51
|
Abate D, Pastore C, Gerin D, De Miccolis Angelini RM, Rotolo C, Pollastro S, Faretra F. Characterization of Monilinia spp. Populations on Stone Fruit in South Italy. PLANT DISEASE 2018; 102:1708-1717. [PMID: 30125154 DOI: 10.1094/pdis-08-17-1314-re] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monilinia spp. are responsible for brown rot decay of stone and pome fruit in the field as well as in postharvest. Monilinia laxa and M. fructigena are considered indigenous to Europe, while M. fructicola is a quarantine pathogen in the European and Mediterranean Plant Protection Organization area included in the A2 List. In Italy, it was first reported in 2009 in Piedmont (northern Italy) and rapidly spread to central Italy. We carried out a monitoring program on the occurrence of Monilinia spp. in southern Italy and a comparative characterization of the three main fungal pathogens. Molecular assays based on direct polymerase chain reaction (PCR) and real-time quantitative PCR for molecular identification of Monilinia spp. from rotted fruit were set up, validated, and applied in a monitoring program. Of the tested 519 isolates from 26 orchards, 388 (74.8%) were identified as M. fructicola, 118 (22.7%) as M. laxa, 10 (1.9%) as M. fructigena, and 3 (0.6%) were M. polystroma. M. fructicola colonies grew faster and had a higher optimal temperature for growth (26°C) than M. laxa (23°C) and M. fructigena (20°C). No relevant difference in virulence could be observed on artificially inoculated apricot, cherry, and peach fruit. The fungal species showed different responses to fungicides, because M. fructicola was more sensitive than M. laxa, especially to cyflufenamid, and M. fructigena revealed a lower sensitivity to succinate dehydrogenase inhibitors (boscalid, fluopyram, and fluxapyroxad) and quinone outside inhibitors (mandestrobin). In summary, the two species M. fructicola and M. polystroma were first detected in southern Italy where M. fructicola has largely displaced the two indigenous pathogens M. laxa and M. fructigena; the relative proportions of the three pathogens in orchards should be considered when defining the management of brown rot of stone fruit due to differences in their responses to fungicides.
Collapse
Affiliation(s)
- D Abate
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - C Pastore
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - D Gerin
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - R M De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - C Rotolo
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - S Pollastro
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - F Faretra
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
52
|
Bousset L, Sprague SJ, Thrall PH, Barrett LG. Spatio-temporal connectivity and host resistance influence evolutionary and epidemiological dynamics of the canola pathogen Leptosphaeria maculans. Evol Appl 2018; 11:1354-1370. [PMID: 30151045 PMCID: PMC6099830 DOI: 10.1111/eva.12630] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/07/2018] [Indexed: 11/27/2022] Open
Abstract
Genetic, physiological and physical homogenization of agricultural landscapes creates ideal environments for plant pathogens to proliferate and rapidly evolve. Thus, a critical challenge in plant pathology and epidemiology is to design durable and effective strategies to protect cropping systems from damage caused by pathogens. Theoretical studies suggest that spatio-temporal variation in the diversity and distribution of resistant hosts across agricultural landscapes may have strong effects on the epidemiology and evolutionary potential of crop pathogens. However, we lack empirical tests of spatio-temporal deployment of host resistance to pathogens can be best used to manage disease epidemics and disrupt pathogen evolutionary dynamics in real-world systems. In a field experiment, we simulated how differences in Brassica napus resistance deployment strategies and landscape connectivity influence epidemic severity and Leptosphaeria maculans pathogen population composition. Host plant resistance, spatio-temporal connectivity [stubble loads], and genetic connectivity of the inoculum source [composition of canola stubble mixtures] jointly impacted epidemiology (disease severity) and pathogen evolution (population composition). Changes in population composition were consistent with directional selection for the ability to infect the host (infectivity), leading to changes in pathotype (multilocus phenotypes) and infectivity frequencies. We repeatedly observed decreases in the frequency of unnecessary infectivity, suggesting that carrying multiple infectivity genes is costly for the pathogen. From an applied perspective, our results indicate that varying resistance genes in space and time can be used to help control disease, even when resistance has already been overcome. Furthermore, our approach extends our ability to test not only for the efficacy of host varieties in a given year, but also for durability over multiple cropping seasons, given variation in the combination of resistance genes deployed.
Collapse
Affiliation(s)
- Lydia Bousset
- CSIRO Agriculture & FoodCanberraACTAustralia
- UMR1349 IGEPPINRALe RheuFrance
| | | | | | | |
Collapse
|
53
|
Anand G, Kapoor R. Population structure and virulence analysis of Alternaria carthami isolates of India using ISSR and SSR markers. World J Microbiol Biotechnol 2018; 34:140. [PMID: 30171375 DOI: 10.1007/s11274-018-2524-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
Alternaria leaf spot caused by Alternaria carthami is one of the most devastating diseases of safflower. Diversity among 95 isolates of A. carthami was determined using virulence assays, enzyme assays, dominant (ISSR) and co-dominant (SSR) markers. Collections and isolations were made from three major safflower producing states of India. The virulence assays categorised the population into four groups based on level of virulence. Estimation of activities of cell wall degrading enzymes (CWDE) yielded concurrent results to virulence assays with maximum CWDE activities in most virulent group. Eighteen ISSR primers were used and 23 polymorphic microsatellite markers were developed to assess the genetic diversity and determine the population structure of A. carthami. Analysis of ISSR profiles revealed high genetic diversity (Nei's Genetic diversity index; h = 0.36). Microsatellite markers produced a total of 56 alleles with an average of 2.43 alleles per microsatellite marker and Nei's genetic diversity index as h = 0.43. Unweighted Neighbor-joining and population structure analysis using both the marker systems differently arranged the isolates into three clusters. Distance analysis of the marker profiles provided no evidence for geographical clustering of isolates, indicating that isolates are randomly spread across India, signifying high potential of the fungus to adapt to diverse regions. Microsatellite markers clustered the isolates in consonance to the virulence groups in the dendrogram. This implies that the fungus has a high potential to adapt to resistant cultivars or fungicides. The information can aid in the breeding and deployment of A. carthami resistant varieties, and in early blight disease management in all safflower growing regions of the world.
Collapse
Affiliation(s)
- Garima Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
54
|
Abstract
Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impart durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.
Collapse
Affiliation(s)
- Christopher C Mundt
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis 97331-2902
| |
Collapse
|
55
|
Suffert F, Goyeau H, Sache I, Carpentier F, Gélisse S, Morais D, Delestre G. Epidemiological trade-off between intra- and interannual scales in the evolution of aggressiveness in a local plant pathogen population. Evol Appl 2018; 11:768-780. [PMID: 29875818 PMCID: PMC5979725 DOI: 10.1111/eva.12588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023] Open
Abstract
The efficiency of plant resistance to fungal pathogen populations is expected to decrease over time, due to their evolution with an increase in the frequency of virulent or highly aggressive strains. This dynamics may differ depending on the scale investigated (annual or pluriannual), particularly for annual crop pathogens with both sexual and asexual reproduction cycles. We assessed this time-scale effect, by comparing aggressiveness changes in a local Zymoseptoria tritici population over an 8-month cropping season and a 6-year period of wheat monoculture. We collected two pairs of subpopulations to represent the annual and pluriannual scales: from leaf lesions at the beginning and end of a single annual epidemic and from crop debris at the beginning and end of a 6-year period. We assessed two aggressiveness traits-latent period and lesion size-on sympatric and allopatric host varieties. A trend toward decreased latent period concomitant with a significant loss of variability was established during the course of the annual epidemic, but not over the 6-year period. Furthermore, a significant cultivar effect (sympatric vs. allopatric) on the average aggressiveness of the isolates revealed host adaptation, arguing that the observed patterns could result from selection. We thus provide an experimental body of evidence of an epidemiological trade-off between the intra- and interannual scales in the evolution of aggressiveness in a local plant pathogen population. More aggressive isolates were collected from upper leaves, on which disease severity is usually lower than on the lower part of the plants left in the field as crop debris after harvest. We suggest that these isolates play little role in sexual reproduction, due to an Allee effect (difficulty finding mates at low pathogen densities), particularly as the upper parts of the plant are removed from the field, explaining the lack of transmission of increases in aggressiveness between epidemics.
Collapse
Affiliation(s)
- Frédéric Suffert
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Henriette Goyeau
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Ivan Sache
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Florence Carpentier
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Sandrine Gélisse
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - David Morais
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Ghislain Delestre
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| |
Collapse
|
56
|
Papaïx J, Rimbaud L, Burdon JJ, Zhan J, Thrall PH. Differential impact of landscape-scale strategies for crop cultivar deployment on disease dynamics, resistance durability and long-term evolutionary control. Evol Appl 2018; 11:705-717. [PMID: 29875812 PMCID: PMC5979631 DOI: 10.1111/eva.12570] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
A multitude of resistance deployment strategies have been proposed to tackle the evolutionary potential of pathogens to overcome plant resistance. In particular, many landscape-based strategies rely on the deployment of resistant and susceptible cultivars in an agricultural landscape as a mosaic. However, the design of such strategies is not easy as strategies targeting epidemiological or evolutionary outcomes may not be the same. Using a stochastic spatially explicit model, we studied the impact of landscape organization (as defined by the proportion of fields cultivated with a resistant cultivar and their spatial aggregation) and key pathogen life-history traits on three measures of disease control. Our results show that short-term epidemiological dynamics are optimized when landscapes are planted with a high proportion of the resistant cultivar in low aggregation. Importantly, the exact opposite situation is optimal for resistance durability. Finally, well-mixed landscapes (balanced proportions with low aggregation) are optimal for long-term evolutionary equilibrium (defined here as the level of long-term pathogen adaptation). This work offers a perspective on the potential for contrasting effects of landscape organization on different goals of disease management and highlights the role of pathogen life history.
