51
|
Orfei B, Moretti C, Scian A, Paglialunga M, Loreti S, Tatulli G, Scotti L, Aceto A, Buonaurio R. Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives. Appl Microbiol Biotechnol 2024; 108:357. [PMID: 38822872 PMCID: PMC11144149 DOI: 10.1007/s00253-024-13189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Anna Scian
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Michela Paglialunga
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
52
|
Mihai RA, Terán-Maza VA, Portilla-Benalcazar KA, Ramos-Guaytarilla LE, Vizuete-Cabezas MJ, Melo-Heras EJ, Cubi-Insuaste NS, Catana RD. Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area. Metabolites 2024; 14:307. [PMID: 38921442 PMCID: PMC11206157 DOI: 10.3390/metabo14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The Musa spp. represents the most commonly produced, transitioned, and consumed fruit around the globe, with several important applications in the biotechnology, pharmaceutical, and food industries. Moko disease is produced by Ralstonia solanacearum-a factor with a high impact on all crops in Ecuador, representing one of the biggest phytosanitary problems. Four of the most common varieties of Musa spp. were tested to identify the metabolic reaction of plants facing Moko disease. The phenolic and flavonoid content has been evaluated as a defense system, and the α-diphenyl-α-picrylhydrazyl free-radical-scavenging method (DPPH), free-radical-scavenging activity (ABTS), ferric-reducing antioxidant power (FRAP) assays, and liquid chromatography and mass spectrometry (LC-MS) have been adapted to analyze the active compounds with the antioxidant capacity necessary to counteract the pathogenic attack. Our results indicate that all the studied varieties of Musa spp. react in the same way, such that the diseased samples showed a higher accumulation of secondary metabolites with antioxidant capacity compared with the healthy ones, with high active compound synthesis identified during the appearance of Moko disease symptoms. More than 40 compounds and their derivatives (from kaempferol and quercetin glycosides) with protective roles demonstrate the implication of the Musa spp. defense system against R. solanacearum infection.
Collapse
Affiliation(s)
- Raluca A. Mihai
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Vanessa A. Terán-Maza
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Karen A. Portilla-Benalcazar
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Lissette E. Ramos-Guaytarilla
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - María J. Vizuete-Cabezas
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Erly J. Melo-Heras
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Nelson S. Cubi-Insuaste
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Rodica D. Catana
- Developmental Biology Department, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, Romania;
| |
Collapse
|
53
|
Chang Z, Ma Z, Su Q, Xia X, Ye W, Li R, Lu G. The Transcriptional Regulator TfmR Directly Regulates Two Pathogenic Pathways in Xanthomonas oryzae pv. oryzicola. Int J Mol Sci 2024; 25:5887. [PMID: 38892073 PMCID: PMC11173191 DOI: 10.3390/ijms25115887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) is a notorious plant pathogen. Like most bacterial pathogens, Xoc has evolved a complex regulatory network to modulate the expression of various genes related to pathogenicity. Here, we have identified TfmR, a transcriptional regulator belonging to the TetR family, as a key player in the virulence mechanisms of this phytopathogenic bacterium. We have demonstrated genetically that tfmR is involved in the hypersensitive response (HR), pathogenicity, motility and extracellular polysaccharide production of this phytopathogenic bacterium. Our investigations extended to exploring TfmR's interaction with RpfG and HrpX, two prominent virulence regulators in Xanthomonas species. We found that TfmR directly binds to the promoter region of RpfG, thereby positively regulating its expression. Notably, constitutive expression of RpfG partly reinstates the pathogenicity compromised by TfmR-deletion mutants. Furthermore, our studies revealed that TfmR also exerts direct positive regulation on the expression of the T3SS regulator HrpX. Similar to RpfG, sustained expression of HrpX partially restores the pathogenicity of TfmR-deletion mutants. These findings underscore TfmR's multifaceted role as a central regulator governing key virulence pathways in Xoc. Importantly, our research sheds light on the intricate molecular mechanisms underlying the regulation of pathogenicity in this plant pathogen.
Collapse
Affiliation(s)
- Zheng Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Z.C.); (Q.S.); (X.X.); (W.Y.)
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
| | - Zengfeng Ma
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Qian Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Z.C.); (Q.S.); (X.X.); (W.Y.)
| | - Xinqi Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Z.C.); (Q.S.); (X.X.); (W.Y.)
| | - Wenxin Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Z.C.); (Q.S.); (X.X.); (W.Y.)
| | - Ruifang Li
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Z.C.); (Q.S.); (X.X.); (W.Y.)
| |
Collapse
|
54
|
Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y. Functional Analysis of Type III Effectors in Xanthomonas campestris pv. campestris Reveals Distinct Roles in Modulating Arabidopsis Innate Immunity. Pathogens 2024; 13:448. [PMID: 38921746 PMCID: PMC11206781 DOI: 10.3390/pathogens13060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting pathogen proliferation. However, only a few T3Es from Xcc have been thoroughly characterized. In this study, we further investigated two effectors using the T3Es-deficient mutant and the Arabidopsis protoplast system. XopE2Xcc triggers Arabidopsis immune responses via an unidentified activator of the salicylic acid (SA) signaling pathway, whereas XopLXcc suppresses the expression of genes associated with patterns-triggered immunity (PTI) and the SA signaling pathway. These two effectors exert opposing effects on Arabidopsis immune responses. Additionally, we examined the relationship between the specific domains and functions of these two effector proteins. Our findings demonstrate that the N-myristoylation motif and N-terminal domain are essential for the subcellular localization and virulence of XopE2Xcc and XopLXcc, respectively. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to developing effective strategies for controlling bacterial disease.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Hao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| | - Min Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Nana Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Bole Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| |
Collapse
|
55
|
Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594639. [PMID: 38798610 PMCID: PMC11118575 DOI: 10.1101/2024.05.17.594639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels and motility. Receptors are typically activated by signal binding to ligand binding domains (LBD). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen Pectobacterium atrosepticum that recognizes formate at the membrane distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane proximal module may be related to the observation that dCache domains bind ligands typically at the membrane distal module, whereas the membrane proximal module is not involved in signal sensing. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a common trend shaping their diversity. Significance Many bacterial receptors contain multi-modular sensing domains indicative of complex sensory processes. The presence of more than one sensing module likely permits the integration of multiple signals, although, the molecular detail and functional relevance for these complex sensors remain poorly understood. Bimodular sensory domains are likely to have arisen from the fusion or duplication of monomodular domains. Evolution by increasing complexity is generally believed to be a dominant force. Here we reveal the opposite - how a monomodular sensing domain has evolved from a bimodular one. Our findings will thus motivate research to establish whether evolution by decreasing complexity is typical of other sensory domains.
Collapse
|
56
|
Smoktunowicz M, Wawrzyniak R, Jonca J, Waleron M, Waleron K. Untargeted metabolomics coupled with genomics in the study of sucrose and xylose metabolism in Pectobacterium betavasculorum. Front Microbiol 2024; 15:1323765. [PMID: 38812674 PMCID: PMC11133636 DOI: 10.3389/fmicb.2024.1323765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Pectobacterium betavasculorum is a member of the Pectobacerium genus that inhabits a variety of niches and is found in all climates. Bacteria from the Pectobacterium genus can cause soft rot disease on various plants due to the secretion of plant cell wall degrading enzymes (PCWDEs). The species P. betavasculorum is responsible for the vascular necrosis of sugar beet and soft rot of many vegetables. It also infects sunflowers and artichokes. The main sugar present in sugar beet is sucrose while xylose is one of the main sugars in artichoke and sunflower. Methods In our work, we applied metabolomic studies coupled with genomics to investigate the metabolism of P. betavasculorum in the presence of xylose and sucrose as the only carbon source. The ability of the strains to use various sugars as the only carbon source were confirmed by the polypyridyl complex of Ru(II) method in 96-well plates. Results Our studies provided information on the metabolic pathways active during the degradation of those substrates. It was observed that different metabolic pathways are upregulated in the presence of xylose in comparison to sucrose. Discussion The presence of xylose enhances extracellular metabolism of sugars and glycerol as well as stimulates EPS and IPS synthesis. In contrast, in the presence of sucrose the intensive extracellular metabolism of amines and amino acids is promoted.
