51
|
Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, Grimaldi A, Casartelli M, Tettamanti G. Insights Into the Immune Response of the Black Soldier Fly Larvae to Bacteria. Front Immunol 2021; 12:745160. [PMID: 34867970 PMCID: PMC8636706 DOI: 10.3389/fimmu.2021.745160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
In insects, a complex and effective immune system that can be rapidly activated by a plethora of stimuli has evolved. Although the main cellular and humoral mechanisms and their activation pathways are highly conserved across insects, the timing and the efficacy of triggered immune responses can differ among different species. In this scenario, an insect deserving particular attention is the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae). Indeed, BSF larvae can be reared on a wide range of decaying organic substrates and, thanks to their high protein and lipid content, they represent a valuable source of macromolecules useful for different applications (e.g., production of feedstuff, bioplastics, and biodiesel), thus contributing to the development of circular economy supply chains for waste valorization. However, decaying substrates bring the larvae into contact with different potential pathogens that can challenge their health status and growth. Although these life strategies have presumably contributed to shape the evolution of a sophisticated and efficient immune system in this dipteran, knowledge about its functional features is still fragmentary. In the present study, we investigated the processes underpinning the immune response to bacteria in H. illucens larvae and characterized their reaction times. Our data demonstrate that the cellular and humoral responses in this insect show different kinetics: phagocytosis and encapsulation are rapidly triggered after the immune challenge, while the humoral components intervene later. Moreover, although both Gram-positive and Gram-negative bacteria are completely removed from the insect body within a few hours after injection, Gram-positive bacteria persist in the hemolymph longer than do Gram-negative bacteria. Finally, the activity of two key actors of the humoral response, i.e., lysozyme and phenoloxidase, show unusual dynamics as compared to other insects. This study represents the first detailed characterization of the immune response to bacteria of H. illucens larvae, expanding knowledge on the defense mechanisms of this insect among Diptera. This information is a prerequisite to manipulating the larval immune response by nutritional and environmental factors to increase resistance to pathogens and optimize health status during mass rearing.
Collapse
Affiliation(s)
- Daniele Bruno
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Maristella Mastore
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Amr Mohamed
- Laboratory of Insect Biochemistry and Molecular Sciences, Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Annalisa Grimaldi
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Morena Casartelli
- Laboratory of Insect Physiology and Biotechnology, Department of Biosciences, University of Milano, Milan, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| | - Gianluca Tettamanti
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| |
Collapse
|
52
|
Eleftherianos I, Zhang W, Heryanto C, Mohamed A, Contreras G, Tettamanti G, Wink M, Bassal T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. Int J Biol Macromol 2021; 191:277-287. [PMID: 34543628 DOI: 10.1016/j.ijbiomac.2021.09.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, Varese 21100, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Napoli Federico II, Via Università, 100, Portici 80055, Italy
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Taha Bassal
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
53
|
Vatanparast M, Kazzazi M, Sajjadian SM, Park Y. Knockdown of Helicoverpa armigera protease genes affects its growth and mortality via RNA interference. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21840. [PMID: 34569086 DOI: 10.1002/arch.21840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the cotton bollworm, is a destructive pest which is famous for its resistance to a variety of insecticides. RNA interference is a posttranscriptional gene silencing mechanism that has become a popular tool to control insect pests, triggered by double-stranded RNAs (dsRNAs). The effect of ingestion and injection delivery methods of dsRNA related to some protease genes including Trypsin (Ha-TRY39 and Ha-TRY96), Chymotrypsin (Ha-CHY), and Cathepsin L (Ha-CAT) on growth and development of H. armigera was investigated in this study. All protease genes encoded full ORFs and were expressed in all H. armigera larvae stages and tissues. In both injection and feeding bioassays, Ha-RNAi CHY's performance outperformed that of other protease genes. CHY enzyme activity in the midgut of larvae was significantly reduced after treatment with ds-HaCHY. Oral administration of ds-CHY also resulted in significant mortality of H. armigera larvae. However, because of the high RNase activity in the midgut lumen of lepidoptera, a large amount of dsRNA was needed to effectively kill instars of H. armigera. To reduce dsRNA degradation, bacterial expression and dsRNA formulation were used. After oral administration, it was toxic to H. armigera larvae. Before oral administration, bacterial cells were sonicated to increase dsRNA release. The RNA interference efficiency of sonicated bacteria was significantly increased, resulting in higher larval mortality when administered orally. All of these findings point to Ha-CHY as a new candidate for developing an effective dsRNA-based pesticide for H. armigera control.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Shahid Mostafa Ahmadi Roshan, Hamedan, Iran
- Department of Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Majid Kazzazi
- Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Shahid Mostafa Ahmadi Roshan, Hamedan, Iran
| | - Seyedeh Minoo Sajjadian
- Department of Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
- Department of Plant Protection, College of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Youngjin Park
- Department of Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| |
Collapse
|
54
|
Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Microbiol Spectr 2021; 9:e0060421. [PMID: 34704785 PMCID: PMC8549738 DOI: 10.1128/spectrum.00604-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.
Collapse
|
55
|
Stączek S, Zdybicka-Barabas A, Wiater A, Pleszczyńska M, Cytryńska M. Activation of cellular immune response in insect model host Galleria mellonella by fungal α-1,3-glucan. Pathog Dis 2021; 78:6000214. [PMID: 33232457 PMCID: PMC7726367 DOI: 10.1093/femspd/ftaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Alpha-1,3-glucan, in addition to β-1,3-glucan, is an important polysaccharide component of fungal cell walls. It is reported for many fungal species, including human pathogenic genera: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma and Pneumocystis, plant pathogens, e.g. Magnaporthe oryzae and entomopathogens, e.g. Metarhizium acridum. In human and plant pathogenic fungi, α-1,3-glucan is considered as a shield for the β-1,3-glucan layer preventing recognition of the pathogen by the host. However, its role in induction of immune response is not clear. In the present study, the cellular immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan was investigated for the first time. The changes detected in the total hemocyte count (THC) and differential hemocyte count (DHC), formation of hemocyte aggregates and changes in apolipophorin III localization indicated activation of G. mellonella cellular mechanisms in response to immunization with A. niger α-1,3-glucan. Our results, which have clearly demonstrated the response of the insect immune system to this fungal cell wall component, will help in understanding the α-1,3-glucan role in immune response against fungal pathogens not only in insects but also in mammals, including humans.
Collapse
Affiliation(s)
- Sylwia Stączek
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Adrian Wiater
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Pleszczyńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
56
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
57
|
Lyons N, Softley I, Balfour A, Williamson C, O'Brien HE, Shetty AC, Bruno VM, Diezmann S. Tobacco Hornworm ( Manduca sexta) caterpillars as a novel host model for the study of fungal virulence and drug efficacy. Virulence 2021; 11:1075-1089. [PMID: 32842847 PMCID: PMC7549948 DOI: 10.1080/21505594.2020.1806665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The two leading yeast pathogens of humans, Candida albicans and Cryptococcus neoformans, cause systemic infections in >1.4 million patients worldwide with mortality rates approaching 75%. It is thus imperative to study fungal virulence mechanisms, efficacy of antifungal drugs, and host response pathways. While this is commonly done in mammalian models, which are afflicted by ethical and practical concerns, invertebrate models, such as wax moth larvae and nematodes have been introduced over the last two decades. To complement existing invertebrate host models, we developed fifth instar caterpillars of the Tobacco Hornworm moth Manduca sexta as a novel host model. These caterpillars can be maintained at 37°C, are suitable for injections with defined amounts of yeast cells, and are susceptible to the most threatening yeast pathogens, including C. albicans, C. neoformans, C. auris, and C. glabrata. Importantly, fungal burden can be assessed daily throughout the course of infection in a single caterpillar’s feces and hemolymph. Infected caterpillars can be rescued by treatment with antifungal drugs. Notably, these animals are large enough for weight to provide a reliable and reproducible measure of fungal disease and to facilitate host tissue-specific expression analyses. M. sexta caterpillars combine a suite of parameters that make them suitable for the study of fungal virulence.
Collapse
Affiliation(s)
- Naomi Lyons
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University , Tel Aviv, Israel.,Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Isabel Softley
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Andrew Balfour
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University , Cardiff, UK
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath , Bath, UK.,School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| |
Collapse
|
58
|
Riciluca KCT, Oliveira UC, Mendonça RZ, Bozelli Junior JC, Schreier S, da Silva Junior PI. Rondonin: antimicrobial properties and mechanism of action. FEBS Open Bio 2021; 11:2541-2559. [PMID: 34254458 PMCID: PMC8409319 DOI: 10.1002/2211-5463.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/13/2021] [Accepted: 07/12/2021] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases are among the major causes of death in the human population. A wide variety of organisms produce antimicrobial peptides (AMPs) as part of their first line of defense. A peptide from Acanthoscurria rondoniae plasma, rondonin—with antifungal activity, a molecular mass of 1236 Da and primary sequence IIIQYEGHKH—was previously studied (UniProt accession number B3EWP8). It showed identity with the C terminus of subunit ‘D’ of the hemocyanin of the Aphonopelma hentzi spider. This result led us to propose a new pathway of the immune system of arachnids that suggests a new function to hemocyanin: production of antimicrobial peptides. Rondonin does not interact with model membranes and was able to bind to yeast nucleic acids but not bacteria. It was not cytotoxic against mammalian cells. The antifungal activity of rondonin is pH‐dependent and peaks at pH ˜ 4–5. The peptide presents synergism with gomesin (spider hemocyte antimicrobial peptide—UniProtKB—P82358) against human yeast pathogens, suggesting a new potential alternative treatment option. Antiviral activity was detected against RNA viruses, measles, H1N1, and encephalomyocarditis. This is the first report of an arthropod hemocyanin fragment with activity against human viruses. Currently, it is vital to invest in the search for natural and synthetic antimicrobial compounds that, above all, present alternative mechanisms of action to first‐choice antimicrobials.