Collapse
Affiliation(s)
| | | | | | - Jiasui Zhan
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | | |
Collapse
|
57
|
Rimbaud L, Papaïx J, Rey JF, Barrett LG, Thrall PH. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Comput Biol 2018; 14:e1006067. [PMID: 29649208 PMCID: PMC5918245 DOI: 10.1371/journal.pcbi.1006067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/24/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. There are many recent examples which demonstrate the evolutionary potential of plant pathogens to overcome the resistances deployed in agricultural landscapes to protect our crops. Increasingly, it is recognised that how resistance is deployed spatially and temporally can impact on rates of pathogen evolution and resistance breakdown. Such deployment strategies are mainly based on the combination of several sources of resistance at different spatiotemporal scales. However, comparison of these strategies in a predictive sense is not an easy task, owing to the logistical difficulties associated with experiments involving the spread of a pathogen at large spatio-temporal scales. Moreover, both the durability of a strategy and the epidemiological protection it provides to crops must be assessed since these evaluation criteria are not necessarily correlated. Surprisingly, no current simulation model allows a thorough comparison of the different options. Here we describe a spatio-temporal model able to simulate a wide range of deployment strategies and resistance sources. This model, implemented in the R package landsepi, facilitates assessment of both epidemiological and evolutionary outcomes across simulated scenarios. In this work, the model is used to investigate the combination of different sources of resistance against fungal diseases such as rusts of cereal crops.
Collapse
Affiliation(s)
- Loup Rimbaud
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
58
|
Sultana S, Adhikary SK, Islam MM, Rahman SMM. Evaluation of Pathogenic Variability Based on Leaf Blotch Disease Development Components of Bipolaris sorokiniana in Triticum aestivum and Agroclimatic Origin. THE PLANT PATHOLOGY JOURNAL 2018; 34:93-103. [PMID: 29628815 PMCID: PMC5880353 DOI: 10.5423/ppj.oa.08.2017.0175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
Leaf blotch of wheat caused by Bipolaris sorokiniana is a major constraint to wheat production, causing significant yield reduction resulting in severe economic impact. The present study characterizes to determine and compare pathogenic variability exist/not based on components of leaf blotch disease development and level of aggressiveness due to agroclimatic condition of B. sorokiniana in wheat. A total of 169 virulent isolates of B. sorokiniana isolated from spot blotch infected leaf from different wheat growing agroclimate of Bangladesh. Pathogenic variability was investigated on a susceptible wheat variety 'kanchan' now in Bangladesh. A clear evidence of positive relationship among the components was recorded. From hierarchical cluster analysis five groups were originating among the isolates. It resolved that a large amount of pathogenic diversity exists in Bipolaris sorokiniana. Variation in aggressiveness was found among the isolates from different wheat growing areas. Most virulent isolates BS 24 and BS 33 belonging to High Ganges River Flood Plain agro-climatic zones considered by rice-wheat cropping pattern, hot and humid weather, high land and low organic matter content in soil. Positive relationship was found between pathogenic variability and aggressiveness with agro-climatic condition.
Collapse
Affiliation(s)
- Sabiha Sultana
- Agrotechnology Discipline, Khulna University, Khulna 9008,
Bangladesh
| | | | - Md. Monirul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9008,
Bangladesh
| | | |
Collapse
|
59
|
Moragrega C, Puig M, Ruz L, Montesinos E, Llorente I. Epidemiological Features and Trends of Brown Spot of Pear Disease Based on the Diversity of Pathogen Populations and Climate Change Effects. PHYTOPATHOLOGY 2018; 108:223-233. [PMID: 28945144 DOI: 10.1094/phyto-03-17-0079-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brown spot of pear, caused by the fungus Stemphylium vesicarium, is an emerging disease of economic importance in several pear-growing areas in Europe. In recent years, new control strategies combining sanitation practices and fungicide applications according to developed forecasting models have been introduced to manage the disease. However, the pathogenic and saprophytic behavior of this pathogen makes it difficult to manage the disease. In addition, climate change can also result in variations in the severity and geographical distribution of the disease. In this study, ecological and epidemiological aspects of brown spot of pear disease related to inoculum characterization and climate change impact were elucidated. The pathogenic variation in S. vesicarium populations from pear orchards and its relationship to inoculum sources (air samples, leaf debris, and infected host and nonhost tissues) was determined using multivariate analysis. In total, six variables related to infection and disease development on cultivar Conference pear detached leaves of 110 S. vesicarium isolates were analyzed. A high proportion of isolates (42%) were nonpathogenic to pear; 85% of these nonpathogenic isolates were recovered from air samples. Most isolates recovered from lesions (93%) and pseudothecia (83%) were pathogenic to pear. A group of pathogenic isolates rapidly infected cultivar Conference pear leaves resulted in disease increase that followed a monomolecular model, whereas some S. vesicarium isolates required a period of time after inoculation to initiate infection and resulted in disease increase that followed a logistic model. The latter group was mainly composed of isolates recovered from pseudothecia on leaf debris, whereas the former group was mainly composed of isolates recovered from lesions on pear fruit and leaves. The relationship between the source of inoculum and pathogenic/aggressiveness profile was confirmed by principal component analysis. The effect of climate change on disease risk was analyzed in two pear-growing areas of Spain under two scenarios (A2 and B1) and for three periods (2005 to 2009, 2041 to 2060, and 2081 to 2100). Simulations showed that the level of risk predicted by BSPcast model increased to high or very high under the two scenarios and was differentially distributed in the two regions. This study is an example of how epidemiological models can be used to predict not only the onset of infections but also how climate change could affect brown spot of pear. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Concepció Moragrega
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Mireia Puig
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Lídia Ruz
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Emilio Montesinos
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Isidre Llorente
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| |
Collapse
|
60
|
Laurent B, Palaiokostas C, Spataro C, Moinard M, Zehraoui E, Houston RD, Foulongne‐Oriol M. High-resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two-speed genome evolution. MOLECULAR PLANT PATHOLOGY 2018; 19:341-354. [PMID: 27998012 PMCID: PMC6638080 DOI: 10.1111/mpp.12524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 05/25/2023]
Abstract
Recombination is a major evolutionary force, increasing genetic diversity and permitting efficient coevolution of fungal pathogen(s) with their host(s). The ascomycete Fusarium graminearum is a devastating pathogen of cereal crops, and can contaminate food and feed with harmful mycotoxins. Previous studies have suggested a high adaptive potential of this pathogen, illustrated by an increase in pathogenicity and resistance to fungicides. In this study, we provide the first detailed picture of the crossover events occurring during meiosis and discuss the role of recombination in pathogen evolution. An experimental recombinant population (n = 88) was created and genotyped using 1306 polymorphic markers obtained from restriction site-associated DNA sequencing (RAD-seq) and aligned to the reference genome. The construction of a high-density linkage map, anchoring 99% of the total length of the reference genome, allowed the identification of 1451 putative crossovers, positioned at a median resolution of 24 kb. The majority of crossovers (87.2%) occurred in a relatively small portion of the genome (30%). All chromosomes demonstrated recombination-active sections, which had a near 15-fold higher crossover rate than non-active recombinant sections. The recombination rate showed a strong positive correlation with nucleotide diversity, and recombination-active regions were enriched for genes with a putative role in host-pathogen interaction, as well as putative diversifying genes. Our results confirm the preliminary analysis observed in other F. graminearum strains and suggest a conserved 'two-speed' recombination landscape. The consequences with regard to the evolutionary potential of this major fungal pathogen are also discussed.
Collapse
Affiliation(s)
- Benoit Laurent
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | | | - Cathy Spataro
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | - Magalie Moinard
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | - Enric Zehraoui
- MycSA, INRA, Université de Bordeaux33882Villenave d'OrnonFrance
| | - Ross D. Houston
- The Roslin Institute, University of EdinburghMidlothianEH25 9RGUK
| | | |
Collapse
|
61
|
Maupetit A, Larbat R, Pernaci M, Andrieux A, Guinet C, Boutigny AL, Fabre B, Frey P, Halkett F. Defense Compounds Rather Than Nutrient Availability Shape Aggressiveness Trait Variation Along a Leaf Maturity Gradient in a Biotrophic Plant Pathogen. FRONTIERS IN PLANT SCIENCE 2018; 9:1396. [PMID: 30323821 PMCID: PMC6172983 DOI: 10.3389/fpls.2018.01396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/03/2018] [Indexed: 05/02/2023]
Abstract
Foliar pathogens face heterogeneous environments depending on the maturity of leaves they interact with. In particular, nutrient availability as well as defense levels may vary significantly, with opposing effects on the success of infection. The present study tested which of these factors have a dominant effect on the pathogen's development. Poplar leaf disks of eight maturity levels were inoculated with the poplar rust fungus Melampsora larici-populina using an innovative single-spore inoculation procedure. A set of quantitative fungal traits (infection efficiency, latent period, uredinia size, mycelium quantity, sporulation rate, sporulation capacity, and spore volume) was measured on each infected leaf disk. Uninfected parts of the leaves were analyzed for their nutrient (sugars, total C and N) and defense compounds (phenolics) content. We found that M. larici-populina is more aggressive on more mature leaves as indicated by wider uredinia and a higher sporulation rate. Other traits varied independently from each other without a consistent pattern. None of the pathogen traits correlated with leaf sugar, total C, or total N content. In contrast, phenolic contents (flavonols, hydroxycinnamic acid esters, and salicinoids) were negatively correlated with uredinia size and sporulation rate. The pathogen's fitness appeared to be more constrained by the constitutive plant defense level than limited by nutrient availability, as evident in the decrease in sporulation.
Collapse
Affiliation(s)
| | | | - Michaël Pernaci
- Université de Lorraine, INRA, IAM, Nancy, France
- *Correspondence: Fabien Halkett,
| | | | - Cécile Guinet
- ANSES, Laboratoire de la Santé des Végétaux, Unité de Mycologie, Malzéville, France
| | - Anne-Laure Boutigny
- ANSES, Laboratoire de la Santé des Végétaux, Unité de Mycologie, Malzéville, France
- *Correspondence: Fabien Halkett,
| | | | - Pascal Frey
- Université de Lorraine, INRA, IAM, Nancy, France
| | - Fabien Halkett
- Université de Lorraine, INRA, IAM, Nancy, France
- *Correspondence: Fabien Halkett,
| |
Collapse
|
62
|
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet 2017; 19:21-33. [PMID: 29109524 DOI: 10.1038/nrg.2017.82] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host-pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.
