51
|
Trattnig N, Blaukopf M, Bruxelle JF, Pantophlet R, Kosma P. Synthesis of an Undecasaccharide Featuring an Oligomannosidic Heptasaccharide and a Bacterial Kdo-lipid A Backbone for Eliciting Neutralizing Antibodies to Mammalian Oligomannose on the HIV-1 Envelope Spike. J Am Chem Soc 2019; 141:7946-7954. [PMID: 31010286 PMCID: PMC6524000 DOI: 10.1021/jacs.9b02872] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Lipooligosaccharides (LOS) from the
bacterium Rhizobium
radiobacter Rv3 are structurally related to antigenic mammalian
oligomannoses on the HIV-1 envelope glycoprotein spike that are targets
for broadly neutralizing antibodies. Here, we prepared a hybrid structure
of viral and bacterial epitopes as part of a vaccine design strategy
to elicit oligomannose-specific HIV-neutralizing antibodies using
glycoconjugates based on the Rv3 LOS structure. Starting from a Kdo2GlcNAc2 tetrasaccharide precursor, a central orthogonally
protected mannose trichloroacetimidate donor was coupled to OH-5 of
the innermost Kdo residue. To assemble larger glycans, the N-acetylamino groups of the glucosamine units were converted
to imides to prevent formation of unwanted imidate byproducts. Blockwise
coupling of the pentasaccharide acceptor with an α-(1→2)-linked
mannotriosyl trichloroacetimidate donor introduced the D1-arm fragment.
Glycosylation of O-6 of the central branching mannose
with an α-(1→2)-α-(1→6)-linked mannotriosyl
trichloroacetimidate donor unit then furnished the undecasaccharide
harboring a D3-arm extension. Global deprotection yielded the 3-aminopropyl
ligand, which was activated as an isothiocyanate or adipic acid succinimidoyl
ester and conjugated to CRM197. However, representative
oligomannose-specific HIV-neutralizing antibodies bound the undecasaccharide
conjugates poorly. Possible reasons for this outcome are discussed
herein along with paths for improvement.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| | - Markus Blaukopf
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| | | | | | - Paul Kosma
- Department of Chemistry , University of Natural Resources and Life Sciences , A-1190 Vienna , Austria
| |
Collapse
|
52
|
Lu H, Cherepanova NA, Gilmore R, Contessa JN, Lehrman MA. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction. FASEB J 2019; 33:6801-6812. [PMID: 30811219 DOI: 10.1096/fj.201802044rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a contagious neurotropic herpesvirus responsible for oral lesions and herpesviral encephalitis. The HSV-1 envelope contains N-glycosylated proteins involved in infection and that are candidate drug targets. NGI-1 is a small-molecule inhibitor of oligosaccharyltransferase (OST) complexes STT3A-OST and STT3B-OST, which catalyze cotranslational and post-translational N-glycosylation, respectively. Because host OSTs attach HSV-1 glycans, NGI-1 might have anti-HSV-1 activity. We evaluated HSV-1 function using NGI-1 and human embryonic kidney 293 knockout lines for OST isoform-specific catalytic and accessory subunits. N-glycosylation of 2 representative envelope proteins (gC and gD) was primarily dependent upon STT3A-OST, but to a large extent replaceable by STT3B-OST. Knockouts impairing STT3A- or STT3B-OST activity, by themselves, did not appreciably affect HSV-1 function (plaque-forming units, normalized to viral particles measured by unglycosylated capsid protein VP5 content). However, with cells lacking STT3B-OST activity (missing the catalytic subunit STT3B or the oxidoreductase subunits magnesium transporter 1/tumor suppressor candidate 3) and thus solely dependent upon STT3A-OST for N-glycosylation, NGI-1 treatment resulted in HSV-1 having cell type-dependent dysfunction (affecting infectivity with Vero cells much more than with the 293 lines). Ablation of post-translational N-glycosylation can therefore make HSV-1 infectivity, and possibly masking of immunogenic peptide epitopes by glycans, highly sensitive to pharmacological inhibition of cotranslational N-glycosylation.-Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N., Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.
Collapse
Affiliation(s)
- Hua Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology and Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
53
|
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infect Dis 2019; 5:158-176. [PMID: 30525453 DOI: 10.1021/acsinfecdis.8b00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Passive administration of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (bNAbs) has been recently suggested as a promising alternative therapeutic approach for HIV-1 infection. Although the success behind the studies that used this approach has been attributed to the potency and neutralization breadth of anti-HIV-1 antibodies, several lines of evidence support the idea that specific antibody-dependent effector functions, particularly antibody-dependent cellular cytotoxicity (ADCC), play a critical role in controlling HIV-1 infection. In this review, we showed that there is a direct association between the activation of ADCC and better clinical outcomes. This, in turn, suggests that ADCC could be harnessed to control HIV-1 infection. To this end, we addressed the passive administration of bNAbs capable of selectively activating ADCC responses to HIV-1 patients. Finally, we summarized the potential barriers that may impede the optimal activation of ADCC during HIV-1 infection and provided strategic solutions to overcome these barriers.
