51
|
Lee RH, Morgan B, Liu C, Fellowes JR, Guénard B. Secondary forest succession buffers extreme temperature impacts on subtropical Asian ants. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Roger Ho Lee
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Brett Morgan
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Cong Liu
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology Harvard University 26 Oxford Street Cambridge Massachusetts 02138 USA
| | | | - Benoit Guénard
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| |
Collapse
|
52
|
Chapman CA, Peres CA. Primate conservation: Lessons learned in the last 20 years can guide future efforts. Evol Anthropol 2021; 30:345-361. [PMID: 34370373 DOI: 10.1002/evan.21920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Twenty years ago, we published an assessment of the threats facing primates and with the passing of two decades, we re-evaluate identified threats, consider emerging pressures, identify exciting new avenues of research, and tackle how to change the system to rapidly advance primate and primate habitat conservation. Habitat destruction and hunting have increased, the danger of looming climate change is clearer, and there are emerging threats such as the sublethal effects of microplastics and pesticides. Despite these negative developments, protected areas are increasing, exciting new tools are now available, and the number of studies has grown exponentially. Many of the changes that need to occur to make rapid progress in primate conservation are in our purview to modify. We identify several dimensions indicating the time is right to make large advances; however, the question that remains is do we have the will to prevent widespread primate annihilation and extinction?
Collapse
Affiliation(s)
- Colin A Chapman
- Wilson Center, Washington, District of Columbia, USA.,Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA.,School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Carlos A Peres
- Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, UK.,Instituto Juruá, Manaus, Brazil
| |
Collapse
|
53
|
Nicasio-Arzeta S, Zermeño-Hernández IE, Maza-Villalobos S, Benítez-Malvido J. Landscape structure shapes the diversity of tree seedlings at multiple spatial scales in a fragmented tropical rainforest. PLoS One 2021; 16:e0253284. [PMID: 34270566 PMCID: PMC8284835 DOI: 10.1371/journal.pone.0253284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
The maintenance of seedling diversity of animal-dispersed tree species is fundamental for the structure and function of forest patches in fragmented tropical rainforests. Nonetheless, the effects of landscape structure at different spatial scales on α- and β-diversity of tree seedling communities are recently explored. Using a multi-scale approach, we assessed the relative effect of landscape composition and configuration on α- and β-diversity of animal-dispersed seedlings within 16 forest patches in the Lacandona rainforest, Mexico. We assessed these effects at 13 spatial scales (from 300 to 1500 m radius, at 100 m intervals) for three metrics of effective number of species considering α- and β-diversity. We found that α-diversity was largely affected by landscape composition and β-diversity by landscape configuration. On the one hand, the amount of secondary forest influenced α-diversity. Additionally, species richness increased in landscapes with highly aggregated forest patches. On the other hand, β-diversity was affected positively by forest fragmentation and negatively by the edge contrast of forest patches with the surrounding matrix. Our findings indicate that landscape configuration is a strong driver of seedling diversity in highly deforested rainforests. Promoting forest patches and secondary forests through payment for ecosystem services' programs, favoring matrix quality within land-sharing schemes of smallholder agriculture and secondary forest management, and identifying restoration opportunities for assisted or unassisted natural regeneration are urgently needed for conservation of seedling diversity in human-modified tropical landscapes.
Collapse
Affiliation(s)
- Sergio Nicasio-Arzeta
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Morelia, México
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | | | | | - Julieta Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
54
|
Ribeiro JR, Las-Casas FMG, Lima HSD, Silva WADGE, Naka LN. The Effect of Forest Management on the Avifauna of a Brazilian Dry Forest. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.631247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conversion of tropical habitats has dramatic implications on biodiversity and represents one of the greatest conservation challenges of our time. Seasonally Dry Tropical Forests (SDTF), which are disjointly distributed throughout the Neotropics, are especially susceptible to human activities. The Caatinga Dry Forest, located in the semi-arid interior of northeastern Brazil, represents not only the largest and most biologically diverse nucleus of SDTF, but also the world’s most densely populated semi-arid region, with ever-growing pressure on its natural resources. To prevent illegal logging, conservation agencies looked at forest management, where an area is divided in smaller stands which are gradually logged and allowed to regrow for a period of time, when a new cutting cycle should reinitiate. The impacts of these management schemes on biodiversity, however, remain largely untested. We conducted standardized avian surveys to evaluate the effects of forest management on the avian community at a 1,670 ha privately owned property located on the Chapada do Araripe, northeastern Brazil. This area was divided in 22 forest stands, half of which had already been logged at the time of our sampling, creating a gradient of logged and natural forests and an 11-yr chrono-sequence of forest regeneration. Our results show that logged areas present fewer individuals, fewer species, and different avian assemblages than unlogged forests. Such differences are mostly driven by forest-dependent species, which were overwhelmingly affected by forest management. Our results show that although logged forests tend to recover its height after a decade, they do not recover the originally forest cover, measured by the Normalized Difference Vegetation Index. Likewise, decade-long recovering stands continue to show lower species richness, lower bird abundance, and different avian composition than unlogged forests. We identified a set of bird species that are more affected by forest management (ecological losers) and a group of birds that apparently benefit from the referred changes in land use (ecological winners). We conclude that completely managing an entire area may cause the extirpation of several forest-dependent species. We therefore suggest keeping logged and unlogged plots intermingled, to avoid local extinctions and the complete modification of the original avifauna.
Collapse
|
55
|
Menezes Pinto Í, Emer C, Cazetta E, Morante-Filho JC. Deforestation Simplifies Understory Bird Seed-Dispersal Networks in Human-Modified Landscapes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global biodiversity is threatened by land-use changes through human activities. This is mainly due to the conversion of continuous forests into forest fragments surrounded by anthropogenic matrices. In general, sensitive species are lost while species adapted to disturbances succeed in altered environments. However, whether the interactions performed by the persisting species are also modified, and how it scales up to the network level throughout the landscape are virtually unknown in most tropical hotspots of biodiversity. Here we evaluated how landscape predictors (forest cover, total core area, edge density, inter-patch isolation) and local characteristics (fruit availability, vegetation complexity) affected understory birds seed-dispersal networks in 19 forest fragments along the hyperdiverse but highly depauperate northeast distribution of the Brazilian Atlantic Forest. Also, our sampled sites were distributed in two regions with contrasting land cover changes. We used mist nets to obtain samples of understory bird food contents to identify the plant species consumed and dispersed by them. We estimated network complexity on the basis of the number of interactions, links per species, interaction evenness, and modularity. Our findings showed that the number of interactions increased with the amount of forest cover, and it was significantly lower in the more deforested region. None of the other evaluated parameters were affected by any other landscape or local predictors. We also observed a lack of significant network structure compared to null models, which we attribute to a pervasive impoverishment of bird and plant communities in these highly modified landscapes. Our results demonstrate the importance of forest cover not only to maintain species diversity but also their respective mutualistic relationships, which are the bases for ecosystem functionality, forest regeneration and the provision of ecological services.
Collapse
|
56
|
Kulikowski AJ, Zahawi RA, Holl KD. Effects of insect herbivory on seedling mortality in restored and remnant tropical forest. Restor Ecol 2021. [DOI: 10.1111/rec.13467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Andy J. Kulikowski
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
| | - Rakan A. Zahawi
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
- Lyon Arboretum University of Hawai'i at Mānoa 3860 Mānoa Road Honolulu Hawaii 96822 U.S.A
| | - Karen D. Holl
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
| |
Collapse
|
57
|
Cunha JASD, Fonsêca NC, Cunha JSA, Rodrigues LDS, Gusmão RAFD, Lins-e-Silva ACB. Selective logging in a chronosequence of Atlantic Forest: drivers and impacts on biodiversity and ecosystem services. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
58
|
Integrating farmers’ decisions on the assessment of forest regeneration drivers in a rural landscape of Southeastern Brazil. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
59
|
Arnold H, Deacon AE, Hulme MF, Sansom A, Jaggernauth D, Magurran AE. Contrasting trends in biodiversity of birds and trees during succession following cacao agroforest abandonment. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Haley Arnold
- School of Biology University of St Andrews St Andrews UK
| | - Amy E. Deacon
- Department of Life Sciences The University of the West Indies St Augustine Trinidad and Tobago
| | - Mark F. Hulme
- Department of Life Sciences The University of the West Indies St Augustine Trinidad and Tobago
| | - Alex Sansom
- Trinidad and Tobago Field Naturalists’ Club Port of Spain Trinidad and Tobago
| | - Dan Jaggernauth
- Trinidad and Tobago Field Naturalists’ Club Port of Spain Trinidad and Tobago
| | | |
Collapse
|
60
|
A Remote Sensing Approach to Understanding Patterns of Secondary Succession in Tropical Forest. REMOTE SENSING 2021. [DOI: 10.3390/rs13112148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Monitoring biodiversity on a global scale is a major challenge for biodiversity conservation. Field assessments commonly used to assess patterns of biodiversity and habitat condition are costly, challenging, and restricted to small spatial scales. As ecosystems face increasing anthropogenic pressures, it is important that we find ways to assess patterns of biodiversity more efficiently. Remote sensing has the potential to support understanding of landscape-level ecological processes. In this study, we considered cacao agroforests at different stages of secondary succession, and primary forest in the Northern Range of Trinidad, West Indies. We assessed changes in tree biodiversity over succession using both field data, and data derived from remote sensing. We then evaluated the strengths and limitations of each method, exploring the potential for expanding field data by using remote sensing techniques to investigate landscape-level patterns of forest condition and regeneration. Remote sensing and field data provided different insights into tree species compositional changes, and patterns of alpha- and beta-diversity. The results highlight the potential of remote sensing for detecting patterns of compositional change in forests, and for expanding on field data in order to better understand landscape-level patterns of forest diversity.