Collapse
Affiliation(s)
- Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Randall Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Peter Balint-Kurti
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA
| |
Collapse
|
63
|
Abstract
A simple point-inoculation method using Novec™ 7100, a volatile engineered fluid, is presented for the assessment of aggressiveness of Puccinia striiformis isolates on seedlings of wheat. The method allows for quantification of the applied inoculum with a minimal risk of cross-contamination of rust from leaves grown side by side. The method is also applicable for the assessment of qualitative differences inferred by compatible and incompatible host-pathogen interactions, and it can be adjusted to other cereal rust and powdery mildew fungi on other host species, and other plant growth stages as appropriate.
Collapse
|
64
|
Donatelli M, Magarey R, Bregaglio S, Willocquet L, Whish J, Savary S. Modelling the impacts of pests and diseases on agricultural systems. AGRICULTURAL SYSTEMS 2017; 155:213-224. [PMID: 28701814 PMCID: PMC5485649 DOI: 10.1016/j.agsy.2017.01.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/06/2023]
Abstract
The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.
Collapse
Affiliation(s)
- M. Donatelli
- CREA - Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, via di Corticella 133, I-40128, Bologna, Italy
| | - R.D. Magarey
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - S. Bregaglio
- CREA - Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, via di Corticella 133, I-40128, Bologna, Italy
| | - L. Willocquet
- AGIR, Université de Toulouse, INRA, INPT, INP- EI PURPAN, Castanet-Tolosan, France
| | - J.P.M. Whish
- CSIRO Agriculture and Food, 203 Tor St Toowoomba, Qld 4350, Australia
| | - S. Savary
- AGIR, Université de Toulouse, INRA, INPT, INP- EI PURPAN, Castanet-Tolosan, France
| |
Collapse
|
65
|
Chen F, Duan GH, Li DL, Zhan J. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici. Front Microbiol 2017; 8:1217. [PMID: 28702023 PMCID: PMC5487519 DOI: 10.3389/fmicb.2017.01217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/15/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen's abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.
Collapse
Affiliation(s)
- Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Guo-Hua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Dong-Liang Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
66
|
Castiblanco V, Marulanda JJ, Würschum T, Miedaner T. Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet 2017; 18:49. [PMID: 28525967 PMCID: PMC5438566 DOI: 10.1186/s12863-017-0511-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative traits are common in nature, but quantitative pathogenicity has received only little attention in phytopathology. In this study, we used 100 Fusarium culmorum isolates collected from natural field environments to assess their variation for two quantitative traits, aggressiveness and deoxynivalenol (DON) production on wheat plants grown in four different field environments (location-year combinations). Seventeen Fusarium graminearum pathogenicity candidate genes were assessed for their effect on the aggressiveness and DON production of F. culmorum under field conditions. Results For both traits, genotypic variance among isolates was high and significant while the isolate-by-environment interaction was also significant, amounting to approximately half of the genotypic variance. Among the studied candidate genes, the mitogen-activated protein kinase (MAPK) HOG1 was found to be significantly associated with aggressiveness and deoxynivalenol (DON) production, explaining 10.29 and 6.05% of the genotypic variance, respectively. Conclusions To the best of our knowledge, this is the first report of a protein kinase regulator explaining differences in field aggressiveness and mycotoxin production among individuals from natural populations of a plant pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Jose J Marulanda
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 79593, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
67
|
David O, Lannou C, Monod H, Papaïx J, Traore D. Adaptive diversification in heterogeneous environments. Theor Popul Biol 2016; 114:1-9. [PMID: 27940023 DOI: 10.1016/j.tpb.2016.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
The role of environmental heterogeneity in the evolution of biological diversity has been studied only for simple types of heterogeneities and dispersals. This article broadens previous results by considering heterogeneities and dispersals that are structured by several environmental factors. It studies the evolution of a metapopulation, living in a network of patches connected by dispersal, under the effects of mutation, selection and migration. First, it is assumed that patches are equally connected and that they carry habitats characterized by several factors exerting selection pressures on several individual traits. Habitat factors may vary in the environment independently or they may be correlated. It is shown that correlations between habitat factors promote adaptive diversification and that this effect may be modified by trait interactions on survival. Then, it is assumed that patches are structured by two crossed factors, called the row and column factors, such that patches are more connected when they occur in the same row or in the same column. Environmental patterns in which each habitat appears in each row the same number of times and appears in each column the same number of times are found to hinder adaptive diversification.
Collapse
Affiliation(s)
- Olivier David
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Hervé Monod
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Djidi Traore
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
68
|
Nanda S, Chand SK, Mandal P, Tripathy P, Joshi RK. Identification of Novel Source of Resistance and Differential Response of Allium Genotypes to Purple Blotch Pathogen, Alternaria porri (Ellis) Ciferri. THE PLANT PATHOLOGY JOURNAL 2016; 32:519-527. [PMID: 27904458 PMCID: PMC5117860 DOI: 10.5423/ppj.oa.02.2016.0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 05/17/2023]
Abstract
Purple blotch, caused by Alternaria porri (Ellis) Cifferi, is a serious disease incurring heavy yield losses in the bulb and seed crop of onion and garlic worldwide. There is an immediate need for identification of effective resistance sources for use in host resistance breeding. A total of 43 Allium genotypes were screened for purple blotch resistance under field conditions. Allium cepa accession 'CBT-Ac77' and cultivar 'Arka Kalyan' were observed to be highly resistant. In vitro inoculation of a selected set of genotypes with A. porri, revealed that 7 days after inoculation was suitable to observe the disease severity. In vitro screening of 43 genotypes for resistance to A. porri revealed two resistant lines. An additional 14 genotypes showed consistent moderate resistance in the field as well as in vitro evaluations. Among the related Allium species, A. schoenoprasum and A. roylei showed the least disease index and can be used for interspecific hybridization with cultivated onion. Differential reaction analysis of three A. porri isolates (Apo-Chiplima, Apn-Nasik, Apg-Guntur) in 43 genotypes revealed significant variation among the evaluated Allium species (P = 0.001). All together, the present study suggest that, the newly identified resistance sources can be used as potential donors for ongoing purple blotch resistance breeding program in India.
Collapse
Affiliation(s)
- Satyabrata Nanda
- Functional Genomics Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar 751003,
India
| | - Subodh Kumar Chand
- Functional Genomics Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar 751003,
India
| | - Purander Mandal
- College of Horticulture, Orissa University of Agriculture & Technology, Bhubaneswar 751003,
India
| | - Pradyumna Tripathy
- Department of Vegetable Science, Orissa University of Agriculture & Technology, Bhubaneswar 751003,
India
| | - Raj Kumar Joshi
- Functional Genomics Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar 751003,
India
- Corresponding author. Phone) +91-9437684176, FAX) +91-674-2350652, E-mail)
| |
Collapse
|
69
|
Genetic Diversity and Origins of the Homoploid-Type Hybrid Phytophthora ×alni. Appl Environ Microbiol 2016; 82:7142-7153. [PMID: 27736786 DOI: 10.1128/aem.02221-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
Assessing the process that gives rise to hybrid pathogens is central to understanding the evolution of emerging plant diseases. Phytophthora ×alni, a pathogen of alder, results from the homoploid hybridization of two related species, Phytophthora uniformis and Phytophthora ×multiformis Describing the genetic characteristics of P ×alni should help us understand how reproductive mechanisms and historical processes shaped the population structure of this emerging hybrid pathogen. The population genetic structure of P ×alni and the relationship with its parental species were investigated using 12 microsatellites and one mitochondrial DNA (mtDNA) marker on a European collection of 379 isolates. Populations of P ×alni were dominated by one multilocus genotype (MLG). The frequency of this dominant MLG increased after the disease emergence together with a decline in diversity, suggesting that it was favored by a genetic mechanism such as drift or selection. Combined microsatellite and mtDNA results confirmed that P ×alni originated from multiple hybridization events that involved different genotypes of the progenitors. Our detailed analyses point to a geographic structure that mirrors that observed for P. uniformis in Europe. The study provides more insights on the contribution of P. uniformis, an invasive species in Europe, to the emergence of Phytophthora-induced alder decline. IMPORTANCE Our study describes an original approach to assess the population genetics of polyploid organisms using microsatellite markers. By studying the parental subgenomes present in the interspecific hybrid P. ×alni, we were able to assess the geographical and temporal structure of European populations of the hybrid, shedding new light on the evolution of an emerging plant pathogen. In turn, the study of the parental subgenomes permitted us to assess some genetic characteristics of the parental species of P. ×alni, P. uniformis, and P ×multiformis, which are seldom sampled in nature. The subgenomes found in P. ×alni represent a picture of the "fossilized" diversity of the parental species.
Collapse
|
70
|
Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus. INFECTION GENETICS AND EVOLUTION 2016; 44:541-548. [DOI: 10.1016/j.meegid.2016.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022]
|
71
|
Lavaud C, Baviere M, Le Roy G, Hervé MR, Moussart A, Delourme R, Pilet-Nayel ML. Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines. BMC PLANT BIOLOGY 2016; 16:166. [PMID: 27465043 PMCID: PMC4964060 DOI: 10.1186/s12870-016-0822-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/26/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the effects of resistance QTL on pathogen development cycle is an important issue for the creation of QTL combination strategies to durably increase disease resistance in plants. The oomycete pathogen Aphanomyces euteiches, causing root rot disease, is one of the major factors limiting the pea crop in the main producing countries. No commercial resistant varieties are currently available in Europe. Resistance alleles at seven main QTL were recently identified and introgressed into pea agronomic lines, resulting in the creation of Near Isogenic Lines (NILs) at the QTL. This study aimed to determine the effect of main A. euteiches resistance QTL in NILs on different steps of the pathogen life cycle. RESULTS NILs carrying resistance alleles at main QTL in susceptible genetic backgrounds were evaluated in a destructive test under controlled conditions. The development of root rot disease severity and pathogen DNA levels in the roots was measured during ten days after inoculation. Significant effects of several resistance alleles at the two major QTL Ae-Ps7.6 and Ae-Ps4.5 were observed on symptom appearance and root colonization by A. euteiches. Some resistance alleles at three other minor-effect QTL (Ae-Ps2.2, Ae-Ps3.1 and Ae-Ps5.1) significantly decreased root colonization. The combination of resistance alleles at two or three QTL including the major QTL Ae-Ps7.6 (Ae-Ps5.1/Ae-Ps7.6 or Ae-Ps2.2/Ae-Ps3.1/Ae-Ps7.6) had an increased effect on delaying symptom appearance and/or slowing down root colonization by A. euteiches and on plant resistance levels, compared to the effects of individual or no resistance alleles. CONCLUSIONS This study demonstrated the effects of single or multiple resistance QTL on delaying symptom appearance and/or slowing down colonization by A. euteiches in pea roots, using original plant material and a precise pathogen quantification method. Our findings suggest that single resistance QTL can act on multiple or specific steps of the disease development cycle and that their actions could be pyramided to increase partial resistance in future pea varieties. Further studies are needed to investigate QTL effects on different steps of the pathogen life cycle, as well as the efficiency and durability of pyramiding strategies using QTL which appear to act on the same stage of the pathogen cycle.