Collapse
Affiliation(s)
- Nizar Mohammad Abuharfeil
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Mohammad Yaseen
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110. Jordan
| | - Fawzi M. Alsheyab
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
54
|
Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z. Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:206-216. [DOI: 10.1016/j.nano.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
|
55
|
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R, Kosma P. Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12. Bioconjug Chem 2018; 30:70-82. [PMID: 30525492 PMCID: PMC6340131 DOI: 10.1021/acs.bioconjchem.8b00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.
Collapse
Affiliation(s)
| | | | | | | | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A1S6 , Canada
| | | |
Collapse
|
56
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
57
|
Beura LK, Jameson SC, Masopust D. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? CD8 T-Cell Vaccines: To B or Not to B? Cold Spring Harb Perspect Biol 2018; 10:a028910. [PMID: 29254982 PMCID: PMC6120703 DOI: 10.1101/cshperspect.a028910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although CD8 T-cell vaccines do not have the record of success of humoral-mediated vaccines, they do not receive the same degree of effort. Many diseases, including malaria, tuberculosis, and acquired immune deficiency syndrome (AIDS) have not yielded to vaccines, and intrinsic barriers may impede approaches limited solely to generating antibodies. Moreover, population growth and modernization are driving an increased pace of new emerging global health threats (human immunodeficiency virus [HIV] is a recent example), which will create unpredictable challenges for vaccinologists. Vaccine-elicited CD8 T cells may contribute to protective modalities, although their development will require a more thorough understanding of CD8 T-cell biology, practices for manufacturing and delivering CD8 T-cell-eliciting vectors that have acceptable safety profiles, and, ultimately, the political will and faith of those that make vaccine research funding decisions.
Collapse
Affiliation(s)
- Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
58
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
59
|
Rollenske T, Szijarto V, Lukasiewicz J, Guachalla LM, Stojkovic K, Hartl K, Stulik L, Kocher S, Lasitschka F, Al-Saeedi M, Schröder-Braunstein J, von Frankenberg M, Gaebelein G, Hoffmann P, Klein S, Heeg K, Nagy E, Nagy G, Wardemann H. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat Immunol 2018; 19:617-624. [PMID: 29760533 DOI: 10.1038/s41590-018-0106-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/26/2018] [Indexed: 11/09/2022]
Abstract
Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM+) and IgA+ memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.
Collapse
Affiliation(s)
- Tim Rollenske
- Max Planck Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Jolanta Lukasiewicz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | | | - Katarina Stojkovic
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Simone Kocher
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Moritz von Frankenberg
- Department of General, Abdominal and Minimal Invasive Surgery, Hospital Salem, Heidelberg, Germany
| | - Gereon Gaebelein
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.,Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University Medical Center, Homburg, Germany
| | - Peter Hoffmann
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Hedda Wardemann
- Max Planck Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
60
|
Glycoengineering HIV-1 Env creates 'supercharged' and 'hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathog 2018; 14:e1007024. [PMID: 29718999 PMCID: PMC5951585 DOI: 10.1371/journal.ppat.1007024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/14/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
The extensive glycosylation of HIV-1 envelope (Env) glycoprotein leaves few glycan-free holes large enough to admit broadly neutralizing antibodies (bnAb). Consequently, most bnAbs must inevitably make some glycan contacts and avoid clashes with others. To investigate how Env glycan maturation regulates HIV sensitivity to bnAbs, we modified HIV-1 pseudovirus (PV) using various glycoengineering (GE) tools. Promoting the maturation of α-2,6 sialic acid (SA) glycan termini increased PV sensitivity to two bnAbs that target the V2 apex and one to the interface between Env surface gp120 and transmembrane gp41 subunits, typically by up to 30-fold. These effects were reversible by incubating PV with neuraminidase. The same bnAbs were unusually potent against PBMC-produced HIV-1, suggesting similar α-2,6 hypersialylated glycan termini may occur naturally. Overexpressing β-galactosyltransferase during PV production replaced complex glycans with hybrid glycans, effectively 'thinning' trimer glycan coverage. This increased PV sensitivity to some bnAbs but ablated sensitivity to one bnAb that depends on complex glycans. Other bnAbs preferred small glycans or galactose termini. For some bnAbs, the effects of GE were strain-specific, suggesting that GE had context-dependent effects on glycan clashes. GE was also able to increase the percent maximum neutralization (i.e. saturation) by some bnAbs. Indeed, some bnAb-resistant strains became highly sensitive with GE—thus uncovering previously unknown bnAb breadth. As might be expected, the activities of bnAbs that recognize glycan-deficient or invariant oligomannose epitopes were largely unaffected by GE. Non-neutralizing antibodies were also unaffected by GE, suggesting that trimers remain compact. Unlike mature bnAbs, germline-reverted bnAbs avoided or were indifferent to glycans, suggesting that glycan contacts are acquired as bnAbs mature. Together, our results suggest that glycovariation can greatly impact neutralization and that knowledge of the optimal Env glycoforms recognized by bnAbs may assist rational vaccine design. Here we engineered various changes in the sizes and shapes of sugars that decorate HIV surface spike proteins and tested the effects of these changes on virus susceptibility to neutralizing antibodies. In so doing, we were able to define the optimal Env-sugars recognized by prototype bnAbs that recognize various canonical epitope clusters on Env spike proteins. Some bnAbs preferred spike proteins decorated with large, complex glycans. Others preferred smaller glycans that improved their access to underlying protein targets. For similar reasons, germline-reverted versions of bnAbs were also generally more effective when the glycans were small. In some cases, bnAbs acquired an ability to bind to sugars as they matured. A comparison of viruses generated in cell lines and primary cells revealed large differences in bnAb sensitivity, raising questions about clinical relevance of cell line-produced virus for checking vaccine responses and, moreover, the use of these cell lines for manufacturing vaccines. Overall, just as car engines may be modified to be supercharged or hybrid for increased power or efficiency, the sugars of HIV coat proteins may also need to be engineered as 'supercharged' and 'hybrid' or otherwise modified in rational vaccine designs to optimize bnAb recognition.
