51
|
Feldman RD, Limbird LE. GPER (GPR30): A Nongenomic Receptor (GPCR) for Steroid Hormones with Implications for Cardiovascular Disease and Cancer. Annu Rev Pharmacol Toxicol 2016; 57:567-584. [PMID: 27814026 DOI: 10.1146/annurev-pharmtox-010716-104651] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6;
| | - Lee E Limbird
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208
| |
Collapse
|
52
|
Chakrabarti S, Davidge ST. Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation. Methods Mol Biol 2016; 1366:503-516. [PMID: 26585160 DOI: 10.1007/978-1-4939-3127-9_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Department of Obstetrics & Gynecology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Davidge
- Department of Obstetrics & Gynecology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Physiology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
53
|
Jacenik D, Cygankiewicz AI, Krajewska WM. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation. Mol Cell Endocrinol 2016; 429:10-8. [PMID: 27107933 DOI: 10.1016/j.mce.2016.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Adam I Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
54
|
Barton M. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER. Steroids 2016; 111:37-45. [PMID: 26921679 DOI: 10.1016/j.steroids.2016.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Switzerland.
| |
Collapse
|
55
|
Zarzycka M, Gorowska-Wojtowicz E, Tworzydlo W, Klak A, Kozub K, Hejmej A, Bilinska B, Kotula-Balak M. Are aryl hydrocarbon receptor and G-protein-coupled receptor 30 involved in the regulation of seasonal testis activity in photosensitive rodent-the bank vole (Myodes glareolus)? Theriogenology 2016; 86:674-686.e1. [PMID: 27004452 DOI: 10.1016/j.theriogenology.2016.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 02/03/2023]
Abstract
Within the reproductive system both aryl hydrocarbon receptor (AHR) and G-protein-coupled receptor 30 (GPR30) contribute to estrogen signaling and controlling of reproductive physiology. The specific question is whether and how AHR and GPR30 are involved in regulation of testis function in seasonally breeding rodents. Bank vole testes were obtained from animals reared under 18 hours light:6 hours dark (LD) and 6 hours light:18 hours dark (SD) conditions. Aryl hydrocarbon receptor and GPR30 expression were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry and/or immunofluorescent staining. In addition, the activity of enzymes involved in the intracellular signal transduction; extracellular signal-regulated kinase (ERK), protein kinase (PKA), matrix metalloproteinase 9 (MMP 9) and the concentrations of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), and calcium (Ca(2+)) were examined by immunohistochemical, immunoenzymatic, and colorimetric assays, respectively. Aryl hydrocarbon receptor and GPR30 were expressed in testes of actively reproducing voles and regressed ones although their expression at the messenger RNA and AHR also at protein level appeared to be photoperiod-dependent. A specific cellular localization and expression of AHR and GPR30 correlated with the expression of ERK, PKA, and MMP 9. Moreover, we found robust differences in the levels of cAMP, cGMP, and Ca(2+) in testicular homogenates between LD and SD voles. In the testes of LD voles, the levels of second messengers were always higher compared to SD. In vole testis, AHR and GPR30 can induce signaling pathways that involve ERK, PKA, MMP 9 and cAMP, cGMP, Ca(2+). In addition, in AHR, signaling the engagement of both photoperiod and estrogens, whereas in GPR30, signaling only estrogens is reported. It is likely that in vole, because of a differential activity of signaling molecules, signal transduction via AHR rather than through GPR30 plays a role in regulation of seasonal changes of testis physiology.