Collapse
Affiliation(s)
- C Lavaud
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M Baviere
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - G Le Roy
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M R Hervé
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - A Moussart
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- Terres Inovia, 11 rue de Monceau, CS 60003, 75378, Paris cedex 08, France
| | - R Delourme
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M-L Pilet-Nayel
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France.
| |
Collapse
|
72
|
Sørensen CK, Thach T, Hovmøller MS. Evaluation of Spray and Point Inoculation Methods for the Phenotyping of Puccinia striiformis on Wheat. PLANT DISEASE 2016; 100:1064-1070. [PMID: 30682276 DOI: 10.1094/pdis-12-15-1477-re] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fungus Puccinia striiformis causes yellow (stripe) rust on wheat worldwide. In the present article, new methods utilizing an engineered fluid (Novec 7100) as a carrier of urediniospores were compared with commonly used inoculation methods. In general, Novec 7100 facilitated a faster and more flexible application procedure for spray inoculation and it gave highly reproducible results for virulence phenotyping. Six point inoculation methods were compared to find the most suitable for assessment of pathogen aggressiveness. The use of Novec 7100 and dry dilution with Lycopodium spores gave an inoculation success rate of 100% in two independent trials, which was significantly higher and more consistent than for spore suspension in Soltrol 170, water, water + Tween 20, and Noble agar + Tween 20. Both Soltrol 170 and Novec 7100 allowed precise quantification of inoculum, which is important for the assessment of quantitative epidemiological parameters. New protocols for spray and point inoculation of P. striiformis on wheat are presented, along with the prospect for applying these in rust research and resistance breeding activities.
Collapse
Affiliation(s)
- Chris K Sørensen
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Tine Thach
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Mogens S Hovmøller
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|
73
|
Villarino M, Melgarejo P, De Cal A. Growth and aggressiveness factors affecting Monilinia spp. survival peaches. Int J Food Microbiol 2016; 224:22-7. [PMID: 26918325 DOI: 10.1016/j.ijfoodmicro.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest.
Collapse
Affiliation(s)
- M Villarino
- Department of Plant Protection, INIA, Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - P Melgarejo
- Department of Plant Protection, INIA, Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - A De Cal
- Department of Plant Protection, INIA, Carretera de La Coruña km 7, 28040, Madrid, Spain.
| |
Collapse
|
74
|
Davidson J, Smetham G, Russ MH, McMurray L, Rodda M, Krysinska-Kaczmarek M, Ford R. Changes in Aggressiveness of the Ascochyta lentis Population in Southern Australia. FRONTIERS IN PLANT SCIENCE 2016; 7:393. [PMID: 27065073 PMCID: PMC4814486 DOI: 10.3389/fpls.2016.00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/14/2016] [Indexed: 05/15/2023]
Abstract
Anecdotal evidence identified a change in the reaction of the resistant lentil cv Nipper to ascochyta blight in South Australia in 2010 and subsequent seasons, leading to infection. This study investigated field reactions of lentil cultivars against Ascochyta lentis and the pathogenic variability of the A. lentis population in southern Australia on commonly grown cultivars and on parental germplasm used in the Australian lentil breeding program. Disease data recorded in agronomic and plant breeder field trials from 2005 to 2014 in southern Australia confirmed the change in reaction on the foliage of the previously resistant cvs Nipper and Northfield. Cultivar responses to seed staining from A. lentis did not change. The change in foliar response was confirmed in a series of controlled environment experiments using single, conidium-derived, isolates of A. lentis collected over different years and inoculated onto differential host sets. Specific isolate/cultivar interactions produced a significant range of disease reactions from high to low aggressiveness with a greater percentage of isolates more aggressive on cvs Nipper, Northfield and PBA Flash than previously detected. Specific isolates were tested against Australian lentil cultivars and breeding lines in controlled conditions, again verifying the aggressiveness on cv Nipper. A small percentage of isolates collected prior to the commercial release of cv Nipper were also able to infect this cultivar indicating a natural variability of the A. lentis population which subsequently may have been selected in response to high cropping intensity of cv Nipper. Spore release studies from naturally infested lentil stubbles collected from commercial crops also resulted in a high percentage of infection on the previously resistant cvs Nipper and Northfield. Less than 10% of the lesions developed on the resistant differentials ILL7537 and cv Indianhead. Pathogenic variation within the seasonal populations was not affected by the cultivar from which the stubble was sourced, further indicating a natural variability in aggressiveness. The impact of dominant cultivars in cropping systems and loss of effective disease resistance is discussed. Future studies are needed to determine if levels of aggressiveness among A. lentis isolates are increasing against a range of elite cultivars.
Collapse
Affiliation(s)
- Jennifer Davidson
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development InstituteAdelaide, SA, Australia
| | - Gabriel Smetham
- Faculty of Veterinary and Agricultural Sciences, University of MelbourneParkville, VIC, Australia
| | - Michelle H. Russ
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development InstituteAdelaide, SA, Australia
| | - Larn McMurray
- New Variety Agronomy, Sustainable Systems, South Australian Research and Development InstituteClare, SA, Australia
| | - Matthew Rodda
- Biosciences Research, Department of Economic Development, Jobs, Transport and ResourcesHorsham, VIC, Australia
| | - Marzena Krysinska-Kaczmarek
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development InstituteAdelaide, SA, Australia
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith UniversityNathan, QLD, Australia
| |
Collapse
|
75
|
Villarino M, Melgarejo P, De Cal A. Growth and aggressiveness factors affecting Monilinia spp. survival peaches. Int J Food Microbiol 2016; 227:6-12. [PMID: 27043383 DOI: 10.1016/j.ijfoodmicro.2016.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/10/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Abstract
Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analyzed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest.
Collapse
Affiliation(s)
- M Villarino
- Department of Plant Protection, INIA, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - P Melgarejo
- Department of Plant Protection, INIA, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - A De Cal
- Department of Plant Protection, INIA, Carretera de La Coruña km 7, 28040 Madrid, Spain.
| |
Collapse
|
76
|
The genetic landscape of Ceratocystis albifundus populations in South Africa reveals a recent fungal introduction event. Fungal Biol 2016; 120:690-700. [PMID: 27109366 DOI: 10.1016/j.funbio.2016.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/27/2022]
Abstract
Geographical range expansion or host shifts is amongst the various evolutionary forces that underlie numerous emerging diseases caused by fungal pathogens. In this regard, Ceratocystis albifundus, the causal agent of a serious wilt disease of Acacia mearnsii trees in Africa, was recently identified killing cultivated Protea cynaroides in the Western Cape (WC) Province of South Africa. Protea cynaroides is an important native plant in the area and a key component of the Cape Floristic Region. The appearance of this new disease outbreak, together with isolates of C. albifundus from natural ecosystems as well as plantations of nonnative trees, provided an opportunity to consider questions relating to the possible origin and movement of the pathogen in South Africa. Ten microsatellite markers were used to determine the genetic diversity, population structure, and possible gene flow in a collection of 193 C. albifundus isolates. All populations, other than those from the WC, showed high levels of genetic diversity. An intermediate level of gene flow was found amongst populations of the pathogen. The results suggest that a limited number of individuals have recently been introduced into the WC, resulting in a novel disease problem in the area.
Collapse
|
77
|
Delmas CEL, Fabre F, Jolivet J, Mazet ID, Richart Cervera S, Delière L, Delmotte F. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evol Appl 2016; 9:709-25. [PMID: 27247621 PMCID: PMC4869412 DOI: 10.1111/eva.12368] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 01/29/2023] Open
Abstract
An understanding of the evolution of pathogen quantitative traits in response to host selective pressures is essential for the development of durable management strategies for resistant crops. However, we still lack experimental data on the effects of partial host resistance on multiple phenotypic traits (aggressiveness) and evolutionary strategies in pathogens. We performed a cross‐inoculation experiment with four grapevine hosts and 103 isolates of grapevine downy mildew (Plasmopara viticola) sampled from susceptible and partially resistant grapevine varieties. We analysed the neutral and adaptive genetic differentiation of five quantitative traits relating to pathogen transmission. Isolates from resistant hosts were more aggressive than isolates from susceptible hosts, as they had a shorter latency period and higher levels of spore production. This pattern of adaptation contrasted with the lack of neutral genetic differentiation, providing evidence for directional selection. No specificity for a particular host variety was detected. Adapted isolates had traits that were advantageous on all resistant varieties. There was no fitness cost associated with this genetic adaptation, but several trade‐offs between pathogen traits were observed. These results should improve the accuracy of prediction of fitness trajectories for this biotrophic pathogen, an essential element for the modelling of durable deployment strategies for resistant varieties.