Collapse
Affiliation(s)
- Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
57
|
He L, Huang R, Chen H, Zhao L, Zhang Z. Discovery and characterization of a novel pathogen Erwinia pyri sp. nov. associated with pear dieback: taxonomic insights and genomic analysis. Front Microbiol 2024; 15:1365685. [PMID: 38784818 PMCID: PMC11111954 DOI: 10.3389/fmicb.2024.1365685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
In 2022, a novel disease similar to pear fire blight was found in a pear orchard in Zhangye City, Gansu Province, China. The disease mainly damages the branches, leaves, and fruits of the plant. To identify the pathogen, tissue isolation and pathogenicity testing (inoculating the potential pathogen on healthy plant tissues) were conducted. Furthermore, a comprehensive analysis encompassing the pathogen's morphological, physiological, and biochemical characteristics and whole-genome sequencing was conducted. The results showed that among the eight isolates, the symptoms on the detached leaves and fruits inoculated with isolate DE2 were identical to those observed in the field. Verifying Koch's postulates confirmed that DE2 was the pathogenic bacterium that causes the disease. Based on a 16S rRNA phylogenetic tree, isolate DE2 belongs to the genus Erwinia. Biolog and API 20E results also indicated that isolate DE2 is an undescribed species of Erwinia. Isolate DE2 was negative for oxidase. Subsequently, the complete genome sequence of isolate DE2 was determined and compared to the complete genome sequences of 29 other Erwinia species based on digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses. The ANI and dDDH values between strain DE2 and Erwinia species were both below the species thresholds (ANI < 95-96%, dDDH<70%), suggesting that isolate DE2 is a new species of Erwinia. We will temporarily name strain DE2 as Erwinia pyri sp. nov. There were 548 predicted virulence factors in the genome of strain DE2, comprising 534 on the chromosome and 5 in the plasmids. The whole genome sequence of strain DE2 has been submitted to the NCBI database (ASM3075845v1) with accession number GCA_030758455.1. The strain DE2 has been preserved at the China Center for Type Culture Collection (CCTCC) under the deposit number CCTCC AB 2024080. This study represents the initial report of a potentially new bacterial species in the genus Erwinia that causes a novel pear dieback disease. The findings provide a valuable strain resource for the study of the genus Erwinia and establish a robust theoretical foundation for the prevention and control of emerging pear dieback diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Ministry of Science and Technology, Pratacultural College, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
58
|
Li J, Liu Q, Li S, Zeng L, Yao J, Li H, Shen Z, Lu F, Wu Z, Song B, Song R. Design, Synthesis, Antibacterial Activity, and Mechanisms of Novel Benzofuran Derivatives Containing Disulfide Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10195-10205. [PMID: 38662962 DOI: 10.1021/acs.jafc.3c08392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 μg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 μg/mL) and allicin (8.40, 28.22, and 88.04 μg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.
Collapse
Affiliation(s)
- Jianzhuan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Qiu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Sha Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Lu Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jiahui Yao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hongde Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhongjie Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Funeng Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zengxue Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
59
|
Akahori M, Miyazaki A, Koinuma H, Tokuda R, Iwabuchi N, Kitazawa Y, Maejima K, Namba S, Yamaji Y. Use of the 23S rRNA gene as a target template in the universal loop-mediated isothermal amplification (LAMP) of genomic DNA from phytoplasmas. Microbiol Spectr 2024; 12:e0010624. [PMID: 38534170 PMCID: PMC11064480 DOI: 10.1128/spectrum.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.
Collapse
Affiliation(s)
- Mako Akahori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akio Miyazaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
60
|
Terazawa Y, Tsuzuki M, Nakajima H, Inoue K, Tateda S, Kiba A, Ohnishi K, Kai K, Hikichi Y. The Micacocidin Production-Related RSc1806 Deletion Alters the Quorum Sensing-Dependent Gene Regulation of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:467-476. [PMID: 38805410 DOI: 10.1094/mpmi-12-23-0203-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hiroto Nakajima
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Sora Tateda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
61
|
Liu J, Deng S, Chang W, Yu D, Wang H. Development of a Multiplex PCR Assay for the Detection of Tomato Wilt Caused by Coinfection of Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum Based on Comparative Genomics. PLANT DISEASE 2024; 108:1128-1138. [PMID: 37953228 DOI: 10.1094/pdis-05-23-0962-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Tomato is consumed worldwide as fresh or processed food products. However, soilborne diseases of tomato plants caused by coinfection of various pathogens result in great economic losses to the tomato industry. It is difficult to accurately identify and diagnose soilborne diseases of tomato plants caused by pathogen complexes. In this study, we investigated field diseases of tomato plants by pathogen isolation and molecular identification and found that tomato wilt was caused by coinfection of Fusarium brachygibbosum, F. oxysporum, and Ralstonia solanacearum. Therefore, developing a method for simultaneous detection of DNA from F. brachygibbosum, F. oxysporum, and R. solanacearum is of great importance to efficiently and accurately monitor disease development at different growth stages of tomato plants. In this study, we performed a comparative genomic analysis of F. brachygibbosum, F. oxysporum, and R. solanacearum and determined the primer sets for simultaneous detection of DNA from these target pathogens. Then, we tested the reagent and condition parameters of multiplex PCR, including primers, dNTP and Mg2+ concentrations, and annealing temperatures, to determine the optimal parameters of a multiplex PCR system. We evaluated the specificity, sensitivity, and stability of the multiplex PCR system based on the optimized reaction conditions. The multiplex PCR system can specifically identify 13 target pathogens from 57 different fungal and bacterial pathogens, at the lower detection limit of the three target pathogens at concentrations of 100 pg/μl. In addition, we can accurately identify the three pathogens in tomato plants using the optimized multiplex PCR method. These results demonstrated that the multiplex PCR method developed in this study can simultaneously detect DNA from F. brachygibbosum, F. oxysporum, and R. solanacearum in a single PCR system to accurately identify and diagnose the pathogen causing tomato wilt.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Siyi Deng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Wei Chang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Dazhao Yu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| |
Collapse
|
62
|
Zhang M, Li L, Li C, Ma A, Li J, Yang C, Chen X, Cao P, Li S, Zhang Y, Yuchi Z, Du X, Liu C, Wang X, Wang X, Xiang W. Natural product guvermectin inhibits guanosine 5'-monophosphate synthetase and confers broad-spectrum antibacterial activity. Int J Biol Macromol 2024; 267:131510. [PMID: 38608989 DOI: 10.1016/j.ijbiomac.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.