Collapse
Affiliation(s)
- Katie C T Riciluca
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Post-Graduation Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, Brazil
| | - Ursula C Oliveira
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | | | - José C Bozelli Junior
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil.,Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Pedro I da Silva Junior
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Post-Graduation Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, Brazil
| |
Collapse
|
59
|
An Overview of Antimicrobial Compounds from African Edible Insects and Their Associated Microbiota. Antibiotics (Basel) 2021; 10:antibiotics10060621. [PMID: 34067471 PMCID: PMC8224635 DOI: 10.3390/antibiotics10060621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
The need for easily biodegradable and less toxic chemicals in drug development and pest control continues to fuel the exploration and discovery of new natural molecules. Like certain plants, some insects can also respond rapidly to microbial infections by producing a plethora of immune-induced molecules that include antibacterial and antifungal peptides/polypeptides (AMPs), among other structurally diverse small molecules. The recent recognition that new natural product-derived scaffolds are urgently needed to tackle life-threatening pathogenic infections has been prompted by the health threats posed by multidrug resistance. Although many researchers have concentrated on the discovery of AMPs, surprisingly, edible insect-produced AMPs/small molecules have received little attention. This review will discuss the recent advances in the identification and bioactivity analysis of insect AMPs, with a focus on small molecules associated with the microbiota of selected African edible insects. These molecules could be used as templates for developing next-generation drugs to combat multidrug-resistant pathogens.
Collapse
|
60
|
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci 2021; 78:4259-4282. [PMID: 33595669 PMCID: PMC8164593 DOI: 10.1007/s00018-021-03784-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization.
Collapse
Affiliation(s)
- M D Manniello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - A Moretta
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - R Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - C Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - D Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - A Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture (PZ), Italy
| | - P Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
61
|
Wang G, Zhou Y, Tang B, Ali H, Hou Y. Immune function differences between two color morphs of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) at different life stages. Ecol Evol 2021; 11:5702-5712. [PMID: 34026041 PMCID: PMC8131810 DOI: 10.1002/ece3.7474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
Several studies demonstrated that in insects cuticle melanism is interrelated with pathogen resistance, as melanin-based coloration and innate immunity possess similar physiological pathways. For some insects, higher pathogen resistance was observed in darker individuals than in individuals with lighter cuticular coloration. Here, we investigated the difference in immune response between two color morphs (black and red) and between the life stages (pupa and adult) of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Here in this study, cuticle thickness, microbial test (antimicrobial activity, phenoloxidase activity, and hemocyte density), and immune-related gene expression were evaluated at different stages of RPW. Study results revealed that cuticle thickness of black phenotype was thicker than red phenotype at old-pupa stage, while no significant difference found at adult stage. These results may relate to the development processes of epidermis in different stages of RPW. The results of antimicrobial activity, phenoloxidase (PO) activity, and hemocyte density analyses showed that adults with a red phenotype had stronger pathogen resistance than those with a black phenotype. In addition to antimicrobial activity and PO activity, we tested relative gene expression in the fat body of old pupae. The results of hemolymph antimicrobial analysis showed that old pupae with a red phenotype were significantly different from those with a black phenotype at 12 hr after Staphylococcus aureus injection, suggesting that red phenotype pupae were more sensitive to S. aureus. Examination of gene expression in the fat body also revealed that the red phenotype had a higher immune response than the black phenotype. Our results were inconsistent with the previous conclusion that dark insects had increased immune function, suggesting that the relationship between cuticle pigmentation and immune function in insects was not a direct link. Additional possible factors that are associated with the immune response, such as life-history, developmental, physiological factors also need to be considered.
Collapse
Affiliation(s)
- Guihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFujianChina
- Fujian Province Key Laboratory of Insect EcologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFujianChina
| | - Yuxuan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFujianChina
- Fujian Province Key Laboratory of Insect EcologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFujianChina
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFujianChina
- Fujian Province Key Laboratory of Insect EcologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFujianChina
| | - Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Agriculture EngineeringKhawaja Fareed University of Engineering and Informtion TechnologyRahim Yar KhanPakistan
- University of Agriculture FaisalabdOkaraPakistan
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFujianChina
- Fujian Province Key Laboratory of Insect EcologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFujianChina
| |
Collapse
|
62
|
Sheehan G, Margalit A, Sheehan D, Kavanagh K. Proteomic profiling of bacterial and fungal induced immune priming in Galleria mellonella larvae. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104213. [PMID: 33662378 DOI: 10.1016/j.jinsphys.2021.104213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Some insects display immunological priming as a result of elevated humoral and cellular responses which give enhanced survival against subsequent infection. The humoral immune response of Galleria mellonella larvae following pre-exposure to heat killed Staphylococcus aureus or Candida albicans cells was determined by quantitative mass spectrometry in order to assess the relationship between the humoral immune response and resistance to subsequent bacterial or fungal infection. Larvae pre-exposed to heat killed S. aureus showed increased resistance to subsequent bacterial and fungal infection. Larvae displayed an increased hemocyte density (14.08 ± 2.14 × 106 larva-1 (p < 0.05) compared to the PBS injected control [10.41 ± 1.67 × 106 larva-1]) and increased abundance of antimicrobial proteins (cecropin-D-like peptide (+22.23 fold), hdd11 (+12.61 fold) and prophenol oxidase activating enzyme 3 (+5.96 fold) in response to heat killed S. aureus. Larvae pre-exposed to heat killed C. albicans cells were resistant to subsequent fungal infection but not bacterial infection and showed a reduced hemocyte density (6.01 ± 1.63 × 106 larva-1 (p < 0.01) and increased abundance of hdd11 (+32.73 fold) and moricin-like peptide C1 (+16.76 fold). While immune priming is well recognised in G. mellonella larvae the results presented here indicate distinct differences in the response of larvae following exposure to heat killed bacterial and fungal cells.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Anatte Margalit
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
63
|
Identification and Functional Analysis of a Lysozyme Gene from Coridius chinensis (Hemiptera: Dinidoridae). BIOLOGY 2021; 10:biology10040330. [PMID: 33920041 PMCID: PMC8071013 DOI: 10.3390/biology10040330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary As a medicinal insect, Coridius chinensis contains many active polypeptides. Extracts from C. chinensis are usually complex and it is not clear which polypeptides are effective medicinal ingredients. In addition, we also need to figure out the functions of various immune effectors in the innate immunity of C. chinensis. To explore the function of lysozyme in C. chinensis, a lysozyme gene CcLys2 was screened and identified from the transcriptome data of C. chinensis. The results showed that CcLys2 had a typical domain of the c-type lysozyme, belonging to the H-branch of the c-type lysozyme. The lysozyme Cclys2 is an effective immune effector in the immune response of C. chinensis and can be stimulated by bacterial infection. Like typical c-type lysozyme, Cclys2 has lytic activity against Gram-positive bacteria. The research holds promise for functional annotation of similar proteins from other dinidoridae insects and provides the theoretical feasibility for the development of medicinal components in C. chinensis. Our results also provide data for further investigating the origin and evolution of insect lysozymes. Abstract Coridius chinensis is a valuable medicinal insect resource in China. Previous studies have indicated that the antibacterial and anticancer effects of the C. chinensis extract mainly come from the active polypeptides. Lysozyme is an effective immune effector in insect innate immunity and usually has excellent bactericidal effects. There are two kinds of lysozymes in insects, c-type and i-type, which play an important role in innate immunity and intestinal digestion. Studying lysozyme in C. chinensis will be helpful to further explore the evolutionary relationship and functional differences among lysozymes of various species and to determine whether they have biological activity and medicinal value. In this study, a lysozyme CcLys2 was identified from C. chinensis. CcLys2 contains 223 amino acid residues, and possesses a typical domain of the c-type lysozyme and a putative catalytic site formed by two conserved residues Glu32 and Asp50. Phylogenetic analysis showed that CcLys2 belongs to the H-branch of the c-type lysozyme. The analysis of spatiotemporal expression patterns indicated that CcLys2 was mainly expressed in the fat body of C. chinensis adults and was highly expressed in the second- and fifth-instar nymphs. In addition, CcLys2 was significantly up-regulated after injecting and feeding bacteria. In the bacterial inhibition assay, it was found that CcLys2 had antibacterial activity against Gram-positive bacteria at a low pH. These results indicate that CcLys2 has muramidase activity, involves in the innate immunity of C. chinensis, and is also closely related to the bacterial immune defense or digestive function of the intestine.
