51
|
Krieglstein K. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 2004; 318:73-80. [PMID: 15300492 DOI: 10.1007/s00441-004-0920-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 05/11/2004] [Indexed: 12/22/2022]
Abstract
Growth factors promoting survival of mesencephalic dopaminergic neurons are discussed in the context of their requirement during development and adulthood. The expression of growth factors should be detectable in the nigrostriatal system during critical periods of development, i.e., during the period of ontogenetic cell death and synaptogenesis and during neurite extension and neurotransmitter synthesis. Growth factors discussed include members of the family of glial-cell-line-derived neurotrophic factors (GDNF), neurotrophins, transforming growth factors beta, and low molecular compounds mimicking growth factor activities. To date, the available data support the notion that GDNF is a highly promising candidate, although GDNF-null mice lack a dopaminergic phenotype. There remains a possibility that endogenous dopaminotrophic factors remain to be discovered.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Department Neuroanatomy, Medical Faculty, Center for Molecular Physiology of the Brain, University of Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany.
| |
Collapse
|
52
|
Alberch J, Pérez-Navarro E, Canals JM. Neurotrophic factors in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2004; 146:195-229. [PMID: 14699966 DOI: 10.1016/s0079-6123(03)46014-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a neurodegenerative disorder characterized by the selective loss of striatal neurons and, to a lesser extent, cortical neurons. The neurodegenerative process is caused by the mutation of huntingtin gene. Recent studies have established a link between mutant huntingtin, excitotoxicity and neurotrophic factors. Neurotrophic factors prevent cell death in degenerative processes but they can also enhance growth and function of neurons that are affected in Huntington's disease. The endogenous regulation of the expression of neurotrophic factors and their receptors in the striatum and its connections can be important to protect striatal cells and maintains basal ganglia connectivity. The administration of exogenous neurotrophic factors, in animal models of Huntington's disease, has been used to characterize the trophic requirements of striatal and cortical neurons. Neurotrophins, glial cell line-derived neurotrophic factor family members and ciliary neurotrophic factor have shown a potent neuroprotective effects on different neuronal populations of the striatum. Furthermore, they are also useful to maintain the integrity of the corticostriatal pathway. Thus, these neurotrophic factors may be suitable for the development of a neuroprotective therapy for neurodegenerative disorders of the basal ganglia.
Collapse
Affiliation(s)
- Jordi Alberch
- Department of Cell Biology and Pathology, Medical School, IDIBAPS, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain.
| | | | | |
Collapse
|
53
|
Dieni S, Rees S. Distribution of brain-derived neurotrophic factor and TrkB receptor proteins in the fetal and postnatal hippocampus and cerebellum of the guinea pig. J Comp Neurol 2002; 454:229-40. [PMID: 12442314 DOI: 10.1002/cne.10422] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study investigates the distribution of brain-derived neurotrophic factor protein (BDNF) and its receptor, TrkB, during the development of hippocampus and cerebellum in a long-gestation species, the guinea pig. In the granule cell populations of both structures, BDNF immunoreactivity (-IR) was exclusive to postmigratory, mature neurons. In dentate granule cells, TrkB-IR was coexpressed with BDNF-IR, suggesting that the ligand-receptor interaction could occur by means of an autocrine/paracrine mechanism. In cerebellar granule cells, TrkB-IR was detected in both pre- and postmigratory cells, indicating that immature neurons are also BDNF-responsive. With advancing gestational age an increase in the intensity of BDNF-IR in granule cells was accompanied by concomitant increases in the staining and areal growth of the associated mossy fiber layer in the hippocampus, and the molecular layer in the cerebellum. The developmental increase in BDNF- and TrkB-IR in the neuropil of both structures coincided with periods of significant growth in all strata, indicating a role for BDNF and TrkB in process outgrowth. In the hippocampus, CA2, CA3, and hilar, neurons demonstrated both BDNF- and TrkB-IR during development and maturation, whereas CA1 neurons showed TrkB-IR throughout this period but only transient BDNF-IR in early gestation. In the fetal cerebellum, Purkinje cell bodies coexpressed BDNF-IR and TrkB-IR. In the postnatal period, BDNF-IR was down-regulated but TrkB-IR persisted, indicating that mature Purkinje cells might retain their responsiveness to BDNF. Thus, we have demonstrated in both the hippocampus and cerebellum that the spatiotemporal distribution of BDNF-IR and TrkB-IR coincides with the maturation of granule cells prenatally and with significant periods of neuropil growth, both prenatally and in the immediate postnatal period.
Collapse
Affiliation(s)
- Sandra Dieni
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | | |
Collapse
|
54
|
Henneberger C, Jüttner R, Rothe T, Grantyn R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol 2002; 88:595-603. [PMID: 12163512 DOI: 10.1152/jn.2002.88.2.595] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is involved in numerous aspects of synapse development and plasticity. The present study was aimed at clarifying the significance of endogenous BDNF for the synaptically driven spontaneous network activity and GABAergic inhibition in the superficial layers of the mouse superior colliculus. In this structure neuron survival is unaffected by the absence of BDNF. Two experimental approaches were used: comparison of BDNF-deficient (-/-) and wild-type (+/+) mice and blockade of BDNF receptor signaling by the tyrosine kinase inhibitor K-252a. Patch-clamp recordings were performed on horizontal slices during postnatal days 15 and 16. The lack of BDNF in -/- mice caused a significant reduction of the spontaneous action potential frequency and an increase in the pharmacologically induced disinhibition of spike discharge. This change was accompanied by an increase in the amplitudes of GABAergic evoked, spontaneous, and miniature inhibitory postsynaptic currents (IPSCs). BDNF gene inactivation had no effect on the degree of paired-pulse facilitation or the frequency of miniature IPSCs. The increase of IPSC amplitudes by chronic BDNF deprivation was completely mimicked by acute exposure to K-252a in +/+ animals. The enhancement of GABAergic IPSCs in -/- animals was reversed by acute application of 100 ng/ml BDNF, but this rescue was completely prevented by blocking postsynaptic protein kinase C (PKC) activation with the PKC inhibitor peptide 19-31. From these results we conclude that BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABA(A) receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.
