51
|
Abdullah-Koolmees H, van Keulen AM, Nijenhuis M, Deneer VHM. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front Pharmacol 2021; 11:595219. [PMID: 33568995 PMCID: PMC7868558 DOI: 10.3389/fphar.2020.595219] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Many studies have shown that the efficacy and risk of side effects of drug treatment is influenced by genetic variants. Evidence based guidelines are essential for implementing pharmacogenetic knowledge in daily clinical practice to optimize pharmacotherapy of individual patients. A literature search was performed to select committees developing guidelines with recommendations being published in English. The Dutch Pharmacogenetics Working Group (DPWG), the Clinical Pharmacogenetics Implementation Consortium (CPIC), the Canadian Pharmacogenomics Network for Drug Safety (CPNDS), and the French National Network (Réseau) of Pharmacogenetics (RNPGx) were selected. Their guidelines were compared with regard to the methodology of development, translation of genotypes to predicted phenotypes, pharmacotherapeutic recommendations and recommendations on genotyping. A detailed overview of all recommendations for gene-drug combinations is given. The committees have similar methodologies of guideline development. However, the objectives differed at the start of their projects, which have led to unique profiles and strengths of their guidelines. DPWG and CPIC have a main focus on pharmacotherapeutic recommendations for a large number of drugs in combination with a patient’s genotype or predicted phenotype. DPWG, CPNDS and RNPGx also recommend on performing genetic testing in daily clinical practice, with RNPGx even describing specific clinical settings or medical conditions for which genotyping is recommended. Discordances exist, however committees also initiated harmonizing projects. The outcome of a consensus project was to rename “extensive metabolizer (EM)” to “normal metabolizer (NM)”. It was decided to translate a CYP2D6 genotype with one nonfunctional allele (activity score 1.0) into the predicted phenotype of intermediate metabolizer (IM). Differences in recommendations are the result of the methodologies used, such as assessment of dose adjustments of tricyclic antidepressants. In some cases, indication or dose specific recommendations are given for example for clopidogrel, codeine, irinotecan. The following drugs have recommendations on genetic testing with the highest level: abacavir (HLA), clopidogrel (CYP2C19), fluoropyrimidines (DPYD), thiopurines (TPMT), irinotecan (UGT1A1), codeine (CYP2D6), and cisplatin (TPMT). The guidelines cover many drugs and genes, genotypes, or predicted phenotypes. Because of this and their unique features, considering the totality of guidelines are of added value. In conclusion, many evidence based pharmacogenetics guidelines with clear recommendations are available for clinical decision making by healthcare professionals, patients and other stakeholders.
Collapse
Affiliation(s)
- Heshu Abdullah-Koolmees
- Division of Laboratories, Pharmacy, and Biomedical Genetics, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antonius M van Keulen
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), Hague, Netherlands
| | - Vera H M Deneer
- Division of Laboratories, Pharmacy, and Biomedical Genetics, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
52
|
Nguyen TT, Pearson RA, Mohamed ME, Schladt DP, Berglund D, Rivers Z, Skaar DJ, Wu B, Guan W, van Setten J, Keating BJ, Dorr C, Remmel RP, Matas AJ, Mannon RB, Israni AK, Oetting WS, Jacobson PA. Pharmacogenomics in kidney transplant recipients and potential for integration into practice. J Clin Pharm Ther 2020; 45:1457-1465. [PMID: 32662547 PMCID: PMC7719579 DOI: 10.1111/jcpt.13223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Pharmacogenomic biomarkers are now used in many clinical care settings and represent one of the successes of precision medicine. Genetic variants are associated with pharmacokinetic and pharmacodynamic changes leading to medication adverse effects and changes in clinical response. Actionable pharmacogenomic variants are common in transplant recipients and have implications for medications used in transplant, but yet are not broadly incorporated into practice. METHODS From the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group guidelines, and PharmGKB databases, 12 pharmacogenomic genes with 30 variants were selected and used to create diplotypes and actionable pharmacogenomic phenotypes. A total of 853 kidney allograft recipients who had genomic information available from a genome-wide association study were included. RESULTS Each recipient had at least one actionable pharmacogenomic diplotype/phenotype, whereas the majority (58%) had three or four actionable diplotypes/phenotypes and 17.4% had five or more among the 12 genes. The participants carried actionable diplotypes/phenotypes for multiple medications, including tacrolimus, azathioprine, clopidogrel, warfarin, simvastatin, voriconazole, antidepressants and proton-pump inhibitors. WHAT IS NEW AND CONCLUSION Pharmacogenomic variants are common in transplant recipients, and transplant recipients receive medications that have actionable variants. CLINICAL TRIAL Genomics of Transplantation, clinicaltrials.gov (NCT01714440).
Collapse
Affiliation(s)
- Tam T Nguyen
- College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - David P Schladt
- Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Danielle Berglund
- Complex Care Core Analytics, Fairview University of Minnesota, Minneapolis, MN, USA
| | - Zachary Rivers
- Social and Administrative Pharmacy, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Debra J Skaar
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Brendan J Keating
- Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey Dorr
- Minneapolis Medical Research Foundation and Division of Nephrology, Hennepin Healthcare, Minneapolis, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Arthur J Matas
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Roslyn B Mannon
- Department of Nephrology, School of Medicine, University of Nebraska, Omaha, NE, USA
| | - Ajay K Israni
- Division of Nephrology, Hennepin Healthcare, Minneapolis, MN, USA
- Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
53
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
54
|
Ro H, Jeong JC, Kong JM, Min JW, Park SK, Lee J, Koo TY, Yang J, Kim MS, Hwang S, Ahn C. The tacrolimus metabolism affect post‐transplant outcome mediating acute rejection and delayed graft function: analysis from Korean Organ Transplantation Registry data. Transpl Int 2020; 34:163-174. [DOI: 10.1111/tri.13777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Han Ro
- Department of Internal Medicine Gil Hospital Gachon University Incheon Korea
| | - Jong Cheol Jeong
- Department of Internal Medicine Seoul National University Bundang Hospital Seongnam Korea
| | - Jin Min Kong
- Department of Internal Medicine BHS Hanseo Hospital Busan Korea
| | - Ji Won Min
- Department of Internal Medicine Bucheon St. Mary’s Hospital The Catholic University of Korea Bucheon Korea
| | - Sung Kwang Park
- Department of Internal Medicine Chonbuk National University Medical School Jeonju Korea
| | - Joongyub Lee
- Department of Prevention and Management School of Medicine Inha University Hospital Inha University Incheon Korea
| | - Tai Yeon Koo
- Transplantation Research Institute Seoul National University Hospital Seoul Korea
| | - Jaeseok Yang
- Department of Surgery Transplantation Center Seoul National University Hospital Seoul Korea
| | - Myoung Soo Kim
- Department of Surgery Yonsei University College of Medicine Seoul Korea
| | - Seungsik Hwang
- Department of Public Health Sciences Graduate School of Public Health Seoul National University Seoul Korea
| | - Curie Ahn
- Department of Internal Medicine Seoul National University Hospital Seoul National University College of Medicine Seoul Korea
| |
Collapse
|
55
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
56
|
van der Burgh AC, Moes A, Kieboom BCT, van Gelder T, Zietse R, van Schaik RHN, Hesselink DA, Hoorn EJ. Serum magnesium, hepatocyte nuclear factor 1β genotype and post-transplant diabetes mellitus: a prospective study. Nephrol Dial Transplant 2020; 35:176-183. [PMID: 31361318 DOI: 10.1093/ndt/gfz145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retrospective studies suggest that tacrolimus-induced hypomagnesaemia is a risk factor for post-transplant diabetes mellitus (PTDM), but prospective studies are lacking. METHODS This was a prospective study with measurements of serum magnesium and tacrolimus at pre-specified time points in the first year after living donor kidney transplantation (KT). The role of single nucleotide polymorphisms (SNPs) in hepatocyte nuclear factor 1β (HNF1β) was also explored because HNF1β regulates insulin secretion and renal magnesium handling. Repeated measurement and regression analyses were used to analyse associations with PTDM. RESULTS In our cohort, 29 out of 167 kidney transplant recipients developed PTDM after 1 year (17%). Higher tacrolimus concentrations were significantly associated with lower serum magnesium and increased risk of hypomagnesaemia. Patients who developed PTDM had a significantly lower serum magnesium trajectory than patients who did not develop PTDM. In multivariate analysis, lower serum magnesium, age and body mass index were independent risk factors for PTDM. In recipients, the HNF1β SNP rs752010 G > A significantly increased the risk of PTDM [odds ratio (OR) = 2.56, 95% confidence interval (CI) 1.05-6.23] but not of hypomagnesaemia. This association lost significance after correction for age and sex (OR = 2.24, 95% CI 0.90-5.57). No association between HNF1β SNPs and PTDM was found in corresponding donors. CONCLUSIONS A lower serum magnesium in the first year after KT is an independent risk factor for PTDM. The HNF1β SNP rs752010 G > A may add to this risk through an effect on insulin secretion rather than hypomagnesaemia, but its role requires further confirmation.