Collapse
|
64
|
Liu D, Wang R, Yang J, Yang Q. Cloning, expression, and functional analysis of the β-1,3-glucanase gene in Ostrinia furnacalis. Biotechnol Appl Biochem 2021; 69:642-649. [PMID: 33650240 DOI: 10.1002/bab.2139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/24/2021] [Indexed: 11/07/2022]
Abstract
The β-1,3-glucanase gene in Ostrinia furnacalis was first obtained by RT-PCR. The real-time fluorescence quantitative PCR showed that the expression level of β-1,3-glucanase in the midgut of O. furnacalis was higher than in other tissues. Moreover, the expression level in the larval stage was higher in egg, pupa, and adult stages. The optimal pH of recombinant O. furnacalis β-1,3-glucanase OfLam to the substrate laminarin was 4.5, and the optimum reaction temperature was 50°C. The enzyme exhibited a KM of 1.59 ± 0.28 mg/mL and a kcat of 15.8 ± 0.66 s-1 . Ostrinia furnacalis β-1,3-glucanase has a similar catalytic efficiency to other insect-derived β-1,3-glucanases. The recombinant OfLam has a broad substrate spectrum and can hydrolyze fungal cell walls, suggesting a new source of enzymes for biological control strategies that target fungal cell walls.
Collapse
Affiliation(s)
- Danmei Liu
- Agricultural College, Eastern Liaoning University, Dandong, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Jun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
65
|
Chowdhury T, Mandal SM, Dutta S, Ghosh AK. Identification of a novel proline-rich antimicrobial protein from the hemolymph of Antheraea mylitta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21771. [PMID: 33644898 DOI: 10.1002/arch.21771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Antimicrobial proteins (AMPs) are small, cationic proteins that exhibit activity against bacteria, viruses, parasites, fungi as well as boost host-specific innate immune responses. Insects produce these AMPs in the fat body and hemocytes, and release them into the hemolymph upon microbial infection. Hemolymph was collected from the bacterially immunized fifth instar larvae of tasar silkworm, Antheraea mylitta, and an AMP was purified by organic solvent extraction followed by size exclusion and reverse-phase high-pressure liquid chromatography. The purity of AMP was confirmed by thin-layer chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The molecular mass was determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry as 14 kDa, and hence designated as AmAMP14. Peptide mass fingerprinting of trypsin-digested AmAMP14 followed by de novo sequencing of one peptide fragment by tandem mass spectrometry analysis revealed the amino acid sequences as CTSPKQCLPPCK. No homology was found in the database search and indicates it as a novel AMP. The minimum inhibitory concentration of the purified AmAMP14 was determined against Escherichia coli, Staphylococcus aureus, and Candida albicans as 30, 60, and 30 µg/ml, respectively. Electron microscopic examination of the AmAMP14-treated cells revealed membrane damage and release of cytoplasmic contents. All these results suggest the production of a novel 14 kDa AMP in the hemolymph of A. mylitta to provide defense against microbial infection.
Collapse
Affiliation(s)
- Trinath Chowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Soumita Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
66
|
Integrative multiomics analysis of Premolis semirufa caterpillar venom in the search for molecules leading to a joint disease. Sci Rep 2021; 11:1995. [PMID: 33479267 PMCID: PMC7820220 DOI: 10.1038/s41598-020-79769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
The joint disease called pararamosis is an occupational disease caused by accidental contact with bristles of the caterpillar Premolis semirufa. The chronic inflammatory process narrows the joint space and causes alterations in bone structure and cartilage degeneration, leading to joint stiffness. Aiming to determine the bristle components that could be responsible for this peculiar envenomation, in this work we have examined the toxin composition of the caterpillar bristles extract and compared it with the differentially expressed genes (DEGs) in synovial biopsies of patients affected with rheumatoid arthritis (RA) and osteoarthritis (OA). Among the proteins identified, 129 presented an average of 63% homology with human proteins and shared important conserved domains. Among the human homologous proteins, we identified seven DEGs upregulated in synovial biopsies from RA or OA patients using meta-analysis. This approach allowed us to suggest possible toxins from the pararama bristles that could be responsible for starting the joint disease observed in pararamosis. Moreover, the study of pararamosis, in turn, may lead to the discovery of specific pharmacological targets related to the early stages of articular diseases.
Collapse
|
67
|
Gershman A, Romer TG, Fan Y, Razaghi R, Smith WA, Timp W. De novo genome assembly of the tobacco hornworm moth (Manduca sexta). G3 (BETHESDA, MD.) 2021; 11:jkaa047. [PMID: 33561252 PMCID: PMC8022704 DOI: 10.1093/g3journal/jkaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 01/24/2023]
Abstract
The tobacco hornworm, Manduca sexta, is a lepidopteran insect that is used extensively as a model system for studying insect biology, development, neuroscience, and immunity. However, current studies rely on the highly fragmented reference genome Msex_1.0, which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. We present a new reference genome for M. sexta, JHU_Msex_v1.0, applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly is 470 Mb and is ∼20× more continuous than the original assembly, with scaffold N50 > 14 Mb. We annotated the assembly by lifting over existing annotations and supplementing with additional supporting RNA-based data for a total of 25,256 genes. The new reference assembly is accessible in annotated form for public use. We demonstrate that improved continuity of the M. sexta genome improves resequencing studies and benefits future research on M. sexta as a model organism.
Collapse
Affiliation(s)
- Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Tatiana G Romer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Roham Razaghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wendy A Smith
- Department of Biology, Northeastern University, Boston, MA, 02215, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
68
|
Han G, Liu Q, Li C, Xu B, Xu J. Transcriptome sequencing reveals Cnaphalocrocis medinalis against baculovirus infection by oxidative stress. Mol Immunol 2020; 129:63-69. [PMID: 33229072 DOI: 10.1016/j.molimm.2020.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Cnaphalocrocis medinalis granulovirus (CnmeGV) is a potential microbial agent against the rice leaffolder. Innate immunity is essential for insects to survive pathogenic infection. Therefore, to clarify the immune response of Cnaphalocrocis medinalis to the viral colonization, the gene expression profile of C. medinalis infected with CnmeGV was constructed by RNA-seq. A total of 8,503 differentially expressed genes (DEGs) were found including 5,304 up-regulated and 3,199 down-regulated unigenes. Gene enrichment analysis indicated that these DEGs were mainly linked to protein synthesis and metabolic process as well as ribosome and virus-infection pathways. Specifically, a significantly up-regulated PiggyBac-like transposon gene was identified suggested that the enhancement of transposon activity is related to host immunity. Further, the DEGs encoding oxidative stress related genes were identified and validated by RT-qPCR. Overall, 9 antioxidant enzyme genes and 4 antioxidant protein genes were up-regulated, and the extensive glutathione S-transferase genes were down-regulated. Our results provide a basis for understanding the molecular mechanisms of baculovirus action and oxidative stress response in C. medinalis and other insects.
Collapse
Affiliation(s)
- Guangjie Han
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225007, China.
| | - Qin Liu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225007, China.
| | - Chuanming Li
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225007, China.
| | - Bin Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225007, China.
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225007, China.
| |
Collapse
|
69
|
Roesel CL, Rosengaus RB, Smith W, Vollmer SV. Transcriptomics reveals specific molecular mechanisms underlying transgenerational immunity in Manduca sexta. Ecol Evol 2020; 10:11251-11261. [PMID: 33144962 PMCID: PMC7593158 DOI: 10.1002/ece3.6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
The traditional view of innate immunity in insects is that every exposure to a pathogen triggers an identical and appropriate immune response and that prior exposures to pathogens do not confer any protective (i.e., adaptive) effect against subsequent exposure to the same pathogen. This view has been challenged by experiments demonstrating that encounters with sublethal doses of a pathogen can prime the insect's immune system and, thus, have protective effects against future lethal doses. Immune priming has been reported across several insect species, including the red flour beetle, the honeycomb moth, the bumblebee, and the European honeybee, among others. Immune priming can also be transgenerational where the parent's pathogenic history influences the immune response of its offspring. Phenotypic evidence of transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta where first-instar progeny of mothers injected with the bacterium Serratia marcescens exhibited a significant increase of in vivo bacterial clearance. To identify the gene expression changes underlying TGIP in M. sexta, we performed transcriptome-wide, transgenerational differential gene expression analysis on mothers and their offspring after mothers were exposed to S. marcescens. We are the first to perform transcriptome-wide analysis of the gene expression changes associated with TGIP in this ecologically relevant model organism. We show that maternal exposure to both heat-killed and live S. marcescens has strong and significant transgenerational impacts on gene expression patterns in their offspring, including upregulation of peptidoglycan recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.
Collapse
Affiliation(s)
| | | | - Wendy Smith
- Marine Science CenterNortheastern UniversityNahantMAUSA
| | | |
Collapse
|
70
|
A Toll-Spätzle Pathway in the Immune Response of Bombyx mori. INSECTS 2020; 11:insects11090586. [PMID: 32882853 PMCID: PMC7564906 DOI: 10.3390/insects11090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9-1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9-1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9-1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9-1 to induce the expression of AMPs after the silkworm is infected by pathogens.
