51
|
Olesky M, Zhao S, Rosenberg RL, Nicholas RA. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 2006; 188:2300-8. [PMID: 16547016 PMCID: PMC1428387 DOI: 10.1128/jb.188.7.2300-2308.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae has two porins, PIA and PIB, whose genes (porA and porB, respectively) are alleles of a single por locus. We recently demonstrated that penB mutations at positions 120 and 121 in PIB, which are presumed to reside in loop 3 that forms the pore constriction zone, confer intermediate-level resistance to penicillin and tetracycline (M. Olesky, M. Hobbs, and R. A. Nicholas, Antimicrob. Agents Chemother. 46:2811-2820, 2002). In the present study, we investigated the electrophysiological properties as well as solute and antibiotic permeation rates of recombinant PIB proteins containing penB mutations (G120K, G120D/A121D, G120P/A121P, and G120R/A121H). In planar lipid bilayers, the predominant conducting state of each porin variant was 30 to 40% of the wild type, even though the anion selectivity and maximum channel conductance of each PIB variant was similar to that of the wild type. Liposome-swelling experiments revealed no significant differences in the permeation of sugars or beta-lactam antibiotics through the wild type or PIB variants. Although these results are seemingly contradictory with the ability of these variants to increase antibiotic resistance, they are consistent with MIC data showing that these porin mutations confer resistance only in strains containing an mtrR mutation, which increases expression of the MtrC-MtrD-MtrE efflux pump. Moreover, both the mtrR and penB mutations were required to decrease in vivo permeation rates below those observed in the parental strain containing either mtrR or porin mutations alone. Thus, these data demonstrate a novel mechanism of porin-mediated resistance in which mutations in PIB have no affect on antibiotic permeation alone but instead act synergistically with the MtrC-MtrD-MtrE efflux pump in the development of antibiotic resistance in gonococci.
Collapse
Affiliation(s)
- Melanie Olesky
- Department of Pharmacology, University of North Carolina at Chapel Hill, CB#7365 Mary Ellen Jones Bldg., Chapel Hill, NC 27599-7365, USA
| | | | | | | |
Collapse
|
52
|
Hu M, Nandi S, Davies C, Nicholas RA. High-level chromosomally mediated tetracycline resistance in Neisseria gonorrhoeae results from a point mutation in the rpsJ gene encoding ribosomal protein S10 in combination with the mtrR and penB resistance determinants. Antimicrob Agents Chemother 2006; 49:4327-34. [PMID: 16189114 PMCID: PMC1251527 DOI: 10.1128/aac.49.10.4327-4334.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae becomes resistant to tetracycline by two major mechanisms: expression of a plasmid-encoded TetM protein and mutations in endogenous genes (chromosomally mediated resistance). Early studies by Sparling and colleagues (P. F. Sparling F. A. J. Sarubbi, and E. Blackman, J. Bacteriol. 124:740-749, 1975) demonstrated that three genes were involved in high-level chromosomally mediated tetracycline resistance (MIC of tetracycline > or = 2 microg/ml): ery-2 (now referred to as mtrR), penB, and tet-2. While the identities of the first two genes are known, the tet-2 gene has not been identified. We cloned the tet-2 gene, which confers tetracycline resistance, from tetracycline-resistant clinical isolate N. gonorrhoeae FA6140 and show that resistance is due to a single point mutation (Val-57 to Met) in the rpsJ gene (rpsJ1) encoding ribosomal protein S10. Moreover, the identical mutation was found in six distinct tetracycline-resistant clinical isolates in which the MIC of tetracycline was > or =2 microg/ml. Site-saturation mutagenesis of the codon for Val-57 identified two other amino acids (Leu and Gln) that conferred identical levels of resistance as the Met-57 mutation. The mutation maps to the vertex of a loop in S10 that is near the aminoacyl-tRNA site in the structure of the 30S ribosomal subunit from Thermus thermophilus, and the residue equivalent to Val-57 in T. thermophilus S10, Lys-55, is within 8 to 9 A of bound tetracycline. These data suggest that large noncharged amino acids alter the rRNA structure near the tetracycline-binding site, leading to a lower affinity of the antibiotic.
Collapse
Affiliation(s)
- Mei Hu
- Department of Pharmacology, University of North Carolina at Chapel Hill, 27599-7365, USA
| | | | | | | |
Collapse
|
53
|
Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 2005; 57:1238-51. [PMID: 16101998 PMCID: PMC2673695 DOI: 10.1111/j.1365-2958.2005.04752.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The penC resistance gene was previously characterized in an FA19 penA mtrR penB gonococcal strain (PR100) as a spontaneous mutation that increased resistance to penicillin and tetracycline. We show here that antibiotic resistance mediated by penC is the result of a Glu-666 to Lys missense mutation in the pilQ gene that interferes with the formation of the SDS-resistant high-molecular-mass PilQ secretin complex, disrupts piliation and decreases transformation frequency by 50-fold. Deletion of pilQ in PR100 confers the same level of antibiotic resistance as the penC mutation, but increased resistance was observed only in strains containing the mtrR and penB resistance determinants. Site-saturation mutagenesis of Glu-666 revealed that only acidic or amidated amino acids at this position preserved PilQ function. Consistent with early studies suggesting the importance of cysteine residues for stability of the PilQ multimer, mutation of either of the two cysteine residues in FA19 PilQ led to a similar phenotype as penC: increased antibiotic resistance, loss of piliation, intermediate levels of transformation competence and absence of SDS-resistant PilQ oligomers. These data show that a functional secretin complex can enhance the entry of antibiotics into the cell and suggest that the PilQ oligomer forms a pore in the outer membrane through which antibiotics diffuse into the periplasm.
Collapse
Affiliation(s)
- Shuqing Zhao
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Deborah M. Tobiason
- Department of Microbiology and Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - H. Steven Seifert
- Department of Microbiology and Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- To whom correspondence should be addressed at: University of North Carolina at Chapel Hill Department of Pharmacology CB#7365 Chapel Hill, NC 27599-7365 Office: (919) 966-6547 Fax: (919) 966-5640
| |
Collapse
|
54
|
Hoffmann KM, Williams D, Shafer WM, Brennan RG. Characterization of the multiple transferable resistance repressor, MtrR, from Neisseria gonorrhoeae. J Bacteriol 2005; 187:5008-12. [PMID: 15995218 PMCID: PMC1169513 DOI: 10.1128/jb.187.14.5008-5012.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MtrR represses expression of the Neisseria gonorrhoeae mtrCDE multidrug efflux transporter genes. MtrR displays salt-dependent DNA binding, a stoichiometry of two dimers per DNA site, and, for a protein that was expected to be essentially all helical, a high percentage of random coil and possibly beta-sheet structure.
Collapse
Affiliation(s)
- Katherine M Hoffmann
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, 97239-3098, USA
| | | | | | | |
Collapse
|
55
|
Rouquette-Loughlin CE, Balthazar JT, Hill SA, Shafer WM. Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol Microbiol 2005; 54:731-41. [PMID: 15491363 DOI: 10.1111/j.1365-2958.2004.04299.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mtr (multiple transferable resistance) gene complex in Neisseria gonorrhoeae encodes an energy-dependent efflux pump system that is responsible for export of anti-bacterial hydrophobic agents. Expression of the mtrCDE operon in gonococci is negatively regulated by the MtrR protein. Hydrophobic agent resistance mediated by the mtr system is also inducible, which results from an AraC-like protein termed MtrA. In this work, we identified and characterized a pump similar to the gonococcal mtr system in various strains of Neisseria meningitidis. Unlike the situation with gonococci, the mtr system in meningococci is not subject to the MtrR or MtrA regulatory schemes. An analysis of the promoter region of the mtrCDE operon in a panel of meningococcal strains revealed the presence of one or two classes of insertion sequence elements. A 155-159 bp insertion sequence element known as the Correia element, previously identified elsewhere in the gonococcal and meningococcal genomes, was present in the mtrCDE promoter region of all meningococcal strains tested. In addition to the Correia element, a minority of strains had a tandemly linked, intact copy of IS1301. As described previously, a binding site for the integration host factor (IHF) was present at the centre of the Correia element upstream of mtrCDE genes. IHF was found to bind specifically to this site and deletion of the IHF binding site enhanced mtrC transcription. We also identified a post-transcriptional regulation of the mtrCDE transcript by cleavage in the inverted repeat of the Correia element, as previously described by Mazzone et al. [Gene278: 211-222 (2001)] and De Gregorio et al. [Biochim Biophys Acta 1576: 39-44 (2002)]for other Correia element. We conclude that the mtr efflux system in meningococci is subject to transcriptional regulation by IHF and post-transcriptional regulation by cleavage in the inverted repeat of the Correia element.