Collapse
Affiliation(s)
- Christian Henneberger
- Developmental Physiology, Johannes Müller Institute of Physiology, Charité, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
55
|
Ernfors P, Persson H. Developmentally Regulated Expression of HDNF/NT-3 mRNA in Rat Spinal Cord Motoneurons and Expression of BDNF mRNA in Embryonic Dorsal Root Ganglion. Eur J Neurosci 2002; 3:953-961. [PMID: 12106253 DOI: 10.1111/j.1460-9568.1991.tb00031.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Northern blot analysis was used to demonstrate high levels of hippocampus-derived neurotrophic factor/neurotrophin-3 (HDNF/NT-3) mRNA in the embryonic day (E) 13 - 14 and 15 - 16 spinal cord. The level decreased at E18 - 19 and remained the same until postnatal day (P) 1, after which it decreased further to a level below the detection limit in the adult. In situ hybridization revealed that the NT-3 mRNA detected in the developing spinal cord was derived from motoneurons and the decrease seen at E18 - 19 was caused by a reduction in the number of motoneurons expressing NT-3 mRNA. The distribution of NT-3 mRNA-expressing cells in the E15 spinal cord was very similar to the distribution of cells expressing choline acetyltransferase or nerve growth factor receptor (NGFR) mRNA. Moreover, a striking similarity between the developmentally regulated expression of NT-3 and NGFR mRNA was noted in spinal cord motoneurons. A subpopulation of all neurons in the dorsal root ganglia expressed brain-derived neurotrophic factor (BDNF) mRNA from E13, the earliest time examined, to adulthood. These results are consistent with a trophic role of NT-3 for proprioceptive sensory neurons innervating the ventral horn, and imply a local action of BDNF for developing sensory neurons within the dorsal root ganglia.
Collapse
Affiliation(s)
- Patrik Ernfors
- Department of Medical Chemistry, Laboratory of Molecular Neurobiology, Karolinska Institute, Box 60400, S-104 01 Stockholm, Sweden
| | | |
Collapse
|
56
|
Abstract
OBJECTIVES The objective of this paper is to review findings of morphometric postmortem studies conducted on tissues from subjects with bipolar disorder (BPD) to demonstrate that impairments of cell morphology and resilience may underlie the neurobiology of BPD. METHODS Reports of alterations in number, density and size of neurons and glial cells in BPD are reviewed. Owing to the low number of postmortem studies on cellular pathology in BPD, abstracts of recent symposia are also discussed. RESULTS AND CONCLUSIONS In BPD. significant reductions in the volume of several brain regions, as well as region- and layer-specific reductions in the number, density and/or size of neurons and glial cells have been demonstrated. Moreover, the results of recent clinical and preclinical studies investigating the molecular and cellular targets of mood stabilizing and antidepressant medications provide intriguing possibilities that impairments in neuroplasticity and cellular resilience may underlie the neurobiology of BPD. Future studies will likely examine the role of both genetic and environmental factors in the pathogenesis and cellular changes in BPD.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216, USA.
| |
Collapse
|
57
|
Collier TJ, Sortwell CE, Elsworth JD, Taylor JR, Roth RH, Sladek JR, Redmond DE. Embryonic ventral mesencephalic grafts to the substantia nigra of MPTP-treated monkeys: feasibility relevant to multiple-target grafting as a therapy for Parkinson's disease. J Comp Neurol 2002; 442:320-30. [PMID: 11793337 DOI: 10.1002/cne.10108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transplantation of embryonic dopamine (DA) neurons is being studied as an experimental replacement therapy for the DA-deficiency characteristic of Parkinson's disease. Some studies suggest that one of the limitations of this approach is that intrastriatal placement of implants fails to consistently restore completely normal movement. One potential cause of this suboptimal therapeutic outcome is that changes in the neural activity of several structures in the basal ganglia circuitry resulting from striatal DA depletion is not adequately normalized by graft-derived DA replacement in striatum alone. In the present study, we assessed the feasibility of grafting embryonic DA neurons into the substantia nigra (SN) of adult parkinsonian monkeys as an approach to restoration of the DA modulation of striatal-nigral afferents that is lost after degeneration of SN neurons. Sixteen St. Kitts African green monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) received implants of embryonic monkey ventral mesencephalon (VM), or sham implants, aimed at the rostral SN. At 6 months after grafting, staining for tyrosine hydroxylase (TH) indicated that grafted DA neurons survived at this site, albeit often in reduced numbers compared with VM grafts to striatum. Grafted neurons extended neurites into the parenchyma of the SN, but there was no evidence of lengthy extension of graft-derived neurites rostrally along the trajectory of the mesostriatal fiber system. A region-specific, modest increase in DA levels and TH-positive fiber density in the ventral-medial putamen was detected, accompanied by modest but significant decreases in parkinsonian behaviors at 5-6 months after grafting. Our findings support the view that grafting embryonic tissue to the SN is a feasible procedure in nonhuman primates that provides a modest but detectable benefit of its own. These results encourage the further development of multiple-target grafting strategies as a means of restoring modulation of anatomically widespread basal ganglia structures relevant to treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Neurological Sciences, Research Center for Brain Repair, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Vecino E, García-Crespo D, García-Grespo D, García M, Martinez-Millán L, Sharma SC, Carrascal E. Rat retinal ganglion cells co-express brain derived neurotrophic factor (BDNF) and its receptor TrkB. Vision Res 2002; 42:151-7. [PMID: 11809469 DOI: 10.1016/s0042-6989(01)00251-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The expression of brain derived neurotrophic factor (BDNF) and its preferred receptor (TrkB) in rat retinal ganglion cells (RGCs) have been determined in the present study. To identify RGCs retrograde labelling was performed with fluorogold (FG). Subsequently, retinas were immunostained with antibodies to BDNF and TrkB. We found that all RGCs labelled with FG express both BDNF and its preferred receptor, TrkB. Moreover, displaced amacrine cells were also found to be immunolabelled by both antibodies. Thus BDNF/TrkB signalling in RGCs probably involves endogenous BDNF produced by the RGCs themselves.
Collapse
Affiliation(s)
- Elena Vecino
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad del País Vasco, E-48940 Leioa, Vizcaya, Spain.
| | | | | | | | | | | | | |
Collapse
|
59
|
Frost DO, Ma YT, Hsieh T, Forbes ME, Johnson JE. Developmental changes in BDNF protein levels in the hamster retina and superior colliculus. JOURNAL OF NEUROBIOLOGY 2001; 49:173-87. [PMID: 11745656 DOI: 10.1002/neu.1073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quantitative studies of ontogenetic changes in the levels of brain-derived neurotrophic factor (BDNF) mRNA and its effector, BDNF protein, are not available for the retinal projection system. We used an electrochemiluminescence immunoassay to measure developmental changes in the tissue concentration of BDNF within the hamster retina and superior colliculus (SC). In the SC, we first detected BDNF (about 9 pg/mg tissue) on embryonic day 14 (E14). BDNF protein concentration in the SC rises about fourfold between (E14) and postnatal day 4 (P4), remains at a plateau through P15, then declines by about one-third to attain its adult level by P18. By contrast, BDNF protein concentration in the retina remains low (about 1 pg/mg tissue) through P12, then increases 4.5-fold to attain its adult level on P18. The developmental changes in retinal and collicular BDNF protein concentrations are temporally correlated with multiple events in the structural and functional maturation of the hamster retinal projection system. Our data suggest roles for BDNF in the cellular mechanisms underlying some of these events and are crucial to the design of experiments to examine those roles.