Collapse
|
71
|
Wang RJ, Chen K, Xing LS, Lin Z, Zou Z, Lu Z. Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103720. [PMID: 32344046 DOI: 10.1016/j.dci.2020.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
72
|
Li M, Takahashi D, Kanost MR. Peptides based on the reactive center loop of Manduca sexta serpin-3 block its protease inhibitory function. Sci Rep 2020; 10:11497. [PMID: 32661389 PMCID: PMC7359039 DOI: 10.1038/s41598-020-68316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/23/2020] [Indexed: 11/11/2022] Open
Abstract
One innate immune response in insects is the proteolytic activation of hemolymph prophenoloxidase (proPO), regulated by protease inhibitors called serpins. In the inhibition reaction of serpins, a protease cleaves a peptide bond in a solvent-exposed reactive center loop (RCL) of the serpin, and the serpin undergoes a conformational change, incorporating the amino-terminal segment of the RCL into serpin β-sheet A as a new strand. This results in an irreversible inhibitory complex of the serpin with the protease. We synthesized four peptides with sequences from the hinge region in the RCL of Manduca sexta serpin-3 and found they were able to block serpin-3 inhibitory activity, resulting in suppression of inhibitory protease-serpin complex formation. An RCL-derived peptide with the sequence Ser-Val-Ala-Phe-Ser (SVAFS) displayed robust blocking activity against serpin-3. Addition of acetyl-SVAFS-amide to hemolymph led to unregulated proPO activation. Serpin-3 associated with Ac-SVAFS-COO− had an altered circular dichroism spectrum and enhanced thermal resistance to change in secondary structure, indicating that these two molecules formed a binary complex, most likely by insertion of the peptide into β-sheet A. The interference of RCL-derived peptides with serpin activity may lead to new possibilities of “silencing” arthropod serpins with unknown functions for investigation of their physiological roles.
Collapse
Affiliation(s)
- Miao Li
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
73
|
Lin Z, Wang JL, Cheng Y, Wang JX, Zou Z. Pattern recognition receptors from lepidopteran insects and their biological functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103688. [PMID: 32222357 DOI: 10.1016/j.dci.2020.103688] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/08/2023]
Abstract
Lepidopteran insects have potent innate immunity to fight against the invading pathogens. As the initiation step, pattern recognition receptors (PRRs) recognize and bind microbial surface configurations known as pathogen-associated molecular patterns (PAMPs). Aftermath, they initiate both cellular and humoral immune responses, including phagocytosis, agglutination, nodulation, encapsulation, prophenoloxidase activation, and synthesis of antimicrobial peptides. In this review, we summarize the recent findings concerning PRRs in lepidoptaeran insects, mostly agriculture pests including Helicoverpa armigera, Plutella xylostella, and Spodoptera exigua. We mainly focus on the function and phylogeny of C-type lectins (CTLs), peptidoglycan recognition proteins (PGRPs), β-1,3-glucan recognition proteins (βGRPs), and galectins (GALEs). It enriches our understanding of the immune system of lepidopteran insects and provides directions in the future research.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, 430079, China
| | - Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
74
|
Prabu S, Jing D, Shabbir MZ, Yuan W, Wang Z, He K. Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer. Int J Biol Macromol 2020; 153:88-99. [DOI: 10.1016/j.ijbiomac.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
|
75
|
Hu Z, Cao X, Guo M, Li C. Identification and characterization of a novel short-type peptidoglycan recognition protein in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:257-266. [PMID: 32061713 DOI: 10.1016/j.fsi.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of the innate immune system via specific recognizing peptidoglycan, a unique component of bacterial cell wall. In the present study, a homologous gene encoding PGRP-S was identified and characterized from Apostichopus japonicus and designated as AjPGRP-S. The open reading frame of AjPGRP-S is 756 bp encoding a polypeptide of 251 amino acids (aa) with a signal peptide (1-24 aa) and a typical PGRP domain (37-178 aa). Phylogenetic analysis and sequence alignment revealed that AjPGRP-S is a member of the PGRP-S family. In healthy sea cucumbers, AjPGRP-S was expressed in all examined tissues with the highest distribution in body wall, muscle, and intestine. In Vibrio splendidus-infected sea cucumbers, AjPGRP-S was remarkably induced in coelomocytes. The recombinant AjPGRP-S (rAjPGRP-S) was shown to possess the highly amidase activity in the presence of Zn2+. Moreover, rAjPGRP-S exhibited agglutination abilities and strong bacteriostatic activities against V. splendidus, V. harveyi, V. parahaemolyticus, Staphylococcus aureus, and Micrococcus luteus. Furthermore, the agglutination ability can be enhanced in the presence of Zn2+. In conclusion, our results suggested that AjPGRP-S serves as a pattern recognition molecule involved in the immune response towards various pathogenic infections.
Collapse
Affiliation(s)
- Zhenguo Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Xuebin Cao
- National Algae and Sea Cucumber Project Technology Research Center, Shandong Oriental Ocean Sci-Tech Company Limited, Yantai, 264003, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
76
|
Abstract
Different model systems have, over the years, contributed to our current understanding of the molecular mechanisms underpinning the various types of interaction between bacteria and their animal hosts. The genus
Photorhabdus
comprises Gram-negative insect pathogenic bacteria that are normally found as symbionts that colonize the gut of the infective juvenile stage of soil-dwelling nematodes from the family Heterorhabditis. The nematodes infect susceptible insects and release the bacteria into the insect haemolymph where the bacteria grow, resulting in the death of the insect. At this stage the nematodes feed on the bacterial biomass and, following several rounds of reproduction, the nematodes develop into infective juveniles that leave the insect cadaver in search of new hosts. Therefore
Photorhabdus
has three distinct and obligate roles to play during this life-cycle: (1)
Photorhabdus
must kill the insect host; (2)
Photorhabdus
must be capable of supporting nematode growth and development; and (3)
Photorhabdus
must be able to colonize the gut of the next generation of infective juveniles before they leave the insect cadaver. In this review I will discuss how genetic analysis has identified key genes involved in mediating, and regulating, the interaction between
Photorhabdus
and each of its invertebrate hosts. These studies have resulted in the characterization of several new families of toxins and a novel inter-kingdom signalling molecule and have also uncovered an important role for phase variation in the regulation of these different roles.
Collapse
Affiliation(s)
- David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
77
|
Sun J, Bai Y. Predator-induced stress influences fall armyworm immune response to inoculating bacteria. J Invertebr Pathol 2020; 172:107352. [PMID: 32194028 DOI: 10.1016/j.jip.2020.107352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
The insect innateimmunesystem is assorted into two general categories, cellular and humoral immunity. Aside from direct challenge by invaders, predation risk can be perceived as odors, sounds or nearness. In this study, we evaluated influence of predation risk by the predatory bug Podisus maculiventris on immunity of an herbivore Spodoptera frugiperda. Under the predator-induced stress combined with Escherichia coli inoculation, several larval physiological parameters of S. frugiperda were studied, including body mass, nodulation, and phenoloxidase activity. Our findings offernew evidence that provides insight into the immunological mechanism of predator-induced stress effects on prey species.
Collapse
Affiliation(s)
- Jiaqi Sun
- Southwest University, College of Plant Protection, 2 # Tiansheng Road, Beibei, Chongqing 400715, People's Republic of China
| | - Yaoyu Bai
- Southwest University, College of Plant Protection, 2 # Tiansheng Road, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
78
|
Ren X, Wang Y, Ma Y, Jiang W, Ma X, Hu H, Wang D, Ma Y. Midgut de novo transcriptome analysis and gene expression profiling of Spodoptera exigua larvae exposed with sublethal concentrations of Cry1Ca protein. 3 Biotech 2020; 10:138. [PMID: 32158634 DOI: 10.1007/s13205-020-2129-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/11/2020] [Indexed: 12/01/2022] Open
Abstract
Spodoptera exigua (Hübner) is a polyphagous pest on agricultural crops, whose control is based mainly on the application of chemical insecticides. Bacillus thuringiensis (Bt) is one of the most important biological agents that have been successfully applied as a biological control, and Cry1Ca protein is considered to be active against S. exigua. Therefore, to understand the response of S. exigua to Cry1Ca protein, high-throughput sequencing was used to analyse the S. exigua larval midgut after treatment with sublethal concentrations of Cry1Ca protein. Transcriptome data showed that a total of 98,571 unigenes with an N50 value of 1135 bp and a mean length of 653 bp were obtained. Furthermore, 2962 differentially expressed genes (DEGs) were identified after Cry1Ca challenge, including 1508 up-regulated and 1454 down-regulated unigenes. Among these DEGs, detoxification (CYP, CarE, and GST) and Bt resistance (ALP, APN, and ABC transporter)-related genes were differentially expressed in the midgut of S. exigua after Cry1Ca treatment. However, most DEGs of protective enzymes were down-regulated, while most DEGs related with serine protease and REPAT were up-regulated. Furthermore, almost all DEGs related to the immune signaling pathway, antimicrobial protein, and lysozyme were up-regulated by Cry1Ca treatment. These results indicated that the detoxification enzyme, protective enzymes, Bt resistance-related genes, serine protease, REPAT, and the immune response might have been involved in the response of S. exigua to Cry1Ca protein. In summary, analysis of the transcriptomal expression of genes involved in Cry1Ca protein against S. exigua provided potential clues for elucidating the host response processes and defensive mechanisms underlying Cry1Ca toxicity.