Collapse
|
61
|
Recovery of Logged Tropical Montane Rainforests as Potential Habitats for Hainan Gibbon. FORESTS 2021. [DOI: 10.3390/f12060711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the world’s rarest ape, the main threat facing Hainan gibbon (Nomascus hainanus) is habitat degradation and loss caused by human disturbances. The insufficient area and continuous human disturbance in most of the existing habitats can hardly maintain the future recovery and development of the gibbon population. A large area of secondary tropical montane rainforest in recovery was retained in Bawangling National Nature Reserve after disturbance. Therefore, it is of great significance to study the recovery of these secondary forests for the protection and restoration of Hainan gibbon habitat. To explore the recovery of secondary tropical rainforests after different disturbances, and whether they have the potential to serve as the future habitats for Hainan gibbon, we calculated four dynamic indexes (including recruitment rate, mortality/loss rate, relative growth rate and turnover rate) of abundance and basal area for the total community and for food plants of Hainan gibbon based on data from two censuses of secondary forests recovered nearly 45 years after different disturbances (clear-cutting and selective-logging) and old-growth forest of tropical montane rainforest. The results are as follows: (1) There were no significant differences in recruitment rates, mortality rates and turnover rates of abundance and basal area between recovered clear-cutting forests, selectively logged forests and old-growth forests. (2) Abundance, basal area and species of small (1 < DBH ≤ 10 cm) and medium (10 ≤ DBH < 30 cm) food plants in the two disturbed forests were higher, while those of large food plants (DBH ≥ 30 cm) in the two forests were lower than in old-growth forests. (3) For the common food species occurring in all three kinds of communities, the relative growth rate of most small trees in clear-cutting forest was higher than that of old-growth forest. Our research demonstrates that the lack of large food plants is the key limiting factor for the development of the secondary mountain rainforest as habitats for Hainan gibbon at present. However, it has great potential to transform into suitable habitats through targeted restoration and management due to the high recruitment rate and relative growth rate of the small- and medium-sized food plants.
Collapse
|
62
|
Huanca Nuñez N, Chazdon RL, Russo SE. Seed-rain-successional feedbacks in wet tropical forests. Ecology 2021; 102:e03362. [PMID: 33834498 DOI: 10.1002/ecy.3362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Tropical forest regeneration after abandonment of former agricultural land depends critically on the input of tree seeds, yet seed dispersal is increasingly disrupted in contemporary human-modified landscapes. Here, we introduce the concept of seed-rain-successional feedbacks as a deterministic process in which seed rain is shaped by successional dynamics internal to a forest site and that acts to reinforce priority effects. We used a combination of time series and chronosequence approaches to investigate how the quantity and taxonomic and functional composition of seed rain change during succession and to evaluate the strength of seed-rain-successional feedbacks, relative to other deterministic and stochastic mechanisms, in secondary wet forests of Costa Rica. We found that both successional niches and seed-rain-successional feedbacks shaped successional trajectories in the seed rain. Determinism due to successional niche assembly was supported by the increasing convergence of community structure to that of a mature forest, in terms of both functional and taxonomic composition. With successional age, the proportions of large-seeded, shade-tolerant species in the seed rain increased, whereas the proportion of animal-dispersed species did not change significantly. Seed-rain-successional feedbacks increased in strength with successional age, as the proportion of immigrant seeds (species not locally represented in the site) decreased with successional age, and the composition of the seed rain became more similar to that of the adult trees at the forest site. The deterministic assembly generated by seed-rain-successional feedback likely contributed to the increasing divergence of secondary forest sites from each other during succession. To the extent that human modification of tropical forest landscapes reduces connectivity via factors such as forest cover loss, our results suggest that seed-rain-successional feedbacks are likely to increasingly shape regeneration trajectories in and amplify floristic heterogeneity among tropical secondary forests.
Collapse
Affiliation(s)
- Nohemi Huanca Nuñez
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, 68588-0118, USA
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, 68588-0118, USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, 68588-0660, USA
| |
Collapse
|
63
|
Dent DH, Estrada-Villegas S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol Evol 2021; 36:700-708. [PMID: 33966918 DOI: 10.1016/j.tree.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Tropical secondary forests are increasingly important for carbon sequestration and biodiversity conservation worldwide; yet, we still cannot accurately predict community turnover during secondary succession. We propose that integrating niche differentiation and dispersal limitation will generate an improved theoretical explanation of tropical forest succession. The interaction between seed sources and dispersers regulates seed movement throughout succession, and recent technological advances in animal tracking and molecular analyses enable us to accurately monitor seed movement as never before. We propose a framework to bridge the gap between niche differentiation and dispersal limitation. The Source-Disperser Limitation Framework (SDLF) provides a way to better predict secondary tropical forest succession across gradients of landscape disturbance by integrating seed sources and frugivore behavior.
Collapse
Affiliation(s)
- Daisy H Dent
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK; Smithsonian Tropical Research Institute, Balboa, Panama; Max Planck Institute for Animal Behavior, Konstanz, Germany.
| | - Sergio Estrada-Villegas
- Smithsonian Tropical Research Institute, Balboa, Panama; Yale School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
64
|
Extensive clonal propagation and resprouting drive the regeneration of a Brazilian dry forest. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWoody plant resprouting has received considerable attention in the last two decades as human disturbances continue to encroach on terrestrial ecosystems globally. We examined the regeneration mechanisms of a Caatinga dry forest in the context of slash-and-burn agriculture and resprouting ability of the local flora. We excavated two old fields (from 32) experiencing early forest regeneration dominated by the tree Pityrocarpa moniliformis (Fabaceae) to map clonal propagation and, in parallel, submitted 260 seedlings from 13 woody plant species to experimental clipping. What seemed to be ‘seedlings’ popping up around P. moniliformis stumps and remaining adults actually were condensed sets of root suckers connected via complex networks of long, ramified shallow horizontal roots without taproots. We mapped respectively 39 and 783 connected root suckers, which summed 96 m and 910 m in root length. Regarding the seedlings, 33% resprouted across nine species with resprouting rates varying between 5–100%. Seedling height before clipping positively influenced resprouting vigour. Our preliminary results suggest that the Caatinga dry forest supports a relatively high proportion of resprouting species, some of them able to clonally propagate and playing an ecosystem-level role by responding to early forest regeneration and high abundance/biomass across both regenerating and old-growth forests.
Collapse
|
65
|
Challenges during the execution, results, and monitoring phases of ecological restoration: Learning from a country-wide assessment. PLoS One 2021; 16:e0249573. [PMID: 33822816 PMCID: PMC8023452 DOI: 10.1371/journal.pone.0249573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/21/2021] [Indexed: 11/19/2022] Open
Abstract
Outcomes from restoration projects are often difficult for policymakers and stakeholders to assess, but this information is fundamental for scaling up ecological restoration actions. We evaluated technical aspects of the interventions, results (ecological and socio-economic) and monitoring practices in 75 restoration projects in Mexico using a digital survey composed of 137 questions. We found that restoration projects in terrestrial ecosystems generally relied on actions included in minimal (97%) and maximal (86%) intervention, while in wetlands, the preferred restoration strategies were intermediate (75%) and minimal intervention (63%). Only a third of the projects (38%) relied on collective learning as a source of knowledge to generate techniques (traditional management). In most of the projects (73%), multiple criteria (>2) were considered when selecting plant species for plantings; the most frequently used criterion was that plant species were found within the restoration area, native or naturalized (i.e., a circa situm criterion; 88%). In 48% of the projects, the biological material required for restoration (e.g., seeds and seedlings) were gathered or propagated by project implementers rather than purchased commercially. Only a few projects (between 33 and 34%) reached a high level of biodiversity recovery (>75%). Most of the projects (between 69 to71%) recovered less than 50% of the ecological services. Most of the projects (82%) led to improved individual relationships. The analysis revealed a need to implement strategies that are cost-effective, the application of traditional ecological knowledge and the inclusion of indigenous people and local communities in restoration programs at all stages—from planning to implementation, through monitoring. We also identified the need to expand research to develop effective tools to assess ecosystems’ regeneration potential and develop theoretical frameworks to move beyond short-term markers to set and achieve medium- and long-term goals. Cautious and comprehensive planning of national strategies must consider the abovementioned identified gaps.
Collapse
|
66
|
Di Sacco A, Hardwick KA, Blakesley D, Brancalion PHS, Breman E, Cecilio Rebola L, Chomba S, Dixon K, Elliott S, Ruyonga G, Shaw K, Smith P, Smith RJ, Antonelli A. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. GLOBAL CHANGE BIOLOGY 2021; 27:1328-1348. [PMID: 33494123 DOI: 10.1111/gcb.15498] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 05/21/2023]
Abstract
Urgent solutions to global climate change are needed. Ambitious tree-planting initiatives, many already underway, aim to sequester enormous quantities of carbon to partly compensate for anthropogenic CO2 emissions, which are a major cause of rising global temperatures. However, tree planting that is poorly planned and executed could actually increase CO2 emissions and have long-term, deleterious impacts on biodiversity, landscapes and livelihoods. Here, we highlight the main environmental risks of large-scale tree planting and propose 10 golden rules, based on some of the most recent ecological research, to implement forest ecosystem restoration that maximizes rates of both carbon sequestration and biodiversity recovery while improving livelihoods. These are as follows: (1) Protect existing forest first; (2) Work together (involving all stakeholders); (3) Aim to maximize biodiversity recovery to meet multiple goals; (4) Select appropriate areas for restoration; (5) Use natural regeneration wherever possible; (6) Select species to maximize biodiversity; (7) Use resilient plant material (with appropriate genetic variability and provenance); (8) Plan ahead for infrastructure, capacity and seed supply; (9) Learn by doing (using an adaptive management approach); and (10) Make it pay (ensuring the economic sustainability of the project). We focus on the design of long-term strategies to tackle the climate and biodiversity crises and support livelihood needs. We emphasize the role of local communities as sources of indigenous knowledge, and the benefits they could derive from successful reforestation that restores ecosystem functioning and delivers a diverse range of forest products and services. While there is no simple and universal recipe for forest restoration, it is crucial to build upon the currently growing public and private interest in this topic, to ensure interventions provide effective, long-term carbon sinks and maximize benefits for biodiversity and people.
