attenuates cocaine relapse. Furthermore, the upregulation of both GLT-1 and xCT in the NAc may be needed to attenuate cocaine seeking. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Lizhen Wu
- Department of Psychology, University of Florida
| | | | | |
Collapse
|
81
|
Garcia EJ, Arndt DL, Cain ME. Dynamic interactions of ceftriaxone and environmental variables suppress amphetamine seeking. Brain Res 2019; 1712:63-72. [PMID: 30716289 DOI: 10.1016/j.brainres.2019.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
Extrasynaptic glutamate within the nucleus accumbens (NAc) is a driver of relapse. Cocaine, ethanol, and methamphetamine reduce the expression of cystine-glutamate antiporter (xCT) and primary glial glutamate transporter 1 (GLT1) leading to increased extrasynaptic glutamate. Ceftriaxone (CTX) restores xCT and GLT1 expression and effectively suppresses cocaine and ethanol reinstatement, however, the effects of CTX on amphetamine (AMP) reinstatement are not determined. Rodents were reared in an enriched condition (EC), isolated (IC), or standard condition (SC) and trained in AMP self-administration (0.1 mg/kg/infusion). EC, IC, and SC rats received injections of SAL or CTX (200 mg/kg) after daily extinction sessions. Then rats were tested in cue- and AMP-induced reinstatement tests. We hypothesized that EC rearing would reduce reinstatement by altering GLT1 or xCT expression in the NAc and medial prefrontal cortex (mPFC). In Experiment 2, pair-housed rats received once-daily AMP (1.0 mg/kg i.p.) or SAL for eight days followed by once-daily CTX (200 mg/kg i.p.) or SAL injections for 10 days. CTX treatment reduced cue-induced drug seeking in EC rats but not IC or SC rats. In an AMP-induced reinstatement test, CTX reduced AMP-induced drug seeking in EC and SC rats, but not IC rats. Western blot analyses revealed that AMP self-administration and non-contingent repeated AMP exposure did not downregulate GLT1 or xCT in the NAc or mPFC. Therefore, the ability for EC housing to reduce amphetamine seeking may work through other mechanisms.
Collapse
Affiliation(s)
- Erik J Garcia
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States.
| | - David L Arndt
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| |
Collapse
|
82
|
Powell GL, Leyrer‐Jackson JM, Goenaga J, Namba MD, Piña J, Spencer S, Stankeviciute N, Schwartz D, Allen NP, Del Franco AP, McClure EA, Olive MF, Gipson CD. Chronic treatment with N-acetylcysteine decreases extinction responding and reduces cue-induced nicotine-seeking. Physiol Rep 2019; 7:e13958. [PMID: 30632301 PMCID: PMC6328917 DOI: 10.14814/phy2.13958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
N-acetylcysteine (NAC), a promising glutamatergic therapeutic agent, has shown some clinical efficacy in reducing nicotine use in humans and has been shown to reverse drug-induced changes in glutamatergic neurophysiology. In rats, nicotine-seeking behavior is associated with alterations in glutamatergic plasticity within the nucleus accumbens core (NAcore). Specifically, cue-induced nicotine-seeking is associated with rapid, transient synaptic plasticity (t-SP) in glutamatergic synapses on NAcore medium spiny neurons. The goal of the present study was to determine if NAC reduces nicotine-seeking behavior and reverses reinstatement-associated NAcore glutamatergic alterations. Rats were extinguished from nicotine self-administration, followed by subchronic NAC administration (0 or 100 mg/kg/d) for 4 days prior to cue-induced reinstatement. NAcore synaptic potentiation was measured via dendritic spine morphology and mRNA and protein of relevant glutamatergic genes were quantified. Nicotine-seeking behavior was not reduced by subchronic NAC treatment. Also, NAcore transcript and protein expression of multiple glutamatergic genes, as well as spine morphological measures, were unaffected by subchronic NAC. Finally, chronic NAC treatment (15 days total) during extinction and prior to reinstatement significantly decreased extinction responding and reduced reinstatement of nicotine-seeking compared to vehicle. Together, these results suggest that chronic NAC treatment is necessary for its therapeutic efficacy as a treatment strategy for nicotine addiction and relapse.