Collapse
Affiliation(s)
- Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yingying Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
- Honghu Agricultural Technology Extension Center, Jingzhou, 433200 Hubei China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Weili Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| |
Collapse
|
79
|
Silvestre Pereira Dornelas A, A Sarmento R, C Rezende Silva L, de Souza Saraiva A, J de Souza D, D Bordalo M, Mvm Soares A, Lt Pestana J. Toxicity of microbial insecticides toward the non-target freshwater insect Chironomus xanthus. PEST MANAGEMENT SCIENCE 2020; 76:1164-1172. [PMID: 31595634 DOI: 10.1002/ps.5629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Commercial formulations based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) are commonly used microbial insecticides in Brazil and other tropical regions. However, and despite being considered environmentally friendly, their use generates concerns regarding possible adverse ecological effects in freshwater ecosystems. Here, we evaluate the effects of these bioinsecticides on the tropical aquatic dipteran Chironomus xanthus under laboratory conditions. RESULTS After laboratory exposures to these compounds 48-h median lethal concentration (LC50 ) values of 1534 μg a.i./L for Btk and of 6.35 μg a.i./L for Bb were estimated. Chronic assays revealed different sublethal effects: Btk-based bioinsecticide exposure reduced C. xanthus growth [lowest observed effect concentration (LOEC) was 126 μg a.i./L for head width], decreased emergence rate (LOEC = 8 μg a.i./L) and increased immunological response (LOEC = 50 μg a.i./L) measured as total hemocyte count in larvae hemolymph. Exposure to low concentrations of Bb-based insecticide also reduced C. xanthus growth (LOEC = 0.07 μg a.i./L for larvae body length measurements), and emergence rate (LOEC = 0.28 μg a.i./L), despite no clear effects on the total hemocyte counts. CONCLUSION Our results suggest that low concentrations of Btk and Bb bioinsecticides are toxic to C. xanthus. Given their widespread use and occurrence in tropical freshwater systems, research is needed to evaluate the potential effects of these compounds concerning natural freshwater insect communities and ecosystem functioning. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, Brazil
| | | | - Althiéris de Souza Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos, Campos Belos, Brazil
| | - Danival J de Souza
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, Brazil
| | - Maria D Bordalo
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Amadeu Mvm Soares
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi, Brazil
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - João Lt Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
80
|
Cabral S, de Paula A, Samuels R, da Fonseca R, Gomes S, Silva JR, Mury F. Aedes aegypti (Diptera: Culicidae) Immune Responses with Different Feeding Regimes Following Infection by the Entomopathogenic Fungus Metarhizium anisopliae. INSECTS 2020; 11:E95. [PMID: 32024202 PMCID: PMC7074208 DOI: 10.3390/insects11020095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
The mosquito Aedes aegypti is the most notorious vector of illness-causing viruses. The use of entomopathogenic fungi as bioinsecticides is a promising alternative for the development of novel mosquito control strategies. We investigate whether differences in immune responses could be responsible for modifications in survival rates of insects following different feeding regimes. Sucrose and blood-fed adult A. aegypti females were sprayed with M. anisopliae 1 × 106 conidia mL-1, and after 48 h, the midgut and fat body were dissected. We used RT-qPCR to monitor the expression of Cactus and REL1 (Toll pathway), IMD, REL2, and Caspar (IMD pathway), STAT and PIAS (JAK-STAT pathway), as well as the expression of antimicrobial peptides (Defensin A, Attacin and Cecropin G). REL1 and REL2 expression in both the midgut and fat body were higher in blood-fed fungus-challenged A. aegypti than in sucrose-fed counterparts. Interestingly, infection of sucrose-fed insects induced Cactus expression in the fat body, a negative regulator of the Toll pathway. The IMD gene was upregulated in the fat body in response to fungal infection after a blood meal. Additionally, we observed the induction of antimicrobial peptides in the blood-fed fungus-challenged insects. This study suggests that blood-fed A. aegypti are less susceptible to fungal infection due to the rapid induction of Toll and IMD immune pathways.
Collapse
Affiliation(s)
- Sara Cabral
- Laboratório Integrado de Bioquímica—Instituto de Biodiversidade e Sustentabilidade—NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil; (S.C.); (J.R.S.)
| | - Adriano de Paula
- Laboratório de Entomologia e Fitopatologia—CCTA, Universidade Estadual do Norte FluminenseDarcy Ribeiro, Campos dos Goytacazes, RJ 28013-603, Brazil; (A.d.P.); (S.G.)
| | - Richard Samuels
- Laboratório de Entomologia e Fitopatologia—CCTA, Universidade Estadual do Norte FluminenseDarcy Ribeiro, Campos dos Goytacazes, RJ 28013-603, Brazil; (A.d.P.); (S.G.)
| | - Rodrigo da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais—Instituto de Biodiversidade e Sustentabilidade –NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Rio de Janeiro 21941-590, Brazil
| | - Simone Gomes
- Laboratório de Entomologia e Fitopatologia—CCTA, Universidade Estadual do Norte FluminenseDarcy Ribeiro, Campos dos Goytacazes, RJ 28013-603, Brazil; (A.d.P.); (S.G.)
| | - José Roberto Silva
- Laboratório Integrado de Bioquímica—Instituto de Biodiversidade e Sustentabilidade—NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil; (S.C.); (J.R.S.)
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Rio de Janeiro 21941-590, Brazil
| | - Flávia Mury
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Rio de Janeiro 21941-590, Brazil
- Laboratório Integrado de Biociências Translacionais—Instituto de Biodiversidade e Sustentabilidade—NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| |
Collapse
|
81
|
Chen Y, Guo L, Wan N, Ji X, Zhang H, Jiang J. Transcriptomic analysis of the interactions between the Spodoptera exigua midgut and nucleopolyhedrovirus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:241-253. [PMID: 31973864 DOI: 10.1016/j.pestbp.2019.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Spodoptera exigua nucleopolyhedrovirus (SeNPV) has been successfully applied as a bioinsecticide against S. exigua, one of the most devastating pests worldwide. However, due to limited information, the molecular mechanisms underlying interactions between S. exigua and SeNPV remain to be elucidated. In this study, RNA-Seq and differentially expressed gene (DEG) analysis of the S. exigua larva midgut were performed to explore molecular responses to SeNPV infection. A total of 1785 DEGs, including 935 upregulated and 850 downregulated genes, were identified in the midgut of SeNPV-infected S. exigua larvae. Ultrastructural observations showed that after SeNPV infection, the peritrophic matrix (PM) became a loose and highly porous surface with many clear ruptures; these changes were most likely associated with upregulation of chitin deacetylases. In addition, 124 putative innate immunity-related DEGs were identified and divided into several groups, including pattern recognition proteins, signaling pathways, signal modulation, antimicrobial peptides and detoxification. Interestingly, upregulation of some pattern recognition proteins, induction of the JAK/STAT signaling pathway and promotion of REPAT synthesis might be the main innate immunity responses occurring in the S. exigua larva midgut after SeNPV infection. According to quantitative real-time PCR, the expression profiles of 19 random DEGs were consistent with those obtained by RNA-Seq. These findings provide important basic information for understanding the molecular mechanisms of SeNPV invasion and the anti-SeNPV responses of the S. exigua midgut, promoting the utility of SeNPV as a bioinsecticide for the effective control of S. exigua and related pests.
Collapse
Affiliation(s)
- Yijuan Chen
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Ling Guo
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Nianfeng Wan
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Xiangyun Ji
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| | - Hao Zhang
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| | - Jiexian Jiang
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| |
Collapse
|
82
|
Han P, Han J, Zhang M, Fan J, Gong Q, Ma E, Zhang J. 20-Hydroxyecdysone enhances Immulectin-1 mediated immune response against entomogenous fungus in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:304-313. [PMID: 31207079 DOI: 10.1002/ps.5515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Entomogenous fungi are important factors in biological control, but innate immunity of insects restricts the efficiency of fungus infection. 20-hydroxyecdysone (20E) is involved in regulating the immune response of insects. Our previous studies have revealed that 20E enhances the expression of antibacterial peptides in the worldwide pest Locusta migratoria. However, the mechanism by which 20E controls innate immunity against entomogenous fungi is still unknown. RESULTS In the present study, based on the transcriptome of L. migratoria fat bodies challenged by 20E, immulectin-1 (LmIML-1) was screened and identified to be involved in modulating antifungal immunity. Spatio-temporal expression analysis showed LmIML-1 was highly expressed in the fifth instar nymph stage, and mainly distributed in the fat bodies and hemolymph. Both exogenous and endogenous 20E could increase the transcription of LmIML-1. In contrast, transcription of LmIML-1 did not increase when the 20E signal was blocked by RNAi of LmEcR (ecdysone receptor). The expressed recombinant protein rLmIML-1 possessed agglutination activity and promoted the encapsulation. RNA interference of LmIML-1 reduced the encapsulation of hemocytes, decreased the antifungal activity of plasma against Metarhizium anisopliae and accelerated the death of nymphs under the stress of entomogenous fungus. Meanwhile, 20E did not increase the antifungal activity with silence of LmIML-1 in L. migratoria. CONCLUSION 20E enhances antifungal immunity by activating immulectin-1 in L. migratoria. Our findings indicate a potential mechanism of 20E systematically regulating innate immune response to resist pathogens and provide a well-defined molecular target for improving biological control. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Jiao Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Min Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Jiqiao Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Qitian Gong
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| |
Collapse
|
83
|
Wilson JK, Ruiz L, Duarte J, Davidowitz G. The nutritional landscape of host plants for a specialist insect herbivore. Ecol Evol 2019; 9:13104-13113. [PMID: 31871632 PMCID: PMC6912913 DOI: 10.1002/ece3.5730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/15/2019] [Indexed: 01/03/2023] Open
Abstract
Nutrition has far-reaching effects on both the ecology and evolution of species. A substantial body of work has examined the role of host plant quality on insect herbivores, with a particular focus on specialist-generalist dynamics, the interaction of growth and other physiological attributes on fitness and tritrophic effects. Measures of plant quality usually involve one or two axes of nutritional space: typically secondary metabolites or elemental proxies (N and C) of protein and carbohydrates, respectively.Here, we describe the nutrient space of seven host plants of the specialist insect herbivore, Manduca sexta, using an approach that measures physiologically relevant sources of nutrition, soluble protein and digestible carbohydrates. We show that plant species differ markedly in their nutrient content, offering developing insect herbivores a range of available nutrient spaces that also depend on the age of the leaves being consumed.The majority of host-plant species produce diets that are suboptimal to the herbivore, likely resulting in varying levels of compensatory feeding for M. sexta to reach target levels of protein to ensure successful growth and development. Low-quality diets can also impact immune function leading to complex patterns of optimization of plant resources that maximizes both growth and the ability to defend from parasitoids and pathogens. This study is the first to quantify the nutrient space of a suite of host plants used by an insect herbivore using physiologically relevant measures of nutrition.