Collapse
Affiliation(s)
- Anna C van der Burgh
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arthur Moes
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
57
|
Brazeau DA, Attwood K, Meaney CJ, Wilding GE, Consiglio JD, Chang SS, Gundroo A, Venuto RC, Cooper L, Tornatore KM. Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front Genet 2020; 11:889. [PMID: 32849848 PMCID: PMC7433713 DOI: 10.3389/fgene.2020.00889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Interpatient variability in tacrolimus pharmacokinetics is attributed to metabolism by cytochrome P-450 3A5 (CYP3A5) isoenzymes and membrane transport by P-glycoprotein. Interpatient pharmacokinetic variability has been associated with genotypic variants for both CYP3A5 or ABCB1. Tacrolimus pharmacokinetics was investigated in 65 stable Black and Caucasian post-renal transplant patients by assessing the effects of multiple alleles in both CYP3A5 and ABCB1. A metabolic composite based upon the CYP3A5 polymorphisms: ∗3(rs776746), ∗6(10264272), and ∗7(41303343), each independently responsible for loss of protein expression was used to classify patients as extensive, intermediate and poor metabolizers. In addition, the role of ABCB1 on tacrolimus pharmacokinetics was assessed using haplotype analysis encompassing the single nucleotide polymorphisms: 1236C > T (rs1128503), 2677G > T/A(rs2032582), and 3435C > T(rs1045642). Finally, a combined analysis using both CYP3A5 and ABCB1 polymorphisms was developed to assess their inter-related influence on tacrolimus pharmacokinetics. Extensive metabolizers identified as homozygous wild type at all three CYP3A5 loci were found in 7 Blacks and required twice the tacrolimus dose (5.6 ± 1.6 mg) compared to Poor metabolizers [2.5 ± 1.1 mg (P < 0.001)]; who were primarily Whites. These extensive metabolizers had 2-fold faster clearance (P < 0.001) with 50% lower AUC∗ (P < 0.001) than Poor metabolizers. No differences in C12 h were found due to therapeutic drug monitoring. The majority of blacks (81%) were classified as either Extensive or Intermediate Metabolizers requiring higher tacrolimus doses to accommodate the more rapid clearance. Blacks who were homozygous for one or more loss of function SNPS were associated with lower tacrolimus doses and slower clearance. These values are comparable to Whites, 82% of who were in the Poor metabolic composite group. The ABCB1 haplotype analysis detected significant associations of the wildtype 1236T-2677T-3435T haplotype to tacrolimus dose (P = 0.03), CL (P = 0.023), CL/LBW (P = 0.022), and AUC∗ (P = 0.078). Finally, analysis combining CYP3A5 and ABCB1 genotypes indicated that the presence of the ABCB1 3435 T allele significantly reduced tacrolimus clearance for all three CPY3A5 metabolic composite groups. Genotypic associations of tacrolimus pharmacokinetics can be improved by using the novel composite CYP3A5∗3∗4∗5 and ABCB1 haplotypes. Consideration of multiple alleles using CYP3A5 metabolic composites and drug transporter ABCB1 haplotypes provides a more comprehensive appraisal of genetic factors contributing to interpatient variability in tacrolimus pharmacokinetics among Whites and Blacks.
Collapse
Affiliation(s)
- Daniel A. Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, United States
| | - Kristopher Attwood
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Calvin J. Meaney
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Gregory E. Wilding
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Joseph D. Consiglio
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Shirley S. Chang
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Aijaz Gundroo
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Rocco C. Venuto
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Louise Cooper
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Kathleen M. Tornatore
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
58
|
Deininger KM, Tsunoda SM, Hirsch JD, Anderson H, Lee YM, McIlvennan CK, Page RL, Tran JN, Aquilante CL. National survey of physicians' perspectives on pharmacogenetic testing in solid organ transplantation. Clin Transplant 2020; 34:e14037. [PMID: 32654213 DOI: 10.1111/ctr.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Our objective was to evaluate physicians' perspectives on the clinical utility of pharmacogenetic (PGx) testing in kidney, liver, heart, and lung transplantation (KLHL-Tx). METHODS A 36-question web-based survey was developed and administered to medical and surgical directors of US KLHL-Tx centers. RESULTS There were 82 respondents (10% response rate). The majority were men (78%), non-Hispanic whites (70%), medical directors (72%), and kidney transplant physicians (35%). Although 78% of respondents reported having some PGx education, most reported lack of confidence in their PGx knowledge and ability to apply a PGx test. Participants reported mixed views about the clinical utility of PGx testing-most agreed with the efficacy of PGx testing, but not the benefits relative to the risks or standard of care. While 55% reported that testing was available at their institution, only 38% ordered a PGx test in the past year, most commonly thiopurine-S-methyltransferase. Physician-reported barriers to PGx implementation included uncertainty about the clinical value of PGx testing and patient financial burden. CONCLUSION Together, our findings suggest prospective PGx research and pilot implementation programs are needed to elucidate the clinical utility and value of PGx in KLHL-Tx. These initiatives should include educational efforts to inform the use of PGx testing.
Collapse
Affiliation(s)
- Kimberly M Deininger
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Shirley M Tsunoda
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Jan D Hirsch
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Heather Anderson
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Yee Ming Lee
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Colleen K McIlvennan
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, CO, USA.,Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert L Page
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Jacinda N Tran
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Christina L Aquilante
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| |
Collapse
|
59
|
Jongbloed F, de Bruin RWF, Steeg HV, Beekhof P, Wackers P, Hesselink DA, Hoeijmakers JHJ, Dollé MET, IJzermans JNM. Protein and calorie restriction may improve outcomes in living kidney donors and kidney transplant recipients. Aging (Albany NY) 2020; 12:12441-12467. [PMID: 32652516 PMCID: PMC7377854 DOI: 10.18632/aging.103619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023]
Abstract
Previously, we and others showed that dietary restriction protects against renal ischemia-reperfusion injury in animals. However, clinical translation of preoperative diets is scarce, and in the setting of kidney transplantation these data are lacking. In this pilot study, we investigated the effects of five days of a preoperative protein and caloric dietary restriction (PCR) diet in living kidney donors on the perioperative effects in donors, recipients and transplanted kidneys. Thirty-five kidney donors were randomized into either the PCR, 30% calorie and 80% protein reduction, or control group without restrictions. Adherence to the diet and kidney function in donors and their kidney recipients were analyzed. Perioperative kidney biopsies were taken in a selected group of transplanted kidneys for gene expression analysis. All donors adhered to the diet. From postoperative day 2 up until month 1, kidney function of donors was significantly better in the PCR-group. PCR-donor kidney recipients showed significantly improved kidney function and lower incidence of slow graft function and acute rejection. PCR inhibited cellular immune response pathways and activated stress-resistance signaling. These observations are the first to show that preoperative dietary restriction induces postoperative recovery benefits in humans and may be beneficial in clinical settings involving ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Franny Jongbloed
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harry Van Steeg
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.,Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Piet Beekhof
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Paul Wackers
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn E T Dollé
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
60
|
Francke MI, de Winter BC, Elens L, Lloberas N, Hesselink DA. The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1776107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marith I. Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brenda C.M. de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure Elens
- Louvain Drug Research Institute, Université Catholique De Louvain, Louvain, Belgium
| | - Nuria Lloberas
- Department of Nephrology, IDIBELL, Hospital Universitari Di Bellvitge, University of Barcelona, Barcelona, Spain
| | - Dennis A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
61
|
Ling J, Dong LL, Yang XP, Qian Q, Jiang Y, Zou SL, Hu N. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica 2020; 50:1501-1509. [PMID: 32453653 DOI: 10.1080/00498254.2020.1774682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Ling
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu-Lu Dong
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu-Ping Yang
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qing Qian
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Jiang
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Su-Lan Zou
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
62
|
Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant 2020; 10:90-103. [PMID: 32864355 PMCID: PMC7428791 DOI: 10.5500/wjt.v10.i5.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, pharmacogenetics has emerged as an important tool for choosing the right immunosuppressant drug and its appropriate dose. Indeed, pharmacogenetics may exert its action on immunosuppressant drugs at three levels. Pharmacogenetics identifies and studies the genes involved in encoding the proteins involved in drug pharmacokinetics and in encoding the enzymes involved in drug degradation. Pharmacogenetics is also relevant in encoding the enzymes and proteins involved in codifying the transmembrane proteins involved in transmembrane passage favoring the absorption and intracellular action of several immunosuppressants. Pharmacogenetics concern the variability of genes encoding the proteins involved as immunosuppressant triggers in the pharmacodynamic pathways. Of course, not all genes have been discovered and studied, but some of them have been clearly examined and their relevance together with other factors such as age and race has been defined. Other genes on the basis of relevant studies have been proposed as good candidates for future studies. Unfortunately, to date, clear conclusions may be drawn only for those drugs that are metabolized by CYP3A5 and its genotyping before kidney, heart and lung transplantation is recommended. The conclusions of the studies on the recommended candidate genes, together with the development of omics techniques could in the future allow us to choose the right dose of the right immunosuppressant for the right patient.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
63
|
Interventions to Prevent Nonmelanoma Skin Cancers in Recipients of a Solid Organ Transplant: Systematic Review of Randomized Controlled Trials. Transplantation 2020; 103:1206-1215. [PMID: 31246934 DOI: 10.1097/tp.0000000000002641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Organ transplant recipients are at high risk of developing skin cancer. The benefits and harms of interventions to prevent nonmelanoma skin cancer in solid organ transplant recipients have not been summarized. METHODS We searched MEDLINE, Embase, and CENTRAL through April 2018. Risk of bias was assessed using the Cochrane tool, and evidence certainty was evaluated using the Grades of Recommendation, Assessment, Development, and Evaluation process. Prespecified outcomes were nonmelanoma skin cancer, clearance and prevention of keratotic skin lesions, and intervention-specific adverse events. RESULTS Ninety-two trials (20 012 participants) were included. The evaluated treatments were cancer-specific interventions (acitretin, imiquimod, photodynamic therapy, nicotinamide, topical diclofenac, and selenium) and immunosuppression regimes (azathioprine, mycophenolate mofetil, calcineurin inhibitors, mammalian target of rapamycin [mTOR] inhibitors, belatacept, induction agents, and withdrawal of calcineurin inhibitors or corticosteroids). Effects on nonmelanoma skin cancer were uncertain for photodynamic therapy (3 trials, 93 participants, risk ratio [RR] 1.42 [95% confidence interval (CI), 0.65-3.11]; low certainty evidence), nicotinamide (2 trials, 60 participants), acitretin (2 trials, 61 participants), and imiquimod (1 trial, 20 participants) compared to control. mTOR inhibitors probably reduced skin cancer compared to calcineurin inhibitors (12 trials, 2225 participants, RR 0.62 [95% CI, 0.45-0.85]; moderate certainty evidence). Photodynamic therapy may cause pain at the treatment site (4 trials, 95 patients, RR 17.09 [95% CI, 4.22-69.26]; low certainty evidence). CONCLUSIONS There is limited evidence for the efficacy and safety of specific treatments to prevent nonmelanoma skin cancers among solid organ transplant recipients.