Collapse
|
56
|
Folster JP, Shafer WM. Regulation of mtrF expression in Neisseria gonorrhoeae and its role in high-level antimicrobial resistance. J Bacteriol 2005; 187:3713-20. [PMID: 15901695 PMCID: PMC1112036 DOI: 10.1128/jb.187.11.3713-3720.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 03/02/2005] [Indexed: 11/20/2022] Open
Abstract
The obligate human pathogen Neisseria gonorrhoeae uses the MtrC-MtrD-MtrE efflux pump to resist structurally diverse hydrophobic antimicrobial agents (HAs), some of which bathe mucosal surfaces that become infected during transmission of gonococci. Constitutive high-level HA resistance occurs by the loss of a repressor (MtrR) that negatively controls transcription of the mtrCDE operon. This high-level HA resistance also requires the product of the mtrF gene, which is located downstream and transcriptionally divergent from mtrCDE. MtrF is a putative inner membrane protein, but its role in HA resistance mediated by the MtrC-MtrD-MtrE efflux pump remains to be determined. High-level HA resistance can also be mediated through an induction process that requires enhanced transcription of mtrCDE when gonococci are grown in the presence of a sublethal concentration of Triton X-100. We now report that inactivation of mtrF results in a significant reduction in the induction of HA resistance and that the expression of mtrF is enhanced when gonococci are grown under inducing conditions. However, no effect was observed on the induction of mtrCDE expression in an MtrF-negative strain. The expression of mtrF was repressed by MtrR, the major repressor of mtrCDE expression. In addition to MtrR, another repressor (MpeR) can downregulate the expression of mtrF. Repression of mtrF by MtrR and MpeR was additive, demonstrating that the repressive effects mediated by these regulators are independent processes.
Collapse
Affiliation(s)
- Jason P Folster
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
57
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 868] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Olliver A, Vallé M, Chaslus-Dancla E, Cloeckaert A. Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Chemother 2005; 49:289-301. [PMID: 15616308 PMCID: PMC538886 DOI: 10.1128/aac.49.1.289-301.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-level fluoroquinolone (FQ) resistance in Salmonella enterica serovar Typhimurium phage type DT204 has been previously shown to be essentially due to both multiple target gene mutations and active efflux by the AcrAB-TolC efflux system. In this study we show that in intermediatly resistant acrB-inactivated serovar Typhimurium DT204 mutants, high-level resistance to FQs can be restored on in vitro selection with FQs. In each FQ- resistant mutant selected from serovar Typhimurium DT204 acrB mutant strains, an insertion sequence (IS1 or IS10) was found integrated upstream of the acrEF operon, coding for AcrEF, an efflux pump highly homologous to AcrAB. In one of the strains, transposition of IS1 caused partial deletion of acrS, the putative local repressor gene of the acrEF operon. Sequence analysis showed that both IS1 and IS10 elements contain putative promoter sequences that might alter the expression of adjacent acrEF genes. Indeed, reverse transcription-PCR experiments showed an 8- to 10-fold increase in expression of acrF in these insertional mutants, relative to their respective parental strain, which correlated well with the resistance levels observed to FQs and other unrelated drugs. It is noteworthy that AcrEF did not contribute to the intrinsic drug resistance of serovar Typhimurium, since acrF deletion in wild-type strains did not result in any increase in drug susceptibility. Moreover, deletion of acrS did not cause any acrF overexpression or any decrease in drug susceptibility, suggesting that acrEF overexpression is mediated solely by the IS1 and IS10 promoter sequences and not by inactivity of AcrS. Southern blot experiments showed that the number of chromosomal IS1 and IS10 elements in the serovar Typhimurium DT204 genome was about 5 and 15 respectively. None were detected in epidemic serovar Typhimurium DT104 strains or in the serovar Typhimurium reference strain LT2. Carrying IS1 and/or IS10 elements in their chromosome may thus be a selective advantage for serovar Typhimurium DT204 strains as opposed to DT104 strains for which no high-level FQ resistance nor insertional mutations were found. Taken together, the results of the present study indicate that the IS1- or IS10- activated AcrEF efflux pump may relay AcrAB in serovar Typhimurium, and underline the importance of transposable elements in the acquisition of FQ and multidrug resistance.
Collapse
Affiliation(s)
- Anne Olliver
- Unité Bio-Agresseurs Santé Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | |
Collapse
|
59
|
Dewi BE, Akira S, Hayashi H, Ba-Thein W. High Occurrence of Simultaneous Mutations in Target Enzymes and MtrRCDE Efflux System in Quinolone-Resistant Neisseria gonorrhoeae. Sex Transm Dis 2004; 31:353-9. [PMID: 15167645 DOI: 10.1097/00007435-200406000-00007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Emergence of multidrug-resistant Neisseria gonorrhoeae resulting from new genetic mutations is a serious threat to controlling gonorrhea. GOAL To determine 1) antimicrobial susceptibilities and the corresponding genetic mutations and 2) the role of MtrRCDE efflux system in gonococcal resistance to fluoroquinolones. STUDY DESIGN Antimicrobial susceptibility testing and sequence analysis of gyrA, parC, and mtrR loci of 131 N. gonorrhoeae isolates from Japan. RESULTS The proportion of N. gonorrhoeae strains resistant and intermediate-resistant to antimicrobials was 25.2% and 48.9% for ciprofloxacin, 25.2% and 30.5% for ofloxacin, 12.2% and 53.4% for penicillin; and 17.6% and 51.1% for tetracycline, respectively. Strains were categorized into 22 mutation profiles, with GyrA-S91F/ParC-D86N/MtrR-G45D being the most predominant profile. The frequency of mutation in gyrA, parC, mtrR, and the mtrR promoter was 71%, 47.3%, 77.1%, and 23.7%, respectively. Seventy-one percent of strains carried mutations in both gyrA and mtrR. CONCLUSION This study reports simultaneous mutations in fluoroquinolone target enzymes and the MtrRCDE efflux system as a fluoroquinolone-resistant mechanism in N. gonorrhoeae.
Collapse
Affiliation(s)
- Beti Ernawati Dewi
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | |
Collapse
|
60
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
61
|
Nolte O, Müller M, Reitz S, Ledig S, Ehrhard I, Sonntag HG. Description of new mutations in the rpoB gene in rifampicin-resistant Neisseria meningitidis selected in vitro in a stepwise manner. J Med Microbiol 2004; 52:1077-1081. [PMID: 14614066 DOI: 10.1099/jmm.0.05371-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fourteen meningococcal strains were selected towards rifampicin resistance in a stepwise manner in vitro; final MICs were between 8 and >256 microg ml(-1). Sequence analysis of a 295 bp subgenic fragment of the RNA polymerase beta-subunit (rpoB) gene from the original and the fully resistant strains revealed that, with one exception, the strain pairs differed by just one position in the deduced amino acid sequence. Transformation of a PCR-amplified subgenic rpoB fragment harbouring the mutated site into a susceptible strain demonstrated the resistance-conferring mechanism.
Collapse
Affiliation(s)
- Oliver Nolte
- Hygiene Institute, Dept of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany 2Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen, Standort Dresden, Abt. Med. Mikrobiologie und Hygiene, Haus Jägerstr. 10, D-01099 Dresden, Germany
| | - Matthias Müller
- Hygiene Institute, Dept of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany 2Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen, Standort Dresden, Abt. Med. Mikrobiologie und Hygiene, Haus Jägerstr. 10, D-01099 Dresden, Germany
| | - Stephan Reitz
- Hygiene Institute, Dept of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany 2Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen, Standort Dresden, Abt. Med. Mikrobiologie und Hygiene, Haus Jägerstr. 10, D-01099 Dresden, Germany
| | - Sandra Ledig
- Hygiene Institute, Dept of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany 2Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen, Standort Dresden, Abt. Med. Mikrobiologie und Hygiene, Haus Jägerstr. 10, D-01099 Dresden, Germany
| | - Ingrid Ehrhard
- Hygiene Institute, Dept of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany 2Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen, Standort Dresden, Abt. Med. Mikrobiologie und Hygiene, Haus Jägerstr. 10, D-01099 Dresden, Germany
| | - Hans-Günther Sonntag
- Hygiene Institute, Dept of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany 2Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen (LUA) Sachsen, Standort Dresden, Abt. Med. Mikrobiologie und Hygiene, Haus Jägerstr. 10, D-01099 Dresden, Germany
| |
Collapse
|
62
|
Lee EH, Rouquette-Loughlin C, Folster JP, Shafer WM. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 2004; 185:7145-52. [PMID: 14645274 PMCID: PMC296254 DOI: 10.1128/jb.185.24.7145-7152.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The farAB operon of Neisseria gonorrhoeae encodes an efflux pump which mediates gonococcal resistance to antibacterial fatty acids. It was previously observed that expression of the farAB operon was positively regulated by MtrR, which is a repressor of the mtrCDE-encoded efflux pump system (E.-H. Lee and W. M. Shafer, Mol. Microbiol. 33:839-845, 1999). This regulation was believed to be indirect since MtrR did not bind to the farAB promoter. In this study, computer analysis of the gonococcal genome sequence database, lacZ reporter fusions, and gel mobility shift assays were used to elucidate the regulatory mechanism by which expression of the farAB operon is modulated by MtrR in gonococci. We identified a regulatory protein belonging to the MarR family of transcriptional repressors and found that it negatively controls expression of farAB by directly binding to the farAB promoter. We designated this regulator FarR to signify its role in regulating the farAB operon. We found that MtrR binds to the farR promoter, thereby repressing farR expression. Hence, MtrR regulates farAB in a positive fashion by modulating farR expression. This MtrR regulatory cascade seems to play an important role in adjusting levels of the FarAB and MtrCDE efflux pumps to prevent their excess expression in gonococci.