Collapse
Affiliation(s)
- Chloé E L Delmas
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Frédéric Fabre
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Jérôme Jolivet
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Isabelle D Mazet
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Sylvie Richart Cervera
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - Laurent Delière
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| | - François Delmotte
- UMR 1065 Santé et Agroécologie du VignobleINRAVillenave d'OrnonFrance; Bordeaux Science AgroUMR 1065 SAVEISVVUniversité de BordeauxVillenave d'OrnonFrance
| |
Collapse
|
78
|
Johnston SF, Cohen MF, Torok T, Meentemeyer RK, Rank NE. Host Phenology and Leaf Effects on Susceptibility of California Bay Laurel to Phytophthora ramorum. PHYTOPATHOLOGY 2016; 106:47-55. [PMID: 26439707 DOI: 10.1094/phyto-01-15-0016-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to P. ramorum infection were investigated with multiple P. ramorum isolates and leaves collected from multiple trees in leaf-droplet assays. We examined whether susceptibility varies with season, leaf age, or inoculum position. Bay laurel susceptibility was highest during spring and summer and lowest in winter. Older leaves (>1 year) were more susceptible than younger ones (8 to 11 months). Susceptibility was greater at leaf tips and edges than the middle of the leaf. Leaf surfaces wiped with 70% ethanol were more susceptible to P. ramorum infection than untreated leaf surfaces. Our results indicate that seasonal changes in susceptibility of U. californica significantly influence P. ramorum infection levels. Thus, in addition to environmental variables such as temperature and moisture, variability in host plant susceptibility contributes to disease establishment of P. ramorum.
Collapse
Affiliation(s)
- Steven F Johnston
- First, second, and fifth authors: Department of Biology, Sonoma State University, Rohnert Park, CA 94928; third author: Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720; and fourth author: Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606
| | - Michael F Cohen
- First, second, and fifth authors: Department of Biology, Sonoma State University, Rohnert Park, CA 94928; third author: Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720; and fourth author: Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606
| | - Tamas Torok
- First, second, and fifth authors: Department of Biology, Sonoma State University, Rohnert Park, CA 94928; third author: Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720; and fourth author: Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606
| | - Ross K Meentemeyer
- First, second, and fifth authors: Department of Biology, Sonoma State University, Rohnert Park, CA 94928; third author: Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720; and fourth author: Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606
| | - Nathan E Rank
- First, second, and fifth authors: Department of Biology, Sonoma State University, Rohnert Park, CA 94928; third author: Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720; and fourth author: Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
79
|
Abstract
Virulence is generally defined as the reduction in host fitness following infection by a parasite (see Box 1 for glossary) [1]. In general, parasite exploitation of host resources may reduce host survival (mortality virulence), decrease host fecundity (sterility virulence), or even have sub-lethal effects that disturb the way individuals interact within a community (morbidity) [2,3]. In fact, the virulence of many parasites involves a combination of these various effects (Box 2). In practice, however, virulence is most often defined as disease-induced mortality [1, 4–6]. This is especially true in the theoretical literature, where the evolution of sterility virulence, morbidity, and mixed strategies of host exploitation have received relatively little attention. While the focus on mortality effects has allowed for easy comparison between models and, thus, rapid advancement of the field, we ask whether these theoretical simplifications have led us to inadvertently minimize the evolutionary importance of host sterilization and secondary virulence effects. As explicit theoretical work on morbidity is currently lacking (but see [7]), our aim in this Opinion piece is to discuss what is understood about sterility virulence evolution, its adaptive potential, and the implications for parasites that utilize a combination of host survival and reproductive resources.
Collapse
Affiliation(s)
- Jessica L. Abbate
- Centre d’Écologie Fonctionnelle et Évolutive (CEFE), CNRS-Université de Montpellier- Université Paul-Valéry Montpellier-EPHE, Montpellier, France
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- * E-mail:
| | - Sarah Kada
- Centre d’Écologie Fonctionnelle et Évolutive (CEFE), CNRS-Université de Montpellier- Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Sébastien Lion
- Centre d’Écologie Fonctionnelle et Évolutive (CEFE), CNRS-Université de Montpellier- Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| |
Collapse
|
80
|
Delmas CEL, Mazet ID, Jolivet J, Delière L, Delmotte F. Simultaneous quantification of sporangia and zoospores in a biotrophic oomycete with an automatic particle analyzer: disentangling dispersal and infection potentials. J Microbiol Methods 2015; 107:169-75. [PMID: 25448022 DOI: 10.1016/j.mimet.2014.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Quantitative pathogenicity traits drive the fitness and dynamics of pathogens in agricultural ecosystems and are key determinants of the correct management of crop production over time. However, traits relating to infection potential (i.e. zoospore production) have been less thoroughly investigated in oomycetes than traits relating to dispersal (i.e. sporangium production). We simultaneously quantified sporangium and zoospore production in a biotrophic oomycete, for the joint assessment of life-cycle traits relating to dispersal and infection potentials. We used an automatic particle analyzer to count and size the sporangia and/or zoospores produced at t = 0 min (no zoospore release) and t = 100 min (zoospore release) in 43 Plasmopara viticola isolates growing on the susceptible Vitis vinifera cv. Cabernet Sauvignon. We were able to differentiate and quantify three types of propagules from different stages of the pathogen life cycle: full sporangia, empty sporangia and zoospores. The method was validated by comparing the sporangium and zoospore counts obtained with an automatic particle analyzer and under a stereomicroscope (manual counting). Each isolate produced a mean of 5.8 ± 1.9 (SD) zoospores per sporangium. Significant relationships were found between sporangium production and sporangium size (negative) and between sporangium size and the number of zoospores produced per sporangium (positive). However, there was a significant positive correlation between total sporangium production and total zoospore production. This procedure can provide a valid quantification of the production of both sporangia and zoospores by oomycetes in large numbers of samples, facilitating joint estimation of the dispersal and infection potentials of plant pathogens in various agro-ecological contexts.
Collapse
Affiliation(s)
- Chloé E L Delmas
- INRA, UMR1065 Santé et Agroécologie du Vignoble, Villenave d'Ornon, France.
| | | | | | | | | |
Collapse
|
81
|
Mathew FM, Alananbeh KM, Jordahl JG, Meyer SM, Castlebury LA, Gulya TJ, Markell SG. Phomopsis Stem Canker: A Reemerging Threat to Sunflower (Helianthus annuus) in the United States. PHYTOPATHOLOGY 2015; 105:990-997. [PMID: 26121367 DOI: 10.1094/phyto-11-14-0336-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phomopsis stem canker causes yield reductions on sunflower (Helianthus annuus L.) on several continents, including Australia, Europe, and North America. In the United States, Phomopsis stem canker incidence has increased 16-fold in the Northern Great Plains between 2001 and 2012. Although Diaporthe helianthi was assumed to be the sole causal agent in the United States, a newly described species, D. gulyae, was found to be the primary cause of Phomopsis stem canker in Australia. To determine the identity of Diaporthe spp. causing Phomopsis stem canker in the Northern Great Plains, 275 infected stems were collected between 2010 and 2012. Phylogenetic analyses of sequences of the ribosomal DNA internal transcribed spacer region, elongation factor subunit 1-α, and actin gene regions of representative isolates, in comparison with those of type specimens, confirmed two species (D. helianthi and D. gulyae) in the United States. Differences in aggressiveness between the two species were determined using the stem-wound method in the greenhouse; overall, D. helianthi and D. gulyae did not vary significantly (P≤0.05) in their aggressiveness at 10 and 14 days after inoculation. These findings indicate that both Diaporthe spp. have emerged as sunflower pathogens in the United States, and have implications on the management of this disease.
Collapse
Affiliation(s)
- Febina M Mathew
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| | - Kholoud M Alananbeh
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| | - James G Jordahl
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| | - Scott M Meyer
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| | - Lisa A Castlebury
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| | - Thomas J Gulya
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| | - Samuel G Markell
- First, second, third, fourth, and seventh authors: Department of Plant Pathology, North Dakota State University, Fargo 58102-6050; fifth author: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Systematic Mycology and Microbiology Lab, Beltsville, MD 20705; sixth author (retired): USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58108
| |
Collapse
|
82
|
Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:19-43. [PMID: 25938275 DOI: 10.1146/annurev-phyto-080614-120040] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wild plants and their associated pathogens are involved in ongoing interactions over millennia that have been modified by coevolutionary processes to limit the spatial extent and temporal duration of disease epidemics. These interactions are disrupted by modern agricultural practices and social activities, such as intensified monoculture using superior varieties and international trading of agricultural commodities. These activities, when supplemented with high resource inputs and the broad application of agrochemicals, create conditions uniquely conducive to widespread plant disease epidemics and rapid pathogen evolution. To be effective and durable, sustainable disease management requires a significant shift in emphasis to overtly include ecoevolutionary principles in the design of adaptive management programs aimed at minimizing the evolutionary potential of plant pathogens by reducing their genetic variation, stabilizing their evolutionary dynamics, and preventing dissemination of pathogen variants carrying new infectivity or resistance to agrochemicals.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China;
| | | | | | | | | |
Collapse
|
83
|
Bourget R, Chaumont L, Durel CE, Sapoukhina N. Sustainable deployment of QTLs conferring quantitative resistance to crops: first lessons from a stochastic model. THE NEW PHYTOLOGIST 2015; 206:1163-1171. [PMID: 25623549 DOI: 10.1111/nph.13295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Quantitative plant disease resistance is believed to be more durable than qualitative resistance, since it exerts less selective pressure on the pathogens. However, the process of progressive pathogen adaptation to quantitative resistance is poorly understood, which makes it difficult to predict its durability or to derive principles for its sustainable deployment. Here, we study the dynamics of pathogen adaptation in response to quantitative plant resistance affecting pathogen reproduction rate and its colonizing capacity. We developed a stochastic model for the continuous evolution of a pathogen population within a quantitatively resistant host. We assumed that pathogen can adapt to a host by the progressive restoration of reproduction rate or of colonizing capacity, or of both. Our model suggests that a combination of quantitative trait loci (QTLs) affecting distinct pathogen traits was more durable if the evolution of repressed traits was antagonistic. Otherwise, quantitative resistance that depressed only pathogen reproduction was more durable. In order to decelerate the progressive pathogen adaptation, QTLs that decrease the pathogen's maximum capacity to colonize must be combined with QTLs that decrease the spore production per lesion or the infection efficiency or that increase the latent period. Our theoretical framework can help breeders to develop principles for sustainable deployment of QTLs.