Collapse
Affiliation(s)
- D O Frost
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
60
|
Liu Y, Fowler CD, Wang Z. Ontogeny of brain-derived neurotrophic factor gene expression in the forebrain of prairie and montane voles. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:51-61. [PMID: 11287064 DOI: 10.1016/s0165-3806(01)00111-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in normal brain development. In the present study, we examined the ontogenetic pattern of BDNF gene expression in both monogamous prairie voles (Microtus ochrogaster) and promiscuous montane voles (M. montanus); two closely related microtine rodents that differ in life strategy and social behavior. In both species, BDNF mRNA showed an early appearance and a transient expression in a regionally specific manner. In the dentate gyrus and CA3 region of the hippocampus, BDNF mRNA was found neonatally, increased gradually during development, and reached a peak at weaning, followed by a subsequent decline to the adult level. In the paraventricular nucleus of the hypothalamus, levels of BDNF mRNA persisted until weaning, followed by a significant increase to the adult levels at 3 months of age. BDNF mRNA also demonstrated a species-specific developmental pattern. In the cingulate cortex, BDNF mRNA labeling displayed a transient increase in the second and third postnatal weeks followed by a subsequent decrease to the adult level in prairie voles, but persisted throughout the course of development in montane voles. In general, montane voles achieved an adult pattern of BDNF mRNA expression earlier than did prairie voles. Together, these data indicate that BDNF may function differently in infant and adult brains, and that the two species of voles differ in the ontogenetic pattern of BDNF mRNA expression in a regional-specific manner, which may be associated with their different life strategy and brain and behavioral development.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychology and Program of Neuroscience, Florida State University, Tallahassee FL 32306, USA
| | | | | |
Collapse
|
61
|
Lu B, Gottschalk W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. PROGRESS IN BRAIN RESEARCH 2001; 128:231-41. [PMID: 11105682 DOI: 10.1016/s0079-6123(00)28020-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- B Lu
- Unit on Synapse Development and Plasticity, NICHD, NIH, Bethesda, MD 20892-4480, USA.
| | | |
Collapse
|
62
|
Höglinger GU, Widmer HR, Spenger C, Meyer M, Seiler RW, Oertel WH, Sautter J. Influence of time in culture and BDNF pretreatment on survival and function of grafted embryonic rat ventral mesencephalon in the 6-OHDA rat model of Parkinson's disease. Exp Neurol 2001; 167:148-57. [PMID: 11161602 DOI: 10.1006/exnr.2000.7546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic midbrain can be maintained as free-floating roller tube cultures prior to grafting in experimental Parkinson's disease. We examined the influence of pregrafting culture time and pretreatment with brain-derived neurotrophic factor on graft survival and function. Cultures were prepared from solid pieces of embryonic (E14) rat ventral mesencephalon and maintained 4, 8, or 12 days in vitro with or without brain-derived neurotrophic factor (100 ng/ml) and grafted into the striatum of 6-hydroxydopamine-lesioned rats. Graft survival and function were evaluated by amphetamine-induced rotation behavior, number of tyrosine hydroxylase-immunoreactive neurons, striatal reinnervation, and graft volume. Rats receiving untreated tissue cultured for 4 or 8 days displayed no differences in graft quality, while grafts from 12-day-old cultures contained significantly fewer (P < 0.05) tyrosine hydroxylase-immunoreactive neurons (340 +/- 97, 267 +/- 92, and 62 +/- 19) and displayed a lower survival rate (9.6 +/- 2.7, 7.9 +/- 2.7, and 2.6 +/- 0.8% for 4, 8, and 12 days in vitro, respectively). Only rats grafted with 4- and 8-day-old cultures recovered significantly (P < 0.05) from lesion-induced rotations (69.4 +/- 18.6, 70.3 +/- 13.9, and 23.2 +/- 12.1% for 4, 8, and 12 days in vitro, respectively). Striatal reinnervation decreased with increasing culture time (P < 0.05). Pretreatment of the cultures with brain-derived neurotrophic factor affected only graft-induced fiber reinnervation, which was reduced even after short culture times. We therefore suggest that a storage period of 8 days is well suited to maintain embryonic rat ventral mesencephalon with the free-floating roller tube culture technique prior to transplantation. BDNF pretreatment as a new strategy to improve graft survival and function, however, was not effective.
Collapse
Affiliation(s)
- G U Höglinger
- Department of Neurology, University of Marburg, Marburg, 35039, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 633] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
64
|
Abstract
The influence of stress and glucocorticoids on neuronal pathology has been demonstrated in animal and clinical studies. It has been proposed that stress-induced changes in the hippocampus may be central to the development of depression in genetically vulnerable individuals. New evidence implicates the prefrontal cortex (PFC) in addition to the hippocampus as a site of neuropathology in depression. The PFC may be involved in stress-mediated neurotoxicity because stress alters PFC functions and glucocorticoid receptors, the PFC is directly interconnected with the hippocampus, and metabolic alterations are present in the PFC in depressed patients. Postmortem studies in major depression and bipolar disorder provide the first evidence for specific neuronal and glial histopathology in mood disorders. Three patterns of morphometric cellular changes are noted: cell loss (subgenual PFC), cell atrophy (dorsolateral PFC and orbitofrontal cortex), and increased numbers of cells (hypothalamus, dorsal raphe nucleus). The relevance of cellular changes in mood disorders to stress and prolonged PFC development and a role of neurotrophic/neuroprotective factors are suggested, and a link between cellular changes and the action of therapeutic drugs is discussed. The precise anatomic localization of dysfunctional neurons and glia in mood disorders may reveal cortical targets for novel antidepressants and mood stabilizers.
Collapse
Affiliation(s)
- G Rajkowska
- Laboratory of Quantitative Neuroanatomy, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| |
Collapse
|
65
|
Ibáñez CF. Neurotrophic factors: versatile signals for cell-cell communication in the nervous system. Results Probl Cell Differ 2000; 30:163-88. [PMID: 10857189 DOI: 10.1007/978-3-540-48002-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
66
|
Abstract
A variety of neurotrophic factors can influence the cell functions of the developing, mature and injured retinal ganglion cells. The discovery that retinal ganglion cell loss can be alleviated by neurotrophic factors has generated a great deal of interest in the therapeutic potential of these molecules. Recently, evidence has provided valuable information on the receptors that mediate these events and the intracellular signaling cascades after the binding of these ligands. Signaling by neurotrophic factors does not seem to restrict to retrograde messenger from the target but also includes local interactions with neighbouring cells along the axonal pathways, anterograde signaling from the afferents and autocrine signaling. More insight into the mechanisms of action of neurotrophic factors and the signal transduction pathway leading to the protection and regeneration of retinal ganglion cells may allow the design of new therapeutic strategies.