Collapse
|
61
|
Emerging glycobiology tools: A renaissance in accessibility. Cell Immunol 2018; 333:2-8. [PMID: 29759530 DOI: 10.1016/j.cellimm.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
The glycobiology of the immune response is a topic that has garnered increased attention due to a number of key discoveries surrounding IgG function, the specificity of some broadly neutralizing anti-HIV antibodies, cancer immunoregulation by galectin molecules and others. This review is the opening article in a Special Edition of Cellular Immunology focused on glycoimmunology, and has the goal of setting the context for these articles by providing a mini-review of how glycans impact immunity. We also focus on some of the technological and methodological advances in the field of glycobiology that are being deployed to lower the barrier of entry into the glycosciences, and to more fully interrogate the glycome and its function.
Collapse
|
62
|
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus. Viruses 2018; 10:v10040193. [PMID: 29652824 PMCID: PMC5923487 DOI: 10.3390/v10040193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Collapse
|
63
|
Abstract
Vaccine design efforts against the human immunodeficiency virus (HIV) have been greatly stimulated by the observation that many infected patients eventually develop highly potent broadly neutralizing antibodies (bnAbs). Importantly, these bnAbs have evolved to recognize not only the two protein components of the viral envelope protein (Env) but also the numerous glycans that form a protective barrier on the Env protein. Because Env is heavily glycosylated compared to host glycoproteins, the glycans have become targets for the antibody response. Therefore, considerable efforts have been made in developing and validating biophysical methods to elucidate the complex structure of the Env-spike glycoprotein, with its combination of glycan and protein epitopes. We illustrate here how the application of robust biophysical methods has transformed our understanding of the structure and function of the HIV Env spike and stimulated innovation in vaccine design strategies that takes into account the essential glycan components.
Collapse
Affiliation(s)
- Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; ,
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; , .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
64
|
Yolitz J, Schwing C, Chang J, Van Ryk D, Nawaz F, Wei D, Cicala C, Arthos J, Fauci AS. Signal peptide of HIV envelope protein impacts glycosylation and antigenicity of gp120. Proc Natl Acad Sci U S A 2018; 115:2443-2448. [PMID: 29463753 PMCID: PMC5877976 DOI: 10.1073/pnas.1722627115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope protein (Env) of early-replicating viruses encodes several distinct transmission signatures. One such signature involves a reduced number of potential N-linked glycosylation sites (PNGs). This transmission signature underscores the importance of posttranslational modifications in the fitness of early-replicating isolates. An additional signature in Env involves the overrepresentation of basic amino acid residues at a specific position in the Env signal peptide (SP). In this report, we investigated the potential impact of this SP signature on gp120 glycosylation and antigenicity. Two recombinant gp120s were constructed, one derived from an isolate that lacks this signature and a second from an early-replicating isolate that includes this signature. Chimeric gp120s were also constructed in which the two SPs were swapped between the isolates. All four gp120s were probed with glycan-, structure- and receptor- specific probes in a surface plasmon resonance binding assay. We found that the SP of Env influences qualitative aspects of Env glycosylation that in turn affect the antigenicity of Env in a major way. The SP impacts the affinity of Env for DC-SIGN, a lectin receptor expressed on dendritic cells that is believed to play a role in mucosal transmission. Additionally, affinity for the monoclonal antibodies 17b and A32, which recognize a CD4-induced, open conformation of Env is also altered. These results demonstrate that natural variation in the SP of HIV Env can significantly impact the antigenicity of mature gp120. Thus, the SP is likely subject to antibody-mediated immune pressure.