Collapse
|
64
|
Miano TA, Flesch JD, Feng R, Forker CM, Brown M, Oyster M, Kalman L, Rushefski M, Cantu E, Porteus M, Yang W, Localio AR, Diamond JM, Christie JD, Shashaty MGS. Early Tacrolimus Concentrations After Lung Transplant Are Predicted by Combined Clinical and Genetic Factors and Associated With Acute Kidney Injury. Clin Pharmacol Ther 2020; 107:462-470. [PMID: 31513279 PMCID: PMC6980920 DOI: 10.1002/cpt.1629] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
Abstract
Tacrolimus exhibits unpredictable pharmacokinetics (PKs) after lung transplant, partly explained by cytochrome P450 (CYP)-enzyme polymorphisms. However, whether exposure variability during the immediate postoperative period affects outcomes is unknown, and pharmacogenetic dosing may be limited by residual PK variability. We estimated adjusted associations between early postoperative tacrolimus concentrations and acute kidney injury (AKI) and acute cellular rejection (ACR), and identified clinical and pharmacogenetic factors that explain postoperative tacrolimus concentration variability in 484 lung transplant patients. Increasing tacrolimus concentration was associated with higher AKI risk (hazard ratio (HR) 1.54; 95% confidence interval (CI) 1.20-1.96 per 5-mg/dL); and increasing AKI severity (odds ratio 1.29; 95% CI 1.04-1.60 per 5-mg/dL), but not ACR (HR 1.02; 95% CI 0.73-1.42). A model with clinical and pharmacogenetic factors explained 42% of concentration variance compared with 19% for pharmacogenetic factors only. Early tacrolimus exposure was independently associated with AKI after lung transplantation, but not ACR. Clinical factors accounted for substantial residual tacrolimus concentration variability not explained by CYP-enzyme polymorphisms.
Collapse
Affiliation(s)
- Todd A. Miano
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Judd D. Flesch
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Caitlin M. Forker
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Melanie Brown
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Michelle Oyster
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Laurel Kalman
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Melanie Rushefski
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania
| | - Mary Porteus
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Wei Yang
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - A. Russel Localio
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Jason D. Christie
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Michael G. S. Shashaty
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
65
|
Oberbauer R, Bestard O, Furian L, Maggiore U, Pascual J, Rostaing L, Budde K. Optimization of tacrolimus in kidney transplantation: New pharmacokinetic perspectives. Transplant Rev (Orlando) 2020; 34:100531. [PMID: 31955920 DOI: 10.1016/j.trre.2020.100531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Tacrolimus is the cornerstone of immunosuppressive therapy after kidney transplantation (KT), but its use is complicated by a narrow therapeutic index and high inter- and intra-patient pharmacokinetic variability. There are three available oral formulations of tacrolimus: immediate-release tacrolimus (IR-Tac), extended-release tacrolimus (ER-Tac) and a MeltDose® (LCPT) formulation, the latter favoring a prolonged drug release and increased bioavailability. The time-concentration curves of these formulations are different. Compared with IR-Tac and ER-Tac, LCPT has a relatively flat pharmacokinetic profile with less fluctuation between trough and peak exposures, and a delayed peak concentration. This translates to a more stable delivery of tacrolimus and may alleviate the risk of underexposure and allograft rejection or overexposure and toxicity. The once-daily formulation of both ER-TAC and LCPT may also offer a potential advantage on patient adherence. Fast metabolizers of tacrolimus, the elderly, and human leukocyte antigen-sensitized patients are at risk of poorer outcomes after KT, possibly associated with a different exhibited pharmacokinetics of tacrolimus or different requirements in terms of exposure. Simple, practical strategies are needed to identify patients at risk of suboptimal KT outcomes and those who would benefit from a more proactively personalized approach to tacrolimus treatment. This review aims to increase awareness of the link between the pharmacokinetics of oral tacrolimus formulations and the clinical needs of patients after KT, particularly among those who have clinically significant pharmacokinetic variation of tacrolimus.
Collapse
Affiliation(s)
- Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Oriol Bestard
- Kidney Transplant Unit, Nephrology department, Bellvitge University Hospital, Barcelona, Spain
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Italy
| | - Umberto Maggiore
- Kidney and Kidney-Pancreas Transplant Unit (Department of Nephrology), Parma University Hospital, Parma, Italy
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Lionel Rostaing
- Nephrology and Transplantation Department, CHU Grenoble, Grenoble, France
| | - Klemens Budde
- Department of Nephrology, Internal Intensive Care Medicine, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
66
|
Fang Y, Wang T, Guo YY, Zhang HF, Wen Q, Xing YR, Gao N, Qiao HL. From Genotype to Phenotype: Content and Activities of Cytochromes P450 2A6 in Human Liver In Vitro and Predicted In Vivo. J Pharmacol Exp Ther 2019; 372:320-330. [DOI: 10.1124/jpet.119.263152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
|
67
|
Defining a threshold for tacrolimus intra-patient variability associated with late acute cellular rejection in paediatric kidney transplant recipients. Pediatr Nephrol 2019; 34:2557-2562. [PMID: 31520127 DOI: 10.1007/s00467-019-04346-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Late acute cellular rejection (LACR) is associated with poorer graft outcomes and non-adherence. Non-adherence to tacrolimus can be indirectly assessed by the intra-patient variability (IPV) of tacrolimus trough levels. The threshold of IPV associated with rejection is not known. METHODS We conducted a case-control study comparing 25 patients with biopsy-proven LACR against 25 stable controls matched for age group, primary diagnosis and time post-transplant. IPV was calculated using coefficient of variance (CV) and mean absolute deviation (MAD) using tacrolimus levels in the preceding 12 months. We also assessed the percentage time for tacrolimus levels < 4 μg/L (Tac < 4) and the concentration/weight-adjusted dose (C/D) ratio as a proxy marker of tacrolimus metaboliser status. RESULTS LACR patients had higher CV (median, IQR 44%, 36-61% v. 24%, 19-35%, p < 0.0001) and higher MAD (33%, 25-48% v. 19%, 15-26%, p < 0.0001). The MAD was less affected by outlying tacrolimus results. Receiver operating curve analysis of the MAD resulted in a sensitivity of 76% and specificity of 76% at a threshold of 26% (AUC 0.85, p < 0.05). LACR patients had more Tac < 4 (50% v. 26%, p < 0.05). There was no difference in C/D suggesting that good IPV can be maintained in fast metabolisers. Patients with LACR had significantly increased creatinine at 12-month follow-up despite treatment (108 v. 5 umol/L increase from baseline) and four patients lost their allograft. CONCLUSIONS Monitoring of tacrolimus IPV using the MAD may be a clinical marker for LACR. A threshold IPV of 26% can potentially be used as a therapeutic target pending further validation studies.