Collapse
Affiliation(s)
| | - Laura Ruiz
- Neuroscience and Cognitive ScienceUniversity of ArizonaTucsonAZUSA
| | - Jesse Duarte
- Ecology and Evolutionary BiologyUniversity of ArizonaTucsonAZUSA
| | | |
Collapse
|
84
|
Shakeel M, Xu X, De Mandal S, Jin F. Role of serine protease inhibitors in insect-host-pathogen interactions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21556. [PMID: 31050038 DOI: 10.1002/arch.21556] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Serine protease inhibitors (serpins), evolutionary old, structurally conserved molecules, are a superfamily of proteins found in almost all living organisms. Serpins are relatively large, typically 350-500 amino acids in length, with three β-sheets and seven to nine α-helices folding into a conserved tertiary structure with a reactive center loop. Serpins perform various physiological functions in insects, including development, digestion, host-pathogen interactions, and innate immune response. In insects, the innate immune system is characterized as the first and major defense system against the invasion of microorganisms. Serine protease cascades play a critical role in the initiation of innate immune responses, such as melanization and the production of antimicrobial peptides, and are strictly and precisely regulated by serpins. Herein, we provide a microreview on the role of serpins in the insect-host-pathogen interactions, emphasizing their role in immune responses, particularly in diamondback moth (Plutella xylostella), highlighting the important discoveries and also the gaps that remain to be explored in future studies.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Laboratory of Bio-Pesticide Creation and Application, Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application, Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Surajit De Mandal
- Laboratory of Bio-Pesticide Creation and Application, Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application, Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
85
|
Xu X, Zhong A, Wang Y, Lin B, Li P, Ju W, Zhu X, Yu J, De Mandal S, Jin F. Molecular Identification of a Moricin Family Antimicrobial Peptide (Px-Mor) From Plutella xylostella With Activities Against the Opportunistic Human Pathogen Aureobasidium pullulans. Front Microbiol 2019; 10:2211. [PMID: 31681182 PMCID: PMC6797621 DOI: 10.3389/fmicb.2019.02211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent the largest group of endogenous compounds and serves as a novel alternative to traditional antibiotics for the treatment of pathogenic microorganisms. Moricin is an important α-helical AMP plays a crucial role in insect humoral defense reactions. The present study was designed to identify and characterize novel AMP moricin (Px-Mor) from diamondback moth (Plutella xylostella) and tested its activity against bacterial and fungal infection including the opportunistic human pathogen Aureobasidium pullulans. Molecular cloning of Px-Mor using rapid amplification of cDNA ends revealed a 482 bp full length cDNA with 198 bp coding region. The deduced protein sequence contained 65 amino acids, and the mature peptides contained 42 amino acid residues with a molecular mass of 4.393 kDa. Expression analysis revealed that Px-Mor was expressed throughout the life cycle of P. xylostella with the highest level detectable in the fourth instar and prepupa stage. Tissue specific distribution showed that Px-Mor was highly expressed in fat body and hemocyte. In vitro, antimicrobial assays indicated that Px-Mor exhibited a broad antimicrobial spectrum against Gram positive bacteria (GPB), Gram negative bacteria (GNB) and fungi. Moreover, scanning electron microscopy and transmission electron microscopy (TEM) revealed that Px-Mor can cause obvious morphological alterations in A. pullulans, which demonstrated its powerful effect on the mycelia growth inhibition. Taken together, these results indicate that Px-Mor plays an important role in the immune responses of P. xylostella and can be further exploited as an antimicrobial agent against various diseases including for the treatment of A. pullulans infection.
Collapse
Affiliation(s)
- Xiaoxia Xu
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Anqiao Zhong
- Department of Respiratory Medicine, Yidu Central Hospital, Weifang, China
| | - Yansheng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Boda Lin
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenyan Ju
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaojia Zhu
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jing Yu
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Surajit De Mandal
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
86
|
Scholefield JA, Shikano I, Lowenberger CA, Cory JS. The impact of baculovirus challenge on immunity: The effect of dose and time after infection. J Invertebr Pathol 2019; 167:107232. [DOI: 10.1016/j.jip.2019.107232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
|
87
|
Long Y, Zhang Y, Zhao T, Zhou X, Wang Y, Chen Y, Yang Y. Positive Effects of the Tea Catechin, (-)-Epigallocatechin-3-Gallate, on Gut Prophenoloxidase and the Survival of Ectropis obliqua (Lepidoptera: Geometridae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:1173-1177. [PMID: 31305889 DOI: 10.1093/ee/nvz087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 06/10/2023]
Abstract
Ectropis obliqua Prout is the main pest of the tea plant Camellia sinensis (L.) O. Kuntze in China, affecting an annual area of more than one million acres. (-)-Epigallocatechin-3-gallate (EGCG) is the major catechin in tea leaves. Here, we show that EGCG is highly efficient in increasing the survival rate of E. obliqua larvae. We also compared the gut peroxidase (PO) activity between EGCG-fed and control larvae. EGCG-fed larvae had significantly greater PO activity levels than control larvae. Western blotting validated these results. Gut PO activity levels of larvae fed an artificial diet gradually decreased and disappeared completely by day 5. We hypothesize that the increased survival rate of EGCG-fed larvae was associated with increased PO activity. This research provides evidence that E. obliqua larvae have adapted to, and may even benefit from, secondary compounds found in tea leaves.
Collapse
Affiliation(s)
- Yanhua Long
- School of Life Science, Anhui Agriculture University, Hefei, China
| | - Yong Zhang
- School of Life Science, Anhui Agriculture University, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tianyu Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaomin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Luan Academy of Agricultural Sciences, Luan, China
| | - Yiran Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
88
|
Wei L, Xu C, Liang A, Fu Y. Insect-resistant Mechanism of Recombinant Baculovirus AcMNPV-PK2-EGFP against Spodoptera exigua Larvae. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
89
|
Pinto CPG, Azevedo EB, Dos Santos ALZ, Cardoso CP, Fernandes FO, Rossi GD, Polanczyk RA. Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC 25 dosage of Bacillus thuringiensis. J Invertebr Pathol 2019; 166:107209. [PMID: 31201787 DOI: 10.1016/j.jip.2019.107209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/29/2023]
Abstract
Biological control using entomopathogens and natural enemies is an ecofriendly method for pest management in agriculture. Biological control agents often can be simultaneously employed and compatibility between agents may improve pest suppression. We investigated the influence of the entomopathogen Bacillus thuringiensis (Bt) on the immune system of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) to determine if such changes impact parasitization by Cotesia flavipes Cameron, 1891 (Hymenoptera: Braconidae). The immune response of surviving D. saccharalis larvae fed with an LC25 dosage of a Bt-based biopesticide (Dipel®) was analyzed (total hemocyte count, hemocyte adhesion, and activities of phenoloxidase and lysozyme). Furthermore, the suitability of surviving Bt-fed larvae as hosts for C. flavipes was assessed by measuring parasitoid attributes such as number and size of teratocytes, weight of pupae, length of adult female tibia and number of emerged adults. Total hemocyte count, but not hemocyte adhesion, total protein content and phenoloxidase activity increased in the hemolymph of non-parasitized Bt-fed larvae (Bt-NP) compared to control larvae (NBt-NP). Lysozyme activity increased only after parasitization without Bt exposure (NBt-P). After parasitization, the immunological parameters activated in Bt-NP larvae decreased to levels at or below those observed in control larvae, showing that C. flavipes can regulate the activated immune response of Bt-fed larvae. The development of C. flavipes was not impaired in Bt-fed larval hosts (Bt-P); no changes were observed for teratocyte size, weight of pupal mass, length of hind tibia and number of adults emerged.