Collapse
Affiliation(s)
| | | | - David Blakesley
- Wildlife Landscapes, Maidstone, UK
- Autism and Nature, Maidstone, UK
| | - Pedro H S Brancalion
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Loic Cecilio Rebola
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Kingsley Dixon
- Australian Research Council Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Missouri Botanical Garden, St Louis, MO, USA
| | - Stephen Elliott
- Forest Restoration Research Unit and Environmental Science Research Centre, Biology Department, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kirsty Shaw
- Botanic Gardens Conservation International, Richmond, UK
| | - Paul Smith
- Botanic Gardens Conservation International, Richmond, UK
| | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
67
|
Jakovac CC, Junqueira AB, Crouzeilles R, Peña-Claros M, Mesquita RCG, Bongers F. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biol Rev Camb Philos Soc 2021; 96:1114-1134. [PMID: 33709566 PMCID: PMC8360101 DOI: 10.1111/brv.12694] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
Secondary forests are increasingly important components of human‐modified landscapes in the tropics. Successional pathways, however, can vary enormously across and within landscapes, with divergent regrowth rates, vegetation structure and species composition. While climatic and edaphic conditions drive variations across regions, land‐use history plays a central role in driving alternative successional pathways within human‐modified landscapes. How land use affects succession depends on its intensity, spatial extent, frequency, duration and management practices, and is mediated by a complex combination of mechanisms acting on different ecosystem components and at different spatial and temporal scales. We review the literature aiming to provide a comprehensive understanding of the mechanisms underlying the long‐lasting effects of land use on tropical forest succession and to discuss its implications for forest restoration. We organize it following a framework based on the hierarchical model of succession and ecological filtering theory. This review shows that our knowledge is mostly derived from studies in Neotropical forests regenerating after abandonment of shifting cultivation or pasture systems. Vegetation is the ecological component assessed most often. Little is known regarding how the recovery of belowground processes and microbiota communities is affected by previous land‐use history. In published studies, land‐use history has been mostly characterized by type, without discrimination of intensity, extent, duration or frequency. We compile and discuss the metrics used to describe land‐use history, aiming to facilitate future studies. The literature shows that (i) species availability to succession is affected by transformations in the landscape that affect dispersal, and by management practices and seed predation, which affect the composition and diversity of propagules on site. Once a species successfully reaches an abandoned field, its establishment and performance are dependent on resistance to management practices, tolerance to (modified) soil conditions, herbivory, competition with weeds and invasive species, and facilitation by remnant trees. (ii) Structural and compositional divergences at early stages of succession remain for decades, suggesting that early communities play an important role in governing further ecosystem functioning and processes during succession. Management interventions at early stages could help enhance recovery rates and manipulate successional pathways. (iii) The combination of local and landscape conditions defines the limitations to succession and therefore the potential for natural regeneration to restore ecosystem properties effectively. The knowledge summarized here could enable the identification of conditions in which natural regeneration could efficiently promote forest restoration, and where specific management practices are required to foster succession. Finally, characterization of the landscape context and previous land‐use history is essential to understand the limitations to succession and therefore to define cost‐effective restoration strategies. Advancing knowledge on these two aspects is key for finding generalizable relations that will increase the predictability of succession and the efficiency of forest restoration under different landscape contexts.
Collapse
Affiliation(s)
- Catarina C Jakovac
- International Institute for Sustainability, Estrada Dona Castorina, 124, Rio de Janeiro, 22460-320, Brazil.,Forest Ecology and Management Group, Wageningen University & Research, Wageningen, 6700 AA, The Netherlands
| | - André B Junqueira
- International Institute for Sustainability, Estrada Dona Castorina, 124, Rio de Janeiro, 22460-320, Brazil.,Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Carrer de les Columnes s/n, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Renato Crouzeilles
- International Institute for Sustainability, Estrada Dona Castorina, 124, Rio de Janeiro, 22460-320, Brazil.,International Institute for Sustainability Australia, Canberra, ACT, 2602, Australia.,Mestrado Profissional em Ciências do Meio Ambiente, Universidade Veiga de Almeida, Rio de Janeiro, 20271-901, Brazil
| | - Marielos Peña-Claros
- Forest Ecology and Management Group, Wageningen University & Research, Wageningen, 6700 AA, The Netherlands
| | - Rita C G Mesquita
- Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Manaus, 69083-000, Brazil
| | - Frans Bongers
- Forest Ecology and Management Group, Wageningen University & Research, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
68
|
Nunes MH, Jucker T, Riutta T, Svátek M, Kvasnica J, Rejžek M, Matula R, Majalap N, Ewers RM, Swinfield T, Valbuena R, Vaughn NR, Asner GP, Coomes DA. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat Commun 2021; 12:1526. [PMID: 33750781 PMCID: PMC7943823 DOI: 10.1038/s41467-020-20811-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent. It is unclear whether tropical forest fragments within plantation landscapes are resilient to drought. Here the authors analyse LiDAR and ground-based data from the 2015-16 El Niño event across a logging intensity gradient in Borneo. Although regenerating forests continued to grow, canopy height near oil palm plantations decreased, and a strong edge effect extended up to at least 300 m away.
Collapse
Affiliation(s)
- Matheus Henrique Nunes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK. .,Department of Geosciences and Geography, University of Helsinki, Helsinki, 00014, Finland.
| | - Tommaso Jucker
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK.,School of Biological Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Terhi Riutta
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.,School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Martin Svátek
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Jakub Kvasnica
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Martin Rejžek
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Radim Matula
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague, 165 00, Czech Republic
| | | | - Robert M Ewers
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Tom Swinfield
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK
| | - Rubén Valbuena
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK.,School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | - Nicholas R Vaughn
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe AZ and Hilo, Tempe, HI, USA
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe AZ and Hilo, Tempe, HI, USA
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK.
| |
Collapse
|
69
|
Krishnadas M, Osuri AM. Environment shapes the spatial organization of tree diversity in fragmented forests across a human-modified landscape. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02244. [PMID: 33098608 DOI: 10.1002/eap.2244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Biodiversity patterns are shaped by the combination of dispersal, environment, and stochasticity, but how the influence of these drivers changes in fragmented habitats remains poorly understood. We examined patterns and relationships among total (γ) and site-level (α) diversity, and site-to-site variation in composition (β-diversity) of tree communities in structurally contiguous and fragmented tropical rainforests within a human-modified landscape in India's Western Ghats. First, for the entire landscape, we assessed the extent to which habitat type (fragment or contiguous forest), space and environment explained variation in α-diversity and composition. Next, within fragments and contiguous forest, we assessed the relative contribution of spatial proximity, environmental similarity, and their joint effects in explaining β-diversity. We repeated these assessments with β-diversity values corrected for the confounding effects of α- and γ-diversity using null models (β-deviation). Lower γ-diversity of fragments resulted from both lower α- and β-diversity compared to contiguous forests. However, β-deviation did not differ between contiguous forests and fragments. Fragmented and contiguous forest clearly diverged in floristic composition, which was attributable to β-diversity being driven by differences in elevation and MAP. Within fragmented forest, neither space nor environment explained β-diversity, but β-deviation increased with greater elevational differences. In contiguous forests by comparison, environment alone (mainly elevation) explained the most variation in β-diversity and β-deviation of both species' occurrences and abundances. Spatial gradients in environmental conditions played a larger role than dispersal limitation in shaping diversity and composition of tree communities across forest fragments. Thus, location of remnant patches at different elevations was a key factor underlying site-to-site variability in species abundances across fragments. Understanding the environmental characteristics of remnant forests in human-modified landscapes, combined with knowledge of species-environment relationships across different functional groups, would therefore be important considerations for management and restoration planning in human-modified landscapes.
Collapse
Affiliation(s)
- Meghna Krishnadas
- Laboratory for Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habshiguda, Hyderabad, Telangana, 500007, India
| | - Anand M Osuri
- Nature Conservation Foundation, 1311, "Amritha", 12th Main, Vijayanagar 1st Stage, Mysore, 570017, India
| |
Collapse
|
70
|
Medeiros-Sarmento PSD, Ferreira LV, Gastauer M. Natural regeneration triggers compositional and functional shifts in soil seed banks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141934. [PMID: 32889317 DOI: 10.1016/j.scitotenv.2020.141934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Secondary forests emerging during traditional shifting cultivation practices are increasingly recognized for their fulfillment of ecosystem services and mitigation potential of climate change and biodiversity losses. The soil seed bank as a recruit reservoir is a limiting factor for natural forest regeneration of such secondary forests and is decisive for the formation and restitution of the post-disturbance community. The aim of this study was to compare the composition of the soil seed bank along a natural regeneration chronosequence from the Caxiuanã National Forest, eastern Amazon, including old-growth reference sites. We sampled standing vegetation, soil properties and soil seed banks and compared the density and species richness of different life forms among different regeneration stages. Using nonmetric, multiple scaling, we compared the composition of the soil seed bank among different regeneration stages and with standing vegetation composition. Furthermore, we outlined the influence of stand age, vegetation structure and soil properties on the density, richness and functional characterization of the soil seed bank using mixed effect models. The soil seed bank was dominated by herb seeds in all regeneration stages, and the density and richness of tree seeds increased with regeneration time and recovery of vegetation structure. Seed bank composition changed gradually with regeneration advance and differed from standing vegetation, containing a high amount of allochthonous seeds, especially in older stands. This observation highlights the importance of dispersal and habitat connectivity for the natural regeneration of these secondary forests. Shifts in soil seed bank composition towards slow-growing, animal-dispersed, non-pioneer species with larger, recalcitrant seeds in older regeneration stands indicate changes in vegetation composition along succession. Thus, our data indicate the importance of connectivity for forest regeneration and long fallow periods (> 40 years) to increase the performance of ecosystem services, resilience and stability of secondary forests arising during shifting cultivation practices.
Collapse
Affiliation(s)
- Priscila Sanjuan de Medeiros-Sarmento
- Instituto Tecnológico Vale, Boaventura da Silva, 955, Umarizal, CEP 66055-200 Belém, Pará, Brazil; Museu Paraense Emílio Goeldi, CBO, Avenida Perimetral, 1901, Terra Firme, CEP 66077-830 Belém, Pará, Brazil
| | - Leandro Valle Ferreira
- Museu Paraense Emílio Goeldi, CBO, Avenida Perimetral, 1901, Terra Firme, CEP 66077-830 Belém, Pará, Brazil
| | - Markus Gastauer
- Instituto Tecnológico Vale, Boaventura da Silva, 955, Umarizal, CEP 66055-200 Belém, Pará, Brazil.
| |
Collapse
|
71
|
Souza JPS, Gomes PWP, Santos RDCPD, Tavares-Martins ACC. Bryophyte flora in an Amazon island: structure of communities in areas of different levels of anthropization. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The present study is aimed to evaluate the richness, composition and spatial distribution of bryophytes occurring in Mosqueiro Island, in the Amazon forest. Forty-one 100-m² plots in 37 flooded and 4 non-flooded environments were selected for data collection, all substrate found were considered. The results were compared with surveys in other islands from the state of Pará and were analyzed according to frequency of populations, colonized substrates, light tolerance guilds, and distribution in Brazilian biomes. Ninety-seven species were recorded, distributed in 36 genera and 17 families, being 57 (58.7%) liverwort and 40 (41.2%) moss species. The rare species stood out with 53 species (54.08%). High similarity was observed between corticolous and epixylic communities, and between the terricolous community and the bryophytes found growing on charcoal, which is an artificial substrate. In relation to light tolerance guilds, generalist species prevailed (52 species, 53.6%). As for phytogeographic distribution, there was a predominance of taxa with occurrence in the Amazon and Atlantic rainforest (35 species, 37.11%). Ceratolejeunea ceratantha is reported for the first time for the state of Pará. The level of anthropization in the island was showed mainly by high richness and occurrence of generalist species underscores and well-adapted species to stressed conditions, evidencing changes in the bryophyte community structure.