Collapse
Affiliation(s)
- Manman Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Li
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xujun Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangge Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
63
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
64
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
65
|
Fang Y, Chen J. A ying and yang balance: transcription factors OsNAC2 and OsEREBP1 synergistically regulate plant immunity. PLANT PHYSIOLOGY 2024; 195:271-272. [PMID: 38243876 PMCID: PMC11060660 DOI: 10.1093/plphys/kiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Affiliation(s)
- Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jian Chen
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
66
|
Miller RNG. Investigating anatomical traits and molecular mechanisms involved in resistance to Pierce's disease. A commentary on 'Xylem-dwelling pathogen unaffected by local xylem vessel network properties in grapevines (Vitis spp.)'. ANNALS OF BOTANY 2024; 133:i-ii. [PMID: 38427777 PMCID: PMC11037480 DOI: 10.1093/aob/mcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
This article comments on:
Ana Clara Fanton, Martin Bouda and Craig Brodersen, Xylem-dwelling pathogen unaffected by local xylem vessel network properties in grapevines (Vitis spp.), Annals of Botany, Volume 133, Issue 4, 1 April 2024, Pages 521–532 https://doi.org/10.1093/aob/mcae016
Collapse
|
67
|
Ábrahám Á, Islam MN, Gazdag Z, Khan SA, Chowdhury S, Kemenesi G, Akter S. Bacterial Metabarcoding of Raw Palm Sap Samples from Bangladesh with Nanopore Sequencing. Foods 2024; 13:1285. [PMID: 38731656 PMCID: PMC11083640 DOI: 10.3390/foods13091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The traditional practice of harvesting and processing raw date palm sap is not only culturally significant but also provides an essential nutritional source in South Asia. However, the potential for bacterial or viral contamination from animals and environmental sources during its collection remains a serious and insufficiently studied risk. Implementing improved food safety measures and collection techniques could mitigate the risk of these infections. Additionally, the adoption of advanced food analytical methods offers the potential to identify pathogens and uncover the natural bacterial diversity of these products. The advancement of next-generation sequencing (NGS) technologies, particularly nanopore sequencing, offers a rapid and highly mobile solution. In this study, we employed nanopore sequencing for the bacterial metabarcoding of a set of raw date palm sap samples collected without protective coverage against animals in Bangladesh in 2021. We identified several bacterial species with importance in the natural fermentation of the product and demonstrated the feasibility of this NGS method in the surveillance of raw palm sap products. We revealed two fermentation directions dominated by either Leuconostoc species or Lactococcus species in these products at the first 6 h from harvest, along with opportunistic human pathogens in the background, represented with lower abundance. Plant pathogens, bacteria with the potential for opportunistic human infection and the sequences of the Exiguobacterium genus are also described, and their potential role is discussed. In this study, we demonstrate the potential of mobile laboratory solutions for food safety purposes in low-resource areas.
Collapse
Affiliation(s)
- Ágota Ábrahám
- National Laboratory of Virology, Szentágothai János Research Centre, University of Pécs, 7624 Pécs, Hungary;
| | - Md. Nurul Islam
- Department of Forest and Wildlife Ecology, University of Wisconsin—Madison, Madison, WI 53705, USA;
| | - Zoltán Gazdag
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary;
| | - Shahneaz Ali Khan
- Department of Physiology Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, One Health Institute, Chattogram 4202, Bangladesh;
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai János Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary;
| | - Sazeda Akter
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| |
Collapse
|
68
|
Hida A, Okano N, Tadokoro C, Fukunishi M, Ahmed AA, Takenaka K, Tateuchi Y, Fujioka K, Torii H, Tajima T, Kato J. Fermented botanical fertilizer controls bacterial wilt of tomatoes caused by Ralstonia pseudosolanacearum. Biosci Biotechnol Biochem 2024; 88:571-576. [PMID: 38383669 DOI: 10.1093/bbb/zbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
This study demonstrates the effect of fermented botanical product (FBP) on Ralstonia pseudosolanacearum-induced bacterial wilt disease and unravels its action mechanism. Soaking with diluted FBP solutions (0.1%-0.5%) significantly suppressed bacterial wilt in tomato plants, and FBP-treated tomato plants grew well against R. pseudosolanacearum infection. Growth assays showed that FBP had no antibacterial effect but promoted R. pseudosolanacearum growth. In contrast, few or no R. pseudosolanacearum cells were detected in aerial parts of tomato plants grown in FBP-soaked soil. Subsequent infection assays using the chemotaxis-deficient mutant (ΔcheA) or the root-dip inoculation method revealed that FBP does not affect pathogen migration to plant roots during infection. Moreover, FBP-pretreated tomato plants exhibited reduced bacterial wilt in the absence of FBP. These findings suggest that the plant, but not the pathogen, could be affected by FBP, resulting in an induced resistance against R. pseudosolanacearum, leading to a suppressive effect on bacterial wilt.
Collapse
Affiliation(s)
- Akiko Hida
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanako Okano
- Program of Biotechnology, School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Chika Tadokoro
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Myuji Fukunishi
- Program of Biotechnology, School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Asmaa Ali Ahmed
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Kohei Takenaka
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Yusuke Tateuchi
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Kotaro Fujioka
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Hideto Torii
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Takahisa Tajima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junichi Kato
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
69
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
70
|
Ding Y, Liu Y, Yang K, Zhao Y, Wen C, Yang Y, Zhang W. Proteomic Analysis of Lysine Acetylation and Succinylation to Investigate the Pathogenicity of Virulent Pseudomonas syringae pv. tomato DC3000 and Avirulent Line Pseudomonas syringae pv. tomato DC3000 avrRpm1 on Arabidopsis thaliana. Genes (Basel) 2024; 15:499. [PMID: 38674433 PMCID: PMC11050401 DOI: 10.3390/genes15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is able to infect many economically important crops and thus causes substantial losses in the global agricultural economy. Pst DC3000 can be divided into virulent lines and avirulent lines. For instance, the pathogen effector avrRPM1 of avirulent line Pst-avrRpm1 (Pst DC3000 avrRpm1) can be recognized and detoxified by the plant. To further compare the pathogenicity mechanisms of virulent and avirulent Pst DC3000, a comprehensive analysis of the acetylome and succinylome in Arabidopsis thaliana was conducted following infection with virulent line Pst DC3000 and avirulent line Pst-avrRpm1. In this study, a total of 1625 acetylated proteins encompassing 3423 distinct acetylation sites were successfully identified. Additionally, 229 succinylated proteins with 527 unique succinylation sites were detected. A comparison of these modification profiles between plants infected with Pst DC3000 and Pst-avrRpm1 revealed significant differences. Specifically, modification sites demonstrated inconsistencies, with a variance of up to 10% compared to the control group. Moreover, lysine acetylation (Kac) and lysine succinylation (Ksu) displayed distinct preferences in their modification patterns. Lysine acetylation is observed to exhibit a tendency towards up-regulation in Arabidopsis infected with Pst-avrRpm1. Conversely, the disparity in the number of Ksu up-regulated and down-regulated sites was not as pronounced. Motif enrichment analysis disclosed that acetylation modification sequences are relatively conserved, and regions rich in polar acidic/basic and non-polar hydrophobic amino acids are hotspots for acetylation modifications. Functional enrichment analysis indicated that the differentially modified proteins are primarily enriched in the photosynthesis pathway, particularly in relation to light-capturing proteins. In conclusion, this study provides an insightful profile of the lysine acetylome and succinylome in A. thaliana infected with virulent and avirulent lines of Pst DC3000. Our findings revealed the potential impact of these post-translational modifications (PTMs) on the physiological functions of the host plant during pathogen infection. This study offers valuable insights into the complex interactions between plant pathogens and their hosts, laying the groundwork for future research on disease resistance and pathogenesis mechanisms.
Collapse
Affiliation(s)
- Yongqiang Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Y.D.); (K.Y.); (Y.Z.); (C.W.); (Y.Y.)
| | - Yangxuan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Kexin Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Y.D.); (K.Y.); (Y.Z.); (C.W.); (Y.Y.)
| | - Yiran Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Y.D.); (K.Y.); (Y.Z.); (C.W.); (Y.Y.)
| | - Chun Wen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Y.D.); (K.Y.); (Y.Z.); (C.W.); (Y.Y.)
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Y.D.); (K.Y.); (Y.Z.); (C.W.); (Y.Y.)
| | - Wei Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
71
|
Jiao W, Wen J, Li N, Ou T, Qiu C, Ji Y, Lin K, Liu X, Xie J. The biocontrol potentials of rhizospheric bacterium Bacillus velezensis K0T24 against mulberry bacterial wilt disease. Arch Microbiol 2024; 206:213. [PMID: 38616201 DOI: 10.1007/s00203-024-03935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.