Collapse
Affiliation(s)
- Ciro Pedro Guidotti Pinto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Emiliano Brandão Azevedo
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Camila Pires Cardoso
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Guilherme Duarte Rossi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Ricardo Antônio Polanczyk
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil.
| |
Collapse
|
90
|
Liu H, Liu Y, Song C, Ning J, Cui Z. Functional characterization of two clip-domain serine proteases in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:98-107. [PMID: 30851452 DOI: 10.1016/j.fsi.2018.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Clip domain serine proteases (cSPs), a family of multifunctional proteins, play a crucial role in innate immune system. Here, we report the functional characterization of two clip domain serine proteases (PtcSP1 and PtcSP3) from the swimming crab Portunus trituberculatus. The recombinant N-terminal clip domains and the C-terminal SP-like domains of PtcSP1 and PtcSP3 were expressed in Escherichia coli system, and assayed for various biological functions: protease activity, antimicrobial activity, bacterial clearance and microbial-binding activity. The recombinant SP-like domains of PtcSP1 and PtcSP3 exhibited trypsin-like protease activity, while their recombinant clip domains showed strong antibacterial activity and could bind to bacteria and yeast, suggesting the potential roles of PtcSP1 and PtcSP3 in immune defense and pattern recognition. Unlike PtcSP3, PtcSP1 revealed the opsonic activity as shown by a higher bacterial clearance rate of Vibrio alginolyticus coated with the combination of the recombinant clip domain and SP-like domain of PtcSP1 as compared with V. alginolyticus only. Knockdown of PtcSP1 or PtcSP3 by RNA interference resulted in a significant decrease of total phenoloxidase (PO) activity in crab, suggesting that PtcSP1 and PtcSP3 are involved in the proPO system. In addition, suppression of PtcSP1 or PtcSP3 changed the expression of PtALFs and complement-like components. All these findings suggest that PtcSP1 and PtcSP3 are multifunctional immune molecules and perform different protective functions in crab defense.
Collapse
Affiliation(s)
- Hourong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chengwen Song
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Junhao Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
91
|
Asano T, Seto Y, Hashimoto K, Kurushima H. Mini-review an insect-specific system for terrestrialization: Laccase-mediated cuticle formation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:61-70. [PMID: 30904465 DOI: 10.1016/j.ibmb.2019.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Insects are often regarded as the most successful group of animals in the terrestrial environment. Their success can be represented by their huge biomass and large impact on ecosystems. Among the factors suggested to be responsible for their success, we focus on the possibility that the cuticle might have affected the process of insects' evolution. The cuticle of insects, like that of other arthropods, is composed mainly of chitin and structural cuticle proteins. However, insects seem to have evolved a specific system for cuticle formation. Oxidation reaction of catecholamines catalyzed by a copper enzyme, laccase, is the key step in the metabolic pathway for hardening of the insect cuticle. Molecular phylogenetic analysis indicates that laccase functioning in cuticle sclerotization has evolved only in insects. In this review, we discuss a theory on how the insect-specific "laccase" function has been advantageous for establishing their current ecological position as terrestrial animals.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Yosuke Seto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kosei Hashimoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hiroaki Kurushima
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
92
|
Oviedo-Diego MA, Mattoni CI, Peretti AV. Specificity of the female's local cellular immune response in genital plug producing scorpion species. PLoS One 2019; 14:e0208682. [PMID: 30742645 PMCID: PMC6370188 DOI: 10.1371/journal.pone.0208682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
Immune defense is a key feature in the life history of organisms, expensive to maintain, highly regulated by individuals and exposed to physiological and evolutionary trade-offs. In chelicerates, relatively scarce are the studies that relate postcopulatory mechanisms and immune response parameters. This work makes an approximation to the female’s immunological consequences produced after the placement of a foreign body in the genitalia of three scorpions species, two species that normally receive genital plugs during mating (Urophonius brachycentrus and U. achalensis) and one that does not (Zabius fuscus). Here we performed the first morphological description of the natural plugs of the two Urophonius species. We described complex three zoned structure anchored to the female genital atrium and based on this information we placed implants in the genitalia (for eliciting the local immune response) of virgin females of the three species and measured the immune encapsulation response to this foreign body. We found a greater and heterogeneous response in different zones of the implants in the plug producing species. To corroborate the specificity of this immune response, we compared the local genital reaction with the triggered response at a systemic level by inserting implants into the female body cavity of U. brachycentrus and Zabius fuscus. We found that the systemic response did not differ between species and that only in the plug producing species the local response in the genitalia was higher than the systemic one. We also compared the total hemocyte load before and after the genital implantation to see if this parameter was compromised by the immunological challenge. We confirmed that in Urophonius species the presence of a strange body in the genitalia caused a decrease in the hemocyte load. Besides, we find correlations between the body weight and the immunological parameters, as well as between different immunological parameters with each other. Complementarily, we characterized the hemocytes of the three scorpion species for the first time. This comparative study can help to provide a wider framework of the immunological characteristics of the species, their differences and their relationship with the particular postcopulatory mechanism such as the genital plugs.
Collapse
Affiliation(s)
- Mariela A. Oviedo-Diego
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
- * E-mail:
| | - Camilo I. Mattoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
| | - Alfredo V. Peretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
| |
Collapse
|
93
|
Wang L, Liu H, Fu H, Zhang L, Guo P, Xia Q, Zhao P. Silkworm serpin32 functions as a negative-regulator in prophenoloxidase activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:123-131. [PMID: 30339875 DOI: 10.1016/j.dci.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
The extracellular serine protease cascade is an essential component of insect humoral immunity. Serine protease inhibitors (serpins) play an important regulatory role in the process of insect immunity by regulating the serine protease cascade pathway. We aimed to clarify the function of Bmserpin32 in this study. First, we performed homologous sequence alignment and phylogenetic analysis of Bmserpin32. Bmserpin32 was found to share 64% amino acid sequence identity with Manduca sexta serpin7, an immunomodulatory protein. Bmserpin32 cDNA was cloned, and the recombinant Bmserpin32 protein was expressed in Escherichia coli and purified by nickel-nitrilotriacetic acid affinity and gel filtration chromatography. The activity assay showed that Bmserpin32 had significant inhibitory activity against trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and site-directed mutagenesis combined with activity assays indicated that the cleavage site of Bmserpin32 is between Arg359 and Ile360. After infection with E. coli or Micrococcus luteus, the expression level of Bmserpin32 in immune-related tissues was significantly upregulated. In addition, Bmserpin32 could delay or inhibit the melanization of hemolymph by inhibiting the activation of prophenoloxidase in larval hemolymph. Furthermore, a physiological target of Bmserpin32 was identified as the clip protease, BmPAP3, an apparent ortholog of M. sexta propenoloxidase-activating protease-3. Our observations enable a better understanding of the physiological role of Bmserpin32 in regulating melanization in silkworm.
Collapse
Affiliation(s)
- Luoling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huanyi Fu
- College of Biotechnology, Southwest University, Chongqing, China
| | - Lu Zhang
- College of Biotechnology, Southwest University, Chongqing, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| |
Collapse
|
94
|
Zhang J, Yang W, Xu J, Yang W, Li Q, Zhong Y, Cao Y, Yu XQ, Deng X. Regulation of antimicrobial peptide genes via insulin-like signaling pathway in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:12-21. [PMID: 30321587 DOI: 10.1016/j.ibmb.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/29/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are important effector molecules of insect humoral immunity, and expression of AMPs is mainly regulated by the Toll and immune deficiency (IMD) pathways. FoxO, a key downstream regulator of the insulin-like signaling (ILS) pathway, has been recently reported to be involved in the regulation of AMPs in Drosophila melanogaster. In the present study, we investigated AMP gene expression and the regulation pathway controlled by the starvation in the silkworm Bombyx mori. We discovered that antibacterial activity in the hemolymph of B. mori larvae was increased by starvation, and expression of AMP genes (BmCecB6, BmAtta1, BmLeb3 and BmDefB) as well as the ILS target genes (FoxO, InR and Brummer) were strongly activated in the fat body by starvation. Moreover, phosphorylation of Akt kinase was reduced in the Bm-12 cells after starvation, suggesting that the ILS pathway was inhibited by starvation. We then showed that more FoxO protein was present in the cytoplasm than in the nucleus of Bm-12 cells under normal conditions, but more FoxO was detected in the nucleus after cells were starved for 8 h, indicating that FoxO was activated by starvation. In summary, our results indicated that starvation can activate AMP gene expression in B. mori via the ILS/FoxO signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Weike Yang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junfeng Xu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wanying Yang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingrong Li
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Yangjin Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA.
| | - Xiaojuan Deng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
95
|
Yuan YY, Li M, Fan F, Qiu XH. Comparative transcriptomic analysis of larval and adult Malpighian tubules from the cotton bollworm Helicoverpa armigera. INSECT SCIENCE 2018; 25:991-1005. [PMID: 29178196 DOI: 10.1111/1744-7917.12561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Malpighian tubules (MTs) are usually considered the key excretory and osmoregulatory organs of insects. However, increasing evidence has suggested that MTs perform many more functions than just osmoregulation. Until now, the molecular and physiological functions of MTs in the cotton bollworm (Helicoverpa armigera), a very important agricultural pest, are largely unknown. In this study, the transcriptomes of H. armigera MTs from larvae, male adults and female adults were sequenced using RNA-Seq technology, and comparative analyses of transcriptomes between two life stages (larval and adult) and between adult sexes were conducted. We generated a total of 84 643 high-quality unigenes, and identified a large number of abundant transcripts putatively encoding proteins involved in diuresis, detoxification, immunity, carbohydrate transport and metabolism, development and reproduction. We found that the expression pattern of unigenes was relatively similar between female and male adult MTs, but different between larval and adult MTs. Our data suggest that insect MTs may take multiple physiological functions as versatile organs. The extensive alterations in gene expression in MTs occurred from larvae to adults reflect an ecological adaptation to different feeding habits. Sexual dimorphism in the cotton bollworm is somewhat indicated by the transcriptional difference of genes related to carbohydrate metabolism, detoxification, immunity and reproduction in the MTs of male and female adults.