Collapse
Affiliation(s)
- Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-Johns Hopkins University Graduate Partnership Program, National Institutes of Health, Bethesda, MD 20892
| | - Catherine Schwing
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julia Chang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
65
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
66
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|
67
|
Saunders KO, Nicely NI, Wiehe K, Bonsignori M, Meyerhoff RR, Parks R, Walkowicz WE, Aussedat B, Wu NR, Cai F, Vohra Y, Park PK, Eaton A, Go EP, Sutherland LL, Scearce RM, Barouch DH, Zhang R, Von Holle T, Overman RG, Anasti K, Sanders RW, Moody MA, Kepler TB, Korber B, Desaire H, Santra S, Letvin NL, Nabel GJ, Montefiori DC, Tomaras GD, Liao HX, Alam SM, Danishefsky SJ, Haynes BF. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Rep 2017; 18:2175-2188. [PMID: 28249163 DOI: 10.1016/j.celrep.2017.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.
Collapse
Affiliation(s)
- Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nathan I Nicely
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Ryan Meyerhoff
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Baptiste Aussedat
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nelson R Wu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yusuf Vohra
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Peter K Park
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eden P Go
- University of Kansas, Lawrence, KS 66045, USA
| | - Laura L Sutherland
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ruijun Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Glenn Overman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - M Anthony Moody
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
68
|
Pantophlet R, Trattnig N, Murrell S, Lu N, Chau D, Rempel C, Wilson IA, Kosma P. Bacterially derived synthetic mimetics of mammalian oligomannose prime antibody responses that neutralize HIV infectivity. Nat Commun 2017; 8:1601. [PMID: 29150603 PMCID: PMC5693931 DOI: 10.1038/s41467-017-01640-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Oligomannose-type glycans are among the major targets on the gp120 component of the HIV envelope protein (Env) for broadly neutralizing antibodies (bnAbs). However, attempts to elicit oligomannose-specific nAbs by immunizing with natural or synthetic oligomannose have so far not been successful, possibly due to B cell tolerance checkpoints. Here we design and synthesize oligomannose mimetics, based on the unique chemical structure of a recently identified bacterial lipooligosaccharide, to appear foreign to the immune system. One of these mimetics is bound avidly by members of a family of oligomannose-specific bnAbs and their putative common germline precursor when presented as a glycoconjugate. The crystal structure of one of the mimetics bound to a member of this bnAb family confirms the antigenic resemblance. Lastly, immunization of human-antibody transgenic animals with a lead mimetic evokes nAbs with specificities approaching those of existing bnAbs. These results provide evidence for utilizing antigenic mimicry to elicit oligomannose-specific bnAbs to HIV-1.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6. .,Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada, V5A1S6. .,SFU Interdisciplinary Research Centre for HIV, Simon Fraser University, Burnaby, BC, Canada, V5A1S6.
| | - Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria
| | - Sasha Murrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Naiomi Lu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Dennis Chau
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Caitlin Rempel
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria.
| |
Collapse
|
69
|
Gristick HB, Wang H, Bjorkman PJ. X-ray and EM structures of a natively glycosylated HIV-1 envelope trimer. Acta Crystallogr D Struct Biol 2017; 73:822-828. [PMID: 28994411 PMCID: PMC5633907 DOI: 10.1107/s2059798317013353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
The structural and biochemical characterization of broadly neutralizing anti-HIV-1 antibodies (bNAbs) has been essential in guiding the design of potential vaccines to prevent infection by HIV-1. While these studies have revealed critical mechanisms by which bNAbs recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env), they have been limited to the visualization of high-mannose glycan forms only, since heterogeneity introduced from the presence of complex glycans makes it difficult to obtain high-resolution structures. 3.5 and 3.9 Å resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation were solved, revealing a glycan shield of high-mannose and complex-type N-glycans that were used to define the complete epitopes of two bNAbs. Here, the refinement of the N-glycans in the crystal structures is discussed and comparisons are made with glycan densities in glycosylated Env structures derived by single-particle cryo-electron microscopy.