Collapse
Affiliation(s)
- Wenlian Jiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ju Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Na Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ting Ou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Changyu Qiu
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Yutong Ji
- Westa College, Southwest University, Chongqing, 400715, China
| | - Kai Lin
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xiaojiao Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jie Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
- Westa College, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
72
|
Tang Y, Zhou M, Yang C, Liu R, Du H, Ma M. Advances in isolated phages that affect Ralstonia solanacearum and their application in the biocontrol of bacterial wilt in plants. Lett Appl Microbiol 2024; 77:ovae037. [PMID: 38573829 DOI: 10.1093/lambio/ovae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Bacterial wilt is a widespread and devastating disease that impacts the production of numerous crucial crops worldwide. The main causative agent of the disease is Ralstonia solanacearum. Due to the pathogen's broad host range and prolonged survival in the soil, it is challenging to control the disease with conventional strategies. Therefore, it is of great importance to develop effective alternative disease control strategies. In recent years, phage therapy has emerged as an environmentally friendly and sustainable biocontrol alternative, demonstrating significant potential in controlling this severe disease. This paper summarized basic information about isolated phages that infect R. solanacearum, and presented some examples of their application in the biocontrol of bacterial wilt. The risks of phage application and future prospect in this area were also discussed. Overall, R. solanacearum phages have been isolated from various regions and environments worldwide. These phages belong mainly to the Inoviridae, Autographiviridae, Peduoviridae, and Cystoviridae families, with some being unclassified. Studies on the application of these phages have demonstrated their ability to reduce pathogenicity of R. solanacearum through direct lysis or indirect alteration of the pathogen's physiological properties. These findings suggested bacteriophage is a promising tool for biocontrol of bacterial wilt in plants.
Collapse
Affiliation(s)
- You Tang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Moxi Zhou
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Chuyun Yang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Rong Liu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongyi Du
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| |
Collapse
|
73
|
Shao J, Zhang ZJ, Shi Y, Jiang WQ, Siddique F, Chen L, Liu G, Zhu J, Luo XF, Liu YQ, An JX, Yang CJ, Cui ZN. Application and Mechanism of Cryptolepine and Neocryptolepine Derivatives as T3SS Inhibitors for Control of Bacterial Leaf Blight on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6988-6997. [PMID: 38506764 DOI: 10.1021/acs.jafc.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is extremely harmful to rice production. The traditional control approach is to use bactericides that target key bacterial growth factors, but the selection pressure on the pathogen makes resistant strains the dominant bacterial strains, leading to a decline in bactericidal efficacy. Type III secretion system (T3SS) is a conserved and critical virulence factor in most Gram-negative bacteria, and its expression or absence does not affect bacterial growth, rendering it an ideal target for creating drugs against Gram-negative pathogens. In this work, we synthesized a range of derivatives from cryptolepine and neocryptolepine. We found that compound Z-8 could inhibit the expression of Xoo T3SS-related genes without affecting the growth of bacteria. an in vivo bioassay showed that compound Z-8 could effectively reduce the hypersensitive response (HR) induced by Xoo in tobacco and reduce the pathogenicity of Xoo in rice. Furthermore, it exhibited synergy in control of bacterial leaf blight when combined with the quorum quenching bacterial F20.
Collapse
Affiliation(s)
- Jiang Shao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yu Shi
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Qi Jiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Faisal Siddique
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liangye Chen
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiakai Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
74
|
Fernandes AS, Campos KF, de Assis JCS, Gonçalves OS, Queiroz MVD, Bazzolli DMS, Santana MF. Investigating the impact of insertion sequences and transposons in the genomes of the most significant phytopathogenic bacteria. Microb Genom 2024; 10. [PMID: 38568199 DOI: 10.1099/mgen.0.001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Genetic variability in phytopathogens is one of the main problems encountered for effective plant disease control. This fact may be related to the presence of transposable elements (TEs), but little is known about their role in host genomes. Here, we performed the most comprehensive analysis of insertion sequences (ISs) and transposons (Tns) in the genomes of the most important bacterial plant pathogens. A total of 35 692 ISs and 71 transposons were identified in 270 complete genomes. The level of pathogen-host specialization was found to be a significant determinant of the element distribution among the species. Some Tns were identified as carrying virulence factors, such as genes encoding effector proteins of the type III secretion system and resistance genes for the antimicrobial streptomycin. Evidence for IS-mediated ectopic recombination was identified in Xanthomonas genomes. Moreover, we found that IS elements tend to be inserted in regions near virulence and fitness genes, such ISs disrupting avirulence genes in X. oryzae genomes. In addition, transcriptome analysis under different stress conditions revealed differences in the expression of genes encoding transposases in the Ralstonia solanacearum, X. oryzae, and P. syringae species. Lastly, we also investigated the role of Tns in regulation via small noncoding regulatory RNAs and found these elements may target plant-cell transcriptional activators. Taken together, the results indicate that TEs may have a fundamental role in variability and virulence in plant pathogenic bacteria.
Collapse
|
75
|
Nguyen TTH, Bez C, Bertani I, Nguyen MH, Nguyen TKN, Venturi V, Dinh HT. Microbiome Analysis Revealed Acholeplasma as a Possible Factor Influencing the Susceptibility to Bacterial Leaf Blight Disease of Two Domestic Rice Cultivars in Vietnam. THE PLANT PATHOLOGY JOURNAL 2024; 40:225-232. [PMID: 38606451 PMCID: PMC11016553 DOI: 10.5423/ppj.nt.12.2023.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.
Collapse
Affiliation(s)
- Thu Thi Hieu Nguyen
- VNU Institute of Microbiology and Biotechnology, Hanoi 1000, Vietnam
- Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 1000, Vietnam
| | - Cristina Bez
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | - Iris Bertani
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | | | - Thao Kim Nu Nguyen
- VNU University of Science, Vietnam National University, Hanoi 1000, Vietnam
| | - Vittorio Venturi
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | - Hang Thuy Dinh
- VNU Institute of Microbiology and Biotechnology, Hanoi 1000, Vietnam
| |
Collapse
|
76
|
Sawada H, Someya N, Morohoshi T, Ono M, Satou M. Pectobacterium araliae sp. nov., a pathogen causing bacterial soft rot of Japanese angelica tree in Japan. Int J Syst Evol Microbiol 2024; 74. [PMID: 38625720 DOI: 10.1099/ijsem.0.006326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.
Collapse
Affiliation(s)
- Hiroyuki Sawada
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutaka Someya
- Institute for Plant Protection, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Mitsuaki Ono
- Yamanashi Agritechnology Center (retired), 1100 Shimoimai, Kai, Yamanashi 400-0105, Japan
| | - Mamoru Satou
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
77
|
Kim H, Kim MH, Choi UL, Chung MS, Yun CH, Shim Y, Oh J, Lee S, Lee GW. Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae. J Microbiol Biotechnol 2024; 34:562-569. [PMID: 38247219 PMCID: PMC11016764 DOI: 10.4014/jmb.2311.11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of D-limonene, L-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with D-limonene and L-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and D-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with L-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.