Collapse
Affiliation(s)
- H K Yip
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | |
Collapse
|
67
|
Yurek DM, Seroogy KB. Differential expression of neurotrophin and neurotrophin receptor mRNAs in and adjacent to fetal midbrain grafts implanted into the dopamine-denervated striatum. J Comp Neurol 2000; 423:462-73. [PMID: 10870086 DOI: 10.1002/1096-9861(20000731)423:3<462::aid-cne9>3.0.co;2-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study examined the expression of neurotrophins and neurotrophin receptors in the lesion/transplanted striatum at four different time points after transplantation. The ventral mesencephalic region was dissected from a single rat fetus at embryonic day 14 (E14) and implanted into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Transplanted rats were killed at 1, 2, 3, or 4 weeks after transplantation surgery and the brains subsequently prepared for semiquantitative in situ hybridization analysis of neurotrophin and neurotrophin trk receptors. Hybridization of cRNA probes for trkB or trkC showed a time-dependent reduction within the transplant during the first 4 weeks after transplantation; hybridization of brain-derived neurotrophic factor or tyrosine hydroxylase mRNA probes within the transplant did not change significantly during the same posttransplantation period. Hybridization of the trkB mRNA probe in host striatum adjacent to the transplant was significantly higher than probe hybridization in the corresponding region of the intact striatum during the first 2 weeks after transplantation, but by the 3rd and 4th week, probe hybridization in the denervated/transplanted and intact striatum were the same. Lesioned animals without transplants maintained higher trkB mRNA probe hybridization in the denervated striatum than in the intact striatum at the same postlesion time points suggesting that lesioned/transplanted animals show a normalization of trkB mRNA probe hybridization. Hybridization of the trkC mRNA probe in the lesioned/transplanted striatum was significantly lower than that observed in the intact striatum 4 weeks after transplantation; however, at this same time point we observed a similar reduction of trkC probed hybridization in lesioned animals without transplants. The results of the study show dynamic neurotrophic activity occurring within the transplant and host tissue during the first month of transplant development.
Collapse
Affiliation(s)
- D M Yurek
- Department of Surgery/Neurosurgery, University of Kentucky College of Medicine, Lexington 40536, USA.
| | | |
Collapse
|
68
|
Fiumelli H, Kiraly M, Ambrus A, Magistretti PJ, Martin JL. Opposite regulation of calbindin and calretinin expression by brain-derived neurotrophic factor in cortical neurons. J Neurochem 2000; 74:1870-7. [PMID: 10800929 DOI: 10.1046/j.1471-4159.2000.0741870.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of calbindin and calretinin expression by brain-derived neurotrophic factor (BDNF) was examined in primary cultures of cortical neurons using immunocytochemistry and northern blot analysis. Here we report that regulation of calretinin expression by BDNF is in marked contrast to that of calbindin. Indeed, chronic exposure of cultured cortical neurons for 5 days to increasing concentrations of BDNF (0.1-10 ng/ml) resulted in a concentration-dependent decrease in the number of calretinin-positive neurons and a concentration-dependent increase in the number of calbindin-immunoreactive neurons. Consistent with the immunocytochemical analysis, BDNF reduced calretinin mRNA levels and up-regulated calbindin mRNA expression, providing evidence that modifications in gene expression accounted for the changes in the number of calretinin- and calbindin-containing neurons. Among other members of the neurotrophin family, neurotrophin-4 (NT-4), which also acts by activating tyrosine kinase TrkB receptors, exerted effects comparable to those of BDNF, whereas nerve growth factor (NGF) was ineffective. As for BDNF and NT-4, incubation of cortical neurons with neurotrophin-3 (NT-3) also led to a decrease in calretinin expression. However, in contrast to BDNF and NT-4, NT-3 did not affect calbindin expression. Double-labeling experiments evidenced that calretinin- and calbindin-containing neurons belong to distinct neuronal subpopulations, suggesting that BDNF and NT-4 exert opposite effects according to the neurochemical phenotype of the target cell.
Collapse
Affiliation(s)
- H Fiumelli
- Institut de Physiologie, Faculté de Médecine, Université de Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
69
|
Fukami E, Nakayama A, Sasaki J, Mimura S, Mori N, Watanabe K. Underexpression of neural cell adhesion molecule and neurotrophic factors in rat brain following thromboxane A(2)-induced intrauterine growth retardation. Early Hum Dev 2000; 58:101-10. [PMID: 10854797 DOI: 10.1016/s0378-3782(00)00068-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Intrauterine growth retardation (IUGR) often results in clinical neurodevelopmental disorders. To clarify the influence of uteroplacental insufficiency on central nervous system development, we have created a model of IUGR in rats using maternal administration of synthetic thromboxane A(2). We investigated expression patterns of neural cell adhesion molecule (NCAM) and reelin in this model by semiquantitative competitive polymerase chain reactions. On postnatal day 2, NCAM expression was decreased in rat cerebral cortex, and reelin expression was decreased in hippocampus from levels in controls without maternal thromboxane exposure. No significant differences in NCAM expression were seen in hippocampus, nor did reelin expression differ in cerebral cortex between control and IUGR groups. We also examined expression of two neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). In cerebral cortex the IUGR group showed less BDNF and NT-3 expression than controls. Delay of neuronal migration and histological changes observed in our IUGR rats may be related to altered expression of these molecules.
Collapse
Affiliation(s)
- E Fukami
- Department of Pediatrics, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, 466-8550, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
70
|
Wassink TH, Nelson JJ, Crowe RR, Andreasen NC. Heritability of BDNF alleles and their effect on brain morphology in schizophrenia. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 88:724-8. [PMID: 10581496 DOI: 10.1002/(sici)1096-8628(19991215)88:6<724::aid-ajmg25>3.0.co;2-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulating evidence suggests that disturbed brain development may play a role in the etiology of schizophrenia, and that the illness is, to a significant degree, heritable. We therefore investigated brain derived neurotrophic factor (BDNF), a neurotrophin expressed in fetal brain, as a candidate disease gene for schizophrenia. We also investigated the effect of BDNF on adult brain morphology. All subjects were diagnosed by DSM-IIIR or DSM-IV criteria with schizophrenia spectrum disorders. Association of a BDNF polymorphism was examined in 48 proband-parent trios using the haplotype based haplotype relative risk method of case control. In a related group of 63 subjects, relationships between the presence or absence of allele 1 and the volumes of the major cerebral lobes, the ventricles, and the cerebellum were assessed using logistic regression. No association was found between this polymorphism and schizophrenia. Subjects who had at least one copy of allele 1, however, had larger parietal lobes than those who did not when controlling for overall cortical volume and age at the time of magnetic resonance. We did not find support for BDNF as a disease gene for schizophrenia. Allelic variability of the gene may, however, influence brain morphology in these same subjects. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 88:724-728, 1999.