Collapse
Affiliation(s)
- Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | | | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Klak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Klaudia Kozub
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
56
|
Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson's disease. Neurosci Biobehav Rev 2015; 67:79-88. [PMID: 26708712 DOI: 10.1016/j.neubiorev.2015.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022]
Abstract
The existence of sex differences in Parkinson's disease (PD) incidence is well documented with greater prevalence and earlier age at onset in men than in women. These reported sex differences could be related to estrogen exposure. In PD animal models, estrogen is well documented to be neuroprotective against dopaminergic neuron loss induced by neurotoxins. Using the 1-methyl 4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) mouse model, we showed that several compounds are neuroprotective on dopaminergic neurons including estrogen, the selective estrogen receptor modulator raloxifene, progesterone, dehydroepiandrosterone, the estrogen receptor alpha (ERα) agonist PPT as well as the G protein-coupled membrane estrogen receptor (GPER1) specific agonist G1. Accumulating evidence suggests that GPER1 could be implicated in the neuroprotective effects of estrogen, raloxifene and G1 in collaboration with ERα. We recently reported that the 5α-reductase inhibitor Dutasteride is also neuroprotective and could bring an alternative to estrogens for therapy in male. Additional studies are needed to optimize therapies with these gonadal drugs into safe personalized treatments according to sex for treatment of PD.
Collapse
|
57
|
Zekas E, Prossnitz ER. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER. BMC Cancer 2015; 15:702. [PMID: 26470790 PMCID: PMC4608161 DOI: 10.1186/s12885-015-1699-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/07/2015] [Indexed: 02/06/2023] Open
Abstract
Background Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. Methods MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. Results In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Conclusions Our results suggest that non-genomic signaling by GPER contributes, at least in part, to the survival of breast cancer cells, particularly in the presence of ER-targeted therapies involving SERMs and SERDs. Our results further suggest that GPER expression and FOXO3a localization could be utilized as prognostic markers in breast cancer therapy and that GPER antagonists could promote apoptosis in GPER-positive breast cancers, particularly in combination with chemotherapeutic and ER-targeted drugs, by antagonizing estrogen-mediated FOXO3a inactivation.
Collapse
Affiliation(s)
- Erin Zekas
- Department of Internal Medicine and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Eric R Prossnitz
- Department of Internal Medicine and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
58
|
Meyer MR, Fredette NC, Barton M, Prossnitz ER. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity. J Endocrinol 2015; 227:61-9. [PMID: 26303299 PMCID: PMC4782600 DOI: 10.1530/joe-15-0257] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/26/2022]
Abstract
Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common causes of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase (COX)-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A(2) were determined in human endothelial cells stimulated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α). Moreover, Gper-deficient (Gper(-/-)) and WT mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, contractions to acetylcholine-stimulated endothelial vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by twofold. Ovariectomy also augmented prostanoid-dependent contractions by twofold in WT mice but had no additional effect in Gper(-/-) mice. These contractions were blocked by the COX inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor l-N(G)-nitroarginine methyl ester. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to treat increased prostanoid-dependent vasomotor tone or vascular disease in postmenopausal women.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Arteritis/immunology
- Arteritis/metabolism
- Benzodioxoles/pharmacology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/immunology
- Carotid Artery, Common/metabolism
- Cell Line, Transformed
- Down-Regulation/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Estrogens/metabolism
- Female
- Humans
- In Vitro Techniques
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Ovariectomy
- Quinolines/pharmacology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Thromboxane A2/antagonists & inhibitors
- Thromboxane A2/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Vascular Resistance/drug effects
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Matthias R Meyer
- Department of Internal MedicineUniversity of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, New Mexico 87131, USADepartment of CardiologyCantonal Hospital, Tellstrasse, 5001 Aarau, SwitzerlandMolecular Internal MedicineUniversity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland Department of Internal MedicineUniversity of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, New Mexico 87131, USADepartment of CardiologyCantonal Hospital, Tellstrasse, 5001 Aarau, SwitzerlandMolecular Internal MedicineUniversity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Natalie C Fredette
- Department of Internal MedicineUniversity of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, New Mexico 87131, USADepartment of CardiologyCantonal Hospital, Tellstrasse, 5001 Aarau, SwitzerlandMolecular Internal MedicineUniversity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Matthias Barton
- Department of Internal MedicineUniversity of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, New Mexico 87131, USADepartment of CardiologyCantonal Hospital, Tellstrasse, 5001 Aarau, SwitzerlandMolecular Internal MedicineUniversity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eric R Prossnitz
- Department of Internal MedicineUniversity of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, New Mexico 87131, USADepartment of CardiologyCantonal Hospital, Tellstrasse, 5001 Aarau, SwitzerlandMolecular Internal MedicineUniversity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
59
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
60
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
61
|
Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab 2015; 26:185-92. [PMID: 25767029 PMCID: PMC4731095 DOI: 10.1016/j.tem.2015.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 01/13/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA; UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| |
Collapse
|
62
|
Itoga M, Konno Y, Moritoki Y, Saito Y, Ito W, Tamaki M, Kobayashi Y, Kayaba H, Kikuchi Y, Chihara J, Takeda M, Ueki S, Hirokawa M. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10. PLoS One 2015; 10:e0123210. [PMID: 25826377 PMCID: PMC4380451 DOI: 10.1371/journal.pone.0123210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/28/2015] [Indexed: 02/06/2023] Open
Abstract
Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response.