Collapse
Affiliation(s)
- E-H Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
63
|
Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 2003; 71:5576-82. [PMID: 14500476 PMCID: PMC201053 DOI: 10.1128/iai.71.10.5576-5582.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active efflux of antimicrobial substances is likely to be an important bacterial defense against inhibitory host factors inherent to different body sites. Two well-characterized multidrug resistance efflux systems (MtrCDE and FarAB-MtrE) exist in Neisseria gonorrhoeae, a bacterial pathogen of the human genital mucosae. In vitro studies suggest that the MtrCDE and FarAB-MtrE efflux systems protect the gonococcus from hydrophobic antimicrobial substances that are likely to be present on mucosal surfaces. Here we report that a functional MtrCDE efflux system, but not a functional FarAB-MtrE system, enhances experimental gonococcal genital tract infection in female mice. Specifically, the recovery of mtrD and mtrE mutants, but not a farB mutant, from mice inoculated with mutant or wild-type gonococci was reduced compared with that of the wild-type strain. Competitive-infection experiments confirmed the survival disadvantage of MtrCDE-deficient gonococci. This report is the first direct evidence that a multidrug resistance efflux system enhances survival of a bacterial pathogen in the genital tract. Additionally, experiments using ovariectomized mice showed that MtrCDE-deficient gonococci were more rapidly cleared from mice that were capable of secreting gonadal hormones. MtrCDE-deficient gonococci were more sensitive to nonphysiological concentrations of progesterone in vitro than were wild-type or FarAB-MtrE-deficient gonococci. These results suggest that progesterone may play an inhibitory role in vivo. However, hormonally regulated factors rather than progesterone itself may be responsible for the more rapid clearance of mtr-deficient gonococci from intact mice.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Rey DA, Pühler A, Kalinowski J. The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 2003; 103:51-65. [PMID: 12770504 DOI: 10.1016/s0168-1656(03)00073-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to isolate transcriptional regulatory proteins involved in L-methionine-dependent repression in Corynebacterium glutamicum, proteins binding to the putative promoter region upstream of the metY gene were isolated by DNA affinity chromatography. One of the isolated proteins was identified as a putative transcriptional repressor of the TetR-family by a mass spectrometry fingerprint technique based on the complete C. glutamicum genome sequence. The respective gene, designated mcbR, was deleted in the mutant strain C. glutamicum DR1. Using 2D-PAGE, the protein contents of the C. glutamicum wild type and the mutant strain DR1 grown in media with or without L-methionine supplementation were compared and a set of six proteins was identified. Their abundance was drastically enhanced in the mutant strain and no longer influenced by L-methionine added to the growth medium. The corresponding genes were identified by mass spectrometry fingerprint analysis. They included metY encoding O-acetyl-L-homoserine sulfhydrylase, metK encoding S-adenosyl-methionine synthethase, hom encoding homoserine dehydrogenase, cysK encoding L-cysteine synthase, cysI encoding an NADPH dependant sulfite reductase, and ssuD encoding an alkanesulfonate monooxygenase. Evidently, the putative transcriptional repressor McbR is involved in the regulation of the metabolic network directing the synthesis of L-methionine in C. glutamicum. The C. glutamicum mcbR mutant can be considered to represent a first step in the construction of an L-methionine production strain.
Collapse
Affiliation(s)
- Daniel Alexander Rey
- Lehrstuhl für Genetik, Universität Bielefeld, Universitätsstrasse 25, D-33501 Bielefeld, Germany
| | | | | |
Collapse
|
65
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
66
|
Kovacikova G, Skorupski K. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol 2002; 46:1135-47. [PMID: 12421317 DOI: 10.1046/j.1365-2958.2002.03229.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quorum sensing negatively influences virulence gene expression in certain toxigenic Vibrio cholerae strains. At high cell densities, the response regulator LuxO fails to reduce the expression of HapR, which, in turn, represses the expression of the virulence cascade. A critical regulatory step in the cascade is activation of tcpPH expression by AphA and AphB. We show here that HapR influences the virulence cascade by directly repressing aphA expression. In strain C6706, aphA expression was increased in a delta hapR mutant and decreased in a delta luxO mutant, indicating a negative and positive influence, respectively, of these gene products on the promoter. Overexpression of HapR also reduced aphA expression in both C6706 and Escherichia coli. DNase I footprinting showed that purified HapR binds to the aphA promoter between -85 and -58. Although it appears that quorum sensing does not influence virulence gene expression in strain O395 solely because of a frameshift in hapR, overproduced HapR did not repress expression from the O395 aphA promoter in either Vibrio or E. coli, nor did the protein bind to the promoter. Two basepair differences from C6706 are present in the O395 HapR binding site at -85 and -77. Introducing the -77 change into C6706 prevented HapR binding and repression of aphA expression. This mutation also eliminated the repression of toxin-co-regulated pilus (TCP) and cholera toxin (CT) that occurs in a delta luxO mutant, indicating that HapR function at aphA is critical for density-dependent regulation of virulence genes.
Collapse
Affiliation(s)
- Gabriela Kovacikova
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
67
|
Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 2002; 184:5619-24. [PMID: 12270819 PMCID: PMC139619 DOI: 10.1128/jb.184.20.5619-5624.2002] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of the mtrCDE-encoded efflux pump in conferring chromosomally mediated penicillin resistance on certain strains of Neisseria gonorrhoeae was determined by using genetic derivatives of penicillin-sensitive strain FA19 bearing defined mutations (mtrR, penA, and penB) donated by a clinical isolate (FA6140) expressing high-level resistance to penicillin and antimicrobial hydrophobic agents (HAs). When introduced into strain FA19 by transformation, a single base pair deletion in the mtrR promoter sequence from strain FA6140 was sufficient to provide high-level resistance to HAs (e.g., erythromycin and Triton X-100) but only a twofold increase in resistance to penicillin. When subsequent mutations in penA and porIB were introduced from strain FA6140 into strain WV30 (FA19 mtrR) by transformation, resistance to penicillin increased incrementally up to a MIC of 1.0 micro g/ml. Insertional inactivation of the gene (mtrD) encoding the membrane transporter component of the Mtr efflux pump in these transformant strains and in strain FA6140 decreased the MIC of penicillin by 16-fold. Genetic analyses revealed that mtrR mutations, such as the single base pair deletion in its promoter, are needed for phenotypic expression of penicillin and tetracycline resistance afforded by the penB mutation. As penB represents amino acid substitutions within the third loop of the outer membrane PorIB protein that modulate entry of penicillin and tetracycline, the results presented herein suggest that PorIB and the MtrC-MtrD-MtrE efflux pump act synergistically to confer resistance to these antibiotics.
Collapse
Affiliation(s)
- Wendy L Veal
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
68
|
Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2002; 46:2811-20. [PMID: 12183233 PMCID: PMC127413 DOI: 10.1128/aac.46.9.2811-2820.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PenB is the third resistance determinant in the stepwise acquisition of multiple resistance genes in chromosomally mediated resistant Neisseria gonorrhoeae (CMRNG). Alterations in por(IB), one of two alleles at the por locus that encodes the outer membrane protein porin IB (PIB), were recently reported to be responsible for the increased resistance to penicillin and tetracycline conferred by penB, but the specific mutations conferring antibiotic resistance were not identified experimentally. To determine which amino acids in PIB confer increased resistance, we transformed a recipient strain with chimeras of the por(IB) genes from strains FA1090 and FA140 (penB2). These studies revealed that two amino acid changes, G120D and A121D, were both necessary and sufficient to confer increased resistance to penicillin and tetracycline. Site-saturation and site-directed mutagenesis of Gly-120 and Ala-121 revealed that both a single mutation, G120K, and the double mutations G120R A121H and G120P A121P also conferred antibiotic resistance to the recipient strain. The identical mutations in PIA increased penicillin and tetracycline resistance either moderately or not at all. Analysis of por(IB) genes present in the GenBank database from 51 clinical isolates demonstrated that lysine and aspartate mutations at positions 120 and/or 121 also occur in nature. These studies demonstrate that charged amino acids at positions 120 and 121 in PIB are highly preferential for conferring resistance to penicillin and tetracycline in N. gonorrhoeae.
Collapse
Affiliation(s)
- Melanie Olesky
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | | | | |
Collapse
|
69
|
Croxatto A, Chalker VJ, Lauritz J, Jass J, Hardman A, Williams P, Cámara M, Milton DL. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J Bacteriol 2002; 184:1617-29. [PMID: 11872713 PMCID: PMC134878 DOI: 10.1128/jb.184.6.1617-1629.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.
Collapse
Affiliation(s)
- Antony Croxatto
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, Balthazar JT, Shafer WM. Inducible, but not constitutive, resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires TonB-ExbB-ExbD proteins. Antimicrob Agents Chemother 2002; 46:561-5. [PMID: 11796379 PMCID: PMC127027 DOI: 10.1128/aac.46.2.561-565.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MtrC-MtrD-MtrE efflux pump possessed by Neisseria gonorrhoeae is very similar to the MexA-MexB-OprM efflux pump of Pseudomonas aeruginosa. Because the antimicrobial resistance property afforded by the MexA-MexB-OprM efflux pump also requires the TonB protein, we asked whether a similar requirement exists for the gonococcal efflux pump. Unlike earlier studies with P. aeruginosa, we found that constitutive levels of gonococcal resistance to hydrophobic antimicrobial agents (i.e., Triton X-100 [TX-100]) did not require the TonB, ExbB, or ExbD protein. However, inducible levels of TX-100 resistance in gonococci had an absolute requirement for the TonB-ExbB-ExbD system, suggesting that such resistance in gonococci has an energy requirement above and beyond that required for constitutive pump activity.