Collapse
Affiliation(s)
- T H Wassink
- Mental Health Clinical Research Center, Department of Psychiatry, University of Iowa College of Medicine, Iowa.
| | | | | | | |
Collapse
|
71
|
|
72
|
Rabacchi SA, Kruk B, Hamilton J, Carney C, Hoffman JR, Meyer SL, Springer JE, Baird DH. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199908)40:2<254::aid-neu11>3.0.co;2-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
Cho HJ, Yoon KT, Kim HS, Lee SJ, Kim JK, Kim DS, Lee WJ. Expression of brain-derived neurotrophic factor in catecholaminergic neurons of the rat lower brainstem after colchicine treatment or hemorrhage. Neuroscience 1999; 92:901-9. [PMID: 10426531 DOI: 10.1016/s0306-4522(99)00039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Widespread brain-derived neurotrophic factor messenger RNA expression has been detected in the region of catecholamine groups of the rat lower brainstem, while few brain-derived neurotrophic factor-immunoreactive cells were found in this area. In the present study, a double-color immunofluorescence technique for brain-derived neurotrophic factor and tyrosine hydroxylase after colchicine treatment was employed to evaluate the possible presence of brain-derived neurotrophic factor immunoreactivity in the catecholaminergic cells of the rat lower brainstem. We detected many new brain-derived neurotrophic factor-immunoreactive cells in the A1, A2, A4, A6-A10 and C1-C3 cell groups and in the other lower brainstem nuclei where, without colchicine treatment, brain-derived neurotrophic factor messenger RNA was expressed, but not brain-derived neurotrophic factor immunoreactivity. In addition, the catecholaminergic neurons were found to express brain-derived neurotrophic factor immunoreactivity with the co-existence being greatest, in percentage terms, in medullary catecholaminergic cell groups. Hypotensive hemorrhage, which activates medullary catecholaminergic neurons, induced the expression of brain-derived neurotrophic factor immunoreactivity in catecholaminergic neurons (A1/C1 and C2). The results demonstrate that brain-derived neurotrophic factor is regulated by neuronal activity in medullary catecholaminergic cell groups involved in central cardiovascular regulation.
Collapse
Affiliation(s)
- H J Cho
- Department of Anatomy, School of Medicine, Kyungpook National University, Dongin Dong, Taegu, South Korea
| | | | | | | | | | | | | |
Collapse
|
74
|
Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 1999. [PMID: 10377350 DOI: 10.1523/jneurosci.19-13-05409.1999] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medium spiny neuron (MSN) is the major output neuron of the caudate nucleus and uses GABA as its primary neurotransmitter. A majority of MSNs coexpress DARPP-32 and ARPP-21, two dopamine and cyclic AMP-regulated phosphoproteins, and most of the matrix neurons express calbindin. DARPP-32 is the most commonly used MSN marker, but previous attempts to express this gene in vitro have failed. In this study we found that DARPP-32 is expressed in <12% of E13- or E17-derived striatal neurons when they are grown in defined media at high or low density in serum, dopamine, or Neurobasal/N2 (Life Technologies), and ARPP-21 is expressed in <1%. The percentage increases to 25% for DARPP-32 and 10% for ARPP-21 when the same cells are grown in Neurobasal/B27 (Life Technologies) for 7 d. After growth in Neurobasal/B27 plus brain-derived neurotrophic factor (BDNF) for 7 d, E13-derived MSNs are 53.7% DARPP-32-positive and 29. 0% ARPP-21-positive; E17-derived MSNs are 66.8% DARPP-32-positive and 51.5% ARPP-21-positive. The percentage of calbindin-positive neurons also is increased under these conditions. Finally, ARPP-21 expression is reduced in mice with a targeted deletion of the BDNF gene. We conclude that BDNF is required for the maturation of a large subset of patch and matrix MSNs in vivo and in vitro. In addition, we introduce a culture system in which highly differentiated MSNs may be generated, maintained, and studied.
Collapse
|
75
|
Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 1999. [PMID: 10366630 DOI: 10.1523/jneurosci.19-12-04972.1999] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes long-term potentiation (LTP) at hippocampal CA1 synapses by a presynaptic enhancement of synaptic transmission during high-frequency stimulation (HFS). Here we have investigated the mechanisms of BDNF action using two lines of BDNF knockout mice. Among other presynaptic impairments, the mutant mice exhibited more pronounced synaptic fatigue at CA1 synapses during high-frequency stimulation, compared with wild-type animals. Quantitative analysis of CA1 synapses revealed a significant reduction in the number of vesicles docked at presynaptic active zones in the mutant mice. Synaptosomes prepared from the mutant hippocampus exhibited a marked decrease in the levels of synaptophysin as well as synaptobrevin [vesicle-associated membrane protein (VAMP-2)], a protein known to be involved in vesicle docking and fusion. Treatment of the mutant slices with BDNF reversed the electrophysiological and biochemical deficits in the hippocampal synapses. Taken together, these results suggest a novel role for BDNF in the mobilization and/or docking of synaptic vesicles to presynaptic active zones.
Collapse
|
76
|
Kolbeck R, Bartke I, Eberle W, Barde YA. Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. J Neurochem 1999; 72:1930-8. [PMID: 10217270 DOI: 10.1046/j.1471-4159.1999.0721930.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although brain-derived neurotrophic factor is the most abundant and widely distributed neurotrophin in the nervous system, reproducible determinations of its levels have been hampered by difficulties in raising suitable monoclonal antibodies. Following immunization of mice with recombinant fish and mammalian brain-derived neurotrophic factor, monoclonal antibodies were generated and used in an immunoassay based on the recognition of two different epitopes. Neither antibody crossreacts with neurotrophin homodimers other than brain-derived neurotrophic factor, although reactivity was detected with brain-derived neurotrophic factor/neurotrophin-3 heterodimers. As both nerve growth factor and neurotrophin-3 are known to affect the development of a variety of neurons expressing the brain-derived neurotrophic factor (bdnf) gene, this assay was used to determine levels in tissues isolated from newborn mice carrying a null mutation in the nerve growth factor (ngf) or the neurotrophin-3 (nt3) gene. Marked differences were observed between mutants and wild-type littermates in the PNS, but not in the CNS, suggesting that neither nerve growth factor nor neurotrophin-3 is a unique regulator of brain-derived neurotrophic factor levels in the newborn mouse CNS.
Collapse
Affiliation(s)
- R Kolbeck
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | | |
Collapse
|
77
|
Abstract
Parkinson's disease (PD) is a neurodegenerative syndrome which primarily affects dopamine-producing neurons of the substantia nigra, resulting in poverty and slowness of movement, instability of gait and posture, and tremor at rest in individuals with the disease. While symptoms of the disease can be effectively managed for several years with available drugs, the syndrome is progressive and the efficacy of standard drugs wanes with time. One experimental approach to therapy is to use natural and synthetic molecules which promote survival and growth of dopaminergic neurons, so-called 'neurotrophic factors', to stabilise the diminishing population of dopaminergic neurons and stimulate compensation and growth in these cells. In this review, we examine the available evidence on 29 molecules with neurotrophic properties for dopaminergic neurons. The properties of these molecules provide ample reasons for optimism that a neurotrophic strategy can be developed that would provide a significant treatment option for patients with PD. While the search continues for even more specific, potent and long lasting agents, the single greatest challenge is the development of techniques for targeted delivery of these molecules.