Collapse
Affiliation(s)
- Masamichi Itoga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036–8562, Japan
| | - Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Division of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yukiko Saito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Wataru Ito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Nagareyama Tobu Clinic, 909–1 Nazukari, Nagareyama City, Chiba, 270–0145, Japan
| | - Mami Tamaki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yoshiki Kobayashi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Otolaryngology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573–1010, Japan
| | - Hiroyuki Kayaba
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036–8562, Japan
| | - Yuta Kikuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Junichi Chihara
- Soseikai General Hospital, 101 Shimotoba Hiroosacho, Fushimi-ku, Kyoto City, Kyoto, 612–8473, Japan
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- * E-mail: (SU); (MT)
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- * E-mail: (SU); (MT)
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| |
Collapse
|
63
|
Shirshev SV. Molecular mechanisms of hormonal and hormonal-cytokine control of immune tolerance in pregnancy. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747814050079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, Amann K, Arterburn JB, Barton M, Prossnitz ER. G protein-coupled estrogen receptor protects from atherosclerosis. Sci Rep 2014; 4:7564. [PMID: 25532911 PMCID: PMC4274506 DOI: 10.1038/srep07564] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.
Collapse
Affiliation(s)
- Matthias R Meyer
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Natalie C Fredette
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tamara A Howard
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chinnasamy Ramesh
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Christoph Daniel
- Pathologisches Institut, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Pathologisches Institut, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
65
|
Dar L, Shalev V, Weitzman D, Chodick G, Arnson Y, Amital H. No male predominance in offspring of women with rheumatoid arthritis or systemic lupus erythematosus. Immunol Res 2014; 60:361-5. [DOI: 10.1007/s12026-014-8603-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
66
|
Raz L. Estrogen and cerebrovascular regulation in menopause. Mol Cell Endocrinol 2014; 389:22-30. [PMID: 24472522 DOI: 10.1016/j.mce.2014.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 12/11/2022]
Abstract
Estrogen (E2), classically viewed as a reproductive steroid hormone, has non-reproductive functions throughout the body including in the brain and vasculature. Studies report diminished neuroprotection with declining E2 levels, corresponding with higher incidence of cerebrovascular and neurological disease. However, the effects of menopausal hormone therapy (MHT) on the cerebral vasculature and brain function remain controversial. This review will focus on evidence of 17β-estradiol actions in the cerebral vasculature, with a particular emphasis on the vasoactive, anti-inflammatory, anti-oxidant, metabolic and molecular properties. Controversies surrounding MHT in relation to cerebrovascular disease and stroke risk will be discussed, particularly the emerging evidence from clinical trials supporting the critical period hypothesis of estrogen protection.