Collapse
Affiliation(s)
- Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
70
|
Jan M, Upadhyay C, Sharma A, Hioe CE, Arora SK. Short Communication: Manα1-2Man-Binding Anti-HIV Lectins Enhance the Exposure of V2i and V3 Crown Neutralization Epitopes on the V1/V2 and V3 Hypervariable Loops of HIV-1 Envelope. AIDS Res Hum Retroviruses 2017; 33:941-945. [PMID: 28322582 DOI: 10.1089/aid.2016.0262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study aimed to explore the contribution of high-mannose glycans in the masking of conserved V3 crown (GPG) and V2i epitopes on the hypervariable loops of most exposed distal surface of HIV-1 Env. Using lectins specific to Manα1-2Man residue containing Man6-9GlcNAc2 glycans extensively decorating HIV-1 Env, we found that Manα1-2Man-binding lectins enhance the exposure of these partially and transiently exposed epitopes and consequentially increase the neutralization strength of antibodies against these epitopes.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Department of Infectious Diseases, Icahn School of Medicine, Mount Sinai, New York
| | - Chitra Upadhyay
- Department of Infectious Diseases, Icahn School of Medicine, Mount Sinai, New York
| | - Aman Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Catarina E. Hioe
- Department of Infectious Diseases, Icahn School of Medicine, Mount Sinai, New York
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
71
|
He L, Lin X, de Val N, Saye-Francisco KL, Mann CJ, Augst R, Morris CD, Azadnia P, Zhou B, Sok D, Ozorowski G, Ward AB, Burton DR, Zhu J. Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Front Immunol 2017; 8:1025. [PMID: 28883821 PMCID: PMC5573810 DOI: 10.3389/fimmu.2017.01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiaohe Lin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Colin J Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Augst
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Charles D Morris
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Parisa Azadnia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jiang Zhu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
72
|
Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir. J Virol 2017; 91:JVI.00634-17. [PMID: 28592534 DOI: 10.1128/jvi.00634-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/30/2017] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS.IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and eradication of HIV-1 in infected humans remains uncertain. In this study, we tested the ability of bnAbs to directly recognize and eliminate primary human CD4 T cells infected with diverse HIV-1 strains representative of the global epidemic by antibody-dependent pathways. We also tested several combinations of bnAbs in our assays in order to maximize the clearance of infected cells. We show that the ability of bnAbs to identify and kill infected cells is highly variable and that only a few of them are able to exert this function. Our data will help guide the formulation of bnAbs to test in future human trials aimed at the development of a cure.
Collapse
|
73
|
Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017; 8:1415. [PMID: 28791003 PMCID: PMC5524768 DOI: 10.3389/fmicb.2017.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.
Collapse
Affiliation(s)
- Sally S L Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Pauline M Rudd
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
74
|
Lusvarghi S, Ghirlando R, Davison JR, Bewley CA. Chemical and Biophysical Approaches for Complete Characterization of Lectin-Carbohydrate Interactions. Methods Enzymol 2017; 598:3-35. [PMID: 29306440 PMCID: PMC6141027 DOI: 10.1016/bs.mie.2017.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lectins are carbohydrate-binding proteins unrelated to antibodies or enzymes. While carbohydrates are present on all cells and pathogens, lectins are also ubiquitous in nature and their interactions with glycans mediate countless biological and physical interactions. Due to the multivalency found in both lectins and their glycan-binding partners, complete characterization of these interactions can be complex and typically requires the use of multiple complimentary techniques. In this chapter, we provide a general strategy and protocols for chemical and biophysical approaches that can be used to characterize carbohydrate-mediated interactions in the context of individual oligosaccharides, as part of a glycoprotein, and ending with visualization of interactions with whole virions.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
75
|
Shahzad-Ul-Hussan S, Sastry M, Lemmin T, Soto C, Loesgen S, Scott DA, Davison JR, Lohith K, O'Connor R, Kwong PD, Bewley CA. Insights from NMR Spectroscopy into the Conformational Properties of Man-9 and Its Recognition by Two HIV Binding Proteins. Chembiochem 2017; 18:764-771. [PMID: 28166380 PMCID: PMC5557091 DOI: 10.1002/cbic.201600665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 12/12/2022]
Abstract
Man9 GlcNAc2 (Man-9) present at the surface of HIV makes up the binding sites of several HIV-neutralizing agents and the mammalian lectin DC-SIGN, which is involved in cellular immunity and trans-infections. We describe the conformational properties of Man-9 in its free state and when bound by the HIV entry-inhibitor protein microvirin (MVN), and define the minimum epitopes of both MVN and DC-SIGN by using NMR spectroscopy. To facilitate the implementation of 3D 13 C-edited spectra to deconvolute spectral overlap and to determine the solution structure of Man-9, we developed a robust expression system for the production of 13 C,15 N-labeled glycans in mammalian cells. The studies reveal that Man-9 interacts with HIV-binding proteins through distinct epitopes and adopts diverse conformations in the bound state. In combination with molecular dynamics simulations we observed receptor-bound conformations to be sampled by Man-9 in the free state, thus suggesting a conformational selection mechanism for diverse recognition.
Collapse
Affiliation(s)
- Syed Shahzad-Ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Present address: Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mallika Sastry
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Thomas Lemmin
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Cinque Soto
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Sandra Loesgen
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Danielle A Scott
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Katheryn Lohith
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Robert O'Connor
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
76
|
Behrens AJ, Crispin M. Structural principles controlling HIV envelope glycosylation. Curr Opin Struct Biol 2017; 44:125-133. [PMID: 28363124 DOI: 10.1016/j.sbi.2017.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
The heavily glycosylated, trimeric HIV-1 envelope (Env) protein is the sole viral protein exposed on the HIV-1 virion surface and is thus a main focus of antibody-mediated vaccine development. Dense glycosylation at the outer domain of Env constrains normal enzymatic processing, stalling the glycans at immature oligomannose-type structures. Furthermore, native trimerization imposes additional steric constraints, which generate an extensive 'trimer-induced mannose patch'. Importantly, the immature glycans present a highly conserved feature of the virus that is targeted by broadly neutralizing antibodies. Quantitative mass spectrometry of glycopeptides together with structures of the trimeric viral-spike define the steric principles controlling processing and provide a detailed map of the glycan shield.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
77
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
78
|
Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017; 9:E59. [PMID: 28327518 PMCID: PMC5371814 DOI: 10.3390/v9030059] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Recognition of viral glycans by pattern recognition receptors (PRRs) in innate immunity contributes to antiviral immune responses. C-type lectin receptors (CLRs) are PRRs capable of sensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigen processing and presentation, and subsequent T cell activation. The ability of CLRs to elicit and shape adaptive immunity plays a critical role in the inhibition of viral spread within the host. However, certain viruses exploit CLRs for viral entry into host cells to avoid immune recognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalent glycan carrier systems. In this review, we describe the role of CLRs in antiviral immunity and we highlight their dual function in viral clearance and exploitation by viral pathogens.