Collapse
|
68
|
Covvey JR, Mancl EE. Pharmaceutical care in transplantation: current challenges and future opportunities. Nanomedicine (Lond) 2019; 14:2651-2658. [PMID: 31610735 DOI: 10.2217/nnm-2019-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jordan R Covvey
- Assistant Professor in Pharmacy Administration, Division of Pharmaceutical, Administrative & Social Sciences, Duquesne University School of Pharmacy, 600 Forbes Ave, 418 Mellon Hall, PA 15282, USA
| | - Erin E Mancl
- Medical Science Liaison, Mallinckrodt Pharmaceuticals, Somerset Center, 1425 US Route 206, NJ 07921, USA
| |
Collapse
|
69
|
Abdel-Kahaar E, Winter S, Tremmel R, Schaeffeler E, Olbricht CJ, Wieland E, Schwab M, Shipkova M, Jaeger SU. The Impact of CYP3A4*22 on Tacrolimus Pharmacokinetics and Outcome in Clinical Practice at a Single Kidney Transplant Center. Front Genet 2019; 10:871. [PMID: 31616470 PMCID: PMC6775237 DOI: 10.3389/fgene.2019.00871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Although there is evidence that the CYP3A4*22 variant should be considered in tacrolimus dosing in renal transplantation, its impact beyond tacrolimus dose requirements remains controversial. Methods: In a cohort of 121 kidney transplant recipients, we analyzed the CYP3A4*1B, CYP3A4*22, and CYP3A5*3 alleles and the ABCB1 variants 1236C>T, 2677G>T/A, and 3435C>T for their impact on exposure and dose requirement. Relevant clinical outcome measures such as acute rejection within the first year after transplantation, delayed graft function, and renal function at discharge (estimated glomerular filtration rate) were evaluated. Results: Extensive metabolizer (n = 17, CYP3A4*1/*1 carriers with at least one CYP3A5*1 allele) showed significantly higher tacrolimus dose requirement (P = 0.004) compared with both intermediate metabolizer (IM, n = 93, CYP3A5*3/*3 plus CYP3A4*1/*1 or CYP3A4*22 carriers plus one CYP3A5*1 allele), and poor metabolizer (n = 11, CYP3A4*22 allele in combination with CYP3A5*3/*3) after onset of therapy. Significantly higher dose requirement was observed in CYP3A5 expressers (P = 0.046) compared with non-expressers again at onset of therapy. Using the log additive genetic model, the area under the curve for the total observation period up to 16 days was significantly associated with the CYP3A5*3 genotype (P = 3.34 × 10-4) as well as with the IM or extensive metabolizer phenotype (P = 1.54 × 10-4), even after adjustment for multiple testing. Heterozygous carriers for CYP3A4*22 showed significantly higher areas under the curve than the CYP3A4*1/*1 genotype in the second week post-transplantation (adjusted P = 0.016). Regarding clinical outcomes, acute rejection was significantly associated with human leukocyte antigen mismatch (≥3 alleles; OR = 12.14, 95% CI 1.76, 525.21, P = 0.019 after correction for multiple testing). Graft recipients from deceased donors showed higher incidende of delayed graft function (OR 7.15, 95% CI 2.23, 30.46, adjusted P = 0.0008) and a lower estimated glomerular filtration rate at discharge (P = 0.0001). Tested CYP3A4 or CYP3A5 variants did not show any effects on clinical outcome parameters. ABCB1 variants did neither impact on pharmacokinetics nor on clinical endpoints. Conclusion: At our transplantation center, both CYP3A5*3 and, to a lesser extent, CYP3A4*22 affect tacrolimus pharmacokinetics early after onset of therapy with consequences for steady-state treatment in routine clinical practice.
Collapse
Affiliation(s)
- Emaad Abdel-Kahaar
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
- Department of Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | | | - Eberhard Wieland
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Maria Shipkova
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Simon U. Jaeger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
70
|
Largeau B, Guellec CBL, Longuet H, Lesne P, Bouvarel A, Préteseille L, Marquet P, Halimi JM, Büchler M, Gatault P, Noble J. Comparison of Tacrolimus Starting Doses Based on CYP3A5 Phenotype or Genotype in Kidney Transplant Recipients. Prog Transplant 2019; 29:300-308. [PMID: 31514576 DOI: 10.1177/1526924819873905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Selection of expected phenotypes (ie, expressers/non-expressers) is currently used in CYP3A5*3 genotype-based tacrolimus dosing. The authors assessed whether a dosing regimen based on the 3 CYP3A5 genotypes may reduce the occurrence of inadequate exposure. METHODS Tacrolimus whole blood trough levels (C 0) were retrieved from a retrospective cohort of 100 kidney transplant recipients treated with a starting dose of 0.15 (non-expressers) or 0.30 (expressers) mg/kg/d. The authors evaluated the occurrence of overexposures (12 < C 0 < 20 ng/mL) or toxic concentrations (C 0 ≥ 20 ng/mL). These results were used to set up a new strategy based on the 3 distinct CYP3A5 genotypes, which relevance was evaluated in a prospective cohort of 107 patients. RESULTS In the retrospective cohort, non-expressers exhibited frequent overexposure (63.6%) or toxic C 0 (20.8%). Among expressers, none of the homozygous *1 carriers exhibited overexposure contrary to 25% of the heterozygotes. Based on these results, new tacrolimus starting doses were set at 0.10, 0.20, and 0.30 mg/kg/d for CYP3A5*3/*3, CYP3A5*1/*3, and CYP3A5*1/*1 genotypes, respectively. Tacrolimus overexposure was reduced in the CYP3A5*3/*3 group (63.6% vs 40%, P = .0038). None of the heterozygous patients exhibited toxic tacrolimus C 0. Clinical outcomes were not different between the 2 periods, whatever the genotype. Our results indicate that the best tacrolimus exposure was obtained for doses of 0.10, 0.20, and 0.20 mg/kg/d for CYP3A5*3/3, CYP3A5*1/*3, and CYP3A5*1/*1, respectively. CONCLUSIONS Our results confirm that selecting tacrolimus dosing regimen according to the expected phenotype is appropriate, but that lower than currently recommended doses may be preferable.
Collapse
Affiliation(s)
- Bérenger Largeau
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Chantal Barin-Le Guellec
- Université de Tours, Université de Limoges, INSERM, Individual profiling and prevention of risks with immunosuppressive therapies and transplantation (IPPRITT) - UMR 1248, CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Hélène Longuet
- CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Philippe Lesne
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Antoine Bouvarel
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Laura Préteseille
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Pierre Marquet
- Université de Limoges, INSERM, Individual profiling and prevention of risks with immunosuppressive therapies and transplantation (IPPRITT) - UMR 1248, CHU de Limoges, Service de Pharmacologie et Toxicologie, FHU SUPORT, Limoges, France
| | - Jean-Michel Halimi
- Université de Tours, Transplantation, immunologie et inflammation (T2I) - EA4245, CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Matthias Büchler
- Université de Tours, Transplantation, immunologie et inflammation (T2I) - EA4245, CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Philippe Gatault
- Université de Tours, Transplantation, immunologie et inflammation (T2I) - EA4245, CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Johan Noble
- CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| |
Collapse
|
71
|
Andrews LM, Hesselink DA, van Gelder T, Koch BCP, Cornelissen EAM, Brüggemann RJM, van Schaik RHN, de Wildt SN, Cransberg K, de Winter BCM. A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus Following Pediatric Renal Transplantation. Clin Pharmacokinet 2019; 57:475-489. [PMID: 28681225 PMCID: PMC5856873 DOI: 10.1007/s40262-017-0567-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background Multiple clinical, demographic, and genetic factors affect the pharmacokinetics of tacrolimus in children, yet in daily practice, a uniform body-weight based starting dose is used. It can take weeks to reach the target tacrolimus pre-dose concentration. Objectives The objectives of this study were to determine the pharmacokinetics of tacrolimus immediately after kidney transplantation and to find relevant parameters for dose individualization using a population pharmacokinetic analysis. Methods A total of 722 blood samples were collected from 46 children treated with tacrolimus over the first 6 weeks after renal transplantation. Non-linear mixed-effects modeling (NONMEM®) was used to develop a population pharmacokinetic model and perform a covariate analysis. Simulations were performed to determine the optimal starting dose and to develop dosing guidelines. Results The data were accurately described by a two-compartment model with allometric scaling for bodyweight. Mean tacrolimus apparent clearance was 50.5 L/h, with an inter-patient variability of 25%. Higher bodyweight, lower estimated glomerular filtration rate, and higher hematocrit levels resulted in lower total tacrolimus clearance. Cytochrome P450 3A5 expressers and recipients who received a kidney from a deceased donor had a significantly higher tacrolimus clearance. The model was successfully externally validated. In total, these covariates explained 41% of the variability in clearance. From the significant covariates, the cytochrome P450 3A5 genotype, bodyweight, and donor type were useful to adjust the starting dose to reach the target pre-dose concentration. Dosing guidelines range from 0.27 to 1.33 mg/kg/day. Conclusion During the first 6 weeks after transplantation, the tacrolimus weight-normalized starting dose should be higher in pediatric kidney transplant recipients with a lower bodyweight, those who express the cytochrome P450 3A5 genotype, and those who receive a kidney from a deceased donor.
Collapse
Affiliation(s)
- Louise M Andrews
- Department of Hospital Pharmacy, Erasmus Medical Center, University Medical Center Rotterdam, P. O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus Medical Center, University Medical Center Rotterdam, P. O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus Medical Center, University Medical Center Rotterdam, P. O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Elisabeth A M Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, The Netherlands
| | | | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands
| | - Karlien Cransberg
- Department of Pediatric Nephrology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus Medical Center, University Medical Center Rotterdam, P. O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
72
|
Anutrakulchai S, Pongskul C, Kritmetapak K, Limwattananon C, Vannaprasaht S. Therapeutic concentration achievement and allograft survival comparing usage of conventional tacrolimus doses and CYP3A5 genotype-guided doses in renal transplantation patients. Br J Clin Pharmacol 2019; 85:1964-1973. [PMID: 31077425 DOI: 10.1111/bcp.13980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/04/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Although cytochromeP450(CYP)3A5 gene polymorphism affects personalized tacrolimus doses, there is no consensus as to whether CYP3A5 genotypes should be determined to adjust the doses. The aims were to compare the therapeutic ranges and clinical outcomes between the conventional and genotype-guided tacrolimus doses. METHODS This randomized controlled study compared 63 cases of the conventional tacrolimus dose group (0.1 mg/kg/day) with 62 cases of the genotype-guided doses group of 0.125, 0.1 and 0.08 mg/kg for CYP3A5*1/*1, *1/*3, and *3/*3 genotypes for the initial 3 days of kidney transplantation. After day 3, dose adjustment occurred in both groups to achieve therapeutic concentrations. RESULTS The genotype-guided group had an increased proportion of patients with tacrolimus concentrations in the therapeutic range at the steady state on day 3 (40.3 vs 23.8%, P = .048). A lower proportion of over-therapeutic concentration patients was noted in the genotype-guided group in the CYP3A5*3/*3 genotype (9.7 vs 27%, P = .013). Unexpectedly, more delayed graft functions (DGFs) were in the genotype-guided group (41.9 vs 22.2%, P = .018) especially in the CYP3A5*1/*1 participants who might have had an aggravated DGF by a longer ischaemic time and higher serum donor creatinine levels than in the control group. There were no significant differences of glomerular filtration rates or graft or patient survivals over a median 37-month follow-up period. CONCLUSIONS Determination of the CYP3A5 genotype improved therapeutic range achievement. CYP3A5*1/*1 patients who have high risks of DGF should be closely monitored because of an increased risk of DGF and reduced glomerular filtration rate with high tacrolimus doses.