Collapse
Affiliation(s)
- Limor Raz
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
67
|
Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014; 389:71-83. [PMID: 24530924 PMCID: PMC4040308 DOI: 10.1016/j.mce.2014.02.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| |
Collapse
|
68
|
Guggino G, Giardina A, Ferrante A, Giardina G, Schinocca C, Sireci G, Dieli F, Ciccia F, Triolo G. The in vitro addition of methotrexate and/or methylprednisolone determines peripheral reduction in Th17 and expansion of conventional Treg and of IL-10 producing Th17 lymphocytes in patients with early rheumatoid arthritis. Rheumatol Int 2014; 35:171-5. [PMID: 24792332 DOI: 10.1007/s00296-014-3030-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/16/2014] [Indexed: 01/29/2023]
Abstract
The aim of our study was to evaluate methotrexate (MTX) and methylprednisolone (MP) effect on peripheral Th17 and Treg subsets in patients with rheumatoid arthritis (RA). We enrolled 15 patients (10 early RA and 5 long-standing disease) with active RA and 10 age-matched healthy donors as controls. Frequencies of Th17 and Treg were quantified using flow cytometry before and after in vitro addition of MTX, MP or both drugs. Our results showed a reduction in the overall Th17 population followed by an increase in Th17 IL-10(+) and Treg, after in vitro treatment of PBMCs with the drugs in patients with early RA. Long-standing disease patients showed a less evident increase in Treg cells and less enhancement of IL-10 Th17 cells. We suggest that the treatment with MTX and MP could ameliorate RA disease activity by normalizing the distribution/imbalance of Th17/Treg and indicate a new regulatory role of IL-17(+) cells in RA patients.
Collapse
Affiliation(s)
- G Guggino
- Sezione di Reumatologia, Dipartimento Biomedico di Medicina Interna e Specialistica, Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Cabas I, Rodenas MC, Abellán E, Meseguer J, Mulero V, García-Ayala A. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish. THE JOURNAL OF IMMUNOLOGY 2013; 191:4628-39. [PMID: 24062489 DOI: 10.4049/jimmunol.1301613] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.
Collapse
Affiliation(s)
- Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
70
|
Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G. Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arterioscler Thromb Vasc Biol 2013; 33:1127-34. [PMID: 23640494 DOI: 10.1161/atvbaha.113.301328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are plastic and versatile cells adapting their function/phenotype to the microenvironment. Distinct macrophage subpopulations with different functions, including classically (M1) and (M2) activated macrophages, have been described. Reciprocal skewing of macrophage polarization between the M1 and M2 state is a process modulated by transcription factors, such as the nuclear peroxisome proliferator-activated receptors. However, whether the estrogen/estrogen receptor pathways control the balance between M1/M2 macrophages is only partially understood. Estrogen-dependent effects on the macrophage system may be regarded as potential targets of pharmacological approaches to protect postmenopausal women from the elevated risk of cardiovascular disease.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
71
|
Brunsing RL, Owens KS, Prossnitz ER. The G protein-coupled estrogen receptor (GPER) agonist G-1 expands the regulatory T-cell population under TH17-polarizing conditions. J Immunother 2013; 36:190-6. [PMID: 23502766 PMCID: PMC3635139 DOI: 10.1097/cji.0b013e31828d8e3b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcription factor Foxp3 is critical to the suppressive phenotype of CD4+ regulatory T cells. Studies have clearly shown that numerous autoimmune diseases are marked by the presence of activated CD4+ T cells within the setting of chronic inflammation. Therefore, drugs capable of inducing Foxp3 expression in activated CD4+ T cells could be of great therapeutic interest. We have previously shown that the small molecule G-1, an agonist directed against the membrane-bound G protein-coupled estrogen receptor, can induce IL10 expression in naive CD4+ T cells. In addition, we and others have demonstrated that G-1 attenuates disease in an animal model of experimental autoimmune encephalomyelitis. Using ex vivo cultures of purified CD4+ T cells, we show that G-1 can elicit Foxp3 expression under TH17-polarizing conditions, which mimic the in situ inflammatory milieu of several autoimmune diseases. These findings build upon previous results demonstrating the immunosuppressive properties of the novel estrogenic small molecule G-1.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Cyclopentanes/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Quinolines/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, Estrogen