Collapse
Affiliation(s)
- T J Collier
- Department of Neurological Sciences, Rush-Presbyterian St. Luke's Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|
78
|
Abstract
To investigate the molecular mechanisms of cholinergic sprouting in the hippocampus after removal of entorhinal cortical inputs, we evaluated trophic factor gene expression in the denervated hippocampus. Despite the proposed role for nerve growth factor (NGF) in this sprouting, we observed no change in NGF mRNA or protein at several postlesion time points. In contrast, FGF-2 mRNA was increased within 16 hr. FGF-2 immunoreactivity was localized within GFAP-positive hypertrophic astrocytes distributed specifically within the denervated outer molecular layer after the lesion. To address the functional significance of this increase in FGF-2, we assessed the magnitude of cholinergic sprouting in animals receiving chronic intracerebroventricular infusions of neutralizing antibodies specific for FGF-2 and compared it with that observed in lesioned animals receiving infusate controls. Animals given FGF-2 antibodies displayed a marked reduction in cholinergic sprouting as compared with controls. In fact, many of these animals exhibited virtually no sprouting at all despite histological verification of complete lesions. These results suggest that endogenous FGF-2 promotes cholinergic axonal sprouting in the injured adult brain. Furthermore, immunocytochemical localization of receptors for FGF-2 (i.e., FGFR1) on projecting basal forebrain cholinergic neurons suggests that FGF-2 acts directly on these neurons to induce the lesion-induced sprouting response.
Collapse
|
79
|
Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1999. [PMID: 9065491 DOI: 10.1523/jneurosci.17-07-02295.1997] [Citation(s) in RCA: 814] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sensitive immunohistochemical technique was used, along with highly specific affinity-purified antibodies to brain-derived neurotrophic factor (BDNF), to generate a detailed mapping of BDNF immunoreactivity (BDNF-ir) throughout the adult rat CNS. A parallel analysis of sites of BDNF synthesis was performed with in situ hybridization techniques using a cRNA probe to the exon encoding mature rat BDNF protein. These combined data revealed (1) groups of cell bodies containing diffuse BDNF-ir throughout the CNS that were strongly correlated with fields of cells containing BDNF mRNA; (2) varying degrees of BDNF-ir outside of cell bodies, in what appeared to be fibers and/or terminals; and (3) many regions containing extremely heavy BDNF-immunoreactive fiber/terminal labeling that lacked BDNF mRNA (e.g., medial habenula, central nucleus of the amygdala, bed nucleus of stria terminalis, lateral septum, and spinal cord). The latter observation suggested that in these regions BDNF was derived from anterograde axonal transport by afferent systems. In the two cases in which this hypothesis was tested by the elimination of select afferents, BDNF immunostaining was completely eliminated. These data, along with the observation that BDNF-ir was rarely found within dendrites or fibers en passage, suggest that BDNF protein produced in adult CNS neurons is polarized primarily along axonal processes and is preferentially stored in terminals within the innervation target.
Collapse
|
80
|
Rage F, Riteau B, Alonso G, Tapia-Arancibia L. Brain-derived neurotrophic factor and neurotrophin-3 enhance somatostatin gene expression through a likely direct effect on hypothalamic somatostatin neurons. Endocrinology 1999; 140:909-16. [PMID: 9927323 DOI: 10.1210/endo.140.2.6487] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although neurotrophins (NTs) have been extensively studied as neuronal survival factors in some areas of the central nervous system, little is known about their function or cellular targets in the hypothalamus. To understand their functional significance and sites of action on hypothalamic neurons, we examined the effects of their cognate ligands on neuropeptide content and messenger RNA (mRNA) expression in somatostatin neurons present in fetal rat hypothalamic cultures. Treatments were performed in defined insulin-free medium between days 6 and 8 of culture, since the maximal effects of NTs on somatostatin content and mRNA expression were observed after 48-h incubations. Brain-derived neurotrophic factor and NT-3, but not nerve growth factor, induced a dose-dependent increase in somatostatin content, which was influenced by plating density. The same treatment increased somatostatin mRNA and immunostaining intensity of somatostatin neurons, but had no effect on the number of these labeled neurons. The increased levels of somatostatin (peptide and mRNA) induced by NTs were not blocked by tetrodotoxin or by glutamate receptor antagonists, suggesting that endogenous neurotransmitters (e.g. glutamate) were not involved in these effects. In contrast, the stimulatory effects were completely blocked by K-252a, an inhibitor of tyrosine kinase (Trk) receptors, whereas the less active analog K-252b was ineffective. Double-labeling studies demonstrated that both TrkB or TrkC receptors were located on somatostatin neurons. Our results show that, in rat hypothalamic cultures, brain-derived neurotrophic factor, and NT-3 have a potent stimulatory effect on peptide synthesis in somatostatinergic neurons, likely through direct activation of TrkB and TrkC receptors.
Collapse
Affiliation(s)
- F Rage
- Laboratoire de Plasticité Cérébrale, EP 628 CNRS, Université de Montpellier 2, France
| | | | | | | |
Collapse
|
81
|
Conner JM, Lauterborn JC, Gall CM. Anterograde transport of neurotrophin proteins in the CNS--a reassessment of the neurotrophic hypothesis. Rev Neurosci 1998; 9:91-103. [PMID: 9711901 DOI: 10.1515/revneuro.1998.9.2.91] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The basic tenets of the neurotrophic hypothesis are that i) limiting quantities of a given factor are produced in specific target tissues; ii) responsive neurons projecting to these targets compete for the limiting amounts of the factor; iii) the factor is bound within the target by selective receptors on afferent terminals, internalized, and retrogradely transported to the neuronal cell body where it provides signals affecting neuronal survival and differentiation. Although originally formulated on the basis of evidence for NGF's actions on peripheral sensory and sympathetic neurons, the neurotrophic hypothesis appeared to be upheld for CNS neuronal systems as well, where NGF was found to function primarily as a target-derived trophic factor for basal forebrain cholinergic neurons. With the discovery of additional neurotrophins sharing considerable structural homology with NGF, the question arose of whether the neurotrophic hypothesis held true for all members of this protein family. Recent investigations into the localization and function of neurotrophins other than NGF, particularly BDNF and NT-3, have provided evidence indicating that these molecules may not act in a manner consistent with the neurotrophic hypothesis, as originally postulated. Numerous studies in the peripheral and central nervous systems have now demonstrated that BDNF (and NT-3) may be preferentially trafficked anterogradely along axonal processes and stored within pre-synaptic terminals. Other studies have suggested that these factors may be released in an activity-dependent, rather than constitutive, manner and can act in autocrine or paracrine fashions to subserve an assortment of biological functions including anterograde effects on cell survival and differentiation, as well as more novel roles in synaptic transmission. These recent findings strongly suggest that, while the various neurotrophin proteins may be grouped into a single family based upon their structural homology, they should be considered as a heterogeneous group of trophic factors based upon function and mode of action.