Collapse
Affiliation(s)
- Corinne Rouquette-Loughlin
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
71
|
Ramirez-Arcos S, Salimnia H, Bergevin I, Paradis M, Dillon JA. Expression of Neisseria gonorrhoeae cell division genes ftsZ, ftsE and minD is influenced by environmental conditions. Res Microbiol 2001; 152:781-91. [PMID: 11763238 DOI: 10.1016/s0923-2508(01)01261-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activity of the promoter regions of the cell division genes ftsZ, ftsE, minC, minD and minE from Neisseria gonorrhoeae (Ng) was studied under different environmental conditions using lacZ translational fusions. The promoters of the minNg genes have not been previously determined and we identified promoter regions upstream of each gene (minCp, minDp and minEp). We determined that minDp had the strongest activity. Expression of the promoter regions of ftSZ(Ng) and ftsE(Ng), which we had previously identified, as well as minD(Ng), were then studied under conditions reflecting the environment of the genitourinary tract. These conditions included anaerobiosis, presence of isoleucine or urea (3 mM and 400 mM, respectively) and acidity of pH 6. Both beta-galactosidase expression and northern blot analysis indicated that all three genes were upregulated under anaerobiosis. The addition of isoleucine as well as media at pH 6 did not have any significant effects on the promoter activity of these genes while the presence of urea significantly decreased ftsZ(Ng) promoter activity. The expression of the minD(Ng) promoter region was analyzed during different growth phases and shown to follow the growth behavior of the culture. By contrast, the ftSZ(Ng) promoter activity continued to rise after the onset of the stationary phase. When gonococcal ftsZ promoter 1, (Pz1) was altered by site-directed mutagenesis, a significant decrease in the expression of ftsZ(Ng) was observed under both aerobic and anaerobic conditions. These data infer that gonococci regulate their cell division in response to different environments.
Collapse
Affiliation(s)
- S Ramirez-Arcos
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
72
|
Ryan BM, Dougherty TJ, Beaulieu D, Chuang J, Dougherty BA, Barrett JF. Efflux in bacteria: what do we really know about it? Expert Opin Investig Drugs 2001; 10:1409-22. [PMID: 11772259 DOI: 10.1517/13543784.10.8.1409] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Efflux is the process in which bacteria transport compounds outside the cell which are potentially toxic, such as drugs or chemicals or compounds. Efflux pumps can be identified not only by biochemical, microbiological, or molecular means but with the availability of microbial genomic sequences, by the application of bioinformatics analysis of DNA sequences for key conserved structure motifs. Efflux has been identified as a relevant contributor to bacterial resistance in the clinic and is now recognised as one of the most important causes of intrinsic antibiotic resistance in bacteria, especially in Pseudomonas aeruginosa. With the recognition of efflux as a major factor in bacterial resistance, several companies have invested in the identification and development of bacterial efflux pump inhibitors. Among those, Microcide, Pfizer, Paratek and several academic laboratories are in the process of exploring efflux pump inhibitors from synthetic, natural products and peptidomimetics. Inhibiting bacterial efflux with a non-antibiotic inhibitor would restore activity of an antibiotic subject to efflux (similar to the use of beta-lactamase inhibitors to combat beta-lactamase production by bacteria). The feasibility of such an approach has been experimentally demonstrated in vitro and in vivo for efflux reversal of levofloxacin.
Collapse
Affiliation(s)
- B M Ryan
- Infectious Diseases-Microbiology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Orús P, Viñas M. Mechanisms other than penicillin-binding protein-2 alterations may contribute to moderate penicillin resistance in Neisseria meningitidis. Int J Antimicrob Agents 2001; 18:113-9. [PMID: 11516933 DOI: 10.1016/s0924-8579(01)00362-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin resistance in Neisseria spp is thought to be generated by the interspecies transfer of genetic material from naturally penicillin-resistant, commensal species. We examined a series of successive transformants with increasing levels of penicillin resistance, obtained by co-cultivation of Neisseria meningitidis derivatives with Neisseria polysaccharea. Our results suggest that, in addition to the well-known decrease in penicillin affinity of penicillin-binding protein-2 (PBP-2), decreased expression of the class 3 porin as well as decreased affinity of PBP-1 may contribute to higher level resistance of N. meningitidis to penicillin G and other beta-lactam compounds.
Collapse
Affiliation(s)
- P Orús
- Laboratori de Microbiologia, Biomedical Research Center of Bellvitge, Campus de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
74
|
Duque E, Segura A, Mosqueda G, Ramos JL. Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Mol Microbiol 2001; 39:1100-6. [PMID: 11251828 DOI: 10.1046/j.1365-2958.2001.02310.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas putida DOT-T1E grows on a water-toluene double liquid phase. Toluene tolerance in this microorganism is mainly achieved by at least two efflux pumps that belong to the RND family. The TtgDEF efflux pump is induced by toluene, whereas the other efflux pump, called TtgABC, is expressed at a high level in cells not exposed to toluene and at a lower level in cells grown with toluene. The ttgR gene is adjacent to the ttgABC operon and is transcribed divergently from ttgA. The expression level of ttgR was fourfold higher in cells growing in the presence of toluene than in its absence. In a TtgR-deficient background, expression from the ttgA promoter increased about 20-fold, suggesting that TtgR represses expression from the ttgA promoter. In this mutant, background expression of the ttgR gene was also much higher than in the wild-type background; however, its level of expression increased in the presence of toluene. In a ttgR mutant background, expression from the ttgD promoter followed the same pattern of expression as in the wild type. Analysis of a P. putida pTn5cat mutant that exhibited increased sensitivity to a sudden toluene shock, regardless of whether or not it was previously exposed to low toluene concentrations, revealed that pTn5cat had interrupted an lrp-like gene. The ttgR gene was expressed at very high levels in this mutant, with concomitant repression of expression of the ttgABC operon. The second ttgDEF efflux pump was expressed at low levels in this mutant strain, suggesting that the Lrp-like protein is a global regulatory protein involved in the solvent-tolerant response of this strain.
Collapse
Affiliation(s)
- E Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/Profesor Albareda 1, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
75
|
Lin YH, Miyamoto C, Meighen EA. Cloning and functional studies of a luxO regulator LuxT from Vibrio harveyi. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:226-35. [PMID: 11121579 DOI: 10.1016/s0167-4781(00)00236-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
LuxO is the central regulator integrating the quorum sensing signals controlling autoinduction of luminescence in Vibrio harveyi. We have previously purified to homogeneity a new lux regulator, LuxT, that binds to the luxO promoter. Based on the sequence of the tryptic peptides of LuxT, degenerate oligonucleotides were designed for PCR of the genomic DNA. A 273 bp PCR DNA fragment containing sequences encoding the tryptic peptides was extended by inverse PCR to obtain the complete gene (luxT) encoding a protein of 153 amino acids which shares homology with the AcrR/TetR family of transcriptional regulators. The recombinant and native LuxT gave the same footprint binding between 117 and 149 bp upstream from the luxO initiation codon. Gene disruption of luxT in V. harveyi increased luxO expression and affected the cell density dependent induction of luminescence showing that LuxT was a repressor of luxO. As LuxT also affected the survival of the V. harveyi cells at high salt concentration and homologous proteins are present in other bacterial species, including the pathogen, Vibrio cholerae, the LuxT regulatory protein appears to be a general rather than a lux-specific regulator.
Collapse
Affiliation(s)
- Y H Lin
- Department of Biochemistry, Room 813, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Que., Canada H3G 1Y6
| | | | | |
Collapse
|
76
|
Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 2000; 64:672-93. [PMID: 11104814 PMCID: PMC99009 DOI: 10.1128/mmbr.64.4.672-693.2000] [Citation(s) in RCA: 541] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.
Collapse
Affiliation(s)
- M Putman
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
77
|
Abstract
Cathelicidins are a numerous group of mammalian proteins that carry diverse antimicrobial peptides at the C-terminus of a highly conserved preproregion. These peptides, which become active when released from the proregion, display a remarkable variety of sizes, sequences, and structures, and in fact comprise representatives of all the structural groups in which the known antimicrobial peptides have been classified. Most of the cathelicidin-derived peptides exert a broad spectrum and potent antimicrobial activity and also bind to lipopolysaccharide and neutralize its effects. In addition, some of them have recently been shown to exert other activities and might participate in host defense also by virtue of their ability to induce expression of molecules involved in a variety of biological processes. This review is aimed at providing a general overview of the cathelicidins and of the peptides derived therefrom, with emphasis on aspects such as structure, biological activities in vitro and in vivo, and structure/activity relationship studies.