Collapse
Affiliation(s)
- Romain Bourget
- Département de Mathématiques, LAREMA, Université d'Angers, 2 Blvd Lavoisier, F-49045, Angers Cedex 01, France
- INRA, UMR1345, Institut de Recherches en Horticulture et Semences (IRHS), SFR 4207 QUASAV, 42 rue Georges Morel, F-49071, Beaucouzé cedex, France
- AgroCampus-Ouest, UMR1345, Institut de Recherche en Horticulture et Semences (IRHS), F-49045, Angers, France
- Université d'Angers, UMR1345, Institut de Recherche en Horticulture et Semences (IRHS), F-49045, Angers, France
| | - Loïc Chaumont
- Département de Mathématiques, LAREMA, Université d'Angers, 2 Blvd Lavoisier, F-49045, Angers Cedex 01, France
| | - Charles-Eric Durel
- INRA, UMR1345, Institut de Recherches en Horticulture et Semences (IRHS), SFR 4207 QUASAV, 42 rue Georges Morel, F-49071, Beaucouzé cedex, France
- AgroCampus-Ouest, UMR1345, Institut de Recherche en Horticulture et Semences (IRHS), F-49045, Angers, France
- Université d'Angers, UMR1345, Institut de Recherche en Horticulture et Semences (IRHS), F-49045, Angers, France
| | - Natalia Sapoukhina
- INRA, UMR1345, Institut de Recherches en Horticulture et Semences (IRHS), SFR 4207 QUASAV, 42 rue Georges Morel, F-49071, Beaucouzé cedex, France
- AgroCampus-Ouest, UMR1345, Institut de Recherche en Horticulture et Semences (IRHS), F-49045, Angers, France
- Université d'Angers, UMR1345, Institut de Recherche en Horticulture et Semences (IRHS), F-49045, Angers, France
| |
Collapse
|
84
|
Papaïx J, Burdon JJ, Zhan J, Thrall PH. Crop pathogen emergence and evolution in agro-ecological landscapes. Evol Appl 2015; 8:385-402. [PMID: 25926883 PMCID: PMC4408149 DOI: 10.1111/eva.12251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 12/22/2022] Open
Abstract
Remnant areas hosting natural vegetation in agricultural landscapes can impact the disease epidemiology and evolutionary dynamics of crop pathogens. However, the potential consequences for crop diseases of the composition, the spatial configuration and the persistence time of the agro-ecological interface - the area where crops and remnant vegetation are in contact - have been poorly studied. Here, we develop a demographic-genetic simulation model to study how the spatial and temporal distribution of remnant wild vegetation patches embedded in an agricultural landscape can drive the emergence of a crop pathogen and its subsequent specialization on the crop host. We found that landscape structures that promoted larger pathogen populations on the wild host facilitated the emergence of a crop pathogen, but such landscape structures also reduced the potential for the pathogen population to adapt to the crop. In addition, the evolutionary trajectory of the pathogen population was determined by interactions between the factors describing the landscape structure and those describing the pathogen life histories. Our study contributes to a better understanding of how the shift of land-use patterns in agricultural landscapes might influence crop diseases to provide predictive tools to evaluate management practices.
Collapse
Affiliation(s)
- Julien Papaïx
- UMR 1290 BIOGER, INRAThiverval-Grignon, France
- UR 341 MIA, INRAJouy-en-Josas, France
- UR 546 BioSP, INRAAvignon, France
- CSIRO Agriculture FlagshipCanberra, ACT, Australia
| | | | - Jiasui Zhan
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | |
Collapse
|
85
|
Abstract
This review takes an evolutionary view of breeding crops for durable resistance to disease. An understanding of coevolution between hosts and parasites leads to predictors of potentially durable resistance, such as corresponding virulence having a high fitness cost to the pathogen or resistance being common in natural populations. High partial resistance can also promote durability. Whether or not resistance is actually durable, however, depends on ecological and epidemiological processes that stabilize genetic polymorphism, many of which are absent from intensive agriculture. There continues to be no biological, genetic, or economic model for durable resistance. The analogy between plant breeding and natural selection indicates that the basic requirements are genetic variation in potentially durable resistance, effective and consistent selection for resistance, and an efficient breeding process in which trials of disease resistance are integrated with other traits. Knowledge about genetics and mechanisms can support breeding for durable resistance once these fundamentals are in place.
Collapse
|
86
|
Louw JP, Korsten L. Pathogenicity and Host Susceptibility of Penicillium spp. on Citrus. PLANT DISEASE 2015; 99:21-30. [PMID: 30699736 DOI: 10.1094/pdis-02-14-0122-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus fruit are exposed to numerous postharvest pathogens throughout the fresh produce supply chain. Well-known postharvest citrus fruit pathogens are Penicillium digitatum and P. italicum. Lesser-known pathogens include P. crustosum and P. expansum. This study examined pathogenicity and aggressiveness of Penicillium spp. present in fresh fruit supply chains on various Citrus spp. and cultivars. The impact of different inoculation methods and storage conditions on decay were also assessed. P. digitatum and P. italicum were the most aggressive Penicillium spp. on citrus but aggressiveness varied significantly over the evaluated citrus range. Decay and tissue-response lesions caused by P. crustosum were observed on 'Nules Clementine', 'Nova', 'Owari Satsuma', 'Delta Valencia', 'Cambria Navel', 'Eureka' seeded, and 'Star Ruby' for the first time. Likewise, these lesions caused by P. expansum were noted on Nules Clementine, Owari Satsuma, Delta Valencia, 'Midknight Valencia', and Eureka seeded for the first time. Tissue-response lesions affect fruit quality and some Penicillium spp. sporulated from the lesions, causing the inoculated species to complete their life cycle. New citrus-Penicillium spp. interactions were observed and the importance of monitoring inoculum loads of pathogens and nonhost pathogens were highlighted.
Collapse
Affiliation(s)
- Johannes Petrus Louw
- University of Pretoria, Department of Microbiology and Plant Pathology, New Agricultural Building, Lunnon Road, Hillcrest, 0083, South Africa
| | - Lise Korsten
- University of Pretoria, Department of Microbiology and Plant Pathology, New Agricultural Building, Lunnon Road, Hillcrest, 0083, South Africa
| |
Collapse
|
87
|
Pernaci M, De Mita S, Andrieux A, Pétrowski J, Halkett F, Duplessis S, Frey P. Genome-wide patterns of segregation and linkage disequilibrium: the construction of a linkage genetic map of the poplar rust fungus Melampsora larici-populina. FRONTIERS IN PLANT SCIENCE 2014; 5:454. [PMID: 25309554 PMCID: PMC4159982 DOI: 10.3389/fpls.2014.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/21/2014] [Indexed: 05/16/2023]
Abstract
The poplar rust fungus Melampsora larici-populina causes significant yield reduction and severe economic losses in commercial poplar plantations. After several decades of breeding for qualitative resistance and subsequent breakdown of the released resistance genes, breeders now focus on quantitative resistance, perceived to be more durable. But quantitative resistance also can be challenged by an increase of aggressiveness in the pathogen. Thus, it is of primary importance to better understand the genetic architecture of aggressiveness traits. To this aim, our goal is to build a genetic linkage map for M. larici-populina in order to map quantitative trait loci related to aggressiveness. First, a large progeny of M. larici-populina was generated through selfing of the reference strain 98AG31 (which genome sequence is available) on larch plants, the alternate host of the poplar rust fungus. The progeny's meiotic origin was validated through a segregation analysis of 115 offspring with 14 polymorphic microsatellite markers, of which 12 segregated in the expected 1:2:1 Mendelian ratio. A microsatellite-based linkage disequilibrium analysis allowed us to identify one potential linkage group comprising two scaffolds. The whole genome of a subset of 47 offspring was resequenced using the Illumina HiSeq 2000 technology at a mean sequencing depth of 6X. The reads were mapped onto the reference genome of the parental strain and 144,566 SNPs were identified across the genome. Analysis of distribution and polymorphism of the SNPs along the genome led to the identification of 2580 recombination blocks. A second linkage disequilibrium analysis, using the recombination blocks as markers, allowed us to group 81 scaffolds into 23 potential linkage groups. These preliminary results showed that a high-density linkage map could be constructed by using high-quality SNPs based on low-coverage resequencing of a larger number of M. larici-populina offspring.
Collapse
Affiliation(s)
- Michaël Pernaci
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Stéphane De Mita
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Axelle Andrieux
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Jérémy Pétrowski
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Fabien Halkett
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| | - Pascal Frey
- Interactions Arbres - Micro organismes, Institut national de la recherche agronomique, UMR1136Champenoux, France
- Interactions Arbres - Micro organismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
| |
Collapse
|
88
|
Twizeyimana M, Ojiambo PS, Bandyopadhyay R, Hartman GL. Use of Quantitative Traits to Assess Aggressiveness of Phakopsora pachyrhizi Isolates from Nigeria and the United States. PLANT DISEASE 2014; 98:1261-1266. [PMID: 30699605 DOI: 10.1094/pdis-12-13-1247-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean rust, caused by Phakopsora pachyrhizi, is one of the most important foliar diseases of soybean worldwide. The soybean-P. pachyrhizi interaction is often complex due to genetic variability in host and pathogen genotypes. In a compatible reaction, soybean genotypes produce tan-colored lesions, whereas in an incompatible reaction soybean genotypes produce an immune response (complete resistance) or reddish-brown lesions (incomplete resistance). In this study, in total, 116 and 72 isolates of P. pachyrhizi from Nigeria and the United States, respectively, were compared based on six quantitative traits to assess their aggressiveness on two soybean genotypes. All isolates produced reddish-brown lesions on plant introduction (PI) 462312 and tan lesions on TGx 1485-1D. The number of days after inoculation to first appearance of lesions, uredinia, and sporulation, along with the number of lesions and sporulating uredinia per square centimeter of leaf tissue, and the number of uredinia per lesion, were significantly (P < 0.001) different between the two soybean genotypes for all isolates from each country. The number of days to first appearance of lesions, uredinia, and sporulation were greater on PI 462312 than on TGx 1485-1D for all the test isolates. Similarly, the number of lesions and sporulating uredinia per square centimeter, and the number of uredinia per lesion were lower on PI 462312 than on TGx 1485-1D. For both soybean genotypes, the number of sporulating uredinia per square centimeter significantly (P = 0.0001) increased with an increase in the number of lesions per square centimeter. Although the slope of the regression of sporulating uredinia on number of lesions was greater (P < 0.0001) when TGx 1485-1D was inoculated with Nigerian isolates compared with U.S. isolates, slopes of the regression lines did not differ significantly (P > 0.0675) when PI 46312 was inoculated with Nigerian or U.S. isolates. This is the first study that used a large number of isolates from two continents to assess aggressiveness of P. pachyrhizi using multiple traits in soybean genotypes with contrasting types of disease reaction.