Collapse
Affiliation(s)
- Sirirat Anutrakulchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cholatip Pongskul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chulaporn Limwattananon
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
| | - Suda Vannaprasaht
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
73
|
Prytuła A, Cransberg K, Raes A. Drug-metabolizing enzymes CYP3A as a link between tacrolimus and vitamin D in renal transplant recipients: is it relevant in clinical practice? Pediatr Nephrol 2019; 34:1201-1210. [PMID: 30058048 DOI: 10.1007/s00467-018-4030-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
CYP3A enzymes are involved in the metabolism of calcineurin inhibitor tacrolimus as well as vitamin D. In this review, we summarize the clinical aspects of CYP3A-mediated metabolism of tacrolimus and vitamin D with emphasis on the influence of single-nucleotide polymorphisms on tacrolimus disposition. We describe the utility of 4β hydroxycholesterol as a marker of CYP3A activity. Then, we discuss the possible interaction between calcineurin inhibitors and vitamin D in solid organ transplant recipients. Also, we review other mechanisms which may contribute to side effects of calcineurin inhibitors on bone. Lastly, suggestions for future research and clinical perspectives are discussed.
Collapse
Affiliation(s)
- Agnieszka Prytuła
- Paediatric Nephrology and Rheumatology Department, Ghent University Hospital, C Heymanslaan 10, 9000, Ghent, Belgium.
| | - Karlien Cransberg
- Paediatric Nephrology Department, Erasmus MC- Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Ann Raes
- Paediatric Nephrology and Rheumatology Department, Ghent University Hospital, C Heymanslaan 10, 9000, Ghent, Belgium.,Safepedrug Unit, Ghent, Belgium
| |
Collapse
|
74
|
Lin B, Chung WK. Cases in Precision Medicine: The Role of Pharmacogenetics in Precision Prescribing. Ann Intern Med 2019; 170:796-804. [PMID: 31108507 PMCID: PMC7458588 DOI: 10.7326/m18-2357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics may help physicians deliver individualized treatments based on how a person's genes affect a drug's effects and metabolism. This information can help prevent adverse events or improve drug efficacy by enabling the physician to optimize dosage or to avoid a medication with adverse reactions and to prescribe an alternative therapy. This article discusses the current clinical utility of pharmacogenetic testing in the context of a patient who requires anticoagulation with warfarin.
Collapse
Affiliation(s)
- Bohan Lin
- Columbia University, New York, New York (B.L., W.K.C.)
| | - Wendy K Chung
- Columbia University, New York, New York (B.L., W.K.C.)
| |
Collapse
|
75
|
Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019; 41:261-307. [DOI: 10.1097/ftd.0000000000000640] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
76
|
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen MT, Elens L, Johnson-Davis KL, Kunicki PK, MacPhee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DJAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019. [DOI: 10.1097/ftd.0000000000000640
expr 845143713 + 809233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
77
|
van Besouw NM, Yan L, de Kuiper R, Klepper M, Reijerkerk D, Dieterich M, Roelen DL, Claas FHJ, Clahsen-van Groningen MC, Hesselink DA, Baan CC. The Number of Donor-Specific IL-21 Producing Cells Before and After Transplantation Predicts Kidney Graft Rejection. Front Immunol 2019; 10:748. [PMID: 31024571 PMCID: PMC6465545 DOI: 10.3389/fimmu.2019.00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/05/2023] Open
Abstract
Interleukin (IL)-21 supports induction and expansion of CD8+ T cells, and can also regulate the differentiation of B cells into antibody-producing plasma cells. We questioned whether the number of circulating donor-specific IL-21 producing cells (pc) can predict kidney transplant rejection, and evaluated this in two different patient cohorts. The first analysis was done on pre-transplantation samples of 35 kidney transplant recipients of whom 15 patients developed an early acute rejection. The second study concerned peripheral blood mononuclear cell (PBMC) samples from 46 patients obtained at 6 months after kidney transplantation of whom 13 developed late rejection. Significantly higher frequencies of donor-specific IL-21 pc were found by Elispot assay in both patients who developed early and late rejection compared to those without rejection. In addition, low frequencies of donor-specific IL-21 pc were associated with higher rejection-free survival. Moreover, low pre-transplant donor-specific IL-21 pc numbers were associated with the absence of anti-HLA antibodies. Donor-reactive IL-21 was mainly produced by CD4+ T cells, including CD4+ follicular T helper cells. In conclusion, the number of donor-specific IL-21 pc is associated with an increased risk of both early and late rejection, giving it the potential to be a new biomarker in kidney transplantation.
Collapse
Affiliation(s)
- Nicole M van Besouw
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yan
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ronella de Kuiper
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mariska Klepper
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Derek Reijerkerk
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein Dieterich
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - Marian C Clahsen-van Groningen
- The Rotterdam Transplant Group, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dennis A Hesselink
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Carla C Baan
- The Rotterdam Transplant Group, Department of Internal Medicine-Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
78
|
Andrews LM, Hesselink DA, van Schaik RHN, van Gelder T, de Fijter JW, Lloberas N, Elens L, Moes DJAR, de Winter BCM. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 2019; 85:601-615. [PMID: 30552703 PMCID: PMC6379219 DOI: 10.1111/bcp.13838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Aims The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. Methods Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed‐effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. Results A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two‐compartment model. The mean absorption rate was 3.6 h−1, clearance was 23.0 l h–1 (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose:
Dosemg=222nghml–1*22.5lh–1*1.0ifCYP3A5*3/*3or1.62ifCYP3A5*1/*3orCYP3A5*1/*1*1.0ifCYP3A4*1or unknownor0.814ifCYP3A4*22*Age56−0.50*BSA1.930.72/1000Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. Conclusions For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation.
Collapse
Affiliation(s)
- L M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands
| | - R H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - T van Gelder
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands
| | - J W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - N Lloberas
- Department of Nephrology, IDIBELL, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - L Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - B C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
79
|
Campagne O, Mager DE, Brazeau D, Venuto RC, Tornatore KM. The impact of tacrolimus exposure on extrarenal adverse effects in adult renal transplant recipients. Br J Clin Pharmacol 2019; 85:516-529. [PMID: 30414331 DOI: 10.1111/bcp.13811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022] Open
Abstract
AIMS Tacrolimus has been associated with notable extrarenal adverse effects (AEs), which are unpredictable and impact patient morbidity. The association between model-predicted tacrolimus exposure metrics and standardized extrarenal AEs in stable renal transplant recipients was investigated and a limited sampling strategy (LSS) was developed to predict steady-state tacrolimus area under the curve over a 12-h dosing period (AUCss,0-12h ). METHODS All recipients receiving tacrolimus and mycophenolic acid ≥6 months completed a 12-h cross-sectional observational pharmacokinetic-pharmacodynamic study. Patients were evaluated for the presence of individual and composite gastrointestinal, neurological, and aesthetic AEs during the study visit. The associations between AEs and tacrolimus exposure metrics generated from a published population pharmacokinetic model were investigated using a logistic regression analysis in NONMEM 7.3. An LSS was determined using a Bayesian estimation method with the same patients. RESULTS Dose-normalized tacrolimus AUCss,0-12h and apparent clearance were independently associated with diarrhoea, dyspepsia, insomnia and neurological AE ratio. Dose-normalized tacrolimus maximum concentration was significantly correlated with skin changes and acne. No AE associations were found with trough concentrations. Using limited sampling at 0, 2h; 0, 1, 4h; and 0, 1, 2, 4h provided a precise and unbiased prediction of tacrolimus AUC (root mean squared prediction error < 10%), which was not well characterized using trough concentrations only (root mean squared prediction error >15%). CONCLUSIONS Several AEs (i.e. diarrhoea, dyspepsia, insomnia and neurological AE ratio) were associated with tacrolimus dose normalized AUCss,0-12h and clearance. Skin changes and acne were associated with dose-normalized maximum concentrations. To facilitate clinical implementation, a LSS was developed to predict AUCss,0-12h values using sparse patient data to efficiently assess projected immunosuppressive exposure and potentially minimize AE manifestations.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.,Faculty of Pharmacy, Universités Paris Descartes-Paris Diderot, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Daniel Brazeau
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Rocco C Venuto
- Erie County Medical Center, Division of Nephrology; Department of Medicine: Nephrology Division; School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kathleen M Tornatore
- Erie County Medical Center, Division of Nephrology; Department of Medicine: Nephrology Division; School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Immunosuppressive Pharmacology Research Program, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
80
|
Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol 2019; 34:31-43. [PMID: 29479631 DOI: 10.1007/s00467-018-3892-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
The calcineurin inhibitor tacrolimus, cornerstone of most immunosuppressive regimens, is a drug with a narrow therapeutic window: underexposure can lead to allograft rejection and overexposure can result in an increased incidence of infections, toxicity and malignancies. Tacrolimus is metabolised in the liver and intestine by the cytochrome P450 3A (CYP3A) isoforms CYP3A4 and CYP3A5. This review focusses on the clinical aspects of tacrolimus pharmacodynamics, such as efficacy and toxicity. Factors affecting tacrolimus pharmacokinetics, including pharmacogenetics and the rationale for routine CYP3A5*1/*3 genotyping in prospective paediatric renal transplant recipients, are also reviewed. Therapeutic drug monitoring, including pre-dose concentrations and pharmacokinetic profiles with the available "reference values", are discussed. Factors contributing to high intra-patient variability in tacrolimus exposure and its impact on clinical outcome are also reviewed. Lastly, suggestions for future research and clinical perspectives are discussed.