Collapse
Affiliation(s)
- R Gennaro
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, Via Giorgieri, 1, 34127 Trieste, Italy.
| | | |
Collapse
|
78
|
Lissenden S, Mohan S, Overton T, Regan T, Crooke H, Cardinale JA, Householder TC, Adams P, O'Conner CD, Clark VL, Smith H, Cole JA. Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygen-limited growth. Mol Microbiol 2000; 37:839-55. [PMID: 10972806 DOI: 10.1046/j.1365-2958.2000.02050.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the Neisseria gonorrhoeae DNA sequence database revealed the presence of two genes, one encoding a protein predicted to be 37. 5% identical (50% similar) in amino acid sequence to the Escherichia coli FNR protein and the other encoding a protein 41% and 42% identical (54 and 51% sequence similarity) to the E. coli NarL and NarP proteins respectively. Both genes have been cloned into E. coli and insertionally inactivated in vitro. The mutated genes have been transformed into gonococci and recombined into the chromosome. The fnr mutation totally abolished and the narP mutation severely diminished the ability of gonococci to: (i) grow anaerobically; (ii) adapt to oxygen-limited growth; (iii) initiate transcription from the aniA promoter (which directs the expression of a copper-containing nitrite reductase, AniA, in response to the presence of nitrite); and (iv) reduce nitrite during growth in oxygen-limited media. The product of nitrite reduction was identified to be nitrous oxide. Immediately upstream of the narL/narP gene is an open reading frame that, if translated, would encode a homologue of the E. coli nitrate- and nitrite-sensing proteins NarX and NarQ. As transcription from the aniA promoter was not activated during oxygen-limited growth in the presence of nitrate, the gonococcal two-component regulatory system is designated NarQ-NarP rather than NarX-NarL. As far as we are aware, this is the first well-documented example of a two-component regulatory system working in partnership with a transcription activator in pathogenic neisseria. A 45 kDa c-type cytochrome that was synthesized during oxygen-limited, but not during oxygen sufficient, growth was identified as a homologue of cytochrome c peroxidases (CCP) of other bacteria. The gene for this cytochrome, designated ccp, was located, and its regulatory region was cloned into the promoter probe vector pLES94. Transcription from the ccp promoter was repressed during aerobic growth and induced during oxygen-limited growth and was totally FNR dependent, suggesting that the gonococcal FNR protein is a transcription activator of at least two genes. However, unlike AniA, synthesis of the CCP homologue was insensitive to the presence of nitrite during oxygen-limited growth.
Collapse
Affiliation(s)
- S Lissenden
- School of Biosciences, University of Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Cánovas D, Vargas C, Kneip S, Morón MAJ, Ventosa A, Bremer E, Nieto JNJ. Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043, USA. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):455-463. [PMID: 10708384 DOI: 10.1099/00221287-146-2-455] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes involved in the oxidative pathway of choline to glycine betaine in the moderate halophile Halomonas elongata DSM 3043 were isolated by functional complementation of an Escherichia coli strain defective in glycine betaine synthesis. The cloned region was able to mediate the oxidation of choline to glycine betaine in E. coli, but not the transport of choline, indicating that the gene(s) involved in choline transport are not clustered with the glycine betaine synthesis genes. Nucleotide sequence analysis of a 4.6 kb segment from the cloned DNA revealed the occurrence of three ORFs (betIBA) apparently arranged in an operon. The deduced betI gene product exhibited features typical for DNA-binding regulatory proteins. The deduced BetB and BetA proteins showed significant similarity to soluble glycine betaine aldehyde dehydrogenases and membrane-bound choline dehydrogenases, respectively, from a variety of organisms. Evidence is presented that BetA is able to oxidize both choline and glycine betaine aldehyde and therefore can mediate both steps in the synthesis of glycine betaine.
Collapse
Affiliation(s)
- David Cánovas
- Laboratory for Microbiology, Department of Biology, Philipps University, MarburgD-35032, Marburg, Germany2
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain1
| | - Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain1
| | - Susanne Kneip
- Laboratory for Microbiology, Department of Biology, Philipps University, MarburgD-35032, Marburg, Germany2
| | - Marı A-Jesús Morón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain1
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain1
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps University, MarburgD-35032, Marburg, Germany2
| | - Joaquı N J Nieto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain1
| |
Collapse
|
80
|
Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 1999; 43:2468-72. [PMID: 10508026 PMCID: PMC89502 DOI: 10.1128/aac.43.10.2468] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-dose azithromycin therapy has recently been used in Uruguay for the treatment of uncomplicated gonococcal infections. As part of an active surveillance study to monitor the emergence of antibiotic resistance in gonococcal isolates, we examined the levels of azithromycin susceptibility in 51 consecutive isolates obtained from males with uncomplicated gonococcal urethritis. Isolates with decreased susceptibility to azithromycin (MICs, 0.25 to 0.5 microg/ml) were common, and these isolates often displayed cross-resistance to hydrophobic antimicrobial agents (erythromycin and Triton X-100). Resistance to erythromycin and Triton X-100 is frequently due to overexpression of the mtrCDE-encoded efflux pump mediated by mutations in the mtrR gene, which encodes a transcriptional repressor that modulates expression of the mtrCDE operon. Accordingly, we questioned whether clinical isolates that express decreased azithromycin susceptibility harbor mtrR mutations. Promoter mutations that would decrease the level of expression of mtrR as well as a missense mutation at codon 45 in the mtrR-coding region that would result in a radical amino acid replacement within the DNA-binding motif of MtrR were found in these strains. When these mutations were transferred into azithromycin-susceptible strain FA19 by transformation, the susceptibility of gonococci to azithromycin was decreased by nearly 10-fold. The mtrCDE-encoded efflux pump system was responsible for this property since insertional inactivation of the mtrC gene resulted in enhanced susceptibility of gonococci to azithromycin. We conclude that the mtrCDE-encoded efflux pump can recognize azithromycin and that the emergence of gonococcal strains with decreased susceptibility to azithromycin can, in part, be explained by mtrR mutations.
Collapse
Affiliation(s)
- L Zarantonelli
- National Center for Gonococcal Antimicrobial Susceptibility Surveillance, Department of Microbiology, School of Chemistry, Montevideo, 11800, Uruguay
| | | | | | | |
Collapse
|
81
|
Rouquette C, Harmon JB, Shafer WM. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 1999; 33:651-8. [PMID: 10417654 DOI: 10.1046/j.1365-2958.1999.01517.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mtr (multiple transferable resistance) gene complex in Neisseria gonorrhoeae encodes an energy-dependent efflux pump composed of the MtrC-MtrD-MtrE cell envelope proteins that serves to export structurally diverse antimicrobial, hydrophobic agents (HAs). Many of these agents have membrane-acting detergent activity. Using Triton X-100 (TX-100) as a representative HA, we found that the mtrCDE efflux pump operon could be induced to higher levels of expression when an HA-sensitive strain was exposed to sublethal concentrations of this non-ionic detergent and the structurally related spermicide, nonoxynol-9. This induction was at the level of mtrCDE gene transcription and was independent of the MtrR repressor, which normally decreases mtrCDE gene expression. However, the enhanced resistance of gonococci to TX-100 was dependent on the expression of a previously undescribed gonococcal protein that belonged to the AraC/XylS family of transcriptional activators. We have termed this protein MtrA to signify its likely role in the activation of mtrCDE gene expression. Taken together with previous studies dealing with the genetic control of mtrCDE gene expression, we propose that gonococci can modulate their resistance to HAs through both positive and negative transcriptional control processes. The action of these regulatory processes is probably of importance in determining the survival capacity of gonococci at mucosal surfaces that contain detergent-like HAs.
Collapse
Affiliation(s)
- C Rouquette
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
82
|
Lee EH, Shafer WM. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 1999; 33:839-45. [PMID: 10447892 DOI: 10.1046/j.1365-2958.1999.01530.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gonococci often infect mucosal surfaces bathed in antibacterial fatty acids (FAs). Resistance of gonococci to FAs and other antibacterial hydrophobic agents has been attributed to the mtrCDE-encoded efflux pump system and a heretofore undefined mechanism. This alternative resistance mechanism has been suggested to mediate gonococcal resistance to long-chained FAs independently of the mtr efflux pump. We have now identified this alternative FA resistance system in gonococci and report that it bears significant similarity to the emrAB-encoded efflux pump possessed by Escherichia coli and the vceAB-encoded pump of Vibrio cholerae. We termed the gonococcal version of this efflux pump farAB (fatty acid resistance) to signify its involvement in FA resistance expressed by gonococci and to distinguish it from the emrAB- or vceAB-encoded pumps that modulate bacterial susceptibility to uncoupling agents and certain antibiotics. Although the farAB system in gonococci was found to provide resistance to FAs independently of the mtrCDE-encoded efflux pump, its function was dependent on the MtrE outer membrane protein. Moreover, expression of the tandemly linked farA and farB genes was positively associated with the presence of the MtrR transcriptional regulatory protein that normally downregulates the expression of mtrCDE. Thus, the data presented herein suggest that, while the mtrCDE- and farAB-encoded systems act independently to mediate resistance of gonococci to host-derived, hydrophobic antimicrobial agents, their capacity to export these agents is dependent on the same outer membrane protein (MtrE), and their expression may be differentially controlled by the same transcriptional regulatory protein (MtrR).