Collapse
|
72
|
Exploring Linkages between Supporting, Regulating, and Provisioning Ecosystem Services in Rangelands in a Tropical Agro-Forest Frontier. LAND 2020. [DOI: 10.3390/land9120511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rangeland management in former tropical rainforest areas may affect ecosystem services. We hypothesized that management practices like burning and overgrazing reduce supporting (soil quality) and consequently also provisioning (forage productivity and quality) and regulating (nutrient cycling) ecosystem services. We established 31 exclosures in two landscape categories (alluvial soils, low-hills), documented management practices, and assessed 18 soil quality indicators, litter decomposition as a proxy for nutrient cycling, and forage quantity and quality during one year in grasslands of the Lacandon region, southeast Mexico. Path analysis was used to explore direct and indirect effects of livestock management practices on soil-based ecosystem services. Landscape position had direct effects on management practices, and direct and indirect effects on soil properties. Altitude (a proxy for the soil catena, ranging from alluvial soils along the Lacantún river to Cambisols and Acrisols in the low-hills) was the variable showing most significant negative relations with soil quality and forage production. Decomposition rate was site-specific and had no relation with landscape position and management. Our study suggests that position on the landscape, which relates to nutrient and water availability, had stronger effects than management practices on forage productivity and quality and drives farmers management practices.
Collapse
|
73
|
Light availability, soil phosphorus and different nitrogen forms negatively affect the functional diversity of subtropical forests. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
74
|
Estimation of Ecological Connectivity in a City Based on Land Cover and Urban Habitat Maps. SUSTAINABILITY 2020. [DOI: 10.3390/su12229529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthropogenic land use has led to the loss and fragmentation of native habitats and disruption to ecosystem processes, resulting in a decline in landscape connectivity and biodiversity. Here, in order to find the potentials of improvements in ecological connectivity, we provide a spatial analysis to present differences in ecological connectivity based on land cover maps and urban habitat maps in Suwon city, Republic of Korea. We generated two permeability maps for use in a network analysis, one being land cover and the other urban habitat, including a 5-km buffer area from the city boundary. We then determined the current-flow betweenness centrality (CFBC) for each map. Our results indicate that forests are typically the most highly connected areas in both maps. However, in the land cover map results, nearly all high-priority areas were in the mountainous region (CFBC value: 0.0100 ± 0.0028), but the urban habitat indicated that grasslands and rivers within the city also significantly contribute to connectivity (CFBC value: 0.0071 ± 0.0022). The CFBC maps developed here could be used as a reference when introducing green infrastructure in cities. Before establishing ecological networks for urban areas, future work should integrate the land use and ecological data of different administrative districts with continuous ecological connection.
Collapse
|
75
|
McGee KM, Porter TM, Wright M, Hajibabaei M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci Rep 2020; 10:18429. [PMID: 33116157 PMCID: PMC7595130 DOI: 10.1038/s41598-020-75452-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Tropical forests are fundamental ecosystems, essential for providing terrestrial primary productivity, global nutrient cycling, and biodiversity. Despite their importance, tropical forests are currently threatened by deforestation and associated activities. Moreover, tropical regions are now mostly represented by secondary forest regrowth, with half of the remaining tropical forests as secondary forest. Soil invertebrates are an important component to the functioning and biodiversity of these soil ecosystems. However, it remains unclear how these past land-use activities and subsequent secondary forest developments have altered the soil invertebrate communities and any potential ecological consequences associated with this. DNA metabarcoding offers an effective approach to rapidly monitor soil invertebrate communities under different land-use practices and within secondary forests. In this study, we used DNA metabarcoding to detect community-based patterns of soil invertebrate composition across a primary forest, a 23-year-old secondary forest, and a 33-year-old secondary forest and the associated soil environmental drivers of the soil invertebrate community structure in the Maquenque National Wildlife Refuge of Costa Rica (MNWR). We also used a species contribution analysis (SIMPER) to determine which soil invertebrate groups may be an indication of these soils reaching a pre-disturbed state such as a primary forest. We found that the soil invertebrate community composition at class, order, family, and ESV level were mostly significantly different across that habitats. We also found that the primary forest had a greater richness of soil invertebrates compared to the 23-year-old and 33-year-old secondary forest. Moreover, a redundancy analysis indicated that soil moisture influenced soil invertebrate community structure and explained up to 22% of the total variation observed in the community composition across the habitats; whereas soil invertebrate richness was structured by soil microbial biomass carbon (C) (Cmic) and explained up to 52% of the invertebrate richness across the primary and secondary forests. Lastly, the SIMPER analysis revealed that Naididae, Entomobryidae, and Elateridae could be important indicators of soil and forest recuperation in the MNWR. This study adds to the increasing evidence that soil invertebrates are intimately linked with the soil microbial biomass carbon (Cmic) and that even after 33 years of natural regrowth of a forest, these land use activities can still have persisting effects on the overall composition and richness of the soil invertebrate communities.
Collapse
Affiliation(s)
- Katie M McGee
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Teresita M Porter
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Michael Wright
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mehrdad Hajibabaei
- Department of Integrative Biology, Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
76
|
Alcocer‐Rodríguez M, Arroyo‐Rodríguez V, Galán‐Acedo C, Cristóbal‐Azkarate J, Asensio N, Rito KF, Hawes JE, Veà JJ, Dunn JC. Evaluating extinction debt in fragmented forests: the rapid recovery of a critically endangered primate. Anim Conserv 2020. [DOI: 10.1111/acv.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Alcocer‐Rodríguez
- Centre Especial de Recerca en Primats Facultat de Psicologia Universitat de Barcelona Barcelona Spain
| | - V. Arroyo‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México (UNAM) Morelia México
| | - C. Galán‐Acedo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México (UNAM) Morelia México
| | - J. Cristóbal‐Azkarate
- Oinarrizko Psikologia Prosezuak eta Garapena Saila Psikologiako Fakultatea Euskal Herriko Unibertsitatea Donostia Gipuzkoa Spain
| | - N. Asensio
- Gizarte‐Psikologia eta Portaera Zientzien Metodologia Psikologia Fakultatea Euskal Herriko Unibertsitatea Donostia Gipuzkoa Spain
| | - K. F. Rito
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México (UNAM) Morelia México
| | - J. E. Hawes
- School of Life Sciences Anglia Ruskin University Cambridge UK
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences 1430 Ås Norway
| | - J. J. Veà
- Centre Especial de Recerca en Primats Facultat de Psicologia Universitat de Barcelona Barcelona Spain
| | - Jacob C. Dunn
- School of Life Sciences Anglia Ruskin University Cambridge UK
- Division of Biological Anthropology University of Cambridge Cambridge UK
- Department of Cognitive Biology University of Vienna Vienna Austria
| |
Collapse
|
77
|
Leaver J, Cherry M. Forest product harvesting in the Eastern Cape, South Africa: Impacts on habitat structure. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/7508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The Eastern Cape Province harbours 46% of South Africa’s remaining indigenous forest cover, and is one of the country’s poorest and least developed provinces. Forest resources thus represent a vital component of rural livelihoods in this region. Consequently, forest management policies aim to balance the needs of resource users with the ecological integrity of forest ecosystems. In a recent study, forest bird ranges were shown to have declined in the Eastern Cape over the past 20 years, despite increases in forest cover over the same time period, indicating that habitat degradation may be driving forest bird losses. Given that harvesting of forest products represents the primary human disturbance in forests in the Eastern Cape today, insight is needed regarding the link between resource use and habitat modification. We report on effects of harvesting of three key forest products – poles, timber and medicinal bark – on habitat structure at the ground, understorey and canopy layers in indigenous forests in the province. Harvest activities had considerable impacts on habitat structure, depending on the nature and extent of harvesting. Bark and timber harvesting resulted in canopy gaps, whereas pole harvesting reduced tree density, resulting in understorey gaps. Overall, harvest activities increased the frequency of canopy disturbance, and density of understorey layer foliage. Unsustainable bark harvesting practices increased the mortality rate of canopy trees, thereby increasing dead wood availability. By providing insight into human-mediated habitat modification in forests of the Eastern Cape, this study contributes to the development of ecologically informed sustainable resource management policies.
Collapse
Affiliation(s)
- Jessica Leaver
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Michael Cherry
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
78
|
Successional dynamics shape tree diversity in evergreen forests of Côte d’Ivoire, West Africa. JOURNAL OF TROPICAL ECOLOGY 2020. [DOI: 10.1017/s0266467420000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractDisturbances and successional dynamics shape the composition of tree communities, but data remain scarce for tropical forests of West Africa. We assessed the imprint of past disturbances on the composition of evergreen forests in an Ivorian National Park. We hypothesized that (i) Pioneer indices (PI) based on the relative proportion of pioneer and non-pioneer trees relate to changing floristic composition due to successional dynamics, (ii) local community richness peaks at an intermediate value of PI under the Intermediate Disturbance Hypothesis (IDH) and (iii) early successional communities have higher beta diversity due to erratic founder effects. We performed a Correspondence Analysis of tree composition of 38 plots and examined how the main components of floristic variation related to environmental factors and PI. In addition, we tested the relationship between PI, local richness and beta diversity. The variation of PI better explained the main components of floristic variation than abiotic environmental variation, supporting a primary role of successional dynamics in shaping tree communities. We found a peak of richness at intermediate values of PI, supporting the IDH, with a mixture and earlier and later-successional species and more even abundances. The communities were very diverse and included many endemics and rare species. The results underline that the composition of early successional forests greatly varies depending on chance colonization events, while more similar old-growth communities are eventually observed after several decades. The findings should guide management practices for forest restoration, and for conservation of endangered species depending on their successional status.