Collapse
Affiliation(s)
- Gregory L. Powell
- Department of PsychologyArizona State UniversityTempeArizona
- School of Life SciencesArizona State UniversityTempeArizona
| | | | | | - Mark D. Namba
- Department of PsychologyArizona State UniversityTempeArizona
| | - Jose Piña
- Department of PsychologyArizona State UniversityTempeArizona
| | - Sade Spencer
- Department of NeuroscienceMedical University of South CarolinaCharlestonSC
| | | | - Danielle Schwartz
- Department of NeuroscienceMedical University of South CarolinaCharlestonSC
| | - Nicholas P. Allen
- School of Dental MedicineLake Erie College of Osteopathic MedicineBradentonFlorida
| | | | - Erin A. McClure
- Department of PsychiatryMedical University of South CarolinaCharlestonSouth Carolina
| | | | | |
Collapse
|
83
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
84
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
85
|
Linker KE, Cross SJ, Leslie FM. Glial mechanisms underlying substance use disorders. Eur J Neurosci 2018; 50:2574-2589. [PMID: 30240518 DOI: 10.1111/ejn.14163] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/28/2022]
Abstract
Addiction is a devastating disorder that produces persistent maladaptive changes to the central nervous system, including glial cells. Although there is an extensive body of literature examining the neuronal mechanisms of substance use disorders, effective therapies remain elusive. Glia, particularly microglia and astrocytes, have an emerging and meaningful role in a variety of processes beyond inflammation and immune surveillance, and may represent a promising therapeutic target. Indeed, glia actively modulate neurotransmission, synaptic connectivity and neural circuit function, and are critically poised to contribute to addictive-like brain states and behaviors. In this review, we argue that glia influence the cellular, molecular, and synaptic changes that occur in neurons following drug exposure, and that this cellular relationship is critically modified following drug exposure. We discuss direct actions of abused drugs on glial function through immune receptors, such as Toll-like receptor 4, as well as other mechanisms. We highlight how drugs of abuse affect glia-neural communication, and the profound effects that glial-derived factors have on neuronal excitability, structure, and function. Recent research demonstrates that glia have brain region-specific functions, and glia in different brain regions have distinct contributions to drug-associated behaviors. We will also evaluate the evidence demonstrating that glial activation is essential for drug reward and drug-induced dopamine release, and highlight clinical evidence showing that glial mechanisms contribute to drug abuse liability. In this review, we synthesize the extensive evidence that glia have a unique, pivotal, and underappreciated role in the development and maintenance of addiction.
Collapse
Affiliation(s)
- K E Linker
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - S J Cross
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - F M Leslie
- Department of Pharmacology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
86
|
Neuhofer D, Kalivas P. Metaplasticity at the addicted tetrapartite synapse: A common denominator of drug induced adaptations and potential treatment target for addiction. Neurobiol Learn Mem 2018; 154:97-111. [PMID: 29428364 PMCID: PMC6112115 DOI: 10.1016/j.nlm.2018.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
In light of the current worldwide addiction epidemic, the need for successful therapies is more urgent than ever. Although we made substantial progress in our basic understanding of addiction, reliable therapies are lacking. Since 40-60% of patients treated for substance use disorder return to active substance use within a year following treatment discharge, alleviating the vulnerability to relapse is regarded as the most promising avenue for addiction therapy. Preclinical addiction research often focuses on maladaptive synaptic plasticity within the reward pathway. However, drug induced neuroadaptations do not only lead to a strengthening of distinct drug associated cues and drug conditioned behaviors, but also seem to increase plasticity thresholds for environmental stimuli that are not associated with the drug. This form of higher order plasticity, or synaptic metaplasticity, is not expressed as a change in the efficacy of synaptic transmission but as a change in the direction or degree of plasticity induced by a distinct stimulation pattern. Experimental addiction research has demonstrated metaplasticity after exposure to multiple classes of addictive drugs. In this review we will focus on the concept of synaptic metaplasticity in the context of preclinical addiction research. We will take a closer look at the tetrapartite glutamatergic synapse and outline forms of metaplasticity that have been described at the addicted synapse. Finally we will discuss the different potential avenues for pharmacotherapies that target glutamatergic synaptic plasticity and metaplasticity. Here we will argue that aberrant metaplasticity renders the reward seeking circuitry more rigid and hence less able to adapt to changing environmental contingencies. An understanding of the molecular mechanisms that underlie this metaplasticity is crucial for the development of new strategies for addiction therapy. The correction of drug-induced metaplasticity could be used to support behavioral and pharmacotherapies for the treatment of addiction.