Collapse
Affiliation(s)
- Hyeonbin Kim
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Mi Hee Kim
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Ui-Lim Choi
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Moon-Soo Chung
- Division of Radiation Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngkun Shim
- Microzyme Co., Ltd. Research and Development Department, Damyang-gun, Jeollanam-do 57385, Republic of Korea
| | - Jaejun Oh
- Microzyme Co., Ltd. Research and Development Department, Damyang-gun, Jeollanam-do 57385, Republic of Korea
| | - Sungbeom Lee
- Division of Radiation Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gun Woong Lee
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| |
Collapse
|
78
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
79
|
Liang X, Yang JF, Huang ZH, Ma X, Yan Y, Qi SH. New Antibacterial Peptaibiotics against Plant and Fish Pathogens from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6402-6413. [PMID: 38491989 DOI: 10.1021/acs.jafc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including β-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jia-Fan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
80
|
Xi H, Fu B, Sheng Q, Luo M, Sun L. Isolation and Characterization of a Lytic Bacteriophage RH-42-1 of Erwinia amylovora from Orchard Soil in China. Viruses 2024; 16:509. [PMID: 38675852 PMCID: PMC11054837 DOI: 10.3390/v16040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Fire blight, caused by the bacterium Erwinia amylovora, is a major threat to pear production worldwide. Bacteriophages, viruses that infect bacteria, are a promising alternative to antibiotics for controlling fire blight. In this study, we isolated a novel bacteriophage, RH-42-1, from Xinjiang, China. We characterized its biological properties, including host range, plaque morphology, infection dynamics, stability, and sensitivity to various chemicals. RH-42-1 infected several E. amylovora strains but not all. It produced clear, uniform plaques and exhibited optimal infectivity at a multiplicity of infection (MOI) of 1, reaching a high titer of 9.6 × 109 plaque-forming units (PFU)/mL. The bacteriophage had a short latent period (10 min), a burst size of 207 PFU/cell, and followed a sigmoidal one-step growth curve. It was stable at temperatures up to 60 °C but declined rapidly at higher temperatures. RH-42-1 remained viable within a pH range of 5 to 9 and was sensitive to extreme pH values. The bacteriophage demonstrates sustained activity upon exposure to ultraviolet radiation for 60 min, albeit with a marginal reduction. In our assays, it exhibited a certain level of resistance to 5% chloroform (CHCl3), 5% isopropanol (C3H8O), and 3% hydrogen peroxide (H2O2), which had little effect on its activity, whereas it showed sensitivity to 75% ethanol (C2H5OH). Electron microscopy revealed that RH-42-1 has a tadpole-shaped morphology. Its genome size is 14,942 bp with a GC content of 48.19%. Based on these characteristics, RH-42-1 was identified as a member of the Tectiviridae family, Alphatectivirus genus. This is the first report of a bacteriophage in this genus with activity against E. amylovora.
Collapse
Affiliation(s)
- Haishen Xi
- The Department of Plant Pathology, College of Agronomy at Xinjiang Agricultural University/Key Laboratory of Detection and Control of Agricultural and Forest Pests, Urumqi 830052, China; (H.X.); (B.F.)
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pests and Diseases Control of Northwest Arid Oasis Agricultural Foreign Invasion Species, Urumqi 830052, China
| | - Benzhong Fu
- The Department of Plant Pathology, College of Agronomy at Xinjiang Agricultural University/Key Laboratory of Detection and Control of Agricultural and Forest Pests, Urumqi 830052, China; (H.X.); (B.F.)
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pests and Diseases Control of Northwest Arid Oasis Agricultural Foreign Invasion Species, Urumqi 830052, China
| | - Qiang Sheng
- Xinjiang Bayingolin Mongolian Autonomous Prefecture Academy of Agricultural Sciences, Korla 841003, China;
| | - Ming Luo
- The Department of Plant Pathology, College of Agronomy at Xinjiang Agricultural University/Key Laboratory of Detection and Control of Agricultural and Forest Pests, Urumqi 830052, China; (H.X.); (B.F.)
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pests and Diseases Control of Northwest Arid Oasis Agricultural Foreign Invasion Species, Urumqi 830052, China
| | - Liying Sun
- The Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
81
|
Walker NC, White SM, Ruiz SA, McKay Fletcher D, Saponari M, Roose T. A mathematical model of biofilm growth and spread within plant xylem: Case study of Xylella fastidiosa in olive trees. J Theor Biol 2024; 581:111737. [PMID: 38280544 DOI: 10.1016/j.jtbi.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Xylem-limited bacterial pathogens cause some of the most destructive plant diseases. Though imposed measures to control these pathogens are generally ineffective, even among susceptible taxa, some hosts can limit bacterial loads and symptom expression. Mechanisms by which this resistance is achieved are poorly understood. In particular, it is still unknown how differences in vascular structure may influence biofilm growth and spread within a host. To address this, we developed a novel theoretical framework to describe biofilm behaviour within xylem vessels, adopting a polymer-based modelling approach. We then parameterised the model to investigate the relevance of xylem vessel diameters on Xylella fastidiosa resistance among olive cultivars. The functionality of all vessels was severely reduced under infection, with hydraulic flow reductions of 2-3 orders of magnitude. However, results suggest wider vessels act as biofilm incubators; allowing biofilms to develop over a long time while still transporting them through the vasculature. By contrast, thinner vessels become blocked much earlier, limiting biofilm spread. Using experimental data on vessel diameter distributions, we were able to determine that a mechanism of resistance in the olive cultivar Leccino is a relatively low abundance of the widest vessels, limiting X. fastidiosa spread.
Collapse
Affiliation(s)
- N C Walker
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - S M White
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - S A Ruiz
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - D McKay Fletcher
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK; Rural Economy Environment and Society Research Group, SRUC, Edinburgh EH9 3JG, UK
| | - M Saponari
- Istituto per la Protezione Sostenibile delle Piante, CNR, Bari, Italy
| | - T Roose
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
82
|
Wang X, Qi F, Sun Z, Liu H, Wu Y, Wu X, Xu J, Liu H, Qin L, Wang Z, Sang S, Dong W, Huang B, Zheng Z, Zhang X. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection. BMC PLANT BIOLOGY 2024; 24:207. [PMID: 38515036 PMCID: PMC10956345 DOI: 10.1186/s12870-024-04877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.
Collapse
Affiliation(s)
- Xiao Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hongfei Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Yue Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Xiaohui Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jing Xu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zhenyu Wang
- Henan Academy of Agricultural Sciences, Institute of Plant Protection, Zhengzhou, 450002, China
| | - Suling Sang
- Henan Academy of Agricultural Sciences, Institute of Plant Protection, Zhengzhou, 450002, China
| | - Wenzhao Dong
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
83
|
Borowska-Beszta M, Smoktunowicz M, Horoszkiewicz D, Jonca J, Waleron MM, Gawor J, Mika A, Sledzinski T, Waleron K, Waleron M. Comparative genomics, pangenomics, and phenomic studies of Pectobacterium betavasculorum strains isolated from sugar beet, potato, sunflower, and artichoke: insights into pathogenicity, virulence determinants, and adaptation to the host plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1352318. [PMID: 38576793 PMCID: PMC10991766 DOI: 10.3389/fpls.2024.1352318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Introduction Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.
Collapse
Affiliation(s)
- Maria Borowska-Beszta
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Daria Horoszkiewicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Michal Mateusz Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Jan Gawor
- DNA Sequencing & Synthesis Facility, Institute of Biochemistry & Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
84
|
Lee JH, Lee U, Yoo JH, Lee TS, Jung JH, Kim HS. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings. PLANT METHODS 2024; 20:44. [PMID: 38493119 PMCID: PMC10943777 DOI: 10.1186/s13007-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Plant scientists have largely relied on pathogen growth assays and/or transcript analysis of stress-responsive genes for quantification of disease severity and susceptibility. These methods are destructive to plants, labor-intensive, and time-consuming, thereby limiting their application in real-time, large-scale studies. Image-based plant phenotyping is an alternative approach that enables automated measurement of various symptoms. However, most of the currently available plant image analysis tools require specific hardware platform and vendor specific software packages, and thus, are not suited for researchers who are not primarily focused on plant phenotyping. In this study, we aimed to develop a digital phenotyping tool to enhance the speed, accuracy, and reliability of disease quantification in Arabidopsis. RESULTS Here, we present the Arabidopsis Disease Quantification (AraDQ) image analysis tool for examination of flood-inoculated Arabidopsis seedlings grown on plates containing plant growth media. It is a cross-platform application program with a user-friendly graphical interface that contains highly accurate deep neural networks for object detection and segmentation. The only prerequisite is that the input image should contain a fixed-sized 24-color balance card placed next to the objects of interest on a white background to ensure reliable and reproducible results, regardless of the image acquisition method. The image processing pipeline automatically calculates 10 different colors and morphological parameters for individual seedlings in the given image, and disease-associated phenotypic changes can be easily assessed by comparing plant images captured before and after infection. We conducted two case studies involving bacterial and plant mutants with reduced virulence and disease resistance capabilities, respectively, and thereby demonstrated that AraDQ can capture subtle changes in plant color and morphology with a high level of sensitivity. CONCLUSIONS AraDQ offers a simple, fast, and accurate approach for image-based quantification of plant disease symptoms using various parameters. Its fully automated pipeline neither requires prior image processing nor costly hardware setups, allowing easy implementation of the software by researchers interested in digital phenotyping of diseased plants.