Collapse
Affiliation(s)
- J M Conner
- Department of Neurosciences, University of California San Diego, La Jolla 92093-0626, USA
| | | | | |
Collapse
|
82
|
Kuroda Y, McEwen BS. Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:35-9. [PMID: 9729259 DOI: 10.1016/s0169-328x(98)00130-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic restraint stress of rats for three weeks produces an atrophy of apical dendrites in the CA3 region of the hippocampus. This alteration is blocked by the novel antidepressant, tianeptine. In order to investigate the underlying mechanism of these phenomena, we evaluated the effect of chronic restraint and tianeptine on mRNA expression of neurotrophic factors such as brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and basic fibroblast growth factor (bFGF). Chronic restraint and tianeptine treatment did not change the expression of these neurotrophins in the rat hippocampus. We also evaluated the effects of stress and tianeptine on GAP-43 and MAP2, both of which are known to be related to the development of neurons. Chronic restraint resulted in a small decrease in GAP-43 mRNA expression in the CA3 region of the hippocampus, which was not prevented by the concomitant administration of tianeptine. MAP2 mRNA expression was not changed by either chronic stress or tianeptine treatment. We conclude that these neurotrophins, GAP-43 and MAP2 are not likely to be directly related to the chronic stress-induced dendritic atrophy or the prevention of the atrophy by tianeptine.
Collapse
Affiliation(s)
- Y Kuroda
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
83
|
Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P, Ibáñez CF. BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 1998; 21:305-15. [PMID: 9728912 DOI: 10.1016/s0896-6273(00)80540-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cajal-Retzius (CR) cells of the cerebral cortex express receptors for the neurotrophin brain-derived neurotrophic factor (BDNF) and downregulate expression of the extracellular matrix protein Reelin during early postnatal development, coincident with the onset of cortical BDNF expression. During this period, mice lacking BDNF have elevated levels of Reelin in CR cells. Acute BDNF stimulation of cortical neuron cultures and overexpression of BDNF in the developing brain of transgenic mice prior to the onset of endogenous production causes a profound, dose-dependent reduction of Reelin expression in CR cells. In addition, overexpression of BDNF produces gaps and heterotopias in the marginal zone and disorganization and aggregation of cortical CR cells and induces several other malformations, including aberrant cortical lamination, similar to the phenotype of reeler mutant mice, which lack Reelin. These results demonstrate a role for BDNF on cortical CR cells and identify Reelin as a direct effector of this neurotrophin during brain development.
Collapse
Affiliation(s)
- T Ringstedt
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Chao HM, Sakai RR, Ma LY, McEwen BS. Adrenal steroid regulation of neurotrophic factor expression in the rat hippocampus. Endocrinology 1998; 139:3112-8. [PMID: 9645683 DOI: 10.1210/endo.139.7.6114] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adrenal steroids and neurotrophic factors are important modulators of neuronal plasticity, function, and survival in the rat hippocampus. Adrenal steroids act through two receptor subtypes, the glucocorticoid receptor (GR) and the mineralocorticoid receptor, and activation of each receptor subtype has distinct biochemical and physiological consequences. Adrenal steroids may exert their effects on neuronal structure and function through the regulation of expression of neurotrophic and growth-associated factors. We have examined adrenal steroid regulation of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and basic fibroblast growth factor, as well as the growth associated protein GAP-43, through activation of GR or mineralocorticoid receptor with selective agonists. Our findings indicated that in CA2 pyramidal cells, adrenalectomy resulted in decreases in the levels of basic fibroblast growth factor and neurotrophin-3 messenger RNA, which were prevented by activation of mineralocorticoid but not glucocorticoid receptors. Adrenalectomy-induced increases in GAP-43 and brain-derived neurotrophic factor messenger RNA levels could be blocked by activation of glucocorticoid receptors in CA1, but not in CA3, pyramidal cells. Thus the extent to which adrenal steroids regulate hippocampal neurotrophic and growth-associated factors, appears to be dependent both on the adrenal steroid receptor subtype activated and on the hippocampal subregion examined.
Collapse
Affiliation(s)
- H M Chao
- The Rockefeller University, Laboratory of Neuroendocrinology, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
85
|
Fukumitsu H, Furukawa Y, Tsusaka M, Kinukawa H, Nitta A, Nomoto H, Mima T, Furukawa S. Simultaneous expression of brain-derived neurotrophic factor and neurotrophin-3 in Cajal-Retzius, subplate and ventricular progenitor cells during early development stages of the rat cerebral cortex. Neuroscience 1998; 84:115-27. [PMID: 9522367 DOI: 10.1016/s0306-4522(97)00505-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To identify production sites and action targets of neurotrophins during neurogenesis, we investigated immunoreactivities of neurotrophins and their tyrosine kinase receptors in the cerebral cortex of rat embryos. Two sets of ligand-receptor systems, brain-derived neurotrophic factor/TrkB and neurotrophin-3/TrkC, were expressed simultaneously in Cajal-Retzius, subplate neurons and ventricular multipotent stem cells at embryonic days 13 and 15. Intraventricular administration of brain-derived neurotrophic factor or neurotrophin-3 at embryonic day 16 markedly modulated microtubule-associated protein II and/or Hu protein expression in different ways in the cortical plate cells by embryonic day 20. These observations indicate the involvement of autocrine and/or local paracrine action of brain-derived neurotrophic factor and/or neurotrophin-3 during formation of the cerebral cortex.
Collapse
Affiliation(s)
- H Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Friedman WJ, Black IB, Kaplan DR. Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 1998; 84:101-14. [PMID: 9522366 DOI: 10.1016/s0306-4522(97)00526-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neurotrophin family of trophic factors influences survival and function of neurons in both the peripheral and central nervous systems. Critical information regarding physiological function of these factors may be gained by examining their localization in the brain. Here we report the immunocytochemical characterization of antisera directed against brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin 4/5. These antisera provide important tools to localize the bioactive neurotrophin proteins. Correspondence between protein distribution and previously determined messenger RNA expression was observed in some brain regions, such as hippocampus and cortex. However, neurotrophin proteins were also detected in neurons which have no apparent corresponding messenger RNA, indicating that the proteins may be transported from the sites of synthesis in certain populations. Immunocytochemical double-labelling analysis also indicated that a sub-population of neurotrophin-positive cells were labelled with an astrocyte marker (glial fibrillary acidic protein) as well, demonstrating that trophic molecules are localized to glial cells as well as neurons in vivo. Thus, the use of antisera specific for individual neurotrophic factors has indicated potential cellular sites of action.