Collapse
Affiliation(s)
- Daniela Neuhofer
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
87
|
Womersley JS, Townsend DM, Kalivas PW, Uys JD. Targeting redox regulation to treat substance use disorder using N‐acetylcysteine. Eur J Neurosci 2018; 50:2538-2551. [PMID: 30144182 DOI: 10.1111/ejn.14130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
Abstract
Substance use disorder (SUD) is a chronic relapsing disorder characterized by transitioning from acute drug reward to compulsive drug use. Despite the heavy personal and societal burden of SUDs, current treatments are limited and unsatisfactory. For this reason, a deeper understanding of the mechanisms underlying addiction is required. Altered redox status, primarily due to drug-induced increases in dopamine metabolism, is a unifying feature of abused substances. In recent years, knowledge of the effects of oxidative stress in the nervous system has evolved from strictly neurotoxic to include a more nuanced role in redox-sensitive signaling. More specifically, S-glutathionylation, a redox-sensitive post-translational modification, has been suggested to influence the response to drugs of abuse. In this review we will examine the evidence for redox-mediating drugs as therapeutic tools focusing on N-acetylcysteine as a treatment for cocaine addiction. We will conclude by suggesting future research directions that may further advance this field.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discover and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| |
Collapse
|
88
|
Quintanilla ME, Morales P, Ezquer F, Ezquer M, Herrera-Marschitz M, Israel Y. Commonality of Ethanol and Nicotine Reinforcement and Relapse in Wistar-Derived UChB Rats: Inhibition by N
-Acetylcysteine. Alcohol Clin Exp Res 2018; 42:1988-1999. [DOI: 10.1111/acer.13842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Elena Quintanilla
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
- Neuroscience Department; Faculty of Medicine; University of Chile; Santiago Chile
| | - Fernando Ezquer
- Facultad de Medicina Clínica; Centro de Medicina Regenerativa; Alemana-Universidad del Desarrollo; Santiago Chile
- Facultad de Medicina; Centro de Medicina Regenerativa; Clinica Alemana-Universidad del Desarrollo; Santiago Chile
| | - Marcelo Ezquer
- Facultad de Medicina Clínica; Centro de Medicina Regenerativa; Alemana-Universidad del Desarrollo; Santiago Chile
- Facultad de Medicina; Centro de Medicina Regenerativa; Clinica Alemana-Universidad del Desarrollo; Santiago Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| |
Collapse
|
89
|
Morley KC, Baillie A, Van Den Brink W, Chitty KE, Brady K, Back SE, Seth D, Sutherland G, Leggio L, Haber PS. N-acetyl cysteine in the treatment of alcohol use disorder in patients with liver disease: Rationale for further research. Expert Opin Investig Drugs 2018; 27:667-675. [PMID: 30019966 DOI: 10.1080/13543784.2018.1501471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Alcoholic liver disease (ALD) is the leading cause of alcohol-related death and one of the most common forms of liver disease. Abstinence from alcohol is crucial to reducing morbidity and mortality associated with the disease. However, there are few pharmacotherapies for alcohol use disorder suitable for those with significant liver disease. AREAS COVERED This paper presents a rationale for investigating the use of N-acetyl cysteine (NAC) to promote abstinence or reduce heavy alcohol consumption for patients with an alcohol use disorder, particularly in the presence of liver disease. NAC is an antioxidant with glutamatergic modulating and anti-inflammatory properties. Evidence is emerging that oxidative stress, neuro-inflammation and dysregulation of glutamatergic neurotransmission play a key role in alcohol use disorder. Similarly, oxidative stress is known to contribute to ALD. We outline the studies that have investigated NAC to reduce alcohol consumption including preclinical and clinical studies. We also review the evidence for NAC in other addictions as well as psychiatric and physical comorbidities associated with alcohol use disorders. EXPERT OPINION NAC is low cost, well-tolerated and could have promise for the treatment of alcohol use disorder in the presence of liver disease. Clinical trials directly examining efficacy in this population are required.