Collapse
Grants
- Grant No. 2022R1C1C1012137 The National Research Foundation of Korea
- Grant No. 421002-04) The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) and Korea Smart Farm R&D (KosFarm) through the Smart Farm Innovation Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA)
- The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) and Korea Smart Farm R&D (KosFarm) through the Smart Farm Innovation Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA)
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Unseok Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Ji Hye Yoo
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Taek Sung Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Hyoung Seok Kim
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
85
|
Zhang L, Bao L, Li S, Liu Y, Liu H. Corrigendum: Active substances of myxobacteria against plant diseases and their action mechanisms. Front Microbiol 2024; 15:1392109. [PMID: 38544866 PMCID: PMC10971235 DOI: 10.3389/fmicb.2024.1392109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2023.1294854.].
Collapse
Affiliation(s)
- Lele Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Liangliang Bao
- College of Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Songyuan Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yang Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
86
|
Biosca EG, Delgado Santander R, Morán F, Figàs-Segura À, Vázquez R, Català-Senent JF, Álvarez B. First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol. BIOLOGY 2024; 13:176. [PMID: 38534446 DOI: 10.3390/biology13030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and human health risks. Bacteriophages (phages) constitute an ecological, safe, and sustainable fire blight control alternative. The goal of this study was to search for specific E. amylovora phages from plant material, soil, and water samples in Mediterranean environments. A collection of phages able to specifically infect and lyse E. amylovora strains was generated from former fire blight-affected orchards in Eastern Spain. Following in vitro characterization, assays in immature fruit revealed that preventively applying some of the phages or their combinations delayed the onset of fire blight symptoms and reduced the disease's severity, suggesting their biocontrol potential in Spain and other countries. The morphological and molecular characterization of the selected E. amylovora phages classified them as members of the class Caudoviricetes (former Myoviridae family) and genus Kolesnikvirus. This study reveals Mediterranean settings as plausible sources of E. amylovora-specific bacteriophages and provides the first effective European phage cocktails in plant material for the development of sustainable fire blight management measures.
Collapse
Affiliation(s)
- Elena G Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Ricardo Delgado Santander
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, WA 99350, USA
| | - Félix Morán
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Rosa Vázquez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | | | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Madrid, Spain
| |
Collapse
|
87
|
Teng K, Liu Q, Zhang M, Naz H, Zheng P, Wu X, Chi YR. Design and Enantioselective Synthesis of Chiral Pyranone Fused Indole Derivatives with Antibacterial Activities against Xanthomonas oryzae pv oryzae for Protection of Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4622-4629. [PMID: 38386000 DOI: 10.1021/acs.jafc.3c07491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A new class of chiral pyranone fused indole derivatives were prepared by means of N-heterocyclic carbene (NHC) organocatalysis and demonstrated notable antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo). Bioassays showed that compounds (3S,4R)-5b, (3S,4R)-5d, and (3S,4R)-5l exhibited promising in vitro efficacy against Xoo, with EC50 values of 9.05, 9.71, and 5.84 mg/L, respectively, which were superior to that of the positive controls with commercial antibacterial agents, bismerthiazol (BT, EC50 = 27.8 mg/L) and thiodiazole copper (TC, EC50 = 70.1 mg/L). Furthermore, single enantiomer (3S,4R)-5l was identified as an optimal structure displaying 55.3% and 52.0% curative and protective activities against Xoo in vivo tests at a concentration of 200 mg/L, which slightly surpassed the positive control with TC (curative and protective activities of 47.2% and 48.8%, respectively). Mechanistic studies through molecular docking analysis revealed preliminary insights into the distinct anti-Xoo activity of the two single enantiomers (3S,4R)-5l and (3R,4S)-5l, wherein the (3S,4R)-configured stereoisomer could form a more stable interaction with XooDHPS (dihydropteroate synthase). These findings underscore the significant anti-Xoo potential of these chiral pyranone fused indole derivatives, and shall inspire further exploration as promising lead structures for a novel class of bactericides to combat bacterial infections and other plant diseases.
Collapse
Affiliation(s)
- Kunpeng Teng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hira Naz
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
88
|
Zhan X, Wang R, Zhang M, Li Y, Sun T, Chen J, Li J, Liu T. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. PEST MANAGEMENT SCIENCE 2024; 80:1039-1052. [PMID: 37831609 DOI: 10.1002/ps.7835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Quorum sensing inhibitors (QSIs) are an emerging control tool that inhibits the quorum sensing (QS) system of pathogenic bacteria. We aimed to screen for potential QSIs in the metabolites of Trichoderma and to explore their inhibitory mechanisms. RESULTS We screened a strain of Trichoderma asperellum LN004, which demonstrated the ability to inhibit the color development of Chromobacterium subtsugae CV026, primarily attributed to the presence of emodin as its key QSI component. The quantitative polymerase chain reaction with reverse transcription results showed that after emodin treatment of Pectobacterium carotovorum subsp. carotovorum (Pcc), plant cell wall degrading enzyme-related synthetic genes were significantly downregulated, and the exogenous enzyme synthesis gene negative regulator (rsmA) was upregulated 3.5-fold. Docking simulations indicated that emodin could be a potential ligand for ExpI and ExpR proteins because it exhibited stronger competition than the natural ligands in Pcc. In addition, western blotting showed that emodin attenuated the degradation of n-acylhomoserine lactone on the ExpR protein and protected it. Different concentrations of emodin reduced the activity of pectinase, cellulase, and protease in Pcc by 20.81%-72.21%, 8.38%-52.73%, and 3.57%-47.50%. Lesion size in Chinese cabbages, carrots and cherry tomatoes following Pcc infestation was reduced by 10.02%-68.57%, 40.17%-88.56% and 11.36%-86.17%. CONCLUSION Emodin from T. asperellum LN004 as a QSI can compete to bind both ExpI and ExpR proteins, interfering with the QS of Pcc and reducing the production of virulence factors. The first molecular mechanism reveals the ability of emodin as a QSI to competitively inhibit two QS proteins simultaneously. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhan
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Rui Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Manman Zhang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Yuejiao Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Tao Sun
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tong Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
89
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
90
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
91
|
Asase RV, Glukhareva TV. Production and application of xanthan gum-prospects in the dairy and plant-based milk food industry: a review. Food Sci Biotechnol 2024; 33:749-767. [PMID: 38371690 PMCID: PMC10866857 DOI: 10.1007/s10068-023-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 02/20/2024] Open
Abstract
Xanthan gum (XG) is an important industrial microbial exopolysaccharide. It has found applications in various industries, such as pharmaceuticals, cosmetics, paints and coatings, and wastewater treatment, but especially in the food industry. The thickening and stabilizing properties of XG make it a valuable ingredient in many food products. This review presents a comprehensive overview of the various potential applications of this versatile ingredient in the food industry. Especially in the plant-based food industries due to current interest of consumers in cheaper protein sources and health purposes. However, challenges and opportunities also exist, and this review aims to identify and explore these issues in greater detail. Overall, this article represents a valuable contribution to the scientific understanding of XG and its potential applications in the food industry.