Collapse
Affiliation(s)
- M Twizeyimana
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - P S Ojiambo
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - G L Hartman
- United States Department of Agriculture-Agricultural Research Service, and Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
89
|
Xu M, Yu S. Elevational variation in density dependence in a subtropical forest. Ecol Evol 2014; 4:2823-33. [PMID: 25165522 PMCID: PMC4130442 DOI: 10.1002/ece3.1123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/05/2014] [Accepted: 04/30/2014] [Indexed: 11/11/2022] Open
Abstract
Density-dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scale-dependent differentiation. In this study, we explore the elevational variation in density dependence. Three 1-ha permanent plots were established at low and high elevations in the Heishiding subtropical forest, southern China. Using data from 1200 1 m2 seedling quadrats, comprising of 200 1 m2 quadrats located in each 1-ha plot, we examined the variation in density dependence between elevations using a generalized linear mixed model with crossed random effects. A greenhouse experiment also investigated the potential effects of the soil biota on density-dependent differentiation. Our results demonstrated that density-dependent seedling mortality can vary between elevations in subtropical forests. Species found at a lower elevation suffered stronger negative density dependence than those found at a higher elevation. The greenhouse experiment indicated that two species that commonly occur at both elevations suffered more from soilborne pathogens during seed germination and seedling growth when they grew at the lower elevation, which implied that soil pathogens may play a crucial role in density-dependent spatial variation.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University Guangzhou, 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University Guangzhou, 510275, China
| |
Collapse
|
90
|
Glais I, Montarry J, Corbière R, Pasco C, Marquer B, Magalon H, Andrivon D. Long-distance gene flow outweighs a century of local selection and prevents local adaptation in the Irish famine pathogen Phytophthora infestans. Evol Appl 2014; 7:442-52. [PMID: 24822079 PMCID: PMC4001443 DOI: 10.1111/eva.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022] Open
Abstract
Sustainably managing plant resistance to epidemic pathogens implies controlling the genetic and demographic changes in pathogen populations faced with resistant hosts. Resistance management thus depends upon the dynamics of local adaptation, mainly driven by the balance between selection and gene flow. This dynamics is best investigated with populations from locally dominant hosts in islands with long histories of local selection. We used the unique case of the potato late blight pathosystem on Jersey, where a monoculture of potato cultivar ‘Jersey Royal’ has been in place for over a century. We also sampled populations from the coasts of Brittany and Normandy, as likely sources for gene flow. The isolation by distance pattern and the absence of genetic differentiation between Jersey and the closest French sites revealed gene flow at that spatial scale. Microsatellite allele frequencies revealed no evidence of recombination in the populations, but admixture of two genotypic clusters. No local adaptation in Jersey was detected from pathogenicity tests on Jersey Royal and on French cultivars. These data suggest that long-distance gene flow (∼ 50/100 km) prevents local adaptation in Jersey despite a century of local selection by a single host cultivar and emphasize the need for regional rather than local management of resistance gene deployment.
Collapse
Affiliation(s)
- Isabelle Glais
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Josselin Montarry
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Roselyne Corbière
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Claudine Pasco
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Bruno Marquer
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| | - Hélène Magalon
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France ; Laboratory of Marine Ecology, University of La Réunion St Denis Messag Cedex 09, La Réunion, F-97715, France
| | - Didier Andrivon
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection) Le Rheu, France
| |
Collapse
|
91
|
Caffier V, Lasserre-Zuber P, Giraud M, Lascostes M, Stievenard R, Lemarquand A, van de Weg E, Expert P, Denancé C, Didelot F, Le Cam B, Durel CE. Erosion of quantitative host resistance in the apple×Venturia inaequalis pathosystem. INFECTION GENETICS AND EVOLUTION 2014; 27:481-9. [PMID: 24530903 DOI: 10.1016/j.meegid.2014.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Abstract
Theoretical approaches predict that host quantitative resistance selects for pathogens with a high level of pathogenicity, leading to erosion of the resistance. This process of erosion has, however, rarely been experimentally demonstrated. To investigate the erosion of apple quantitative resistance to scab disease, we surveyed scab incidence over time in a network of three orchards planted with susceptible and quantitatively resistant apple genotypes. We sampled Venturiainaequalis isolates from two of these orchards at the beginning of the experiment and we tested their quantitative components of pathogenicity (i.e., global disease severity, lesion density, lesion size, latent period) under controlled conditions. The disease severity produced by the isolates on the quantitatively resistant apple genotypes differed between the sites. Our study showed that quantitative resistance may be subject to erosion and even complete breakdown, depending on the site. We observed this evolution over time for apple genotypes that combine two broad-spectrum scab resistance QTLs, F11 and F17, showing a significant synergic effect of this combination in favour of resistance (i.e., favourable epistatic effect). We showed that isolates sampled in the orchard where the resistance was inefficient presented a similar level of pathogenicity on both apple genotypes with quantitative resistance and susceptible genotypes. As a consequence, our results revealed a case where the use of quantitative resistance may result in the emergence of a generalist pathogen population that has extended its pathogenicity range by performing similarly on susceptible and resistant genotypes. This emphasizes the need to develop quantitative resistances conducive to trade-offs within the pathogen populations concerned.
Collapse
Affiliation(s)
- Valérie Caffier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France.
| | - Pauline Lasserre-Zuber
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France
| | - Michel Giraud
- CTIFL - Centre Technique Interprofessionnel des Fruits et Légumes, Centre de Lanxade, 24130 Prigonrieux, France
| | - Matthieu Lascostes
- CRRG - Centre Régional de Ressources Génétiques, Ferme du Héron, 59650 Villeneuve d'Ascq, France
| | - René Stievenard
- CRRG - Centre Régional de Ressources Génétiques, Ferme du Héron, 59650 Villeneuve d'Ascq, France
| | - Arnaud Lemarquand
- INRA, Unité Expérimentale Horticole N°34 0449, Centre d'Angers-Nantes, 49071 Beaucouzé Cedex, France
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Pascale Expert
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France
| | - Caroline Denancé
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France
| | - Frédérique Didelot
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France
| | - Bruno Le Cam
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France
| | - Charles-Eric Durel
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, SFR 4207 QUASAV, 49071 Beaucouzé Cedex, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences - IRHS, 49045 Angers, France
| |
Collapse
|
92
|
Soubeyrand S, Tollenaere C, Haon-Lasportes E, Laine AL. Regression-based ranking of pathogen strains with respect to their contribution to natural epidemics. PLoS One 2014; 9:e86591. [PMID: 24497956 PMCID: PMC3909007 DOI: 10.1371/journal.pone.0086591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022] Open
Abstract
Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.
Collapse
Affiliation(s)
- Samuel Soubeyrand
- UR546 Biostatistics and Spatial Processes, INRA, Avignon,
France es that the sum of the estimated propor
| | - Charlotte Tollenaere
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Emilie Haon-Lasportes
- UR546 Biostatistics and Spatial Processes, INRA, Avignon,
France es that the sum of the estimated propor
| | - Anna-Liisa Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
93
|
Leroy T, Le Cam B, Lemaire C. When virulence originates from non-agricultural hosts: new insights into plant breeding. INFECTION GENETICS AND EVOLUTION 2014; 27:521-9. [PMID: 24412509 DOI: 10.1016/j.meegid.2013.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/11/2013] [Accepted: 12/30/2013] [Indexed: 12/27/2022]
Abstract
Monogenic plant resistance breakdown is a model for testing evolution in action in pathogens. As a rule, plant pathologists argue that virulence - the allele that allows pathogens to overcome resistance - is due to a new mutation at the avirulence locus within the native/endemic population that infects susceptible crops. In this article, we develop an alternative and neglected scenario where a given virulence pre-exists in a non-agricultural host and might be accidentally released or introduced on the matching resistant cultivar in the field. The main difference between the two scenarios is the divergence time expected between the avirulent and the virulent populations. As a consequence, population genetic approaches such as genome scans and Approximate Bayesian Computation methods allow explicit testing of the two scenarios by timing the divergence. This review then explores the fundamental implications of this alternative scenario for plant breeding, including the invasion of virulence or the evolution of more aggressive hybrids, and proposes concrete solutions to achieve a sustainable resistance.
Collapse
Affiliation(s)
- Thibault Leroy
- Université d'Angers, IRHS, PRES LUNAM, SFR QUASAV, Boulevard Lavoisier, 49045 Angers, France; INRA, IRHS, PRES LUNAM, SFR QUASAV, Rue Georges Morel, 49071 Beaucouzé, France; Agrocampus Ouest, IRHS, PRES LUNAM, SFR QUASAV, Rue Le Nôtre, 49045 Angers, France
| | - Bruno Le Cam
- Université d'Angers, IRHS, PRES LUNAM, SFR QUASAV, Boulevard Lavoisier, 49045 Angers, France; INRA, IRHS, PRES LUNAM, SFR QUASAV, Rue Georges Morel, 49071 Beaucouzé, France; Agrocampus Ouest, IRHS, PRES LUNAM, SFR QUASAV, Rue Le Nôtre, 49045 Angers, France
| | - Christophe Lemaire
- Université d'Angers, IRHS, PRES LUNAM, SFR QUASAV, Boulevard Lavoisier, 49045 Angers, France; INRA, IRHS, PRES LUNAM, SFR QUASAV, Rue Georges Morel, 49071 Beaucouzé, France; Agrocampus Ouest, IRHS, PRES LUNAM, SFR QUASAV, Rue Le Nôtre, 49045 Angers, France.
| |
Collapse
|
94
|
Van den Berg F, Lannou C, Gilligan CA, van de Bosch F. Quantitative resistance can lead to evolutionary changes in traits not targeted by the resistance QTLs. Evol Appl 2014; 7:370-80. [PMID: 24665339 PMCID: PMC3962297 DOI: 10.1111/eva.12130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
This paper addresses the general concern in plant pathology that the introduction of quantitative resistance in the landscape can lead to increased pathogenicity. Hereto, we study the hypothetical case of a quantitative trait loci (QTL) acting on pathogen spore production per unit lesion area. To regain its original fitness, the pathogen can break the QTL, restoring its spore production capacity leading to an increased spore production per lesion. Or alternatively, it can increase its lesion size, also leading to an increased spore production per lesion. A data analysis shows that spore production per lesion (affected by the resistance QTL) and lesion size (not targeted by the QTL) are positively correlated traits, suggesting that a change in magnitude of a trait not targeted by the QTL (lesion size) might indirectly affect the targeted trait (spore production per lesion). Secondly, we model the effect of pathogen adaptation towards increased lesion size and analyse its consequences for spore production per lesion. The model calculations show that when the pathogen is unable to overcome the resistance associated QTL, it may compensate for its reduced fitness by indirect selection for increased pathogenicity on both the resistant and susceptible cultivar, but whereby the QTLs remain effective.