Collapse
|
79
|
Crouzeilles R, Maurenza D, Prieto PV, Barros FSM, Jakovac C, Ferreira MS, Chazdon RL, Lindenmayer DB, Brancalion PHS, Ceccon E, Adams C, Lazos‐Chavero E, Monteiro L, Junqueira AB, Strassburg BBN, Guariguata MR. Associations between socio‐environmental factors and landscape‐scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conserv Lett 2020. [DOI: 10.1111/conl.12768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Renato Crouzeilles
- International Institute for Sustainability Rio de Janeiro Brazil
- International Institute for Sustainability Australia Canberra Australia
- Mestrado Profissional em Ciências do Meio Ambiente Universidade Veiga de Almeida Rio de Janeiro Brazil
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment Pontifícia Universidade Católica Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Daniel Maurenza
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment Pontifícia Universidade Católica Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pablo V. Prieto
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment Pontifícia Universidade Católica Rio de Janeiro Brazil
| | - Felipe S. M. Barros
- International Institute for Sustainability Australia Canberra Australia
- Instituto Misionero de Biodiversidad Posadas Misiones Argentina
- Departamento de Geografía Instituto Superior Antonio Ruiz de Montoya Posadas Misiones Argentina
| | - Catarina Jakovac
- International Institute for Sustainability Rio de Janeiro Brazil
- Forest Ecology and Forest Management group Wageningen University Wageningen The Netherlands
| | - Mariana S. Ferreira
- Mestrado Profissional em Ciências do Meio Ambiente Universidade Veiga de Almeida Rio de Janeiro Brazil
| | - Robin L. Chazdon
- International Institute for Sustainability Rio de Janeiro Brazil
- International Institute for Sustainability Australia Canberra Australia
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
- Tropical Forests and People Research Center University of the Sunshine Coast Sippy Downs Queensland Australia
| | - David B. Lindenmayer
- Sustainable Farms, Fenner School of Environment and Society The Australian National University Canberra Australia
| | - Pedro H. S. Brancalion
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Eliane Ceccon
- Centro Regional de Investigaciones Multidisciplinarias Universidad Nacional Autónoma de México Morelos Mexico
| | - Cristina Adams
- Escola de Artes, Ciências e Humanidades e Instituto de Energia e Ambiente Universidade de São Paulo São Paulo Brazil
| | - Elena Lazos‐Chavero
- Instituto de Investigaciones Sociales Universidad Nacional Autónoma de México Mexico City Mexico
| | - Lara Monteiro
- International Institute for Sustainability Rio de Janeiro Brazil
| | - André B. Junqueira
- International Institute for Sustainability Rio de Janeiro Brazil
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment Pontifícia Universidade Católica Rio de Janeiro Brazil
- Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Barcelona Spain
| | - Bernardo B. N. Strassburg
- International Institute for Sustainability Rio de Janeiro Brazil
- International Institute for Sustainability Australia Canberra Australia
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment Pontifícia Universidade Católica Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
80
|
Rivera JD, Gómez B, Navarrete-Gutiérrez DA, Ruíz-Montoya L, Delgado L, Favila ME. Mechanisms of diversity maintenance in dung beetle assemblages in a heterogeneous tropical landscape. PeerJ 2020; 8:e9860. [PMID: 33665001 PMCID: PMC7903913 DOI: 10.7717/peerj.9860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Anthropized landscapes play a crucial role in biodiversity conservation, as they encompass about 90% of the remaining tropical forest. Effective conservation strategies require a deep understanding of how anthropic disturbances determine diversity patterns across these landscapes. Here, we evaluated how attributes and assembly mechanisms of dung beetle communities vary across the Selva El Ocote Biosphere Reserve (REBISO) landscape. Methods Community attributes (species diversity, abundance, and biomass) were assessed at the landscape scale, using spatial windows and vegetation classes. Windows were categorized as intact, variegated, or fragmented based on their percent cover of tropical forest. The vegetation classes analyzed were tropical forest, second-growth forest, and pastures. Results We collected 15,457 individuals and 55 species. Variegated windows, tropical forests, and second-growth forests showed the highest diversity values, while the lowest values were found in intact windows and pastures. Landscape fragmentation was positively and strongly related to dung beetle diversity and negatively related to their abundance; biomass was positively associated with forest cover. Beta diversity was the primary driver of the high dung beetle diversity in the landscape analyzed. Discussion The landscape heterogeneity and its biodiversity-friendly matrix facilitate the complementarity of dung beetle assemblages in the Selva El Ocote Biosphere Reserve. Random processes govern beta diversity patterns in intact and variegated windows. Therefore, vegetation cover in the region is sufficient to maintain a continuous flow of dung beetles between forested landscape segments. However, intense anthropic disturbances acted as deterministic environmental filters in fragmented windows and pastures sites, leading to biotic homogenization processes. Our results suggest that increasing habitat variegation in highly fragmented sites is an effective strategy to prevent or buffer homogenization processes in the REBISO landscape.
Collapse
Affiliation(s)
- Jose D Rivera
- Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, Mexico.,Red de Ecoetología, Instituto de Ecología, A.C., Xalapa-Enriquez, Veracruz, Mexico
| | - Benigno Gómez
- Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, Mexico
| | - Darío A Navarrete-Gutiérrez
- Departamento: Observación y Estudio de la tierra, Atmȯsferay Oceano (TAO). Grupo academico: Ecología, paisaje y sustentabilidad, El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, Mexico
| | - Lorena Ruíz-Montoya
- Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, Mexico
| | - Leonardo Delgado
- Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa-Enriquez, Veracruz, Mexico
| | - Mario E Favila
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa-Enriquez, Veracruz, Mexico
| |
Collapse
|
81
|
Silveira FAO, Arruda AJ, Bond W, Durigan G, Fidelis A, Kirkman K, Oliveira RS, Overbeck GE, Sansevero JBB, Siebert F, Siebert SJ, Young TP, Buisson E. Myth‐busting tropical grassy biome restoration. Restor Ecol 2020. [DOI: 10.1111/rec.13202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando A. O. Silveira
- Departamento de Genética, Ecologia e Evolução Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, CEP 31270‐901 Belo Horizonte MG Brazil
| | - André J. Arruda
- Departamento de Genética, Ecologia e Evolução Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, CEP 31270‐901 Belo Horizonte MG Brazil
- School of Biological Sciences University of Western Australia Perth Western Australia Australia
| | - William Bond
- Department of Biological Sciences University of Cape Town Rondebosch South Africa
| | - Giselda Durigan
- Floresta Estadual de Assis Instituto Florestal do Estado de São Paulo P.O. Box 104, 19802‐970 Assis SP Brazil
| | - Alessandra Fidelis
- Lab of Vegetation Ecology, Instituto de Biociências Universidade Estadual Paulista (UNESP) Av. 24A, 1515, 13506‐900 Rio Claro SP Brazil
| | - Kevin Kirkman
- Centre for Functional Biodiversity, School of Life Sciences University of KwaZulu‐Natal Durban South Africa
| | - Rafael S. Oliveira
- Department of Plant Biology, Institute of Biology University of Campinas—UNICAMP Campinas SP Brazil
| | - Gerhard E. Overbeck
- Departamento de Botânica Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves 9500, CEP 91501‐970 Porto Alegre RS Brazil
| | - Jerônimo B. B Sansevero
- Departamento de Ciências Ambientais (DCA), Instituto de Florestas (IF) Universidade Federal Rural do Rio de Janeiro—UFRRJ BR 465, Km 07, CEP 23890‐000 Seropédica RJ Brazil
| | - Frances Siebert
- Unit for Environmental Sciences and Management North‐West University Potchefstroom 2520 South Africa
| | - Stefan J. Siebert
- Unit for Environmental Sciences and Management North‐West University Potchefstroom 2520 South Africa
| | - Truman P. Young
- Department of Plant Sciences University of California Davis CA 95616 U.S.A
| | - Elise Buisson
- Department of Plant Sciences University of California Davis CA 95616 U.S.A
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Avignon Université, UMR CNRS IRD Aix Marseille Université, IUT Site Agroparc BP 61207, 84911 Avignon Cedex 09 France
| |
Collapse
|
82
|
Wang W, Liu X, Ferreira-Rodríguez N, Sun W, Wu Y, Ouyang S, Zhou C, Wu X. Demographic and genetic characterization of harvested Corbicula fluminea populations. PeerJ 2020; 8:e9657. [PMID: 32953257 PMCID: PMC7476495 DOI: 10.7717/peerj.9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/14/2020] [Indexed: 12/05/2022] Open
Abstract
The freshwater clam Corbicula fluminea s.l. is an edible freshwater bivalve of economic value in Asia. The species has been particularly well studied in the invaded range. However, there is a lack of knowledge in its native range where it supports an increasing commercial harvest pressure. Among Asiatic countries, China accounts for 70% of known commercial harvest and aquaculture production. We aim to characterize here wild C. fluminea s.l populations exposed to commercial harvest pressure in Poyang Lake Basin. We found higher biomass, density and genetic diversity in lake populations compared to peripheral populations (i.e., lake tributaries). Given that lake habitats support more intense harvest pressure than peripheral habitats, we suggest that demographic and genetic differentiation among subpopulations may be influenced in some degree by different harvest pressure. In this regard, additional demographic and/or genetic changes related to increasing harvest pressure may place population at a higher risk of extirpation. Altogether, these results are especially relevant for maintaining populations at or above viable levels and must be considered in order to ensure the sustainability of the resource.