Collapse
Affiliation(s)
- Richard Vincent Asase
- Institute of Chemical Engineering, Ural Federal University of the First President of Russia B.N. Yeltsin, Mira St., 19, Yekaterinburg, Russia 620002
| | - Tatiana Vladimirovna Glukhareva
- Institute of Chemical Engineering, Ural Federal University of the First President of Russia B.N. Yeltsin, Mira St., 19, Yekaterinburg, Russia 620002
| |
Collapse
|
92
|
Costa J, Pothier JF, Bosis E, Boch J, Kölliker R, Koebnik R. A Community-Curated DokuWiki Resource on Diagnostics, Diversity, Pathogenicity, and Genetic Control of Xanthomonads. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:347-353. [PMID: 38114082 DOI: 10.1094/mpmi-11-23-0184-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Xanthomonads, including Xanthomonas and Xylella species, constitute a large and significant group of economically and ecologically important plant pathogens. Up-to-date knowledge of these pathogens and their hosts is essential for the development of suitable control measures. Traditional review articles or book chapters have inherent limitations, including static content and rapid obsolescence. To address these challenges, we have developed a Web-based knowledge platform dedicated to xanthomonads, inspired by the concept of living systematic reviews. This platform offers a dynamic resource that encompasses bacterial virulence factors, plant resistance genes, and tools for diagnostics and genetic diversity studies. Our goal is to facilitate access for newcomers to the field, provide continuing education opportunities for students, assist plant protection services with diagnostics, provide valuable information to breeders on sources of resistance and breeding targets, and offer comprehensive expert knowledge to other stakeholders interested in plant-pathogenic xanthomonads. This resource is available for queries and updates at https://euroxanth.ipn.pt. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joana Costa
- University of Coimbra, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
93
|
Savy D, Verrillo M, Cangemi S, Cozzolino V. Lignin nanoparticles from hydrotropic fractionation of giant reed and eucalypt: Structural elucidation and antibacterial properties. Int J Biol Macromol 2024; 262:129966. [PMID: 38320639 DOI: 10.1016/j.ijbiomac.2024.129966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
A hydrotropic solution of maleic acid (MA) was exploited to fractionate giant reed (AD) and eucalypt (EUC). The pre-treatment was successful for AD, while it was unsatisfactory for EUC, likely due to unoptimized reaction conditions. Interestingly, lignin nanoparticles (LNP) were produced via spontaneous aggregation following spent liquor dilution. LNP were studied by a plethora of analytical techniques, such as thermogravimetry, electron microscopy, and Nuclear Magnetic Resonance spectroscopy (NMR). Notwithstanding LNP from both AD and EUC showed similar thermal behaviour and morphology, a greater content of aliphatic hydroxyl, carboxyl, guaiacyl and p-hydroxyphenyl moieties was reported for AD-LNP, whereas EUC-LNP had a larger amount of syringyl groups and a higher S/G ratio. Also, the 1H-DOSY NMR indicated the lower size of AD-LNP. Moreover, the LNP were found to negatively impact on the development of several human or plant pathogens, and their bioactivity was related to the occurrence of guaiacyl and p-hydroxyphenyl moieties and a lower the LNP size. We therefore found that MA delignification allows both to achieve high delignification efficiency and to obtain LNP with promising antibacterial effect. Such LNP may help counteracting the antibiotics resistance and sustain the quest for finding sustainable agrochemicals.
Collapse
Affiliation(s)
- Davide Savy
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy.
| | - Mariavittoria Verrillo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Silvana Cangemi
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Vincenza Cozzolino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy; Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
94
|
Yousfi S, Krier F, Deracinois B, Steels S, Coutte F, Frikha-Gargouri O. Characterization of Bacillus velezensis 32a metabolites and their synergistic bioactivity against crown gall disease. Microbiol Res 2024; 280:127569. [PMID: 38103466 DOI: 10.1016/j.micres.2023.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Crown gall disease caused by Agrobacterium tumefaciens is considered to be the main bacterial threat of stone fruit plants in Mediterranean countries. In a previous study, Bacillus velezensis strain 32a was isolated from Tunisian rhizosphere soil and revealed high antagonistic potential against A. tumefaciens strains. In order to better characterize the antagonistic activity of this strain against this important plant pathogen, the production of secondary metabolites was analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the production of different compounds identified as surfactins, fengycins, iturins and bacillibactin belonging to the lipopeptide group, three polyketides (macrolactins, oxydifficidin and bacillaenes), bacilysin and its chlorinated derivative; chlorotetaine. The involvement of lipopeptides in this antagonistic activity was ruled out by performing agar and broth dilution tests with pure molecules. Thus, the construction of B. velezensis 32a mutants defective in polyketides and bacilysin biosynthesis and their antagonistic activity was performed and compared to a set of derivative mutants of a comparable strain, B. velezensis GA1. The defective difficidin mutants (△dfnA and △dfnD) were unable to inhibit the growth of A. tumefaciens, indicating the high-level contribution of difficidin in the antagonism process. While the macrolactin deficient mutant (∆mlnA) slightly decreased the activity, suggesting a synergetic effect with difficidin. Remarkably, the mutant △dhbC only deficient in bacillibactin production showed significant reduction in its capacity to inhibit the growth of Agrobacterium.Taken collectively, our results showed the strong synergetic effect of difficidin and macrolactins and the significant implication of siderophore to manage crown gall disease.
Collapse
Affiliation(s)
- Sarra Yousfi
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - François Krier
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Barbara Deracinois
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Sébastien Steels
- Université de Liège, UMRt BioEcoAgro 1158-INRAE, équipe Métabolites Secondaires d'Origine Microbienne, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium
| | - François Coutte
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France.
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
95
|
Yang P, Yuan P, Liu W, Zhao Z, Bernier MC, Zhang C, Adhikari A, Opiyo SO, Zhao L, Banks F, Xia Y. Plant Growth Promotion and Plant Disease Suppression Induced by Bacillus amyloliquefaciens Strain GD4a. PLANTS (BASEL, SWITZERLAND) 2024; 13:672. [PMID: 38475518 DOI: 10.3390/plants13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Botrytis cinerea, the causative agent of gray mold disease (GMD), invades plants to obtain nutrients and disseminates through airborne conidia in nature. Bacillus amyloliquefaciens strain GD4a, a beneficial bacterium isolated from switchgrass, shows great potential in managing GMD in plants. However, the precise mechanism by which GD4a confers benefits to plants remains elusive. In this study, an A. thaliana-B. cinerea-B. amyloliquefaciens multiple-scale interaction model was used to explore how beneficial bacteria play essential roles in plant growth promotion, plant pathogen suppression, and plant immunity boosting. Arabidopsis Col-0 wild-type plants served as the testing ground to assess GD4a's efficacy. Additionally, bacterial enzyme activity and targeted metabolite tests were conducted to validate GD4a's potential for enhancing plant growth and suppressing plant pathogens and diseases. GD4a was subjected to co-incubation with various bacterial, fungal, and oomycete pathogens to evaluate its antagonistic effectiveness in vitro. In vivo pathogen inoculation assays were also carried out to investigate GD4a's role in regulating host plant immunity. Bacterial extracellular exudate (BEE) was extracted, purified, and subjected to untargeted metabolomics analysis. Benzocaine (BEN) from the untargeted metabolomics analysis was selected for further study of its function and related mechanisms in enhancing plant immunity through plant mutant analysis and qRT-PCR analysis. Finally, a comprehensive model was formulated to summarize the potential benefits of applying GD4a in agricultural systems. Our study demonstrates the efficacy of GD4a, isolated from switchgrass, in enhancing plant growth, suppressing plant pathogens and diseases, and bolstering host plant immunity. Importantly, GD4a produces a functional bacterial extracellular exudate (BEE) that significantly disrupts the pathogenicity of B. cinerea by inhibiting fungal conidium germination and hypha formation. Additionally, our study identifies benzocaine (BEN) as a novel small molecule that triggers basal defense, ISR, and SAR responses in Arabidopsis plants. Bacillus amyloliquefaciens strain GD4a can effectively promote plant growth, suppress plant disease, and boost plant immunity through functional BEE production and diverse gene expression.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fredrekis Banks
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
96
|
Chen X, Niu X, Li L, Chen K, Song D, Chen B, Yang S, Wu Z. Design, Synthesis, and Target Identification of Novel Phenylalanine Derivatives by Drug Affinity Responsive Target Stability (DARTS) in Xanthomonas oryzae pv Oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3436-3444. [PMID: 38320759 DOI: 10.1021/acs.jafc.3c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The increasing resistance displayed by plant phytopathogenic bacteria to conventional pesticides has heightened the urgency for the exploration of novel antibacterial agents possessing distinct modes of action (MOAs). In this study, a series of novel phenylalanine derivatives with the unique structure of acylhydrazone dithioether have been designed and synthesized. Bioassay results demonstrated that most target compounds exhibited excellent in vitro antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv citri (Xac). Among them, the EC50 values of L3, L4, L6, L21, and L22 against Xoo were 7.4, 9.3, 6.7, 8.9, and 5.1 μg/mL, respectively, superior to that of bismerthiazol (BT) and thiodiazole copper (TC) (41.5 and >100 μg/mL); the EC50 values of L3, L4, L5, L6, L7, L8, L20, L21, and L22 against Xac were 5.6, 2.5, 6.2, 4.1, 4.2, 6.4, 6.3, 3.6, and 5.2 μg/mL, respectively, superior to that of BT and TC (43.3 and >100 μg/mL). An unmodified drug affinity responsive target stability (DARTS) technology was used to investigate the antibacterial MOAs of active compound L22, and the 50S ribosomal protein L2 (RL2) as an unprecedented target protein in Xoo cells was first discovered. The target protein RL2 was then expressed and purified. Furthermore, the in vitro interactions by microscale thermophoresis (Kd = 0.050 μM) and fluorescence titration (Ka = 1.4 × 105 M-1) experiments also demonstrated a strong binding force between compound L22 and RL2. Overall, these results not only facilitate the development of novel antibacterial agents but also establish a reliable method for exploring the targets of bactericides.