Collapse
Affiliation(s)
- Yi-Yang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fan Fan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Xing-Hui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
96
|
Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. INSECTS 2018; 9:insects9030117. [PMID: 30208626 PMCID: PMC6164499 DOI: 10.3390/insects9030117] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Entomopathogenic nematodes (EPNs) are widely used as biological control agents against insect pests, the efficacy of these organisms strongly depends on the balance between the parasitic strategies and the immune response of the host. This review summarizes roles and relationships between insect hosts and two well-known EPN species, Steinernema feltiae and Steinernema carpocapsae and outlines the main mechanisms of immune recognition and defense of insects. Analyzing information and findings about these EPNs, it is clear that these two species use shared immunosuppression strategies, mainly mediated by their symbiotic bacteria, but there are differences in both the mechanism of evasion and interference of the two nematodes with the insect host immune pathways. Based on published data, S. feltiae takes advantage of the cross reaction between its body surface and some host functional proteins, to inhibit defensive processes; otherwise, secretion/excretion products from S. carpocapsae seem to be the main nematode components responsible for the host immunosuppression.
Collapse
|
97
|
Zhao S, Wang X, Cai S, Zhang S, Luo H, Wu C, Zhang R, Zhang J. A novel peptidoglycan recognition protein involved in the prophenoloxidase activation system and antimicrobial peptide production in Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:78-85. [PMID: 29734021 DOI: 10.1016/j.dci.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Pattern recognition receptors (PRRs) are employed in insects to defend against infectious pathogens by triggering various immune responses. Peptidoglycan recognition proteins (PGRPs), a vital family of PRRs, are widely distributed and highly conserved from vertebrates to invertebrates. To date, five PGRP genes have been identified in Antheraea pernyi, but their biochemical roles still remain unknown. In this study, we focused on the immune functions of PGRP-SA in A. pernyi (ApPGRP-SA), which was confirmed to be immune-related according to its significantly up-regulated expression level post microbial injection. In addition, the binding properties of ApPGRP-SA were investigated using a recombinant protein produced in a prokaryotic expression system, revealing that rApPGRP-SA displayed a multi-binding ability to various microbes, including the Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus, Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans, together with their surface pathogen associated molecular patterns (PAMPs). Further studies showed that after recognition, the mixture of rApPGRP-SA/PAMP remarkably stimulated prophenoloxidase (PPO) activation in the hemolymph of A. pernyi in vitro, while the ds-PGRP-SA-treated hemolymph exhibited a lower sensitivity to PAMPs in comparison to the native sample. Moreover, the transcriptional level of the three antimicrobial peptides was also decreased in PGRP-SA knock-down larvae in response to immune-challenge. In summary, we conclude that ApPGRP-SA is a novel identified PGRP in A. pernyi that might act as a broad-spectrum pattern recognition receptor and is involved in the PPO activation system as well as antimicrobial peptide production.
Collapse
Affiliation(s)
- Siqi Zhao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Siyu Cai
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Siqiang Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Chunfu Wu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China.
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, China.
| |
Collapse
|
98
|
Sangsuriya P, Charoensapsri W, Sutthangkul J, Senapin S, Hirono I, Tassanakajon A, Amparyup P. A novel white spot syndrome virus protein WSSV164 controls prophenoloxidases, PmproPOs in shrimp melanization cascade. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:109-117. [PMID: 29753984 DOI: 10.1016/j.dci.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Melanization, mediated by the prophenoloxidase (proPO)-activating system, is an important innate immune response in invertebrates. The implication of the proPO system in antiviral response and the suppression of host proPO activation by the viral protein have previously been demonstrated in shrimp. However, the molecular mechanism of viral-host interactions in the proPO cascade remains largely unexplored. Here, we characterized the viral protein, namely, WSSV164, which was initially identified from the forward suppression subtractive hybridization (SSH) cDNA library of the PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon that was challenged with white spot syndrome virus (WSSV). Using the yeast two-hybrid system, WSSV164 was found to interact with the PmproPO2 protein. The subsequent validation assay by co-immunoprecipitation revealed that WSSV164 directly bound to both PmproPO1 and PmproPO2. The gene silencing experiment was carried out to explore the role of WSSV164 in the control of the proPO pathway in shrimp, and the results showed that suppression of WSSV164 can restore PO activity in WSSV-infected shrimp hemolymph. The recombinant proteins of PmproPO1 and PmproPO2 were produced in Sf-9 cells and were shown to be successfully activated by exogenous trypsin and endogenous serine proteinases from shrimp hemocyte lysate supernatant (HLS), yielding PO activity in vitro. Moreover, the activated PO activity in shrimp HLS was dose-dependently reduced by the recombinant WSSV164 protein, suggesting that WSSV164 may interfere with the activation of the proPO system in shrimp. Taken together, these results suggest an alternative infection route of WSSV through the encoded viral protein WSSV164 that binds to the PmproPO1 and PmproPO2 proteins, interfering with the activation of the melanization cascade in shrimp.
Collapse
Affiliation(s)
- Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Jantiwan Sutthangkul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
99
|
Chai LQ, Meng JH, Gao J, Xu YH, Wang XW. Identification of a crustacean β-1,3-glucanase related protein as a pattern recognition protein in antibacterial response. FISH & SHELLFISH IMMUNOLOGY 2018; 80:155-164. [PMID: 29870827 DOI: 10.1016/j.fsi.2018.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 05/22/2023]
Abstract
Prophenoloxidase (proPO) activating system is an important immune response for arthropods. β-1, 3-glucanase related protein (previously named as lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) in crustaceans) is a typical pattern recognition receptor family involved in the proPO activation by recognizing the invading microbes. In this study, we pay special attention to a bacteria-induced β-1,3-glucanase related protein from red swamp crayfish Procambarus clarkii, an important aquaculture specie in China. This protein, designated PcBGRP, was found a typical member of crustacean BGRP family with the glucanase-related domain and the characteristic motifs. PcBGRP was expressed in hemcoyes and hepatopancreas, and its expression could be induced by the carbohydrate and bacteria stimulants. The induction by lipopolysaccharide (LPS) and β-1,3-glucan (βG) was more significant than by peptidoglycan (PG). The response of PcBGRP to the native Gram-negative bacterial pathogen Aeromonas hydrophila was more obvious than to Gram-positive bacteria. Using RNA interference and recombinant protein, PcBGRP was found to protect crayfish from A. hydrophila infection revealed by the survival test and morphological analysis. A mechanism study found PcBGRP could bind LPS and βG in a dose-dependent manner, and the LPS recognizing ability determined the Gram-negative bacterium binding activity of PcBGRP. PcBGRP was found to enhance the PO activation both in vitro and in vivo, and the protective role was related to the PO activating ability of PcBGRP. This study emphasized the role of BGRP family in crustacean immune response, and provided new insight to the immunity of red swamp crayfish which suffered serious disease during the aquaculture in China.
Collapse
Affiliation(s)
- Lian-Qin Chai
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jing-Hui Meng
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jie Gao
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yi-Hui Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Xian-Wei Wang
- School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
100
|
Lee KS, Kim BY, Choo YM, Jin BR. Dual role of the serine protease homolog BmSPH-1 in the development and immunity of the silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:170-176. [PMID: 29684723 DOI: 10.1016/j.dci.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Serine proteases and serine protease homologs are involved in the prophenoloxidase (proPO)-activating system leading to melanization. The Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization. Here, we show the dual role of BmSPH-1 in the development and immunity of B. mori. BmSPH-1 was expressed in hemocytes after molting and during the larval-pupal transformation in normal development. In contrast, following infection, BmSPH-1 was expressed in hemocytes and cleaved in the hemolymph, which resulted in the induction of PO activity. Moreover, BmSPH-1 was cleaved in the cuticle during the larval-pupal transformation and early pupal stages. In BmSPH-1 RNAi-treated silkworms, the reduced BmSPH-1 mRNA levels during the spinning stage or the prepupal stage resulted in the arrest of pupation or pupal cuticular melanization, respectively. The binding assays revealed that BmSPH-1 interacts with B. mori immulectin, proPO, and proPO-activating enzyme. Our findings demonstrate that BmSPH-1 paticipates larval-pupal transformation, pupal cuticular melanization and innate immunity of silkworms, illustrating the dual role of BmSPH-1 in development and immunity.
Collapse
Affiliation(s)
- Kwang Sik Lee
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Bo Yeon Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Young Moo Choo
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Byung Rae Jin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea.
| |
Collapse
|