Collapse
|
81
|
Immunomics of Renal Allograft Acute T Cell-Mediated Rejection Biopsies of Tacrolimus- and Belatacept-Treated Patients. Transplant Direct 2018; 5:e418. [PMID: 30656216 PMCID: PMC6324913 DOI: 10.1097/txd.0000000000000857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
Supplemental digital content is available in the text. Background Belatacept-based therapy in kidney transplant recipient has been shown to increase long-term renal allograft and patient survival compared with calcineurin inhibitor–based therapy, however, with an increased risk of acute T cell-mediated rejection (aTCMR). An improved understanding of costimulation blockade-resistant rejections could lead to a more personalized approach to belatacept therapy. Here, immunomic profiles of aTCMR biopsies of patients treated with either tacrolimus or belatacept were compared. Methods Formalin-fixed paraffin-embedded renal transplant biopsies were used for immunohistochemistry and gene expression analysis using the innovative NanoString technique. To validate NanoString, transcriptomic profiles of patients with and without biopsy-proven aTCMR were compared. Biopsies from 31 patients were studied: 14 tacrolimus-treated patients with aTCMR, 11 belatacept-treated patients with aTCMR, and 6 controls without rejection. Results A distinct pattern was seen in biopsies with aTCMR compared to negative controls: 78 genes had a higher expression in the aTCMR group (false discovery rate P value <.05 to 1.42e–05). The most significant were T cell-associated genes (CD3, CD8, and CD4; P < 1.98e-04), γ-interferon-inducible genes (CCL5, CXCL9, CXCL11, CXCL10, TBX21; P < 1.33e-04) plus effector genes (GNLY, GZMB, ITGAX; P < 2.82e-03). Immunophenotypical analysis of the classic immune markers of the innate and adaptive immune system was comparable between patients treated with either tacrolimus or belatacept. In addition, the transcriptome of both groups was not significantly different. Conclusions In this small pilot study, no difference was found in immunomics of aTCMR biopsies of tacrolimus- and belatacept-treated patients. This suggests that clinically diagnosed aTCMR reflects a final common pathway of allorecognition which is unaffected by the type of immunosuppressive therapy.
Collapse
|
82
|
Woillard JB, Gatault P, Picard N, Arnion H, Anglicheau D, Marquet P. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transplant 2018; 18:2905-2913. [PMID: 29689130 DOI: 10.1111/ajt.14894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 01/25/2023]
Abstract
This work investigated, in two large cohorts of French renal transplants treated with tacrolimus, the influence of donor and recipient ABCB1, CYP3A4, and CYP3A5 genotypes on the risk of allograft loss. A discovery and a replication population of 330 and 369 adult renal transplant patients, each from a different transplantation center and all receiving a tacrolimus-based immunosuppressive regimen, were retrospectively genotyped. The influence of genetic factors and other known risk factors on allograft loss was investigated using multivariate Cox proportional hazard analyses. The existence of previous transplantations (per unit HR = 1.89 [1.10-3.26] P = .0216) and the donor ABCB1 c.1199GA/AA genotype (GA/AAvs GG: HR = 3.22 [1.14-9.09], P = .0288) were associated with an increased risk of allograft loss in the discovery cohort and with graft loss due to humoral rejection in the replication cohort (per unit HR = 2.26 [1.34-3.81], P = .00229; GA/AAvs GG HR = 3.42 [1.28-9.16], P = .0142). Genotyping the donor for the ABCB1 c.1199 G>A (exon 11, rs2229109) allele may be of interest before prescribing tacrolimus to the recipient, although this polymorphism is rather rare and its effect may be limited to certain mechanisms of graft loss.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Philippe Gatault
- CHRU Bretonneau, Service de néphrologie et Immunologie Clinique, Tours, France.,Université de Tours, Tours, France
| | - Nicolas Picard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Hélène Arnion
- INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation, Adulte Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Pierre Marquet
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| |
Collapse
|
83
|
Conversion from Twice-Daily Prograf ® to Once-Daily Advagraf ® in Multi-ethnic Asian Adult Renal Transplant Recipients With or Without Concomitant Use of Diltiazem: Impact of CYP3A5 and MDR1 Genetic Polymorphisms on Tacrolimus Exposure. Eur J Drug Metab Pharmacokinet 2018; 44:481-492. [PMID: 30471066 DOI: 10.1007/s13318-018-0531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Tacrolimus is the mainstay of immunosuppression in renal transplantation. Given that once-daily administration improves patient compliance, 1:1 dose conversion from twice-daily Prograf® to once-daily Advagraf® is recommended. Although cytochrome P450 (CYP) 3A5 and multi-drug resistance 1 (MDR1) polymorphisms influence tacrolimus concentrations, it is unknown if these impact on conversion. This study investigated the change in the pharmacokinetics of tacrolimus after conversion from Prograf® to Advagraf® and examined the impact of CYP3A5 and MDR1 C3435T polymorphisms on those pharmacokinetics. METHODS A prospective open-label pharmacokinetic study of 1:1 conversion from Prograf® to Advagraf® with or without diltiazem was conducted on 26 stable renal transplant recipients. Blood samples were collected over 24 h during each phase, tacrolimus concentrations were assayed, and noncompartmental pharmacokinetic analysis was performed. All participants were genotyped for CYP3A5*3 and MDR1 C3435T. RESULTS After conversion, without diltiazem, the area under the concentration-time curve at steady state from 0 to 24 h after dose administration (AUCss, 0-24) was significantly reduced [median 224 (range 172-366) vs. 184 (104-347) ng·h/mL, p = 0.006, n = 26]. A decrease in tacrolimus exposure (median 21%) was only evident among CYP3A5 expressors [227 (172-366) vs. 180 (104-347) ng·h/mL, p = 0.014, n = 18], not among non-expressors [215 (197-290) vs. 217 (129-281) ng·h/mL, p = 0.263, n = 8]. In contrast, among CYP3A5 expressors receiving diltiazem, AUCss, 0-24 did not change significantly upon conversion [229 (170-296) vs. 221 (123-342) ng·h/mL, p = 0.575, n = 10]. An independent effect was not evident for MDR1 C3435T polymorphism. CONCLUSION The high prevalence of CYP3A5 polymorphism among Asians may lead to a significant reduction in tacrolimus exposure with 1:1 dose conversion of Prograf® to Advagraf®. These results advocate for CYP3A5 determination prior to conversion, and suggest that 1:1.25 conversion should be used for CYP3A5 expressors and 1:1 conversion for other patients.
Collapse
|
84
|
Effect of CYP3A5 genotype on hospitalization cost for kidney transplantation. Int J Clin Pharm 2018; 41:88-95. [DOI: 10.1007/s11096-018-0750-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
|
85
|
Min S, Papaz T, Lafreniere-Roula M, Nalli N, Grasemann H, Schwartz SM, Kamath BM, Ng V, Parekh RS, Manlhiot C, Mital S. A randomized clinical trial of age and genotype-guided tacrolimus dosing after pediatric solid organ transplantation. Pediatr Transplant 2018; 22:e13285. [PMID: 30178515 DOI: 10.1111/petr.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tacrolimus pharmacokinetics are influenced by age and CYP3A5 genotype with CYP3A5 expressors (CYP3A5*1/*1 or *1/*3) being fast metabolizers. However, the benefit of genotype-guided dosing in pediatric solid organ transplantation has been understudied. OBJECTIVE To determine whether age and CYP3A5 genotype-guided starting dose of tacrolimus result in earlier attainment of therapeutic drug concentrations. SETTING Single hospital-based transplant center. METHODS This was a randomized, semi-blinded, 30-day pilot trial. Between 2012 and 2016, pediatric patients listed for solid organ transplant were consented and enrolled into the study. Participants were categorized as expressors, CYP3A5*1/*1 or CYP3A5*1/*3, and nonexpressors, CYP3A5*3/*3. Patients were stratified by age (≤ or > 6 years) and randomized (2:1) after transplant to receive genotype-guided (n = 35) or standard (n = 18) starting dose of tacrolimus for 36-48 hours and were followed for 30 days. RESULTS Median age at transplant in the randomized cohort was 2.1 (0.75-8.0) years; 24 (45%) were male. Participants in the genotype-guided arm achieved therapeutic concentrations earlier at a median (IQR) of 3.4 (2.5-6.6) days compared to those in the standard dosing arm of 4.7 (3.5-8.6) days (P = 0.049), and had fewer out-of-range concentrations [OR (95% CI) = 0.60 (0.44, 0.83), P = 0.002] compared to standard dosing, with no difference in frequency of adverse events between the two groups. CONCLUSIONS CYP3A5 genotype-guided dosing stratified by age resulted in earlier attainment of therapeutic tacrolimus concentrations and fewer out-of-range concentrations.