Collapse
Affiliation(s)
- Weikai Wang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Xiongjun Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Weiwei Sun
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Yanli Wu
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Chunhua Zhou
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Xiaoping Wu
- School of Life Sciences, Nanchang University, Nanchang, China.,Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
83
|
Almeida DRA, Almeyda Zambrano AM, Broadbent EN, Wendt AL, Foster P, Wilkinson BE, Salk C, Papa DDA, Stark SC, Valbuena R, Gorgens EB, Silva CA, Brancalion PHS, Fagan M, Meli P, Chazdon R. Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar. Biotropica 2020. [DOI: 10.1111/btp.12814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Danilo Roberti Alves Almeida
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo (USP/ESALQ) Piracicaba Brazil
- Spatial Ecology and Conservation Lab School of Forest Resources and Conservation University of Florida Gainesville FL USA
| | - Angelica Maria Almeyda Zambrano
- Spatial Ecology and Conservation Lab Department of Tourism, Recreation and Sport Management University of Florida Gainesville FL USA
| | - Eben North Broadbent
- Spatial Ecology and Conservation Lab School of Forest Resources and Conservation University of Florida Gainesville FL USA
| | - Amanda L. Wendt
- Organization for Tropical Studies San Pedro Costa Rica
- EARTH University Guácimo Costa Rica
| | - Paul Foster
- Reserva Ecológica Bijagual Sarapiquí Costa Rica
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Benjamin E. Wilkinson
- Geomatics Program School of Forest Resources and Conservation University of Florida Gainesville FL USA
| | - Carl Salk
- University of Agricultural Sciences Alnarp Sweden
| | | | | | | | - Eric Bastos Gorgens
- Department of Forestry Federal University of Jequitinhonha e Mucuri Valleys (UFVJM) Diamantina Brazil
| | - Carlos Alberto Silva
- School of Forest Resources and Conservation University of Florida Gainesville FL USA
- Department of Geographical Sciences University of Maryland College Park MD USA
| | | | | | - Paula Meli
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo (USP/ESALQ) Piracicaba Brazil
- Department of Forest Sciences Universidad de La Frontera Temuco Chile
| | - Robin Chazdon
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs CT USA
- Tropical Forests and People Research Centre University of the Sunshine Coast Sippy Downs QLD Australia
| |
Collapse
|
84
|
Camargo PHSA, Pizo MA, Brancalion PHS, Carlo TA. Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paulo H. S. A. Camargo
- Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
- Biology Department The Pennsylvania State University State College PA USA
| | - Marco A. Pizo
- Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
| | - Pedro H. S. Brancalion
- Department of Forest Sciences “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Tomás A. Carlo
- Biology Department The Pennsylvania State University State College PA USA
| |
Collapse
|
85
|
Response of Water Quality to Landscape Patterns in an Urbanized Watershed in Hangzhou, China. SUSTAINABILITY 2020. [DOI: 10.3390/su12145500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intense human activities and drastic land use changes in rapidly urbanized areas may cause serious water quality degradation. In this study, we explored the effects of land use on water quality from a landscape perspective. We took a rapidly urbanized area in Hangzhou City, China, as a case study, and collected stream water quality data and algae biomass in a field campaign. The results showed that built-up lands had negative effects on water quality and were the primary cause of stream water pollution. The concentration of total phosphorus significantly correlated with the areas of residential, industrial, road, and urban greenspace, and the concentration of chlorophyll a also significantly correlated with the areas of these land uses, except residential land. At a landscape level, the correlation analysis showed that the landscape indices, e.g., dominance, shape complexity, fragmentation, aggregation, and diversity, all had significant correlations with water quality parameters. From the perspective of land use, the redundancy analysis results showed that the percentages of variation in water quality explained by the built-up, forest and wetland, cropland, and bareland decreased in turn. The spatial composition of the built-up lands was the main factor causing stream water pollution, while the shape complexities of the forest and wetland patches were negatively correlated with stream water pollution.
Collapse
|
86
|
Mukul SA, Herbohn J, Firn J. Rapid recovery of tropical forest diversity and structure after shifting cultivation in the Philippines uplands. Ecol Evol 2020; 10:7189-7211. [PMID: 32760521 PMCID: PMC7391325 DOI: 10.1002/ece3.6419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Shifting cultivation is a widespread land-use in the tropics that is considered a major threat to rainforest diversity and structure. In the Philippines, a country with rich biodiversity and high rates of species endemism, shifting cultivation, locally termed as kaingin, is a major land-use and has been for centuries. Despite the potential impact of shifting cultivation on forests and its importance to many people, it is not clear how biodiversity and forest structure recover after kaingin abandonment in the country, and how well these post-kaingin secondary forests can complement the old-growth forests. We investigated parameters of forest diversity and structure along a fallow age gradient in secondary forests regenerating after kaingin abandonment in Leyte Island, the Philippines (elevation range: 445-650 m asl). We first measured the tree diversity and forest structure indices in regenerating secondary forests and old-growth forest. We then measured the recovery of tree diversity and forest structure parameters in relation to the old-growth forest. Finally, using linear mixed effect models (LMM), we assessed the effect of different environmental variables on the recovery of forest diversity and structure. We found significantly higher species density in the oldest fallow sites, while Shannon's index, species evenness, stem number, basal area, and leaf area index were higher in the old-growth forest. A homogeneous species composition was found across the sites of older fallow age. Multivariate analysis revealed patch size as a strong predictor of tree diversity and forest structure recovery after shifting cultivation. Our study suggests that, secondary forests regenerating after shifting cultivation abandonment can recover rapidly. Although recovery of forest structure was not as rapid as the tree diversity, our older fallow sites contained a similar number of species as the old-growth forest. Many of these species are also endemic to the Philippines. Novel and emerging ecosystems like tropical secondary forests are of high conservation importance and can act as a refuge for dwindling tropical forest biodiversity.
Collapse
Affiliation(s)
- Sharif A. Mukul
- Tropical Forests and People Research CentreUniversity of the Sunshine CoastMaroochydoreQLDAustralia
- Tropical Forestry GroupSchool of Agriculture and Food SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - John Herbohn
- Tropical Forests and People Research CentreUniversity of the Sunshine CoastMaroochydoreQLDAustralia
- Tropical Forestry GroupSchool of Agriculture and Food SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Jennifer Firn
- School of Earth, Environmental and Biological SciencesFaculty of Science and EngineeringQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
87
|
Arroyo-Rodríguez V, Fahrig L, Tabarelli M, Watling JI, Tischendorf L, Benchimol M, Cazetta E, Faria D, Leal IR, Melo FPL, Morante-Filho JC, Santos BA, Arasa-Gisbert R, Arce-Peña N, Cervantes-López MJ, Cudney-Valenzuela S, Galán-Acedo C, San-José M, Vieira ICG, Slik JWF, Nowakowski AJ, Tscharntke T. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 2020; 23:1404-1420. [PMID: 32537896 DOI: 10.1111/ele.13535] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Agriculture and development transform forest ecosystems to human-modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity-friendly landscapes challenging. Here, we combine concepts with empirical support to design optimal landscape scenarios for forest-dwelling species. The supported concepts indicate that appropriately sized landscapes should contain ≥ 40% forest cover, although higher percentages are likely needed in the tropics. Forest cover should be configured with c. 10% in a very large forest patch, and the remaining 30% in many evenly dispersed smaller patches and semi-natural treed elements (e.g. vegetation corridors). Importantly, the patches should be embedded in a high-quality matrix. The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.
Collapse
Affiliation(s)
- Víctor Arroyo-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Lenore Fahrig
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | | | - Lutz Tischendorf
- ELUTIS Modelling and Consulting Inc, Ottawa, ON, K2A 1X4, Canada
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Eliana Cazetta
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Deborah Faria
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Felipe P L Melo
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Jose C Morante-Filho
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Bráulio A Santos
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraiba, Campus I, João Pessoa, Paraiba, 58051-900, Brazil
| | - Ricard Arasa-Gisbert
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Norma Arce-Peña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Martín J Cervantes-López
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Sabine Cudney-Valenzuela
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Carmen Galán-Acedo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Miriam San-José
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, Mexico
| | - Ima C G Vieira
- Coordenação de Botânica, Museu Paraense Emilio Goeldi, CP 399, Belém, Pará, 66040-170, Brazil
| | - J W Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei, Darussalam
| | - A Justin Nowakowski
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada.,Working Land and Seascapes, Conservation Commons, Smithsonian Institution, Washington, DC, 20013, USA
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
| |
Collapse
|
88
|
Hughes EC, Edwards DP, Sayer CA, Martin PA, Thomas GH. The effects of tropical secondary forest regeneration on avian phylogenetic diversity. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma C. Hughes
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - David P. Edwards
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | | | | | - Gavin H. Thomas
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| |
Collapse
|
89
|
Dalmaso CA, Marques MCM, Higuchi P, Zwiener VP, Marques R. Spatial and temporal structure of diversity and demographic dynamics along a successional gradient of tropical forests in southern Brazil. Ecol Evol 2020; 10:3164-3177. [PMID: 32273978 PMCID: PMC7141045 DOI: 10.1002/ece3.5816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 09/15/2019] [Indexed: 01/29/2023] Open
Abstract
Analysis of the structure, diversity, and demographic dynamics of tree assemblages in tropical forests is especially important in order to evaluate local and regional successional trajectories.We conducted a long-term study to investigate how the structure, species richness, and diversity of secondary tropical forests change over time. Trees (DBH ≥ 5 cm) in the Atlantic Forest of southern Brazil were sampled twice during a 10-year period (2007 and 2017) in six stands (1 ha each) that varied in age from their last disturbance (25, 60, 75, 90, and more than 100 years). We compared forest structure (abundance and basal area), species richness, alpha diversity, demographic rates (mortality, recruitment, and loss or gain in basal area), species composition, spatial beta diversity, and temporal beta diversity (based on turnover and nestedness indices) among stand ages and study years.Demographic rates recorded in a 10-year interval indicate a rapid and dynamic process of species substitution and structural changes. Structural recovery occurred faster than beta diversity and species composition recovery. The successional gradient showed a pattern of species trade-off over time, with less spatial dissimilarity and faster demographic rates in younger stands. As stands grow older, they show larger spatial turnover of species than younger stands, making them more stochastic in relation to species composition. Stands appear to split chronologically to some extent, but not across a straightforward linear axis, reflecting stochastic changes, providing evidence for the formation of a nonequilibrium community. Policy implications. These results reiterate the complexity and variability in forest succession and serve as a reference for the evaluation and monitoring of local management and conservation actions and for defining regional strategies that consider the diversity of local successional trajectories to evaluate the effectiveness of restoration measures in secondary forests of the Atlantic Forest biome.