Collapse
Affiliation(s)
- E H Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
83
|
Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 1999; 96:2408-13. [PMID: 10051655 PMCID: PMC26797 DOI: 10.1073/pnas.96.5.2408] [Citation(s) in RCA: 459] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. elegans, at least five also exhibited reduced virulence in mice. Three of the TnphoA mutants corresponded to the known virulence-related genes lasR, gacA, and lemA. Three of the mutants corresponded to known genes (aefA from Escherichia coli, pstP from Azotobacter vinelandii, and mtrR from Neisseria gonorrhoeae) that had not been shown previously to play a role in pathogenesis, and two of the mutants contained TnphoA inserted into novel sequences. These data indicate that the killing of C. elegans by P. aeruginosa can be exploited to identify novel P. aeruginosa virulence factors important for mammalian pathogenesis.
Collapse
Affiliation(s)
- M W Tan
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
84
|
Gill MJ, Simjee S, Al-Hattawi K, Robertson BD, Easmon CS, Ison CA. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 1998; 42:2799-803. [PMID: 9797206 PMCID: PMC105946 DOI: 10.1128/aac.42.11.2799] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 08/08/1998] [Indexed: 11/20/2022] Open
Abstract
penB is a chromosomal mutation that confers resistance to beta-lactams and tetracyclines and reduced susceptibility to quinolones in Neisseria gonorrhoeae. It is linked to the porin gene (por) and requires the increased expression of an efflux pump due to mtr. Transformation of a susceptible gonococcus (strain H1) with chromosomal DNA from strain FA140 (penA mtr penB; porin serovar IB1) and conjugal transfer of a beta-lactamase-expressing plasmid was used to produce isogenic strains for determination of equilibrium periplasmic penicillin concentrations by the method of Zimmermann and Rosselet (W. Zimmermann and A. Rosselet, Antimicrob. Agents Chemother. 12:368-372, 1977). In transformants with the Mtr and PenB phenotypes, equilibrium concentrations of penicillin were reduced. DNA sequence analysis of por from isogenic penB and penB+ transformants revealed 14 sequence differences; nine of these differences resulted in amino acid changes. Three amino acid changes were found in the putative gonococcal equivalent of the pore-constricting loop 3 of Escherichia coli OmpF. Two of these changes (Gly-101-Ala-102-->Asp-Asp) result in an increased negative charge at this position in por loop 3. PCR products comprising the complete por gene from strain FA140 were transformed into strain H1-2 (penA mtr; porin serovar IB-3), with the resulting transformants having the antibiotic susceptibility phenotype associated with penB. penB-like mutations were found in loop 3 of clinical isolates of gonococci with chromosomally mediated resistance to penicillin. We conclude that penB is a mutation in loop 3 of por that reduces porin permeability to hydrophilic antibiotics and plays an important role in the development of chromosomally mediated resistance to penicillin and tetracycline in gonococci.
Collapse
Affiliation(s)
- M J Gill
- Department of Infection, University of Birmingham Medical School, Birmingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
85
|
Østeras M, Boncompagni E, Lambert A, Dupont L, Poggi MC, Le Rudulier D. Isolation and molecular characterization of theSinorhizobium meliloti bet locus encoding glycine betaine biosynthesis. J Biosci 1998. [DOI: 10.1007/bf02936139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Osterås M, Boncompagni E, Vincent N, Poggi MC, Le Rudulier D. Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci U S A 1998; 95:11394-9. [PMID: 9736747 PMCID: PMC21653 DOI: 10.1073/pnas.95.19.11394] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycine betaine is a potent osmoprotectant accumulated by Sinorhizobium meliloti to cope with osmotic stress. The biosynthesis of glycine betaine from choline is encoded by an operon of four genes, betICBA, as determined by sequence and mutant analysis. The betI and betC genes are separated by an intergenic region containing a 130-bp mosaic element that also is present between the betB and betA genes. In addition to the genes encoding a presumed regulatory protein (betI), the betaine aldehyde dehydrogenase (betB), and the choline dehydrogenase (betA) enzymes also found in Escherichia coli, a new gene (betC) was identified as encoding a choline sulfatase catalyzing the conversion of choline-O-sulfate and, at a lower rate, phosphorylcholine, into choline. Choline sulfatase activity was absent from betC but not from betB mutants and was shown to be induced indifferently by choline or choline-O-sulfate as were the other enzymes of the pathway. Unlike what has been shown in other bacteria and plants, choline-O-sulfate is not used as an osmoprotectant per se in S. meliloti, but is metabolized into glycine betaine. S. meliloti also can use this compound as the sole carbon, nitrogen, and sulfur source for growth and that depends on a functional bet locus. In conclusion, choline-O-sulfate and phosphorylcholine, which are found in higher plants and fungi, appear to be substrates for glycine betaine biosynthesis in S. meliloti.
Collapse
Affiliation(s)
- M Osterås
- Laboratoire de Biologie Végétale et Microbiologie, Centre National de la Recherche Scientifique Equipe en Restructuration 590, Université de Nice-Sophia Antipolis, 06108 Nice Cedex, France
| | | | | | | | | |
Collapse
|
87
|
Worley MJ, Stojiljkovic I, Heffron F. The identification of exported proteins with gene fusions to invasin. Mol Microbiol 1998; 29:1471-80. [PMID: 9781883 DOI: 10.1046/j.1365-2958.1998.01030.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exported proteins are integral to understanding the biology of bacterial organisms. They have special significance in pathogenesis research because they can mediate critical interactions between pathogens and eukaryotic cell surfaces. Further, they frequently serve as targets for vaccines and diagnostic tests. The commonly used genetic assays for identifying exported proteins use fusions to alkaline phosphatase or beta-lactamase. These systems are not ideal for identifying outer membrane proteins because they identify a large number of inner membrane proteins as well. We addressed this problem by developing a gene fusion system that preferentially identifies proteins that contain cleavable signal sequences and are released from the inner membrane. This system selects fusions that restore outer membrane localization to an amino terminal-truncated Yersinia pseudotuberculosis invasin derivative. In the present study, a variety of Salmonella typhimurium proteins that localize beyond the inner membrane were identified with gene fusions to this invasin derivative. Previously undescribed proteins identified include ones that share homology with components of fimbrial operons, multiple drug resistance efflux pumps and a haemolysin. All of the positive clones analysed contain cleavable signal sequences. Moreover, over 40% of the genes identified encode putative outer membrane proteins. This system has several features that may make it especially useful in the study of genetically intractable organisms.
Collapse
Affiliation(s)
- M J Worley
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| | | | | |
Collapse
|
88
|
Gotoh N, Tsujimoto H, Tsuda M, Okamoto K, Nomura A, Wada T, Nakahashi M, Nishino T. Characterization of the MexC-MexD-OprJ multidrug efflux system in DeltamexA-mexB-oprM mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998; 42:1938-43. [PMID: 9687387 PMCID: PMC105713 DOI: 10.1128/aac.42.8.1938] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the multidrug efflux system MexC-MexD-OprJ in nfxB mutants of Pseudomonas aeruginosa contributes to resistance to fluoroquinolones and the "fourth-generation" cephems (cefpirome and cefozopran), but not to most beta-lactams, including the ordinary cephems (ceftazidime and cefoperazone). nfxB mutants also express a second multidrug efflux system, MexA-MexB-OprM, due to incomplete transcriptional repression of this operon by the mexR gene product. To characterize the contribution of the MexC-MexD-OprJ system to drug resistance in P. aeruginosa, a site-specific deletion method was employed to remove the mexA-mexB-oprM region from the chromosome of wild-type and nfxB strains of P. aeruginosa. Characterization of mutants lacking the mexA-mexB-oprM region clearly indicated that the MexC-MexD-OprJ efflux system is involved in resistance to the ordinary cephems as well as fluoroquinolones and the fourth-generation cephems but not to carbenicillin and aztreonam. Rabbit polyclonal antisera and murine monoclonal antibody against the components of the MexA-MexB-OprM system were prepared and used to demonstrate the reduced production of this efflux system in the nfxB mutants. Consistent with this, transcription of the mexA-mexB-oprM operon decreased in an nfxB mutant. This reduction appears to explain the hypersusceptibility of the nfxB mutant to beta-lactams, including ordinary cephems.
Collapse
Affiliation(s)
- N Gotoh
- Department of Microbiology, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Palumbo JD, Kado CI, Phillips DA. An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 1998; 180:3107-13. [PMID: 9620959 PMCID: PMC107810 DOI: 10.1128/jb.180.12.3107-3113.1998] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium tumefaciens 1D1609, which was originally isolated from alfalfa (Medicago sativa L.), contains genes that increase competitive root colonization on that plant by reducing the accumulation of alfalfa isoflavonoids in the bacterial cells. Mutant strain I-1 was isolated by its isoflavonoid-inducible neomycin resistance following mutagenesis with the transposable promoter probe Tn5-B30. Nucleotide sequence analysis showed the transposon had inserted in the first open reading frame, ifeA, of a three-gene locus (ifeA, ifeB, and ifeR), which shows high homology to bacterial efflux pump operons. Assays on alfalfa showed that mutant strain I-1 colonized roots normally in single-strain tests but was impaired significantly (P < or = 0.01) in competition against wild-type strain 1D1609. Site-directed mutagenesis experiments, which produced strains I-4 (ifeA::gusA) and I-6 (ifeA::omega-Tc), confirmed the importance of ifeA for competitive root colonization. Exposure to the isoflavonoid coumestrol increased beta-glucuronidase activity in strain I-4 21-fold during the period when coumestrol accumulation in wild-type cells declined. In the same test, coumestrol accumulation in mutant strain I-6 did not decline. Expression of the ifeA-gusA reporter was also induced by the alfalfa root isoflavonoids formononetin and medicarpin but not by two triterpenoids present in alfalfa. These results show that an efflux pump can confer measurable ecological benefits on A. tumefaciens in an environment where the inducing molecules are known to be present.