Collapse
Affiliation(s)
- Kirsten C Morley
- a University of Sydney, Faculty of Medicine and Health, Central Clinical School , NHMRC Centre of Research Excellence in Mental Health and Substance Use , Sydney , NSW , Australia
| | - Andrew Baillie
- b NHMRC Centre of Research Excellence in Mental Health and Substance Use, Faculty of Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Wim Van Den Brink
- c Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Kate E Chitty
- d Faculty of Medicine and Health, Discipline of Pharmacology , University of Sydney, Clinical Pharmacology and Toxicology Research Group , Sydney , NSW , Australia
| | - Kathleen Brady
- e South Carolina Clinical and Translational Research Centre , Medical University of South Carolina , Charleston , United States of America
| | - Sudie E Back
- f Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston
| | - Devanshi Seth
- g The University of Sydney, Centenary Institute , Camperdown , NSW , Australia
| | - Greg Sutherland
- h Faculty of Medicine and Health, Discipline of Pathology , University of Sydney , Sydney , NSW , Australia
| | - Lorenzo Leggio
- i Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse , National Institutes of Health , Bethesda , MD , USA.,j Center for Alcohol and Addiction Studies , Brown University , Providence , RI , USA
| | - Paul S Haber
- a University of Sydney, Faculty of Medicine and Health, Central Clinical School , NHMRC Centre of Research Excellence in Mental Health and Substance Use , Sydney , NSW , Australia.,k Drug Health Services , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| |
Collapse
|
90
|
Cahill ME, Walker DM, Gancarz AM, Wang ZJ, Lardner CK, Bagot RC, Neve RL, Dietz DM, Nestler EJ. The dendritic spine morphogenic effects of repeated cocaine use occur through the regulation of serum response factor signaling. Mol Psychiatry 2018; 23:1474-1486. [PMID: 28555077 PMCID: PMC5709273 DOI: 10.1038/mp.2017.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/23/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spiny neurons (MSNs). In response to early withdrawal from repeated cocaine administration, de novo dendritic spine formation occurs in NAc MSNs. Much evidence indicates that this new spine formation facilitates the rewarding properties of cocaine. Early withdrawal from repeated cocaine also produces dramatic alterations in the transcriptome of NAc MSNs, but how such alterations influence cocaine's effects on dendritic spine formation remain unclear. Studies in non-neuronal cells indicate that actin cytoskeletal regulatory pathways in nuclei have a direct role in the regulation of gene transcription in part by controlling the access of co-activators to their transcription factor partners. In particular, actin state dictates the interaction between the serum response factor (SRF) transcription factor and one of its principal co-activators, MAL. Here we show that cocaine induces alterations in nuclear F-actin signaling pathways in the NAc with associated changes in the nuclear subcellular localization of SRF and MAL. Using in vivo optogenetics, the brain region-specific inputs to the NAc that mediate these nuclear changes are investigated. Finally, we demonstrate that regulated SRF expression, in turn, is critical for the effects of cocaine on dendritic spine formation and for cocaine-mediated behavioral sensitization. Collectively, these findings reveal a mechanism by which nuclear-based changes influence the structure of NAc MSNs in response to cocaine.