Collapse
Affiliation(s)
- João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
79
|
Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. J Virol 2017; 91:JVI.01894-16. [PMID: 27807235 DOI: 10.1128/jvi.01894-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
The formation of a correctly folded and natively glycosylated HIV-1 viral spike is dependent on protease cleavage of the gp160 precursor protein in the Golgi apparatus. Cleavage induces a compact structure which not only renders the spike capable of fusion but also limits further maturation of its extensive glycosylation. The redirection of the glycosylation pathway to preserve underprocessed oligomannose-type glycans is an important feature in immunogen design, as glycans contribute to or influence the epitopes of numerous broadly neutralizing antibodies. Here we present a quantitative site-specific analysis of a recombinant, trimeric mimic of the native HIV-1 viral spike (BG505 SOSIP.664) compared to the corresponding uncleaved pseudotrimer and the matched gp120 monomer. We present a detailed molecular map of a trimer-associated glycan remodeling that forms a localized subdomain of the native mannose patch. The formation of native trimers is a critical design feature in shaping the glycan epitopes presented on recombinant vaccine candidates. IMPORTANCE The envelope spike of human immunodeficiency virus type 1 (HIV-1) is a target for antibody-based neutralization. For some patients infected with HIV-1, highly potent antibodies have been isolated that can neutralize a wide range of circulating viruses. It is a goal of HIV-1 vaccine research to elicit these antibodies by immunization with recombinant mimics of the viral spike. These antibodies have evolved to recognize the dense array of glycans that coat the surface of the viral molecule. We show how the structure of these glycans is shaped by steric constraints imposed upon them by the native folding of the viral spike. This information is important in guiding the development of vaccine candidates.
Collapse
|
80
|
Wibmer CK, Gorman J, Ozorowski G, Bhiman JN, Sheward DJ, Elliott DH, Rouelle J, Smira A, Joyce MG, Ndabambi N, Druz A, Asokan M, Burton DR, Connors M, Abdool Karim SS, Mascola JR, Robinson JE, Ward AB, Williamson C, Kwong PD, Morris L, Moore PL. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathog 2017; 13:e1006074. [PMID: 28076415 PMCID: PMC5226681 DOI: 10.1371/journal.ppat.1006074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel J. Sheward
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Julie Rouelle
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Ashley Smira
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - M. Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nonkululeko Ndabambi
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mangai Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, CHAVI-ID and IAVI Neutralizing Antibody Centre, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James E. Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
81
|
HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. J Virol 2016; 90:11132-11144. [PMID: 27707925 PMCID: PMC5126371 DOI: 10.1128/jvi.01542-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV envelope glycoprotein (Env) is extensively modified with host-derived N-linked glycans. The high density of glycosylation on the viral spike limits enzymatic processing, resulting in numerous underprocessed oligomannose-type glycans. This extensive glycosylation not only shields conserved regions of the protein from the immune system but also acts as a target for anti-HIV broadly neutralizing antibodies (bnAbs). In response to the host immune system, the HIV glycan shield is constantly evolving through mutations affecting both the positions and numbers of potential N-linked glycosylation sites (PNGSs). Here, using longitudinal Env sequences from a clade C-infected individual (CAP256), we measured the impact of the shifting glycan shield during HIV infection on the abundance of oligomannose-type glycans. By analyzing the intrinsic mannose patch from a panel of recombinant CAP256 gp120s displaying high protein sequence variability and changes in PNGS number and positioning, we show that the intrinsic mannose patch persists throughout the course of HIV infection and correlates with the number of PNGSs. This effect of the glycan density on the processing state was also supported by the analysis of a cross-clade panel of recombinant gp120 glycoproteins. Together, these observations underscore the importance of glycan clustering for the generation of carbohydrate epitopes for anti-HIV bnAbs. The persistence of the intrinsic mannose patch over the course of HIV infection further highlights this epitope as an important target for HIV vaccine strategies. IMPORTANCE Development of an HIV vaccine is critical for control of the HIV pandemic, and elicitation of broadly neutralizing antibodies (bnAbs) is likely to be a key component of a successful vaccine response. The HIV envelope glycoprotein (Env) is covered in an array of host-derived N-linked glycans often referred to as the glycan shield. This glycan shield is a target for many of the recently isolated anti-HIV bnAbs and is therefore under constant pressure from the host immune system, leading to changes in both glycan site frequency and location. This study aimed to determine whether these genetic changes impacted the eventual processing of glycans on the HIV Env and the susceptibility of the virus to neutralization. We show that despite this variation in glycan site positioning and frequency over the course of HIV infection, the mannose patch is a conserved feature throughout, making it a stable target for HIV vaccine design.