Collapse
Affiliation(s)
- Xiaocui Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xue Niu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Longju Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kuai Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dandan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Biao Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
97
|
Xue J, Guo X, Xu G, Chen X, Jiao L, Tang X. Discovery, Identification, and Mode of Action of Phenolics from Marine-Derived Fungus Aspergillus ustus as Antibacterial Wilt Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2989-2996. [PMID: 38214488 DOI: 10.1021/acs.jafc.3c07826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The bacterial wilt caused by Ralstonia solanacearum seriously affects crop yield and safety and is difficult to control. Biological activity-guided screening led to the isolation of 11 phenolic compounds including three undescribed compounds (carnemycin H-I and stromemycin B) from the secondary metabolites of a marine-derived Aspergillus ustus. One new compound is an unusual phenolic dimer. Their structures were elucidated by comprehensive spectroscopic data and J-based configurational analysis. The antibacterial activities of the isolated compounds against R. solanacearum were evaluated. Compound 3 exhibited excellent inhibitory activity with an MIC value of 3 μg/mL, which was comparable to that of streptomycin sulfate. Additionally, 3 significantly changed the morphology and inhibited the activity of succinate dehydrogenase (SDH) to interfere with the growth of R. solanacearum. Molecular docking was conducted to clarify the potential mechanisms of compound 3 with SDH. Further in vivo experiments demonstrated that 3 could remarkably inhibit the occurrence of bacterial wilt on tomatoes.
Collapse
Affiliation(s)
- Jingjing Xue
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xiaopeng Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guangxin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xi Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Lihang Jiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| |
Collapse
|
98
|
Alič Š, Bačnik K, Dreo T. Retrospective survey of Dickeya fangzhongdai using a novel validated real-time PCR assay. Front Microbiol 2024; 14:1249955. [PMID: 38414710 PMCID: PMC10896844 DOI: 10.3389/fmicb.2023.1249955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/29/2024] Open
Abstract
Dickeya fangzhongdai, an aggressive plant pathogen, causes symptoms on a variety of crops and ornamental plants including bleeding canker of Asian pear trees. Historical findings stress the need for a specific detection tool for D. fangzhongdai to prevent overlooking the pathogen or assigning it to general Dickeya spp. Therefore, a qualitative real-time PCR for specific detection of D. fangzhongdai has been developed and validated. The developed assay shows selectivity of 100%, diagnostic sensitivity of 76% and limit of detection with 95% confidence interval in plant matrices ranging from 311 to 2,275 cells/mL of plant extracts. The assay was successfully used in a retrospective survey of selected host plants of relevance to Europe and environmental niches relevant to D. fangzhongdai. Samples of potato tubers and plants, plants from the Malinae subtribe (apple, pear, quince, and Asian pear tree) and fresh surface water from Slovenia were analyzed. D. fangzhongdai was not detected in any plant samples, however, 12% of surface water samples were found to be positive.
Collapse
Affiliation(s)
| | | | - Tanja Dreo
- National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
99
|
Gonzales M, Kergaravat B, Jacquet P, Billot R, Grizard D, Chabrière É, Plener L, Daudé D. Disrupting quorum sensing as a strategy to inhibit bacterial virulence in human, animal, and plant pathogens. Pathog Dis 2024; 82:ftae009. [PMID: 38724459 PMCID: PMC11110857 DOI: 10.1093/femspd/ftae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
The development of sustainable alternatives to conventional antimicrobials is needed to address bacterial virulence while avoiding selecting resistant strains in a variety of fields, including human, animal, and plant health. Quorum sensing (QS), a bacterial communication system involved in noxious bacterial phenotypes such as virulence, motility, and biofilm formation, is of utmost interest. In this study, we harnessed the potential of the lactonase SsoPox to disrupt QS of human, fish, and plant pathogens. Lactonase treatment significantly alters phenotypes including biofilm formation, motility, and infection capacity. In plant pathogens, SsoPox decreased the production of plant cell wall degrading enzymes in Pectobacterium carotovorum and reduced the maceration of onions infected by Burkholderia glumae. In human pathogens, lactonase treatment significantly reduced biofilm formation in Acinetobacter baumannii, Burkholderia cepacia, and Pseudomonas aeruginosa, with the cytotoxicity of the latter being reduced by SsoPox treatment. In fish pathogens, lactonase treatment inhibited biofilm formation and bioluminescence in Vibrio harveyi and affected QS regulation in Aeromonas salmonicida. QS inhibition can thus be used to largely impact the virulence of bacterial pathogens and would constitute a global and sustainable approach for public, crop, and livestock health in line with the expectations of the One Health initiative.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Baptiste Kergaravat
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Damien Grizard
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Éric Chabrière
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
100
|
Zhou H, Li QX, Zeng L, Cao C, Zhang T, Zhou Y, He H. Uracil hydrazones: design, synthesis, antimicrobial activities, and putative mode of action. PEST MANAGEMENT SCIENCE 2024; 80:414-425. [PMID: 37708309 DOI: 10.1002/ps.7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Crop diseases caused by plant pathogenic fungi and bacteria have led to substantial losses in global food production. Chemical pesticides have been widely used as a primary means to mitigate these issues. Nevertheless, the persistent and excessive use of pesticides has resulted in the emergence of microbial resistance. Moreover, the improper application and excessive utilization of pesticides can contribute to environmental pollution and the persistence of pesticide residues. Consequently, the development of novel and highly effective bactericides and fungicides to combat plant pathogens holds immense practical importance. RESULTS A series of uracil hydrazones IV-B was deliberately designed and evaluated for their antimicrobial efficacy. The results of bioassays indicated that most IV-B exhibited >80% inhibition against the fungal species Monilia fructigena and Sclerotium rolfsii, as well as the bacterial species Clavibacter michiganensis subsp. michiganensis, Xanthomonas oryzae pv. oryzae, and Ralstonia solanacearum, at 50 μg/mL in vitro. In vivo, IV-B20 showed 89.9% of curative and 71.8% of protective activities against C. michiganensis subsp. michiganensis at 100 μg/mL superior to thiodiazole copper and copper hydroxide. IV-B20 also showed excellent protective activity against M. fructigena (96.3% at 200 μg/mL) and S. rolfsii (80.4% at 1000 μg/mL), which were greater than chlorothalonil and equivalent to thifluzamide. Mechanistic studies revealed that IV-B20 induced oxidative damage in pathogenic bacteria and promoted the leakage of cellular contents. CONCLUSION This study suggests that IV-B20 with uracil hydrazone skeleton has great potential as an antimicrobial candidate. These findings lay a foundation for practical application in agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lei Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Congwang Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Tuotuo Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yuan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|