Collapse
Affiliation(s)
- J D Palumbo
- Department of Agronomy and Range Science, University of California, Davis 95616, USA
| | | | | |
Collapse
|
90
|
Shaw GC, Sung CC, Liu CH, Lin CH. Evidence against the Bm1P1 protein as a positive transcription factor for barbiturate-mediated induction of cytochrome P450BM-1 in bacillus megaterium. J Biol Chem 1998; 273:7996-8002. [PMID: 9525898 DOI: 10.1074/jbc.273.14.7996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bm1P1 protein was previously proposed to act as a positive transcription factor involved in barbiturate-mediated induction of cytochrome P450BM-1 in Bacillus megaterium. We now report that the bm1P1 gene encodes a protein of 217 amino acids, rather than the 98 amino acids as reported previously. In vitro gel shift assays indicate that the Bm1P1 protein did not interact with probes comprising the regulatory regions of the P450BM-1 gene. Moreover, disruption of the bm1P1 gene did not markedly affect barbiturate induction of P450BM-1 expression. A multicopy plasmid harboring only the P450BM-1 promoter region could increase expression of the chromosome-encoded P450BM-1. The level of expression is comparable with that shown by a multicopy plasmid harboring the P450BM-1 promoter region along with the bm1P1 gene. These results strongly suggest that the Bm1P1 protein is unlikely to act as a positive regulator for barbiturate induction of P450BM-1 expression. Finally, deletion of the Barbie box did not markedly diminish the effect of pentobarbital on expression of a reporter gene transcriptionally fused to the P450BM-1 promoter. This suggests that the Barbie box is unlikely to be a key element in barbiturate-mediated induction of P450BM-1.
Collapse
Affiliation(s)
- G C Shaw
- Institute of Biochemistry, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | | | | | |
Collapse
|
91
|
Veal WL, Yellen A, Balthazar JT, Pan W, Spratt BG, Shafer WM. Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 3):621-627. [PMID: 9534233 DOI: 10.1099/00221287-144-3-621] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents (HAs) has been ascribed to the mtr (multiple transferable resistance) operon. This operon is composed of the mtrR gene, which encodes a transcriptional repressor (MtrR), and a three-gene complex (mtrCDE), which encodes cell envelope proteins (MtrC-MtrD-MtrE) that form an energy-dependent efflux pump. HA-hypersusceptible strains are often isolated from patients, but the genetic basis for such hypersusceptibility was heretofore unknown. The genetic basis of HA hypersusceptibility in laboratory-derived strains BR54 and BR87 was studied to learn if this trait could be linked to mutations in the mtr operon. Mutations in the mtrR gene of these strains that could be phenotypically suppressed by mutations in their mtrC or mtrD genes were identified. Thus, small deletions (4-10 bp) in the mtrC or mtrD genes of strains BR87 and BR54 that would result in the production of truncated efflux pump proteins that serve as a membrane fusion protein (MtrC) or transporter of HAs (MtrD) were found to be responsible for their HA-hypersusceptible property.
Collapse
Affiliation(s)
- Wendy L Veal
- Department of Microbiology and Immunology, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ansley Yellen
- Department of Microbiology and Immunology, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Jacqueline T Balthazar
- Laboratories of Microbial Pathogenesis, Medical Research Service, VA Medical Center (Atlanta),Decatur, GA 30033,USA
- Department of Microbiology and Immunology, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Wubin Pan
- Microbial Genetics Group, School of Biological Sciences, University of Sussex,Falmer, Brighton BN1 9QG,UK
| | - Brian G Spratt
- Microbial Genetics Group, School of Biological Sciences, University of Sussex,Falmer, Brighton BN1 9QG,UK
| | - William M Shafer
- Laboratories of Microbial Pathogenesis, Medical Research Service, VA Medical Center (Atlanta),Decatur, GA 30033,USA
- Department of Microbiology and Immunology, Emory University School of Medicine,Atlanta, GA 30322, USA
| |
Collapse
|
92
|
Shafer WM, Qu X, Waring AJ, Lehrer RI. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 1998; 95:1829-33. [PMID: 9465102 PMCID: PMC19198 DOI: 10.1073/pnas.95.4.1829] [Citation(s) in RCA: 302] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Accepted: 12/08/1997] [Indexed: 02/06/2023] Open
Abstract
We have previously described the antibacterial capacity of protegrin-1 (PG-1), a cysteine-rich, cationic peptide from porcine leukocytes, against Neisseria gonorrhoeae. We now report genetic and biochemical evidence that gonococcal susceptibility to the lethal action of PG-1 and other structurally unrelated antibacterial peptides, including a peptide (LL-37) that is expressed constitutively by human granulocytes and testis and inducibly by keratinocytes, is modulated by an energy-dependent efflux system termed mtr. These results indicate that such efflux systems may enable mucosal pathogens like gonococci to resist endogenous antimicrobial peptides that are thought to act during infection.
Collapse
Affiliation(s)
- W M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
93
|
Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997; 61:393-410. [PMID: 9409145 PMCID: PMC232617 DOI: 10.1128/mmbr.61.4.393-410.1997] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ArC/XylS family of prokaryotic positive transcriptional regulators includes more than 100 proteins and polypeptides derived from open reading frames translated from DNA sequences. Members of this family are widely distributed and have been found in the gamma subgroup of the proteobacteria, low- and high-G + C-content gram-positive bacteria, and cyanobacteria. These proteins are defined by a profile that can be accessed from PROSITE PS01124. Members of the family are about 300 amino acids long and have three main regulatory functions in common: carbon metabolism, stress response, and pathogenesis. Multiple alignments of the proteins of the family define a conserved stretch of 99 amino acids usually located at the C-terminal region of the regulator and connected to a nonconserved region via a linker. The conserved stretch contains all the elements required to bind DNA target sequences and to activate transcription from cognate promoters. Secondary analysis of the conserved region suggests that it contains two potential alpha-helix-turn-alpha-helix DNA binding motifs. The first, and better-fitting motif is supported by biochemical data, whereas existing biochemical data neither support nor refute the proposal that the second region possesses this structure. The phylogenetic relationship suggests that members of the family have recruited the nonconserved domain(s) into a series of existing domains involved in DNA recognition and transcription stimulation and that this recruited domain governs the role that the regulator carries out. For some regulators, it has been demonstrated that the nonconserved region contains the dimerization domain. For the regulators involved in carbon metabolism, the effector binding determinants are also in this region. Most regulators belonging to the AraC/XylS family recognize multiple binding sites in the regulated promoters. One of the motifs usually overlaps or is adjacent to the -35 region of the cognate promoters. Footprinting assays have suggested that these regulators protect a stretch of up to 20 bp in the target promoters, and multiple alignments of binding sites for a number of regulators have shown that the proteins recognize short motifs within the protected region.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaìdín, Granada, Spain
| | | | | | | | | |
Collapse
|
94
|
Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 1997; 41:2719-23. [PMID: 9420045 PMCID: PMC164195 DOI: 10.1128/aac.41.12.2719] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A strain of Streptococcus agalactiae displayed resistance to 14-, 15-, and 16-membered macrolides. In PCR assays, total genomic DNA from this strain contained neither erm nor mef genes. EcoRI-digested genomic DNA from this strain was cloned into lambda Zap II to construct a library of S. agalactiae genomic DNA. A clone, pAES63, expressing resistance to erythromycin, azithromycin, and spiramycin in Escherichia coli was recovered. Deletion derivatives of pAES63 which defined a functional region on this clone that encoded resistance to 14- and 15-membered, but not 16-membered, macrolides were produced. Studies that determined the levels of incorporation of radiolabelled erythromycin into E. coli were consistent with the presence of a macrolide efflux determinant. This putative efflux determinant was distinct from the recently described Mef pump in Streptococcus pyogenes and Streptococcus pneumoniae and from the multicomponent MsrA pump in Staphylococcus aureus and coagulase-negative staphylococci. Its gene has been designated mreA (for macrolide resistance efflux).