Collapse
Affiliation(s)
- Sandar Min
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Tanya Papaz
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Myriam Lafreniere-Roula
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nadya Nalli
- Department of Pharmacy, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hartmut Grasemann
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Schwartz
- Department of Cardiac Critical Care Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Binita M Kamath
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vicky Ng
- Transplant and Regenerative Medicine Centre, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rulan S Parekh
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Child Health Evaluative Sciences Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Cedric Manlhiot
- Cardiovascular Data Management Centre (CVDMC) Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Seema Mital
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
86
|
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018; 19:513-522. [PMID: 29380698 PMCID: PMC6182932 DOI: 10.2174/1389200219666180129151948] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
Background: Tacrolimus (Tac, or FK506), a calcineurin inhibitor (CNI), is the first-line immu-nosuppressant which consists of the footstone as immunosuppressive regimens in kidney transplantation. However, the drug toxicity and the significant differences of pharmacokinetics (PK) and pharmacodynam-ics (PD) among individuals are hidden troubles for clinical application. Recently, emerging evidences of Tac pharmacogenetics (PG) regarding drug absorption, metabolism, disposition, excretion and response are discovered for better understanding of this drug. Method: We reviewed the published articles regarding the Tac PG and its effects on PK and PD in kidney transplantation. In addition, we summarized information on polygenic algorithms. Results: The polymorphism of genes encoding metabolic enzymes and transporters related to Tac were largely investigated, but the results were inconsistent. In addition to CYP3A4, CYP3A5 and P-gp (also known as ABCB1), single nucleotide polymorphisms (SNPs) might also affect the PK and PD parameters of Tac. Conclusion: The correlation between Tac PK, PD and PG is very complex. Although many factors need to be verified, it is envisaged that thorough understanding of PG may assist clinicians to predict the optimal starting dosage, help adjust the maintenance regimen, as well as identify high risk patients for adverse ef-fects or drug inefficacy
Collapse
Affiliation(s)
- Meng Yu
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mouze Liu
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Yingzi Ming
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
87
|
Phupradit A, Vadcharavivad S, Ingsathit A, Kantachuvesiri S, Areepium N, Sra-Ium S, Auamnoy T, Sukasem C, Sumethkul V, Kitiyakara C. Impact of POR and CYP3A5 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in the Early Post-operative Period Following Kidney Transplantation. Ther Drug Monit 2018; 40:549-557. [PMID: 29878980 DOI: 10.1097/ftd.0000000000000542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tacrolimus, a critical dose drug, is widely used in transplantation. Knowing the contribution of genetic factors, which significantly influence tacrolimus variability, is beneficial in the personalization of its starting dose. The significant impact of CYP3A5*3 polymorphisms on tacrolimus exposure has been reported. Conflicting results of the additional influence of POR*28 polymorphisms on tacrolimus pharmacokinetic interindividual variability have been observed among different populations. The objective of this study was to explore the interaction between POR*28 and CYP3A5*3 polymorphisms and their main effects on tacrolimus trough concentration to dose ratios on day 7 after kidney transplantation. METHODS Two hundred sixteen adult kidney transplant recipients participated in this retrospective study. All participants received a twice daily tacrolimus regimen. Blood samples and data were collected on day 7 after transplantation. A 2-way analysis of covariance was performed. Tested covariates were age, hemoglobin, serum albumin, and prednisolone dose. RESULTS A 2 × 2 analysis of covariance revealed that the interaction between CYP3A5 polymorphisms (CYP3A5 expresser and CYP3A5 nonexpresser) and POR polymorphisms (POR*28 carrier and POR*28 noncarrier) was not significant (F(1, 209) = 2.473, P = 0.117, (Equation is included in full-text article.)= 0.012). The predicted main effect of CYP3A5 and POR polymorphisms was significant (F(1, 209) = 105.565, P < 0.001, (Equation is included in full-text article.)= 0.336 and F(1, 209) = 4.007, P = 0.047, (Equation is included in full-text article.)= 0.019, respectively). Hemoglobin, age, and steroid dose influenced log C0/dose of tacrolimus (F(1, 209) = 20.612, P < 0.001, (Equation is included in full-text article.)= 0.090; F(1, 209) = 14.360, P < 0.001, (Equation is included in full-text article.)= 0.064; and F(1, 209) = 5.512, P = 0.020, (Equation is included in full-text article.)= 0.026, respectively). CONCLUSIONS After adjusting for the influences of hemoglobin, age, and prednisolone dose, significant impacts of the CYP3A5 and POR polymorphisms on tacrolimus exposure were found. The effect of POR*28 and CYP3A5*3 polymorphisms during the very early period after kidney transplantation is independent of each other.
Collapse
Affiliation(s)
- Annop Phupradit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Pharmacy Division, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somratai Vadcharavivad
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Atiporn Ingsathit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surasak Kantachuvesiri
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthada Areepium
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supasil Sra-Ium
- Pharmacy Division, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Titinun Auamnoy
- Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasant Sumethkul
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
88
|
Human leukocyte antigen mismatch and precision medicine in transplantation. Curr Opin Organ Transplant 2018; 23:500-505. [DOI: 10.1097/mot.0000000000000540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Abstract
This review is focused on present and future biomarkers, along with pharmacogenomics used in clinical practice for kidney transplantation. It aims to highlight biomarkers that could potentially be used to improve kidney transplant early and long-term graft survival, but also potentially patient co-morbidity. Future directions for improving outcomes are discussed, which include immune tolerance and personalising immunosuppression regimens.
Collapse
|
90
|
Calabrese DR, Florez R, Dewey K, Hui C, Torgerson D, Chong T, Faust H, Rajalingam R, Hays SR, Golden JA, Kukreja J, Singer JP, Greenland JR. Genotypes associated with tacrolimus pharmacokinetics impact clinical outcomes in lung transplant recipients. Clin Transplant 2018; 32:e13332. [PMID: 29920787 DOI: 10.1111/ctr.13332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
Most lung transplantation immunosuppression regimens include tacrolimus. Single nucleotide polymorphisms (SNPs) in genes important to tacrolimus bioavailability and clearance (ABCB1, CYP3A4, and CYP3A5) are associated with differences in tacrolimus pharmacokinetics. We hypothesized that polymorphisms in these genes would impact immunosuppression-related outcomes. We categorized ABCB1, CYP3A4, and CYP3A5 SNPs for 321 lung allograft recipients. Genotype effects on time to therapeutic tacrolimus level, interactions with antifungal medications, concentration to dose (C0 /D), acute kidney injury, and rejection were assessed using linear models adjusted for subject characteristics and repeat measures. Compared with CYP3A poor metabolizers (PM), time to therapeutic tacrolimus trough was increased by 5.1 ± 1.6 days for CYP3A extensive metabolizers (EM, P < 0.001). In the post-operative period, CYP3A intermediate metabolizers spent 1.2 ± 0.5 days less (P = 0.01) and EM spent 2.1 ± 0.5 days less (P < 0.001) in goal tacrolimus range than CYP3A PM. Azole antifungals interacted with CYP3A genotype in predicting C0 /D (P < 0.001). Increased acute kidney injury rates were observed in subjects with high ABCB1 function (OR 3.0, 95% CI 1.1-8.6, P = 0.01). Lower rates of acute cellular rejection were observed in subjects with low ABCB1 function (OR 0.36, 95% CI 0.07-0.94, P = 0.02). Recipient genotyping may help inform tacrolimus dosing decisions and risk of adverse clinical outcomes.
Collapse
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, University of California, San Francisco, California
| | - Rebecca Florez
- Department of Clinical Pharmacy, University of California, San Francisco, California
| | - Katherine Dewey
- Department of Clinical Pharmacy, University of California, San Francisco, California
| | - Christine Hui
- Department of Clinical Pharmacy, University of California, San Francisco, California
| | - Dara Torgerson
- Department of Medicine, University of California, San Francisco, California
| | - Tiffany Chong
- Department of Medicine, University of California, San Francisco, California
| | - Hilary Faust
- Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California, San Francisco, California
| | - Jeffrey A Golden
- Department of Medicine, University of California, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, California.,Medical Service, Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
91
|
Wiebe C, Ho J, Gibson IW, Rush DN, Nickerson PW. Carpe diem-Time to transition from empiric to precision medicine in kidney transplantation. Am J Transplant 2018; 18:1615-1625. [PMID: 29603637 DOI: 10.1111/ajt.14746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The current immunosuppressive pipeline in kidney transplantation is limited. In part, this is due to excellent one-year allograft outcomes with the current standard of care (ie, calcineurin inhibitor in combination with anti-proliferative agents). Despite this success, a recent Federal government-sponsored systematic review has identified gaps/limits in the evidence of what constitutes optimal calcineurin inhibitor use in the short- and long-term. Moreover, recent empiric approaches to minimize/withdraw/convert from calcineurin inhibitors have come with the price of increased alloreactivity. As the time horizon to replace calcineurin inhibitors on a global scale may be distant, the transplant community should seize the opportunity to develop ways to personalize calcineurin inhibitor immunosuppression to the individual-transitioning from empiricism to precision. The authors argue in this viewpoint that the path to precision will require measures capable of detecting subclinical alloreactivity to define adequacy of immunosuppression, as well as novel genetic analytics to accurately define alloimmune risk at the individual level-both approaches will require validation in clinical trials.