Collapse
Affiliation(s)
- ME Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - DM Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - AM Gancarz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - ZJ Wang
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - CK Lardner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - RC Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychology, McGill University, Montréal, QC, Canada
| | - RL Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - DM Dietz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - EJ Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
91
|
Logan CN, LaCrosse AL, Knackstedt LA. Nucleus accumbens GLT-1a overexpression reduces glutamate efflux during reinstatement of cocaine-seeking but is not sufficient to attenuate reinstatement. Neuropharmacology 2018; 135:297-307. [PMID: 29567092 PMCID: PMC6383073 DOI: 10.1016/j.neuropharm.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/22/2022]
Abstract
Cocaine use disorder is a chronically relapsing disease without FDA-approved treatments. Using a rodent model of cocaine relapse, we and others have previously demonstrated that the beta-lactam antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Ceftriaxone restores cocaine-induced deficits in both system xc- and GLT-1 expression and function in the nucleus accumbens core (NAc). We recently demonstrated that restoration of GLT-1 expression in the NAc is necessary for ceftriaxone to attenuate reinstatement of cocaine-seeking. Here we used an adeno-associated virus (AAV) to overexpress GLT-1a in the NAc to investigate whether such restoration is sufficient to attenuate cue- and cocaine-primed reinstatement. Rats self-administered cocaine for two weeks and received injections of either AAV-GFAP-GLT-1a or AAV-GFAP-eGFP in the NAc following the last day of self-administration. Rats then underwent three weeks of extinction training (during which time transduction and expression occurred) before undergoing a cue- or cocaine-primed reinstatement test. Microdialysis for the quantification of glutamate efflux in the NAc was conducted during the cocaine-primed test. Rats that received AAV-GFAP-GLT-1a reinstated cue-primed cocaine-seeking in a similar manner as rats that received the control AAV-GFAP-eGFP. Upregulation of GLT-1a attenuated glutamate efflux during a cocaine-primed reinstatement test, but was not sufficient to attenuate reinstatement. We confirmed that GLT-1a upregulation resulted in functional upregulation of glutamate transport and expression, without affecting sodium-independent glutamate uptake, indicating system xc-was not altered. These results indicate that upregulation of NAc GLT-1 transporters alone is not sufficient to prevent the reinstatement of cocaine-seeking and implicate additional mechanisms in regulating glutamate efflux.
Collapse
Affiliation(s)
- Carly N Logan
- Psychology Department, University of Florida, Gainesville, FL, United States.
| | - Amber L LaCrosse
- Psychology Department, University of Florida, Gainesville, FL, United States
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
92
|
Riluzole Impairs Cocaine Reinstatement and Restores Adaptations in Intrinsic Excitability and GLT-1 Expression. Neuropsychopharmacology 2018; 43:1212-1223. [PMID: 28990593 PMCID: PMC5916346 DOI: 10.1038/npp.2017.244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
Adaptations in glutamate signaling within the brain's reward circuitry are observed following withdrawal from several abused drugs, including cocaine. These include changes in intrinsic cellular excitability, glutamate release, and glutamate uptake. Pharmacological or optogenetic reversal of these adaptations have been shown to reduce measures of cocaine craving and seeking, raising the hypothesis that regulation of glutamatergic signaling represents a viable target for the treatment of substance use disorders. Here, we tested the hypothesis that administration of the compound riluzole, which regulates glutamate dynamics in several ways, would reduce cocaine seeking in the rat self-administration and reinstatement model of addiction. Riluzole dose-dependently inhibited cue- and cocaine-primed reinstatement to cocaine, but did not affect locomotor activity or reinstatement to sucrose seeking. Moreover, riluzole reversed bidirectional cocaine-induced adaptations in intrinsic excitability of prelimbic (PL) and infralimbic (IL) pyramidal neurons; a cocaine-induced increase in PL excitability was decreased by riluzole, and a cocaine-induced decrease in IL excitability was increased to normal levels. Riluzole also reversed the cocaine-induced suppression of the high-affinity glutamate transporter 1 (EAAT2/GLT-1) in the nucleus accumbens (NAc). GLT-1 is responsible for the majority of glutamate uptake in the brain, and has been previously reported to be downregulated by cocaine. These results demonstrate that riluzole impairs cocaine reinstatement while rectifying several cellular adaptations in glutamatergic signaling within the brain's reward circuitry, and support the hypothesis that regulators of glutamate homeostasis represent viable candidates for pharmacotherapeutic treatment of psychostimulant relapse.