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Ryan L. Brunsing
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Kristin S. Owens
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R. Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
- UNM Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
72
|
Han G, Li F, Yu X, White RE. GPER: a novel target for non-genomic estrogen action in the cardiovascular system. Pharmacol Res 2013; 71:53-60. [PMID: 23466742 DOI: 10.1016/j.phrs.2013.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 12/17/2022]
Abstract
A key to harnessing the enormous therapeutic potential of estrogens is understanding the diversity of estrogen receptors and their signaling mechanisms. In addition to the classic nuclear estrogen receptors (i.e., ERα and ERβ), over the past decade a novel G-protein-coupled estrogen receptor (GPER) has been discovered in cancer and other cell types. More recently, this non-genomic signaling mechanism has been found in blood vessels, and mediates vasodilatory responses to estrogen and estrogen-like agents; however, downstream signaling events involved acute estrogen action remain unclear. The purpose of this review is to discuss the latest knowledge concerning GPER modulation of cardiovascular function, with a particular emphasis upon how activation of this receptor could mediate acute estrogen effects in the heart and blood vessels (i.e., vascular tone, cell growth and differentiation, apoptosis, endothelial function, myocardial protection). Understanding the role of GPER in estrogen signaling may help resolve some of the controversies associated with estrogen and cardiovascular function. Moreover, a more thorough understanding of GPER function could also open significant opportunities for the development of new pharmacological strategies that would provide the cardiovascular benefits of estrogen while limiting the potentially dangerous side effects.
Collapse
Affiliation(s)
- Guichun Han
- Women's Health Division, Michael E. DeBakey Institute, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
73
|
G protein-coupled estrogen receptor: a new therapeutic target in stroke and traumatic brain/spinal cord injury? Crit Care Med 2013; 40:3323-5. [PMID: 23164781 DOI: 10.1097/ccm.0b013e31826be998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
74
|
Gangemi S, Allegra A, Alonci A, Pace E, Ferraro M, Cannavò A, Penna G, Saitta S, Gerace D, Musolino C. Interleukin 22 is increased and correlated with CD38 expression in patients with B-chronic lymphocytic leukemia. Blood Cells Mol Dis 2013; 50:39-40. [PMID: 22909798 DOI: 10.1016/j.bcmd.2012.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/24/2022]
|
75
|
Barton M. Position paper: The membrane estrogen receptor GPER--Clues and questions. Steroids 2012; 77:935-42. [PMID: 22521564 DOI: 10.1016/j.steroids.2012.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 12/25/2022]
Abstract
Rapid signaling of estrogen involves membrane estrogen receptors (ERs), including membrane subpopulations of ERα and ERβ. In the mid-1990s, several laboratories independently reported the cloning of an orphan G protein-coupled receptor from vascular and cancer cells that was named GPR30. Research published between 2000 and 2005 provided evidence that GPR30 binds and signals via estrogen indicating that this intracellular receptor is involved in rapid, non-genomic estrogen signaling. The receptor has since been designated as the G protein-coupled estrogen receptor (GPER) by the International Union of Pharmacology. The availability of genetic tools such as different lines of GPER knock-out mice, as well as GPER-selective agonists and antagonists has advanced our understanding, but also added some confusion about the new function of this receptor. GPER not only binds estrogens but also other substances, including SERMs, SERDs, and environmental ER activators (endocrine disruptors; xenoestrogens) and also interacts with other proteins. This article represents a summary of a lecture given at the 7(th) International Meeting on Rapid Responses to Steroid Hormones in September 2011 in Axos, Crete, and reviews the current knowledge and questions about GPER-dependent signaling and function. Controversies that have complicated our understanding of GPER, including interactions with human ERα-36 and aldosterone as a potential ligand, will also be discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, LTK Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
76
|