Collapse
Affiliation(s)
- Cilmar Antônio Dalmaso
- Programa de Pós‐graduação em Engenharia FlorestalUniversidade Federal do ParanáCuritibaBrazil
| | - Marcia C. M. Marques
- Departamento de BotânicaSCBLaboratório de Ecologia VegetalUniversidade Federal do ParanáCuritibaBrazil
| | - Pedro Higuchi
- Departamento de Engenharia FlorestalUniversidade do Estado de Santa Catarina, Centro de Ciências AgroveterináriasLagesBrazil
| | - Victor P. Zwiener
- Departamento de BiodiversidadeUniversidade Federal do ParanáPalotinaBrazil
| | - Renato Marques
- Departamento de Solos e Engenharia AgrícolaLaboratório de BiogeoquímicaUniversidade Federal do ParanáCuritibaBrazil
| |
Collapse
|
90
|
San-José M, Arroyo-Rodríguez V, Meave JA. Regional context and dispersal mode drive the impact of landscape structure on seed dispersal. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02033. [PMID: 31677313 DOI: 10.1002/eap.2033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Land-use change modifies the spatial structure of tropical landscapes, shaping global biodiversity patterns. Yet, it remains unknown how key ecological processes, such as seed dispersal, can be affected by changes in landscape patterns, and whether such effects differ among regions with different climate and disturbance intensity. We assessed the effect of five landscape metrics (forest cover, matrix openness, forest edge density, forest fragmentation, and interpatch distance) on the seed rain recorded in two Mexican fragmented regions (20 forest sites per region): the more deforested, defaunated, and windy Los Tuxtlas rainforest (LTX), and the better-preserved Lacandona rainforest (LAC). We quantified the proportions of dispersed tree species and their seeds, separately evaluating wind- and animal-dispersed species. Our findings support the hypothesis that forest loss is more important than fragmentation per se, negatively impacting the seed rain in both regions. As expected, landscape patterns were comparatively more important for wind-dispersed seeds in LTX, probably because of stronger wind events in this region. Specifically, proportions of wind-dispersed seeds and species decreased with increasing edge density, suggesting that forest edges prevent dispersal of wind-dispersed species, which may occur if edges create physical barriers that limit wind flow. This pattern can also be caused by source limitation in landscapes with more forest edges, as tree mortality rates usually increase at forest edges. The wind-dispersed seed rain was also positively related to matrix openness, especially in LTX, where wind flow can be favored by the dominance of treeless anthropogenic matrices. Surprisingly, the proportion of animal-dispersed seeds in LTX was positively related to matrix openness and patch isolation, suggesting that seed dispersers in more deforested regions may be forced to concentrate in isolated patches and use the available habitat more intensively. Yet, as expected, patch isolation limited wind-dispersed seeds in LAC. Therefore, dispersal (and potentially regeneration) of wind-dispersed trees is favored in regions exposed to stronger wind events, especially in landscapes dominated by regularly shaped patches surrounded by open areas. Conversely, animal-dispersed seeds are primarily favored by increasing forest cover. Preventing forest loss is therefore critical to promote animal seed dispersal and forest recovery in human-modified rainforests.
Collapse
Affiliation(s)
- Miriam San-José
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico
| | - Víctor Arroyo-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
91
|
Crouzeilles R, Beyer HL, Monteiro LM, Feltran-Barbieri R, Pessôa ACM, Barros FSM, Lindenmayer DB, Lino EDSM, Grelle CEV, Chazdon RL, Matsumoto M, Rosa M, Latawiec AE, Strassburg BBN. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv Lett 2020. [DOI: 10.1111/conl.12709] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Renato Crouzeilles
- International Institute for Sustainability Rio de Janeiro Brazil
- Rio Conservation and Sustainability Science Centre, Department of Geography and the EnvironmentPontifícia Universidade Católica Rio de Janeiro Brazil
- Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- International Institute for Sustainability Australia Canberra ACT 2602 Australia
- Mestrado Profissional em Ciências do Meio AmbienteUniversidade Veiga de Almeida 20271‐901 Rio de Janeiro Brazil
| | - Hawthorne L. Beyer
- Global Change InstituteUniversity of Queensland St Lucia Queensland Australia
- International Institute for Sustainability Australia Canberra ACT 2602 Australia
| | - Lara M. Monteiro
- International Institute for Sustainability Rio de Janeiro Brazil
| | | | - Ana C. M. Pessôa
- National Institute for Space Research São José dos Campos Brazil
| | - Felipe S. M. Barros
- International Institute for Sustainability Rio de Janeiro Brazil
- Centro de Referencia en Tecnologías de la Información para la Gestión con Software LibreUniversidad Nacional de Misiones Misiones Argentina
- Departamento de GeografíaInstituto Superior Antonio Ruiz de Montoya Misiones Argentina
| | - David B. Lindenmayer
- Sustainble Farms, Fenner School of Environment and SocietyAustralian National University Canberra Australia
| | | | - Carlos E. V. Grelle
- Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Laboratory of VertebratesFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Robin L. Chazdon
- International Institute for Sustainability Rio de Janeiro Brazil
- Department of Ecology and Evolutionary BiologyUniversity of Connecticut Storrs Connecticut
| | | | - Marcos Rosa
- Programa de Pós-Graduação em Geografia Física, Faculdade de Filosofia, Letras e Ciências HumanasUniversidade de São Paulo São Paulo Brazil
| | - Agnieszka E. Latawiec
- International Institute for Sustainability Rio de Janeiro Brazil
- Rio Conservation and Sustainability Science Centre, Department of Geography and the EnvironmentPontifícia Universidade Católica Rio de Janeiro Brazil
- Faculty of Production and Power EngineeringInstitute of Agricultural Engineering and Informatics, University of Agriculture in Krakow Krakow Poland
- School of Environmental ScienceUniversity of East Anglia Norwich UK
| | - Bernardo B. N. Strassburg
- International Institute for Sustainability Rio de Janeiro Brazil
- Rio Conservation and Sustainability Science Centre, Department of Geography and the EnvironmentPontifícia Universidade Católica Rio de Janeiro Brazil
- Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
92
|
Gastauer M, Caldeira CF, Ramos SJ, Trevelin LC, Jaffé R, Oliveira G, Vera MPO, Pires E, Santiago FLDA, Carneiro MAC, Coelho FTA, Silva R, Souza-Filho PWM, Siqueira JO. Integrating environmental variables by multivariate ordination enables the reliable estimation of mineland rehabilitation status. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109894. [PMID: 31989973 DOI: 10.1016/j.jenvman.2019.109894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Despite the wide variety of variables commonly employed to measure the success of rehabilitation, the assessment and subsequent definition of indicators of environmental rehabilitation status are not simple tasks. The main challenges are comparing rehabilitated sites with target ecosystems as well as integrating individual environmental and eventually collinear variables into a single tractable measure for the state of a system before effective indicators that track rehabilitation may be modeled. Furthermore, a consensus is lacking regarding which and how many variables need to be surveyed for a reliable estimation of rehabilitation status. Here, we propose a multivariate ordination to integrate variables related to ecological processes, vegetation structure, and community diversity into a single estimation of rehabilitation status. As a case, we employed a curated set of 32 environmental variables retrieved from nonrevegetated, rehabilitating and reference sites associated with iron ore mines from the Urucum Massif, Mato Grosso do Sul, Brazil. By integrating this set of environmental variables into a single estimation of rehabilitation status, the proposed multivariate approach is straightforward and able to adequately address collinearity among variables. The proposed methodology allows for the identification of biases towards single variables, surveys or analyses, which is necessary to rank environmental variables regarding their importance to the assessment. Furthermore, we show that bootstrapping permitted the detection of the minimum number of environmental variables necessary to achieve reliable estimations of the rehabilitation status. Finally, we show that the proposed variable integration enables the definition of case-specific environmental indicators for more rapid assessments of mineland rehabilitation. Thus, the proposed multivariate ordination represents a powerful tool to facilitate the diagnosis of rehabilitating sites worldwide provided that sufficient environmental variables related to ecological processes, diversity and vegetation structure are gathered from nonrehabilitated, rehabilitating and reference study sites. By identifying deviations from predicted rehabilitation trajectories and providing assessments for environmental agencies, this proposed multivariate ordination increases the effectiveness of (mineland) rehabilitation.
Collapse
Affiliation(s)
- Markus Gastauer
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil.
| | | | - Sílvio Junio Ramos
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil
| | | | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil
| | - Guilherme Oliveira
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil
| | - Mabel Patricia Ortiz Vera
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil; Universidade Federal de Pará, Programa de Pós-Graduação em Genética e Biologia Molecular, Rua Augusto Corrêa, 01, Guamá, Belém, Pará, Brazil
| | - Eder Pires
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil
| | | | | | - Felipe Tadashi Asoa Coelho
- Vale - Diretoria de Ferrosos Centro Oeste, Rua Cabral, 1555, Centro, Corumbá, Mato Grosso do Sul, Brazil
| | - Rosilene Silva
- Vale - Diretoria de Ferrosos Centro Oeste, Rua Cabral, 1555, Centro, Corumbá, Mato Grosso do Sul, Brazil
| | | | - José-Oswaldo Siqueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Umarizal, Belém, Pará, Brazil
| |
Collapse
|
93
|
Quisehuatl‐Medina A, Averett JP, Endress BA, Lopez‐Toledo L. Removal of cattle accelerates tropical dry forest succession in Northwestern Mexico. Biotropica 2020. [DOI: 10.1111/btp.12748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdieel Quisehuatl‐Medina
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia México
| | - Joshua P. Averett
- Eastern Oregon Agriculture Research Center – Union Station Oregon State University La Grande OR USA
| | - Bryan A. Endress
- Eastern Oregon Agriculture Research Center – Union Station Oregon State University La Grande OR USA
- Division of Applied Plant Ecology Institute for Conservation Research San Diego Zoo Global Escondido CA USA
| | - Leonel Lopez‐Toledo
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia México
- Eastern Oregon Agriculture Research Center – Union Station Oregon State University La Grande OR USA
| |
Collapse
|
94
|
Thorn S, Chao A, Bernhardt-Römermann M, Chen YH, Georgiev KB, Heibl C, Müller J, Schäfer H, Bässler C. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 2020; 101:e02949. [PMID: 31833562 DOI: 10.1002/ecy.2949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022]
Abstract
Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds in a storm-disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood-inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.