Collapse
|
93
|
Weber RA, Logan CN, Leong KC, Peris J, Knackstedt L, Reichel CM. Regionally Specific Effects of Oxytocin on Reinstatement of Cocaine Seeking in Male and Female Rats. Int J Neuropsychopharmacol 2018; 21:677-686. [PMID: 29566161 PMCID: PMC6030951 DOI: 10.1093/ijnp/pyy025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Oxytocin reduces cued reinstatement of cocaine seeking in male and female rats, but the underlying neurobiology has not been uncovered. The majority of effort on this task has focused on oxytocin and dopamine interactions in the nucleus accumbens core. The nucleus accumbens core is a key neural substrate in relapse, and oxytocin administration in the nucleus accumbens core reduces reinstatement to methamphetamine cues. Further, the nucleus accumbens core has strong glutamatergic innervation from numerous regions including the prefrontal cortex. Thus, we hypothesize that oxytocin regulates presynaptic glutamate terminals in the nucleus accumbens core, thereby affecting reinstatement. METHODS To begin to evaluate this hypothesis, we examined the effects of intra-nucleus accumbens core oxytocin on extracellular glutamate levels in this region. We next determined if direct infusion of oxytocin into the nucleus accumbens core could attenuate cued reinstatement of cocaine seeking in a manner dependent on metabotropic glutamate 2/3 receptors. Finally, we tested if site-specific application of oxytocin in the prefrontal cortex reduced cued reinstatement of cocaine seeking. RESULTS We found an increase in nucleus accumbens core extracellular glutamate for several minutes following reverse dialysis of oxytocin. In male and female rats with a history of cocaine self-administration, site-specific application of oxytocin in the nucleus accumbens core and prefrontal cortex had opposing effects, decreasing and increasing cued reinstatement, respectively. The mGlu2/3 antagonist LY-341495 reversed oxytocin's ability to attenuate cued reinstatement. CONCLUSIONS While the precise mechanism by which oxytocin increases nucleus accumbens core glutamate is yet to be determined, the present results clearly support oxytocin mediation of glutamate neurotransmission in the nucleus accumbens core that impacts cued cocaine seeking.
Collapse
Affiliation(s)
- Rachel A Weber
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Carly N Logan
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Kah-Chung Leong
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Joanna Peris
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Lori Knackstedt
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina,Correspondence: Carmela M. Reichel, Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
94
|
Lebourgeois S, González-Marín MC, Jeanblanc J, Naassila M, Vilpoux C. Effect of N-acetylcysteine on motivation, seeking and relapse to ethanol self-administration. Addict Biol 2018; 23:643-652. [PMID: 28557352 DOI: 10.1111/adb.12521] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
Alcohol use disorder is a chronic and highly relapsing disorder, characterized by a loss of control over alcohol consumption and craving. Several studies suggest a key role of glutamate in this disorder. In recent years, the modulation of cystine/glutamate exchange via the xc- system has emerged as a new therapeutic alternative for reducing the excitatory glutamatergic transmission observed after ethanol self-administration in both rats and humans. The objective of this study was to determine whether a treatment with N-acetylcysteine (NAC), a cystine prodrug, could reduce ethanol self-administration, ethanol-seeking behavior and reacquisition of ethanol self-administration. Male Long Evans rats were trained to self-administer 20 percent ethanol in operant cages for several weeks. Once the consumption surpassed 1 g of ethanol/kg body weight/15 minutes, the effect of an acute intraperitoneal injection of NAC (0, 25, 50 or 100 mg/kg) 1 hour before the beginning of each test was evaluated on different aspects of the operant self-administration behavior. We demonstrated antimotivational properties of NAC (100 mg/kg), as ethanol-reinforced responding was reduced in a fixed ratio (-35 percent) and in a progressive ratio schedule (-81 percent). NAC also reduced ethanol-seeking behavior (-77 percent) evaluated as extinction responding in a single extinction session. NAC was able to reduce reacquisition in rats that were abstinent for 17 days, while NAC had no effect on ethanol relapse in rats previously exposed to six extinction sessions. Overall, our results demonstrate that NAC limits motivation, seeking behavior and reacquisition in rats, making it a potential new treatment for the maintenance of abstinence.