Collapse
Affiliation(s)
- Chris Wiebe
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Diagnostic Services of Manitoba, Winnipeg, MB, Canada
| | - Julie Ho
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ian W Gibson
- Diagnostic Services of Manitoba, Winnipeg, MB, Canada.,Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David N Rush
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter W Nickerson
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Diagnostic Services of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
92
|
Yang L, de Winter BCM, van Schaik RHN, Xie RX, Li Y, Andrews LM, Shuker N, Bahmany S, Koch B, van Gelder T, Hesselink DA. CYP3A5 and ABCB1 polymorphisms in living donors do not impact clinical outcome after kidney transplantation. Pharmacogenomics 2018; 19:895-903. [PMID: 29991328 DOI: 10.2217/pgs-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the association between donor CYP3A5 and ABCB1 polymorphisms and tacrolimus (Tac)-induced nephrotoxicity and renal function in kidney transplant recipients. Methods: The CYP3A5 6986A>G and ABCB1 3435C>T polymorphisms were determined in 237 recipients and donors. Results: There was no significant association between Tac-related nephrotoxicity and donor CYP3A5 and ABCB1 genotype. The donor ABCB1 3435C>T polymorphism was associated with estimated glomerular filtration rate on day 7 and month 1. The combined donor–recipient ABCB1 genotype (3435C>T polymorphism) was significantly related with estimated glomerular filtration rate on day 3 and 7 in univariate analysis. However, these differences were no longer statistically significant in multivariate analysis. Conclusion: A genetic analysis of ABCB1 and CYP3A5 of kidney transplant donors is not helpful to improve renal transplant outcomes.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, PR China
| | - Brenda CM de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron HN van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rui-Xiang Xie
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, PR China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, PR China
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nauras Shuker
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Soma Bahmany
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Birgit Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology & Transplantation, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology & Transplantation, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
93
|
Zhang X, Lin G, Tan L, Li J. Current progress of tacrolimus dosing in solid organ transplant recipients: Pharmacogenetic considerations. Biomed Pharmacother 2018; 102:107-114. [DOI: 10.1016/j.biopha.2018.03.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
|
94
|
Kuypers DRJ. “What do we know about tacrolimus pharmacogenetics in transplant recipients?”. Pharmacogenomics 2018; 19:593-597. [DOI: 10.2217/pgs-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dirk RJ Kuypers
- Department of Nephrology & Renal Transplantation, University Hospitals Leuven, Brabant, Belgium
- Department of Microbiology & Immunology, University of Leuven, Brabant, Belgium
| |
Collapse
|
95
|
Woillard JB, Saint-Marcoux F, Debord J, Åsberg A. Pharmacokinetic models to assist the prescriber in choosing the best tacrolimus dose. Pharmacol Res 2018; 130:316-321. [DOI: 10.1016/j.phrs.2018.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/10/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
|
96
|
Pasternak AL, Zhang L, Hertz DL. CYP3A pharmacogenetic association with tacrolimus pharmacokinetics differs based on route of drug administration. Pharmacogenomics 2018; 19:563-576. [DOI: 10.2217/pgs-2018-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tacrolimus is prescribed to the majority of transplant recipients to prevent graft rejection, and although patients are maintained on oral administration, nonoral routes of administration are frequently used in the initial post-transplant period. CYP3A5 genotype is an established predictor of oral tacrolimus dose requirements, and clinical guideline recommendations exist for CYP3A5-guided dose selection. However, the association between CYP3A5 and nonoral tacrolimus administration is currently poorly understood, and differs from the oral tacrolimus relationship. In addition to CYP3A5, other pharmacogenes associated with CYP3A activity, including CYP3A4, CYP3A7 and POR have also been identified as predictors of tacrolimus exposure. This review will describe the current understanding of the relationship between these pharmacogenes and tacrolimus pharmacokinetics after oral and nonoral administration.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Lu Zhang
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
97
|
Influence of CYP3A5 genetic differences in tacrolimus on quantitative interstitial fibrosis and long-term graft function in kidney transplant recipients. Int Immunopharmacol 2018; 58:57-63. [PMID: 29550576 DOI: 10.1016/j.intimp.2018.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023]
Abstract
The impact of CYP3A5 polymorphisms on clinical outcomes is controversial. The present study investigated the impact of CYP3A5 genetic differences on the development of interstitial fibrosis (IF) from 0 h to 1 year post-transplantation in biopsy sections from 96 living kidney recipients under the same target trough regimen of tacrolimus. The relationships between CYP3A5 polymorphisms and long-term graft function and death-censored graft survival were also examined. A quantitative analysis of IF was performed using computer-assisted imaging on virtual slides. Percent IF (%IF) in the cortical region at 0 h was defined as the baseline, and increases in the ratio of %IF 1 year post-transplantation were calculated. The relationships between CYP3A5 genetic differences and the development of IF, the incidence of clinical events, and the long-term function and death-censored survival of grafts were assessed. The mean increase in the ratio of %IF from 0 h to 1 year was 1.38 ± 0.74-fold. Despite therapeutic drug monitoring (TDM), trough levels of tacrolimus were lower in carriers with the CYP3A5*1 allele (expressers) than in those with the CTP3A5*3/*3 genotype (non-expressers) throughout the 1-year post-transplantation period. However, CYP3A5 genetic differences were not associated with the development of IF, any clinical events, or the long-term function and survival of grafts. The clinical impact of CYP3A5 genetic differences may be small under the current immunosuppressive regimen consisting of mycophenolate mofetil, steroids, basiliximab, and lower target trough levels of tacrolimus with suitable TDM in a low immunological risk population.
Collapse
|
98
|
Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:23-33. [PMID: 29563827 PMCID: PMC5846312 DOI: 10.2147/pgpm.s107710] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tacrolimus is a commonly used immunosuppressant after kidney transplantation. It has a narrow therapeutic range and demonstrates wide interindividual variability in pharmacokinetics, leading to potential underimmunosuppression or toxicity. Genetic polymorphism in CYP3A5 enzyme expression contributes to differences in tacrolimus bioavailability between individuals. Individuals carrying one or more copies of the wild-type allele *1 express CYP3A5, which increases tacrolimus clearance. CYP3A5 expressers require 1.5 to 2-fold higher tacrolimus doses compared to usual dosing to achieve therapeutic blood concentrations. Individuals with homozygous *3/*3 genotype are CYP3A5 nonexpressers. CYP3A5 nonexpression is the most frequent phenotype in most ethnic populations, except blacks. Differences between CYP3A5 genotypes in tacrolimus disposition have not translated into differences in clinical outcomes, such as acute rejection and graft survival. Therefore, although genotype-based dosing may improve achievement of therapeutic drug concentrations with empiric dosing, its role in clinical practice is unclear. CYP3A5 genotype may predict differences in absorption of extended-release and immediate-release oral formulations of tacrolimus. Two studies found that CYP3A5 expressers require higher doses of tacrolimus in the extended-release formulation compared to immediate release. CYP3A5 genotype plays a role in determining the impact of interacting drugs, such as fluconazole, on tacrolimus pharmacokinetics. Evidence conflicts regarding the impact of CYP3A5 genotype on risk of nephrotoxicity associated with tacrolimus. Further study is required.
Collapse
Affiliation(s)
- Lucy Chen
- Kidney Transplant Program, St Michael's Hospital, Toronto, ON, Canada
| | | |
Collapse
|
99
|
Kuypers DRJ. Tacrolimus Formulations and African American Kidney Transplant Recipients: When Do Details Matter? Am J Kidney Dis 2018; 71:302-305. [PMID: 29477174 DOI: 10.1053/j.ajkd.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven; and Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
100
|
Bank PCD, Swen JJ, Guchelaar HJ. Implementation of Pharmacogenomics in Everyday Clinical Settings. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:219-246. [PMID: 29801576 DOI: 10.1016/bs.apha.2018.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, germline pharmacogenomics (PGx) is successfully implemented within certain specialties in clinical care. With the integration of PGx in pharmacotherapy multiple stakeholders are involved, which are identified in this chapter. Clinically relevant pharmacogenes with their related PGx test are discussed, along with diagnostic test criteria to guide clinicians and policy makers in PGx test selection. The chapter further reviews the similarities and the differences between the guidelines of the Dutch Pharmacogenetics Working Group and the Clinical Pharmacogenetics Implementation Consortium which both support healthcare professionals in understanding PGx test results and help guiding pharmacotherapy by providing evidence-based dosing recommendations. Finally, clinical studies which provide scientific evidence and information on cost-effectiveness supporting clinical implementation of PGx in clinical care are discussed along with the remaining barriers for adoption of PGx testing by healthcare professionals.
Collapse
Affiliation(s)
- Paul C D Bank
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|