Collapse
|
82
|
Lusvarghi S, Lohith K, Morin-Leisk J, Ghirlando R, Hinshaw JE, Bewley CA. Binding Site Geometry and Subdomain Valency Control Effects of Neutralizing Lectins on HIV-1 Viral Particles. ACS Infect Dis 2016; 2:882-891. [PMID: 27669574 DOI: 10.1021/acsinfecdis.6b00139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carbohydrate binding proteins such as griffithsin, cyanovirin-N, and BanLec are potent HIV entry inhibitors and promising microbicides. Each binds to high-mannose glycans on the surface envelope glycoprotein gp120, yet the mechanisms by which they engage viral spikes and exhibit inhibition constants ranging from nanomolar to picomolar are not understood. To determine the structural and mechanistic basis for recognition and potency, we selected a panel of lectins possessing different valencies per subunit, oligomeric states, and relative orientations of carbohydrate binding sites to systematically probe their contributions to inhibiting viral entry. Cryo-electron micrographs and immuno gold staining of lectin-treated viral particles revealed two distinct effects-namely, viral aggregation or clustering of the HIV-1 envelope on the viral membrane-that were dictated by carbohydrate binding site geometry and valency. "Sandwich" surface plasmon resonance experiments revealed that a second binding event occurs only for those lectins that could aggregate viral particles. Furthermore, picomolar Kd values were observed for the second binding event, providing a mechanism by which picomolar IC50 values are achieved. We suggest that these binding and aggregation phenomena translate to neutralization potency.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Katheryn Lohith
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Jeanne Morin-Leisk
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Rodolfo Ghirlando
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Jenny E. Hinshaw
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
83
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
84
|
Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 2016; 40:153-162. [PMID: 27792989 PMCID: PMC5526076 DOI: 10.1016/j.sbi.2016.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022]
Abstract
The surfaces of host cells and viruses are decorated by complex glycans, which play multifaceted roles in the dynamic interplay between the virus and the host including viral entry into host cell, modulation of proteolytic cleavage of viral proteins, recognition and neutralization of virus by host immune system. These roles are mediated by specific multivalent interactions of glycans with their cognate proteins (generally termed as glycan-binding proteins or GBPs or lectins). The advances in tools and technologies to chemically synthesize and structurally characterize glycans and glycan-GBP interactions have offered several insights into the role of glycan-GBP interactions in viral pathogenesis and have presented opportunities to target these interactions for novel antiviral therapeutic or vaccine strategies. This review covers aspects of role of host cell surface glycan receptors and viral surface glycans in viral pathogenesis and offers perspectives on how to employ various analytical tools to target glycan-GBP interactions.
Collapse
|
85
|
Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses 2016; 8:v8090255. [PMID: 27657106 PMCID: PMC5035969 DOI: 10.3390/v8090255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses represent a significant category of pathogens that cause serious diseases in animals. These viruses express envelope glycoproteins that are singularly important during the infection of host cells by mediating fusion between the viral envelope and host cell membranes. Despite low homology at protein levels, three classes of viral fusion proteins have, as of yet, been identified based on structural similarities. Their incorporation into viral particles is dependent upon their proper sub-cellular localization after being expressed and folded properly in the endoplasmic reticulum (ER). However, viral protein expression can cause stress in the ER, and host cells respond to alleviate the ER stress in the form of the unfolded protein response (UPR); the effects of which have been observed to potentiate or inhibit viral infection. One important arm of UPR is to elevate the capacity of the ER-associated protein degradation (ERAD) pathway, which is comprised of host quality control machinery that ensures proper protein folding. In this review, we provide relevant details regarding viral envelope glycoproteins, UPR, ERAD, and their interactions in host cells.
Collapse
Affiliation(s)
- Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
86
|
Gristick HB, von Boehmer L, West AP, Schamber M, Gazumyan A, Golijanin J, Seaman MS, Fätkenheuer G, Klein F, Nussenzweig MC, Bjorkman PJ. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat Struct Mol Biol 2016; 23:906-915. [PMID: 27617431 DOI: 10.1038/nsmb.3291] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022]
Abstract
HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46-derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs.
Collapse
Affiliation(s)
- Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Lotta von Boehmer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michael Schamber
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gerd Fätkenheuer
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Florian Klein
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Internal Medicine I, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
87
|
Panico M, Bouché L, Binet D, O’Connor MJ, Rahman D, Pang PC, Canis K, North SJ, Desrosiers RC, Chertova E, Keele BF, Bess JW, Lifson JD, Haslam SM, Dell A, Morris HR. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci Rep 2016; 6:32956. [PMID: 27604319 PMCID: PMC5015092 DOI: 10.1038/srep32956] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens.