Collapse
Affiliation(s)
- Sophie Lebourgeois
- INSERM ERI-24 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS); Université de Picardie Jules Verne; France
| | - María Carmen González-Marín
- INSERM ERI-24 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS); Université de Picardie Jules Verne; France
| | - Jerome Jeanblanc
- INSERM ERI-24 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS); Université de Picardie Jules Verne; France
| | - Mickael Naassila
- INSERM ERI-24 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS); Université de Picardie Jules Verne; France
| | - Catherine Vilpoux
- INSERM ERI-24 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS); Université de Picardie Jules Verne; France
| |
Collapse
|
95
|
Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018; 12:17. [PMID: 29479311 PMCID: PMC5811475 DOI: 10.3389/fnbeh.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
In drug addiction, cues previously associated with drug use can produce craving and frequently trigger the resumption of drug taking in individuals vulnerable to relapse. Environmental stimuli associated with drugs or natural reinforcers can become reliably conditioned to increase behavior that was previously reinforced. In preclinical models of addiction, these cues enhance both drug self-administration and reinstatement of drug seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers from their modulatory or discriminative functions in producing drug-seeking behavior. As well, we will examine possible differences in neurobiological encoding underlying these functional differences. Specifically, we will discuss how models of drug addiction and relapse should more systematically evaluate these different types of stimuli to better understand the neurobiology underlying craving and relapse. In this way, behavioral and pharmacotherapeutic interventions may be better tailored to promote drug use cessation outcomes and long-term abstinence.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Seven E. Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D. Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
96
|
Kim R, Sepulveda-Orengo MT, Healey KL, Williams EA, Reissner KJ. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal. Neuropharmacology 2018; 128:1-10. [PMID: 28919080 PMCID: PMC5714670 DOI: 10.1016/j.neuropharm.2017.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022]
Abstract
Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kati L Healey
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Williams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
97
|
Moro F, Orrù A, Marzo CM, Di Clemente A, Cervo L. mGluR2/3 mediates short-term control of nicotine-seeking by acute systemic N-acetylcysteine. Addict Biol 2018; 23:28-40. [PMID: 27558879 DOI: 10.1111/adb.12443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
Chronic self-administration of nicotine induces maladaptive changes in the cortico-accumbal glutamate (Glu) network. Consequently, re-exposure to nicotine-associated cues raises extracellular Glu in the nucleus accumbens reinstating drug-seeking. Restoring basal concentrations of extracellular Glu, thereby increasing tonic activation of the presynaptic group II metabotropic Glu receptors (mGluR2/3) with N-acetylcysteine (N-AC), might offer a valid therapeutic approach for maintaining smoking abstinence. Although N-AC modulates nicotine-seeking behavior by drug-associated stimuli in abstinent rats, it is still unclear whether it occurs through activation of mGluR2/3. Male Wistar rats were trained to associate discriminative stimuli (SD s) with the availability of intravenous nicotine (0.03 mg/kg/65 µl/2-second/infusion) or oral saccharin (100 µl of 50 mg/l) self-administration versus non-reward. Reinforced response was followed by a cue signaling 20-second time-out (CSs). Once the training criterion was met, rats underwent lever press extinction, without reinforcers, SD s and CSs. Re-exposure to nicotine or saccharin SD+ /CS+ , but not non-reward SD- /CS- , revived responding on the previously reinforced lever. Acute N-AC, 100 but not 60 or 30 mg/kg i.p., reduced cue-induced nicotine-seeking. N-AC 100 mg/kg did not modify cue-induced saccharin-seeking behavior or influenced locomotor activity. Blocking mGluR2/3 with the selective antagonist LY341495, 1 mg/kg i.p., completely prevented the antirelapse activity of N-AC. The finding that N-AC prevents cue-induced nicotine-seeking by stimulating mGluR2/3 might indicate a therapeutic opportunity for acute cue-controlled nicotine-seeking. Future studies could evaluate the persistent effects of chronic N-AC in promoting enduring suppression of nicotine-cue conditioned responding.