Collapse
Affiliation(s)
- Femke Van den Berg
- Department of Computational and Systems Biology, Rothamsted Research Harpenden, Hertfordshire, UK
| | | | | | - Frank van de Bosch
- Department of Computational and Systems Biology, Rothamsted Research Harpenden, Hertfordshire, UK
| |
Collapse
|
95
|
Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol 2013; 28:705-11. [PMID: 24091206 DOI: 10.1016/j.tree.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022]
Abstract
The Janzen-Connell (JC) hypothesis, one of the most influential hypotheses explaining forest diversity, is inconsistent with evidence that tree species share the same natural enemies. Through the discussion of seedling diseases from a pathogen-centered perspective, we expand the JC hypothesis to tie in host-pathogen-environment interactions at three levels: local adaptation, host specificity of the combined effect of multiple infections, and environmental modulation of disease. We present evidence from plant pathology, disease ecology, and host-parasite evolution relevant to (but not commonly associated with) forest species diversity maintenance. This expanded view of the JC hypothesis suggests ways to direct new experiments to integrate research on pathogen local adaptation, co-infection, and environmental effects on infection by using high-throughput molecular techniques and statistical models.
Collapse
|
96
|
Siebold M, von Tiedemann A. Effects of experimental warming on fungal disease progress in oilseed rape. GLOBAL CHANGE BIOLOGY 2013; 19:1736-1747. [PMID: 23505251 DOI: 10.1111/gcb.12180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 05/28/2023]
Abstract
Global warming will influence the growth and development of both crops and pathogens. The aims of this study were to investigate potential effects of future warming on oilseed rape growth and the epidemiology of the three economically important pathogens Verticillium longisporum, Sclerotinia sclerotiorum, and Leptosphaeria maculans (anamorph: Phoma lingam). We utilized climate chambers and a soil warming facility, where treatments represented regional warming scenarios for Lower Saxony, Germany, by 2050 and 2100, and compared results of both approaches on a thermal time scale by calculating degree-days (dd) from day of sowing, December 1st and March 1st until sampling, the latter correlating best with disease progress. Regression analysis showed that plant growth and growth stages in spring responded almost linearly to increasing thermal time until 1000-1500 dd. Colonization of plant tissue by V. longisporum showed an exponential increase when exceeding 1300-1500 dd and reaching plant growth stage BBCH 74/75 (pod development). V. longisporum colonization of plants may be advanced, potentially leading to higher inoculum densities after harvest and increased economic importance of this pathogen under future warming. Sclerotia germination of S. sclerotiorum reached its maximum at 600-900 dd. Advance of these critical degree-days may lead to earlier apothecia production, potentially advancing the infection window, whereas the future importance of S. sclerotiorum may remain constant. Severity of phoma crown canker increased linearly with increasing thermal time, but showed also large variation in response to the warming scenarios, suggesting that factors such as canopy microclimate in fall or leaf shedding over winter may play a bigger role for L. maculans infection and disease severity than higher soil temperatures. Thermal time was a suitable tool to combine and integrate data on biological responses to soil and air temperature increases from climate chamber and field experiments.
Collapse
Affiliation(s)
- Magdalena Siebold
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg-August-University of Göttingen, Grisebachstr 6, D-37077, Göttingen, Germany.
| | | |
Collapse
|
97
|
Dynamics of adaptation in spatially heterogeneous metapopulations. PLoS One 2013; 8:e54697. [PMID: 23424618 PMCID: PMC3570538 DOI: 10.1371/journal.pone.0054697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/14/2012] [Indexed: 12/03/2022] Open
Abstract
The selection pressure experienced by organisms often varies across the species range. It is hence crucial to characterise the link between environmental spatial heterogeneity and the adaptive dynamics of species or populations. We address this issue by studying the phenotypic evolution of a spatial metapopulation using an adaptive dynamics approach. The singular strategy is found to be the mean of the optimal phenotypes in each habitat with larger weights for habitats present in large and well connected patches. The presence of spatial clusters of habitats in the metapopulation is found to facilitate specialisation and to increase both the level of adaptation and the evolutionary speed of the population when dispersal is limited. By showing that spatial structures are crucial in determining the specialisation level and the evolutionary speed of a population, our results give insight into the influence of spatial heterogeneity on the niche breadth of species.
Collapse
|
98
|
Lo Iacono G, van den Bosch F, Gilligan CA. Durable resistance to crop pathogens: an epidemiological framework to predict risk under uncertainty. PLoS Comput Biol 2013; 9:e1002870. [PMID: 23341765 PMCID: PMC3547817 DOI: 10.1371/journal.pcbi.1002870] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/20/2012] [Indexed: 11/28/2022] Open
Abstract
Increasing the durability of crop resistance to plant pathogens is one of the key goals of virulence management. Despite the recognition of the importance of demographic and environmental stochasticity on the dynamics of an epidemic, their effects on the evolution of the pathogen and durability of resistance has not received attention. We formulated a stochastic epidemiological model, based on the Kramer-Moyal expansion of the Master Equation, to investigate how random fluctuations affect the dynamics of an epidemic and how these effects feed through to the evolution of the pathogen and durability of resistance. We focused on two hypotheses: firstly, a previous deterministic model has suggested that the effect of cropping ratio (the proportion of land area occupied by the resistant crop) on the durability of crop resistance is negligible. Increasing the cropping ratio increases the area of uninfected host, but the resistance is more rapidly broken; these two effects counteract each other. We tested the hypothesis that similar counteracting effects would occur when we take account of demographic stochasticity, but found that the durability does depend on the cropping ratio. Secondly, we tested whether a superimposed external source of stochasticity (for example due to environmental variation or to intermittent fungicide application) interacts with the intrinsic demographic fluctuations and how such interaction affects the durability of resistance. We show that in the pathosystem considered here, in general large stochastic fluctuations in epidemics enhance extinction of the pathogen. This is more likely to occur at large cropping ratios and for particular frequencies of the periodic external perturbation (stochastic resonance). The results suggest possible disease control practises by exploiting the natural sources of stochasticity. We want to understand if, and how, the evolution of a pathogen can be delayed/accelerated by random fluctuations always occurring in epidemics. We studied a simple biological system relevant to agriculture: a resistant crop immune to the disease, and a plant pathogen that defeats the resistance after a single mutation. Eventually the population of these more harmful pathogens will take over and the resistance can no longer protect the crop. As the availability of such resistant genes is limited in nature, this is an important problem to ensure food security for future generations as well as reduction in pesticide usage. We used a mathematical model to show that in general large stochastic fluctuations in epidemics enhance extinction of the pathogen, especially of the emerging mutant strains. We know that periodically forced epidemics oscillate at larger amplitude at some frequencies than at others (resonance), then by adequately perturbing the system (e.g. by alternating different types of fungicides) we can cause massive fluctuations in the small pathogen population increasing the chances of extinction. If such hypotheses will be experimentally confirmed, we could alleviate the disease, reduce chemical control, and in general, mitigate the risk of developing highly harmful pathogens (e.g. superbugs insensitive to antibiotics).
Collapse
Affiliation(s)
- Giovanni Lo Iacono
- Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
99
|
Pariaud B, Berg F, Bosch F, Powers SJ, Kaltz O, Lannou C. Shared influence of pathogen and host genetics on a trade-off between latent period and spore production capacity in the wheat pathogen, Puccinia triticina. Evol Appl 2012; 6:303-12. [PMID: 23467548 PMCID: PMC3586619 DOI: 10.1111/eva.12000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/11/2012] [Indexed: 02/06/2023] Open
Abstract
Crop pathogens are notorious for their rapid adaptation to their host. We still know little about the evolution of their life cycles and whether there might be trade-offs between fitness components, limiting the evolutionary potential of these pathogens. In this study, we explored a trade-off between spore production capacity and latent period in Puccinia triticina, a fungal pathogen causing leaf rust on wheat. Using a simple multivariate (manova) technique, we showed that the covariance between the two traits is under shared control of host and pathogen, with contributions from host genotype (57%), pathogen genotype (18.4%) and genotype × genotype interactions (12.5%). We also found variation in sign and strength of genetic correlations for the pathogen, when measured on different host varieties. Our results suggest that these important pathogen life-history traits do not freely respond to directional selection and that precise evolutionary trajectories are contingent on the genetic identity of the interacting host and pathogen.
Collapse
|
100
|
Montarry J, Cartier E, Jacquemond M, Palloix A, Moury B. Virus adaptation to quantitative plant resistance: erosion or breakdown? J Evol Biol 2012; 25:2242-52. [DOI: 10.1111/j.1420-9101.2012.02600.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - E. Cartier
- INRA; UR407 Pathologie Végétale; Montfavet; France
| | | | - A. Palloix
- INRA; UR1052 Génétique et Amélioration des Fruits et Légumes (GAFL); Montfavet; France
| | - B. Moury
- INRA; UR407 Pathologie Végétale; Montfavet; France
| |
Collapse
|