Gangemi S, Allegra A, Pace E, Alonci A, Ferraro M, Petrungaro A, Saitta S, Gerace D, Russo S, Penna G, Musolino C. Evaluation of interleukin-23 plasma levels in patients with polycythemia vera and essential thrombocythemia. Cell Immunol 2012; 278:91-4. [PMID: 23121980 DOI: 10.1016/j.cellimm.2012.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/21/2012] [Accepted: 07/13/2012] [Indexed: 11/20/2022]
Abstract
Essential thrombocythemia (ET), polycythemia vera (PV) and myelofibrosis share the same acquired genetic lesion, JAK2V617F. It is believed that cytokines participate in the activation of JAK2V617F. In this study, we analyzed the plasma levels of interleukin (IL)-23, IL-10 and IL-22 in patients with PV and ET. In the same subjects we also performed analysis of the JAK2(V617F) mutation, and evaluated a possible relationship between interleukin levels and thrombotic complications or with the symptom pruritus. Plasma levels of IL-23 were significantly increased in all patients with MPN in comparison to controls. Moreover, there was a significant difference between the levels of IL-23 in patients affected by PV and those measured in controls (8.57±3.69pg/mL vs. 6.55±4.125pg/mL; p<0.03). No difference was found between IL-23 levels in ET patients and controls. No statistically significant differences were found between the levels of IL-23, Il-22 or IL-10 in PV or ET subjects with or without thrombosis, in patients with or without pruritus, or according the JAK2V617F burden. In PV patients the JAK2 burden and Hb levels correlated with occurrence of pruritus. Our study seems to point out a possible involvement of IL-23 in the pathogenesis of PV.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Human Pathology, University of Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat 2011; 133:11-21. [PMID: 22057973 DOI: 10.1007/s10549-011-1855-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/25/2011] [Indexed: 12/13/2022]
Abstract
Cytokines are low molecular weight regulatory proteins or glycoprotein that modulates the intensity and duration of immune response by stimulating or inhibiting the activation, proliferation, and/or differentiation of target cells. Different cytokines are known to have diverse role in breast cancer initiation and progression. Interleukin-10 (IL-10), a pleiotropic anti-inflammatory cytokine, induces immunosuppression and assists in escape from tumor immune surveillance. Like several other cytokines, IL-10 also can exert dual proliferative and inhibitory effect on breast tumor cells indicating a complex role of IL-10 in breast cancer initiation and progression. In this review, we tried to put together a comprehensive current view on significance of IL-10 in promotion, inhibition, and importance as prognosticator in breast cancer based on in vitro, in vivo, and clinical evidences. For literature collection, we conducted PubMed search with keywords "IL-10" and "breast cancer".
Collapse
|
78
|
The role of cytokine in the lupus nephritis. J Biomed Biotechnol 2011; 2011:594809. [PMID: 22028590 PMCID: PMC3199078 DOI: 10.1155/2011/594809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/12/2011] [Indexed: 12/22/2022] Open
Abstract
Lupus nephritis (LN) is a major clinical manifestation of systemic lupus erythematosus (SLE). Although numerous abnormalities of immune system have been proposed, cytokine overexpression plays an essential role in the pathogenesis of LN. In the initial phase of the disease, the immune deposits and/or autoantibodies induce cytokine production in renal resident cells, leading to further inflammatory cytokine/chemokine expression and leukocyte infiltration and activation. Then, infiltrate leukocytes, such as macrophages (Mφ) and dendritic cells (DCs), secrete a variety of cytokines and activate naïve T cells, leading the cytokine profile towards T helper (Th)1, Th2, and/or Th17. Recent studies revealed these inflammatory processes in experimental animal models as well as human LN. The cytokine targeted intervention may have the therapeutic potentials for LN. This paper focuses on the expression of cytokine and its functional role in the pathogenesis of LN.
Collapse
|
79
|
Abstract
Estrogens mediate profound effects throughout the body and regulate physiological and pathological processes in both women and men. The low prevalence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, several man-made and plant-derived molecules, such as bisphenol A and genistein, also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1 (GPER; formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in vitro and in preclinical studies and with the use of Gper knockout mice, many more potential roles for GPER are being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer, for which GPER is emerging as a novel therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|