Collapse
Affiliation(s)
- Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Claudio Marcello Marzo
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| |
Collapse
|
98
|
Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend 2017; 180:156-170. [PMID: 28892721 PMCID: PMC5790191 DOI: 10.1016/j.drugalcdep.2017.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The plenary session at the 2016 Behavior, Biology and Chemistry: Translational Research in Addiction Conference focused on glia as potential players in the development, persistence and treatment of substance use disorders. Glia partake in various functions that are important for healthy brain activity. Drugs of abuse alter glial cell activity producing several perturbations in brain function that are thought to contribute to behavioral changes associated with substance use disorders. Consequently, drug-induced changes in glia-driven processes in the brain represent potential targets for pharmacotherapeutics treating substance use disorders. METHODS Four speakers presented preclinical and clinical research illustrating the effects that glial modulators have on abuse-related behavioral effects of psychostimulants and opioids. This review highlights some of these findings and expands its focus to include other research focused on drug-induced glia abnormalities and glia-focused treatment approaches in substance use disorders. RESULTS Preclinical findings show that drugs of abuse induce neuroinflammatory signals and disrupt glutamate homeostasis through their interaction with microglia and astrocytes. Preclinical and clinical studies testing the effects of glial modulators show general effectiveness in reducing behaviors associated with substance use disorders. CONCLUSIONS The contribution of drug-induced glial activity continues to emerge as an intriguing target for substance use disorder treatments. Clinical investigations of glial modulators have yielded promising results on substance use measures and indicate that they are generally safe and well-tolerated. However, results have not been entirely positive and more questions remain for continued exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Ryan K. Bachtell
- Department of Psychology and Neuroscience, and Center for Neuroscience, UCB 345, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Keith G. Heinzerling
- Department of Family Medicine and Center for Behavioral and Addiction Medicine, UCLA, Los Angeles, CA, USA
| | - Patrick M. Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA
| | - Sandra D. Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute and College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
99
|
Nasca C, Bigio B, Zelli D, de Angelis P, Lau T, Okamoto M, Soya H, Ni J, Brichta L, Greengard P, Neve RL, Lee FS, McEwen BS. Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress. Neuron 2017; 96:402-413.e5. [PMID: 29024663 DOI: 10.1016/j.neuron.2017.09.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022]
Abstract
We demonstrate that stress differentially regulates glutamate homeostasis in the dorsal and ventral hippocampus and identify a role for the astroglial xCT in ventral dentate gyrus (vDG) in stress and antidepressant responses. We provide an RNA-seq roadmap for the stress-sensitive vDG. The transcription factor REST binds to xCT promoter in co-occupancy with the epigenetic marker H3K27ac to regulate expression of xCT, which is also reduced in a genetic mouse model of inherent susceptibility to depressive-like behavior. Pharmacologically, modulating histone acetylation with acetyl-L-carnitine (LAC) or acetyl-N-cysteine (NAC) rapidly increases xCT and activates a network with mGlu2 receptors to prime an enhanced glutamate homeostasis that promotes both pro-resilient and antidepressant-like responses. Pharmacological xCT blockage counteracts NAC prophylactic effects. GFAP+-Cre-dependent overexpression of xCT in vDG mimics pharmacological actions in promoting resilience. This work establishes a mechanism by which vDG protection leads to stress resilience and antidepressant responses via epigenetic programming of an xCT-mGlu2 network.
Collapse
Affiliation(s)
- Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| | - Benedetta Bigio
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Danielle Zelli
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Paolo de Angelis
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Timothy Lau
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Masahiro Okamoto
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Hideyo Soya
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8574, Japan; Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jason Ni
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lars Brichta
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
100
|
Bobadilla AC, Heinsbroek JA, Gipson CD, Griffin WC, Fowler CD, Kenny PJ, Kalivas PW. Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. PROGRESS IN BRAIN RESEARCH 2017; 235:93-112. [PMID: 29054293 DOI: 10.1016/bs.pbr.2017.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The idea that interconnected neuronal ensembles code for specific behaviors has been around for decades; however, recent technical improvements allow studying these networks and their causal role in initiating and maintaining behavior. In particular, the role of ensembles in drug-seeking behaviors in the context of addiction is being actively investigated. Concurrent with breakthroughs in quantifying ensembles, research has identified a role for synaptic glutamate spillover during relapse. In particular, the transient relapse-associated changes in glutamatergic synapses on accumbens neurons, as well as in adjacent astroglia and extracellular matrix, are key elements of the synaptic plasticity encoded by drug use and the metaplasticity induced by drug-associated cues that precipitate drug-seeking behaviors. Here, we briefly review the recent discoveries related to ensembles in the addiction field and then endeavor to link these discoveries with drug-induced striatal plasticity and cue-induced metaplasticity toward deeper neurobiological understandings of drug seeking.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul J Kenny
- Icahn School of Medicine at Mount Sinai, Icahn, New York, NY, United States
| | - Peter W Kalivas
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|