Collapse
Affiliation(s)
- Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| | - Michael-John O’Connor
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| | - Dinah Rahman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Kevin Canis
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Simon J. North
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Julian W. Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Howard R. Morris
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| |
Collapse
|
88
|
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/AIDS Pandemic. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:451-475. [PMID: 28357381 PMCID: PMC5354571 DOI: 10.15698/mic2016.09.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.
Collapse
Affiliation(s)
- Juan C. Becerra
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| | | | - Johannes S. Gach
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
89
|
Toonstra C, Amin MN, Wang LX. Site-Selective Chemoenzymatic Glycosylation of an HIV-1 Polypeptide Antigen with Two Distinct N-Glycans via an Orthogonal Protecting Group Strategy. J Org Chem 2016; 81:6176-85. [PMID: 27380452 DOI: 10.1021/acs.joc.6b01044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A convergent chemoenzymatic approach for sequential installation of different N-glycans in a polypeptide is described. The method includes introduction of distinguishably protected GlcNAc-Asn building blocks during automated solid phase peptide synthesis (SPPS), followed by orthogonal deprotection of the GlcNAc primers and site-selective sequential extension of the sugar chains through glycosynthase-catalyzed transglycosylation reactions. It was observed that the protecting groups on one neighboring GlcNAc moiety have an impact on the substrate activity of another GlcNAc acceptor toward some endoglycosynthases in transglycosylation. The usefulness of this synthetic strategy was exemplified by an efficient synthesis of the glycopeptide neutralizing epitope of broadly HIV-neutralizing antibody PG9. The method should be generally applicable for the synthesis of complex glycopeptides carrying multiple different N-glycans.
Collapse
Affiliation(s)
- Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Mohammed N Amin
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
90
|
Behrens AJ, Vasiljevic S, Pritchard LK, Harvey DJ, Andev RS, Krumm SA, Struwe WB, Cupo A, Kumar A, Zitzmann N, Seabright GE, Kramer HB, Spencer DIR, Royle L, Lee JH, Klasse PJ, Burton DR, Wilson IA, Ward AB, Sanders RW, Moore JP, Doores KJ, Crispin M. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Rep 2016; 14:2695-706. [PMID: 26972002 PMCID: PMC4805854 DOI: 10.1016/j.celrep.2016.02.058] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022] Open
Abstract
The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664) maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens. Quantitative, site-specific N-glycan analysis of a soluble HIV-1 Env trimer A map of the extremes of simplicity and diversity at individual glycan sites The fine structure of the mannose patch area of the Env trimer How individual glycan sites influence HIV-1 Env-pseudovirus neutralization
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura K Pritchard
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - David J Harvey
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rajinder S Andev
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Stefanie A Krumm
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Weston B Struwe
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Abhinav Kumar
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Nicole Zitzmann
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gemma E Seabright
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | - Louise Royle
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Per J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, the Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA; Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Katie J Doores
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK.
| | - Max Crispin
- Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
91
|
Krumm SA, Mohammed H, Le KM, Crispin M, Wrin T, Poignard P, Burton DR, Doores KJ. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology 2016; 13:8. [PMID: 26837192 PMCID: PMC4736637 DOI: 10.1186/s12977-016-0241-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Background Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the 323IGDIR327 motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. Results Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. Conclusions These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie A Krumm
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Hajer Mohammed
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Terri Wrin
- Monogram Biosciences, Laboratory Corporation of America(R) Holdings, South San Francisco, CA, USA.
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA. .,Ragon Institute of MGH, MIT and Harvard, Cambridge, USA.
| | - Katie J Doores
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
92
|
Liu CC, Zheng XJ, Ye XS. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem 2016; 11:357-62. [PMID: 26762799 DOI: 10.1002/cmdc.201500498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/12/2022]
Abstract
The HIV envelope (Env) is heavily glycosylated, facilitating the spread and survival of HIV in many ways. Some potent broadly neutralizing antibodies (bnAbs) such as 2G12, PG9, PG16, and PGTs can recognize the conserved glycan residues on Env. The bnAbs, which often emerge after many years of chronic infection, provide insight into the vulnerability of HIV and can therefore guide the design of vaccines. Many carbohydrate-conjugated vaccines have been designed to induce bnAb-like antibodies, but none have yet been successful. The low antigenicity of these vaccines is one possible explanation. New strategies have been applied to obtain high-affinity antigens of glycan-dependent and other bnAbs. However, when used as immunogens in vivo, high-affinity antigens are still insufficient in eliciting bnAb-like antibodies. bnAbs generally possess some unusual features and may therefore be suppressed by the host immune system. In view of this situation, some immunization regimens based on the affinity maturation of antibodies have been tested. Herein we summarize recent studies into the design of carbohydrate-based HIV vaccines and some valuable experiences gained in work with other bnAb-based HIV vaccines.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
93
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|