Collapse
Affiliation(s)
- Simon Thorn
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstrasse 5, Rauhenebrach, 96181, Germany
| | - Anne Chao
- Institute of Statistics, National Tsing Hua University Hsin-Chu, Hsin-Chu City, 30043, Taiwan
| | - Markus Bernhardt-Römermann
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Strasse 159, Jena, 07743, Germany
| | - Yan-Han Chen
- Institute of Statistics, National Tsing Hua University Hsin-Chu, Hsin-Chu City, 30043, Taiwan
| | - Kostadin B Georgiev
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstrasse 5, Rauhenebrach, 96181, Germany.,Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany
| | - Christoph Heibl
- Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstrasse 5, Rauhenebrach, 96181, Germany.,Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany
| | - Hanno Schäfer
- Plant Biodiversity, Department of Ecology and Ecosystem Management, Technische Universität München, Emil-Ramann Strasse 2, Freising, 85354, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany.,Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Frankfurt am Main, D-60438, Germany
| |
Collapse
|
95
|
Elias F, Ferreira J, Lennox GD, Berenguer E, Ferreira S, Schwartz G, Melo LDO, Reis Júnior DN, Nascimento RO, Ferreira FN, Espirito-Santo F, Smith CC, Barlow J. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 2020; 101:e02954. [PMID: 31840235 DOI: 10.1002/ecy.2954] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/13/2019] [Accepted: 11/12/2019] [Indexed: 11/05/2022]
Abstract
Tropical forests hold 30% of Earth's terrestrial carbon and at least 60% of its terrestrial biodiversity, but forest loss and degradation are jeopardizing these ecosystems. Although the regrowth of secondary forests has the potential to offset some of the losses of carbon and biodiversity, it remains unclear if secondary regeneration will be affected by climate changes such as higher temperatures and more frequent extreme droughts. We used a data set of 10 repeated forest inventories spanning two decades (1999-2017) to investigate carbon and tree species recovery and how climate and landscape context influence carbon dynamics in an older secondary forest located in one of the oldest post-Columbian agricultural frontiers in the Brazilian Amazon. Carbon accumulation averaged 1.08 Mg·ha-1 ·yr-1 , and species richness was effectively constant over the studied period. Moreover, we provide evidence that secondary forests are vulnerable to drought stress: Carbon balance and growth rates were lower in drier periods. This contrasts with drought responses in primary forests, where changes in carbon dynamics are driven by increased stem mortality. These results highlight an important climate change-vegetation feedback, whereby the increasing dry-season lengths being observed across parts of Amazonia may reduce the effectiveness of secondary forests in sequestering carbon and mitigating climate change. In addition, the current rate of forest regrowth in this region was low compared with previous pan-tropical and Amazonian assessments-our secondary forests reached just 41.1% of the average carbon and 56% of the tree diversity in the nearest primary forests-suggesting that these areas are unlikely to return to their original levels on politically meaningful time scales.
Collapse
Affiliation(s)
- Fernando Elias
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará/Embrapa Amazônia Oriental, Belém, Pará, 66075-110, Brazil
| | - Joice Ferreira
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará/Embrapa Amazônia Oriental, Belém, Pará, 66075-110, Brazil.,Embrapa Amazônia Oriental, Belém, Pará, 66095-903, Brazil
| | - Gareth D Lennox
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.,Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | | | | | | | - Denilson N Reis Júnior
- Departamento de Engenharia Florestal, Universidade Federal Rural da Amazônia, Belém, Pará, 66077-830, Brazil
| | - Rodrigo O Nascimento
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Geociências, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil
| | | | - Fernando Espirito-Santo
- Centre for Landscape and Climate Research, Leicester Institute of Space and Earth Observation, School of Geography, Geology and Environment, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Charlotte C Smith
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.,Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
96
|
Chave J, Piponiot C, Maréchaux I, de Foresta H, Larpin D, Fischer FJ, Derroire G, Vincent G, Hérault B. Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02004. [PMID: 31520573 DOI: 10.1002/eap.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/18/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha-1 ·yr-1 ) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.
Collapse
Affiliation(s)
- Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | - Camille Piponiot
- Cirad, UMR 'Ecologie des Forêts de Guyane' (AgroparisTech, CNRS, Inra, Université des Antilles, Université de la Guyane), F-97379, Kourou Cedex, French Guiana
| | - Isabelle Maréchaux
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
- AgroParisTech-ENGREF, 19 Avenue du Maine, F-75015, Paris, France
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRA, F-34000, Montpellier, France
| | - Hubert de Foresta
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRA, F-34000, Montpellier, France
| | - Denis Larpin
- Direction Générale Déléguée aux Musées, Jardins et Zoos, Muséum National d'Histoire Naturelle, 57 rue Cuvier, F-75005, Paris, France
| | - Fabian Jörg Fischer
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | - Géraldine Derroire
- Cirad, UMR 'Ecologie des Forêts de Guyane' (AgroparisTech, CNRS, Inra, Université des Antilles, Université de la Guyane), F-97379, Kourou Cedex, French Guiana
| | - Grégoire Vincent
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRA, F-34000, Montpellier, France
| | - Bruno Hérault
- Cirad, Univ Montpellier, UR Forests & Societies, F-34000, Montpellier, France
- INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Ivory Coast
| |
Collapse
|
97
|
Contrasting the Effect of Forest Landscape Condition to the Resilience of Species Diversity in a Human Modified Landscape: Implications for the Conservation of Tree Species. LAND 2019. [DOI: 10.3390/land9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using landscape moderation insurance and Intermediate Disturbance Hypothesis (IDH) as frameworks, this study assessed the response of local assemblage among different land use regimes (mean β-diversity), using the Jaccard dissimilarity matrix in contrasting Human Modified Forest Landscapes (HMFLs). The study was conducted at the relatively simplified Mafhela Forest Reserve and the complex Thathe Vondo Forest Reserve in South Africa. The patterns of overall β-diversity between HMFL and State-protected Indigenous Forests (SIF) were compared and the leading change drivers were then untangled. This study found that human disturbance affects mean β-diversity of local assemblages among land use regimes between the two HMFLs in an ecologically contrasting manner. The HMFL in Mafhela Forest Reserve had distinct local assemblages among land use regimes and did not conform to the expectation of IDH. On average, HMFL had the same average local species richness as SIF, mainly due to change in species composition (species replacement) induced by land use disturbance. Land use intensity gradient was the leading change driver to explain the overall β-diversity of the Mafhela Forest Reserve. The findings in the Thathe Vondo Forest Reserve were in contrast with the Mafhela Forest Reserve. Although on average the HMFL had the same local species richness as SIFs, this was mainly due to a trade-off of species gain in trees along the rivers and streams and species loss in Culturally Protected Areas (sacred forests) (CPA) as expected by IDH. The contrasting findings imply that the effectiveness of any alternative conservation strategy is context-dependent. The resilience of local assemblages and conservation value of HMFL depends on the condition of the overall forest landscape complexity and cannnot be captured by one theory, nor by one species diversity matrix (e.g., β-diversity or Richness). It thus demands the application of complementary theoretical frameworks and multilevel modeling.
Collapse
|
98
|
Cole RJ, Selmants P, Khan S, Chazdon R. Litter dynamics recover faster than arthropod biodiversity during tropical forest succession. Biotropica 2019. [DOI: 10.1111/btp.12740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca J. Cole
- The Institute of Arctic and Alpine Research University of Colorado Boulder CO USA
- Osa Conservation Puerto Jimenez Costa Rica
| | - Paul Selmants
- Western Geographic Science Center U.S. Geological Survey Menlo Park CA USA
| | - Shafkat Khan
- Project Dragonfly Miami University Oxford OH USA
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
- Tropical Forests and People Research Centre University of the Sunshine Coast Maroochydore QLD Australia
| |
Collapse
|
99
|
Krishnadas M, Kumar AN, Comita LS. Edge effects reduce α-diversity but not β-diversity during community assembly in a human-modified tropical forest. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01996. [PMID: 31495013 DOI: 10.1002/eap.1996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/20/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Edge effects can alter the spatial organization of diversity in fragmented habitats. For tropical forests, however, there has been large variation in the strength and direction of such effects reported by different studies. For long-lived organisms like trees, one reason for inconsistent patterns might be due to most studies having examined patterns of diversity and compositional variation in older life stages that bear the legacy of a forest past. Younger life stages can reveal ongoing processes of assembly, but multi-stage examinations are rare. For seedling, sapling, and adult life stages of trees in a human-modified wet tropical forest in the Western Ghats Biodiversity Hotspot (India), we examined how proximity to forest edges (edge influence) modified the spatial organization of diversity. Specifically, for each life stage we tested whether edge influence led to loss of α- and γ-diversity and decreased β-diversity in this landscape. We found lower α- and γ-diversity closer to forest edges, but only for seedlings. Seedling composition at 90-100 m from forest edges diverged from composition of sites within 60 m, suggesting that edge influence restricted the recruitment of some species to interior sites. In contrast, β-diversity was greater near edges than interior forest for all life stages and most prominently for seedlings. Furthermore, β-diversity at edges was primarily driven by species turnover, suggesting either marked species-environment associations or dispersal limitation. Low turnover at 90-100 m implies that β-diversity arose from stochastic fluctuations in occurrences and abundances of the same species set. Overall, we find that high β-diversity structured spatial patterns of diversity near edges, but recruitment bottlenecks are likely to reduce alpha diversity of forest fragments. Our results also corroborate the need to maintain sufficiently large areas of tropical forest free from edge effects to avoid the loss of interior forest species. To improve landscape-scale diversity of fragmented landscapes, restoration efforts should focus on recovery of species that are unable to regenerate near forest edges.
Collapse
Affiliation(s)
- Meghna Krishnadas
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Arun N Kumar
- Hennur Cross, Bengaluru, Karnataka, 560096, India
| | - Liza S Comita
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut, 06511, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama
| |
Collapse
|
100
|
Stride G, Thomas CD, Benedick S, Hodgson JA, Jelling A, Senior MJ, Hill JK. Divergent tree seedling communities indicate different trajectories of change among rain forest remnants. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gail Stride
- Department of Biology University of York York UK
| | | | - Suzan Benedick
- Faculty of Sustainable Agriculture Universiti Malaysia Sabah Sandakan Sabah Malaysia
| | - Jenny A. Hodgson
- Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK
| | - Ahmad Jelling
- The Royal Society South East Asia Rainforest Research Programme Danum Valley Field Centre Lahad Datu Sabah Malaysia
| | | | - Jane K. Hill
- Department of Biology University of York York UK
| |
Collapse
|