Collapse
Affiliation(s)
- J Clancy
- Central Research Division, Pfizer, Inc., Groton, Connecticut 06340, USA
| | | | | | | |
Collapse
|
95
|
Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y. Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 1997; 179:6986-93. [PMID: 9371444 PMCID: PMC179638 DOI: 10.1128/jb.179.22.6986-6993.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BarA of Streptomyces virginiae is a specific receptor protein for virginiae butanolides (VBs), a member of the butyrolactone autoregulators of Streptomyces species. Sequencing around the barA gene revealed two novel open reading frames: one upstream, barX, encoding a homolog of AfsA of Streptomyces griseus and another downstream, barB. Northern (RNA) blot analysis for S. virginiae demonstrated that the addition of VB during cultivation switched on the expression of barB. An in vivo expression system in Streptomyces lividans with the use of the xylE reporter gene indicated that BarA in conjunction with VB controlled the barB promoter. Furthermore, the DNA binding ability of BarA was demonstrated in vitro for the first time by means of surface plasmon resonance and a gel-shift assay. Complex formation with VB in vitro resulted in the dissociation of BarA from DNA, thus suggesting that the VB receptor, BarA, is a transcriptional regulator and that the VB signal is transduced to the next step in the signal transduction pathway by modification of the DNA binding ability of BarA.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/chemistry
- 4-Butyrolactone/metabolism
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Blotting, Northern
- Catechol 2,3-Dioxygenase
- Chromosome Mapping
- Cloning, Molecular
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Dioxygenases
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Molecular Sequence Data
- Molecular Structure
- Multigene Family
- Open Reading Frames
- Oxygenases/genetics
- Oxygenases/metabolism
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Alignment
- Signal Transduction
- Streptomyces/genetics
- Streptomyces/metabolism
- Transcription, Genetic
- Virginiamycin/metabolism
Collapse
Affiliation(s)
- H Kinoshita
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Protein folding that is coupled to disulphide bond formation has many experimental advantages. In particular, the kinetic roles and importance of all the disulphide intermediates can be determined, usually unambiguously. This contrasts with other types of protein folding, where the roles of any intermediates detected are usually not established. Nevertheless, there is considerable confusion in the literature about even the best-characterized disulphide folding pathways. This article attempts to set the record straight.
Collapse
|
97
|
Hagman KE, Lucas CE, Balthazar JT, Snyder L, Nilles M, Judd RC, Shafer WM. The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2117-2125. [PMID: 9245801 DOI: 10.1099/00221287-143-7-2117] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mtr (multiple transferable resistance) system of Neisseria gonorrhoeae mediates resistance of gonococci to structurally diverse hydrophobic agents (HAs) through an energy-dependent efflux process. Recently, complete or partial ORFs that encode membrane proteins (MtrC, MtrD, MtrE) forming an efflux pump responsible for removal of HAs from gonococci were identified and appeared to constitute a single transcriptional unit. In this study, the complete nucleotide sequence of the mtrD gene was determined, permitting the characterization of the MtrD protein. The full-length MtrD protein has a predicted molecular mass of nearly 114 kDa, putatively containing a 56 amino acid signal peptide. MtrD displays significant amino acid sequence similarity to a family of cytoplasmic membrane proteins, termed resistance/nodulation/division (RND) proteins, which function as energy-dependent transporters of antibacterial agents and secrete bacterial products to the extracellular fluid. The predicted topology of the MtrD transporter protein revealed 12 potential membrane-spanning domains, which were clustered within the central and C-terminal regions of the primary sequence. Loss of MtrD due to insertional inactivation of the mtrD gene rendered gonococci hypersusceptible to several structurally diverse HAs, including two fatty acids (capric acid and palmitic acid) and a bile salt (cholic acid), but not hydrophilic antibiotics such as ciprofloxacin and streptomycin. Since gonococci often infect mucosal sites rich in toxic fatty acids and bile salts, the expression of the mtr efflux system may promote growth of gonococci under hostile conditions encountered in vivo.
Collapse
Affiliation(s)
- Kayla E Hagman
- Dept of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Program in Microbiology and Molecular Genetics of the Graduate Division of Biological and Biomedical Sciences
| | - Claressa E Lucas
- Dept of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Program in Microbiology and Molecular Genetics of the Graduate Division of Biological and Biomedical Sciences
| | - Jacqueline T Balthazar
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, VA Medical Center (Atlanta), Decatur, GA 30033, USA
- Program in Microbiology and Molecular Genetics of the Graduate Division of Biological and Biomedical Sciences
| | - Lori Snyder
- Dept of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Program in Microbiology and Molecular Genetics of the Graduate Division of Biological and Biomedical Sciences
| | - Matthew Nilles
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0084, USA
| | - Ralph C Judd
- Department of Biological Sciences, University of Montana, Missoula, MT 59182-1002, USA
| | - William M Shafer
- Dept of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Program in Microbiology and Molecular Genetics of the Graduate Division of Biological and Biomedical Sciences
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, VA Medical Center (Atlanta), Decatur, GA 30033, USA
| |
Collapse
|
98
|
Lucas CE, Balthazar JT, Hagman KE, Shafer WM. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol 1997; 179:4123-8. [PMID: 9209024 PMCID: PMC179230 DOI: 10.1128/jb.179.13.4123-4128.1997] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gonococcal resistance to antimicrobial hydrophobic agents (HAs) is due to energy-dependent removal of HAs from the bacterial cell by the MtrCDE membrane-associated efflux pump. The mtrR (multiple transferrable resistance Regulator) gene encodes a putative transcriptional repressor protein (MtrR) believed to be responsible for regulation of mtrCDE gene expression. Gel mobility shift and DNase I footprint assays that used a maltose-binding protein (MBP)-MtrR fusion protein demonstrated that the MtrR repressor is capable of specifically binding the DNA sequence between the mtrR and mtrC genes. This binding site was localized to a 26-nucleotide stretch that includes the promoter utilized for mtrCDE transcription and, on the complementary strand, a 22-nucleotide stretch that contains the -35 region of the mtrR promoter. A single transition mutation (A-->G) within the MtrR-binding site decreased the affinity of the target DNA for MtrR and enhanced gonococcal resistance to HAs when introduced into HA-susceptible strain FA19 by transformation. Since this mutation enhanced expression of the mtrCDE gene complex but decreased expression of the mtrR gene, the data are consistent with the notion that MtrR acts as a transcriptional repressor of the mtrCDE efflux pump protein genes.
Collapse
Affiliation(s)
- C E Lucas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
99
|
Delahay RM, Robertson BD, Balthazar JT, Shafer WM, Ison CA. Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2127-2133. [PMID: 9245802 DOI: 10.1099/00221287-143-7-2127] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Low-level resistance of Neisseria gonorrhoeae to toxic hydrophobic agents (HAs), including some antibiotics, is chromosomally mediated via the multiple transferable resistance (mtr) efflux system. The gene encoding the 48:3 kDa outer-membrane protein MtrE, which is associated with the mtr phenotype, was identified and is homologous to export-associated outer-membrane proteins, including the OprM (formerly OprK) lipoprotein of Pseudomonas aeruginosa. Insertional inactivation of the mtrE gene in N. gonorrhoeae strain FA19 resulted in the loss o the outer-membrane protein, with concomitant hypersusceptibility of the mutant strain to a range of HAs. The properties of this mutant confirmed the role of MtrE in multidrug resistance mediated by an active efflux mechanism. Secondary structure predictions for MtrE indicated a largely hydrophilic protein with a single alpha-helical transmembrane region. A transposon-like element, similar to that found downstream of the region containing the promoters for mtrR and mtrC in Neisseria meningitidis, was identified 63 bp downstream of the mtrE gene.
Collapse
Affiliation(s)
- R M Delahay
- Department of Medical Microbiology, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| | - B D Robertson
- Department of Medical Microbiology, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| | - J T Balthazar
- Laboratories of Microbial Pathogenesis, Medical Research Service, VA Medical Center (Atlanta), Decatur, GA 30033, USA
| | - W M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Laboratories of Microbial Pathogenesis, Medical Research Service, VA Medical Center (Atlanta), Decatur, GA 30033, USA
- Department of Medical Microbiology, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| | - C A Ison
- Department of Medical Microbiology, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
100
|
Eaton RW. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 1997; 179:3171-80. [PMID: 9150211 PMCID: PMC179094 DOI: 10.1128/jb.179.10.3171-3180.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas putida F1 utilizes p-cymene (p-isopropyltoluene) by an 11-step pathway through p-cumate (p-isopropylbenzoate) to isobutyrate, pyruvate, and acetyl coenzyme A. The cym operon, encoding the conversion of p-cymene to p-cumate, is located just upstream of the cmt operon, which encodes the further catabolism of p-cumate and is located, in turn, upstream of the tod (toluene catabolism) operon in P. putida F1. The sequences of an 11,236-bp DNA segment carrying the cym operon and a 915-bp DNA segment completing the sequence of the 2,673-bp DNA segment separating the cmt and tod operons have been determined and are discussed here. The cym operon contains six genes in the order cymBCAaAbDE. The gene products have been identified both by functional assays and by comparing deduced amino acid sequences to published sequences. Thus, cymAa and cymAb encode the two components of p-cymene monooxygenase, a hydroxylase and a reductase, respectively; cymB encodes p-cumic alcohol dehydrogenase; cymC encodes p-cumic aldehyde dehydrogenase; cymD encodes a putative outer membrane protein related to gene products of other aromatic hydrocarbon catabolic operons, but having an unknown function in p-cymene catabolism; and cymE encodes an acetyl coenzyme A synthetase whose role in this pathway is also unknown. Upstream of the cym operon is a regulatory gene, cymR. By using recombinant bacteria carrying either the operator-promoter region of the cym operon or the cmt operon upstream of genes encoding readily assayed enzymes, in the presence or absence of cymR, it was demonstrated that cymR encodes a repressor which controls expression of both the cym and cmt operons and is inducible by p-cumate but not p-cymene. Short (less than 350 bp) homologous DNA segments that are located upstream of cymR and between the cmt and tod operons may have been involved in recombination events that led to the current arrangement of cym, cmt, and tod genes in P. putida F1.
Collapse
Affiliation(s)
- R W Eaton
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| |
Collapse
|