Collapse
Affiliation(s)
- W J Friedman
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
87
|
Spalding KL, Cui Q, Harvey AR. The effects of central administration of neurotrophins or transplants of fetal tectal tissue on retinal ganglion cell survival following removal of the superior colliculus in neonatal rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:133-42. [PMID: 9602096 DOI: 10.1016/s0165-3806(98)00010-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In neonatal rats, intraocular injections of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) enhance the survival of retinal ganglion cells (RGCs) following superior colliculus (SC) ablation [Q. Cui, A.R. Harvey, At least two mechanisms are involved in the death of retinal ganglion cells following target ablation in neonatal rats, J. Neurosci., 15, 1995, pp. 8143-8155.]. The aim of the present study was to determine if: (i) fetal tectal tissue grafted into the lesion site, or (ii) neurotrophins applied centrally to the injured SC, also decreased lesion-induced RGC death. Nuclei of tectally projecting RGCs were identified by injecting diamidino yellow (DY) into the left SC of 2-day-old (P2) Wistar rats. Injected SCs were lesioned at P4. In some animals, embryonic (E16) tectal tissue was then implanted into the lesion cavity; host rats were perfused 24 h or 20 days later. In short-term (24-h) studies, the number of DY-labelled pyknotic profiles was compared to the number of normal DY-labelled RGCs in retinal wholemounts (right eyes). The proportion of dying RGCs in animals with grafts (10.7%, n = 17) was not significantly different from lesion-only rats (13.2%, n = 26). Nonetheless, the long-term (20-day) study showed that, in most rats, fetal tectal tissue survived in the lesion cavity and in some cases, the grafts received host retinal input. In another group, different doses of BDNF or NT-4/5 were applied to the SC after P4 tectal lesions. Rats were perfused 24 h later and the number of pyknotic vs. normal DY-labelled RGCs was determined. Initial trials in which SC lesions were filled with gelfoam soaked in BDNF or NT-4/5 were unsuccessful; however, RGC death was reduced (p < 0.05, Dunnett's test) in rats that received gelfoam implants as well as focal neurotrophin injections into SC rostral to the lesion. The lowest pyknotic rate in individual animals from the BDNF and NT-4/5 groups was 2.41% and 2.01%, respectively. Overall, the proportion of dying RGCs was 7.0% (n = 8) for BDNF and 7.4% (n = 17) for NT-4/5 treated rats. Normal RGC densities were also significantly higher in these animals. NT-4/5 topically applied to the posterior surface of the eye did not reduce RGC death. The data show that the viability of injured neonatal RGCs is increased by specific retrograde neurotrophin-mediated survival signals which can be activated from the SC.
Collapse
Affiliation(s)
- K L Spalding
- Department of Anatomy and Human Biology, University of Western Australia, Nedlands, Perth, Australia
| | | | | |
Collapse
|
88
|
Abstract
Optic nerve section in the newborn rat results in a rapid apoptotic degeneration of most axotomized retinal ganglion cells (RGCs). This massive process of neuronal death has been ascribed mainly to the interruption of a trophic factor supply from target structures rather than to the axonal damage per se. To distinguish between these two possibilities, we induced a reversible axonal transport blockade in the developing optic nerve by topical application of a local anesthetic (lidocaine). Light and electron microscopy showed no alterations in the fine structure of treated optic nerves. Retinae of treated and control rats were stained with cresyl violet and examined at different times after surgery. We found that axonal transport blockade induced only a limited number of pyknotic RGCs. Degeneration of these cells was completely prevented by inhibiting protein synthesis during lidocaine application. We conclude that the rapid degeneration of RGCs after axotomy can be ascribed only partly to the loss of retrogradely transported trophic factors.
Collapse
|
89
|
Ivkovic S, Polonskaia O, Fariñas I, Ehrlich ME. Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium spiny neurons: studies in vivo and in vitro. Neuroscience 1997; 79:509-16. [PMID: 9200733 DOI: 10.1016/s0306-4522(96)00684-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The medium spiny neuron is the predominant striatal neuronal subtype. The striatum, a participant in motor and cognitive functions, is a site of pathophysiology in prevalent neuropsychiatric diseases and is the target of many currently utilized pharmacologic agents. DARPP-32, a dopamine and cyclic AMP-regulated phosphoprotein, is a widely-used marker of mature striatal medium-sized neurons, but the molecules regulating DARPP-32 transcription have not been identified. We show that a null mutation in the mouse brain-derived neurotrophic factor gene leads to decreased DARPP-32 immunoreactivity in striatal medium spiny neurons at birth and postnatal day 10. Striatal DARPP-32 messenger RNA and protein are decreased relative to wild-type littermate controls. In densely plated (1 x 10(6) cells/cm2) primary cultures derived from the ganglionic eminences, addition of brain-derived neurotrophic factor (100 ng/ml) to defined media results in a greater than 3-fold increase in the number of DARPP-32-immunopositive cells after 12 h and greater than 4-fold (P<0.005) after 24 h. The increase in DARPP-32-immunopositivity is abolished by the addition of 2 microg/ml actinomycin D without a significant effect on cell viability. These data suggest that brain-derived neurotrophic factor directly or indirectly regulates DARPP-32 transcription in medium spiny neurons. This is the first demonstration of transcriptional regulation of DARPP-32, and the first evidence of a forebrain abnormality in a newborn neurotrophin "knockout" mouse.
Collapse
Affiliation(s)
- S Ivkovic
- Department of Psychiatry, New York University Medical Center, New York 10016, U.S.A
| | | | | | | |
Collapse
|
90
|
Salim KN, McEwen BS, Chao HM. Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:177-82. [PMID: 9221915 DOI: 10.1016/s0169-328x(97)00042-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginsenoside Rb1 (Rb1), a saponin of North American ginseng (Panax quinquefolium L.), has been found to exert beneficial effects on memory and learning, putatively through its actions on the cholinergic system. In situ hybridization studies show that Rb1 increases the expression of choline acetyltransferase and trkA mRNAs in the basal forebrain and nerve growth factor mRNA in the hippocampus. Other neurotrophins (brain-derived neurotrophic factor, neurotrophin-3), genes encoding neuropeptides (preproenkephalin, preprotachykinin) and amyloid protein precursor were also studied, but no significant change was observed. These findings support the specificity of the effects of Rb1 on certain aspects of the cholinergic and neurotrophic systems.
Collapse
Affiliation(s)
- K N Salim
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
91
|
TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J Neurosci 1997. [PMID: 9133385 DOI: 10.1523/jneurosci.17-10-03623.1997] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Newborn mice carrying targeted mutations in genes encoding neurotrophins or their signaling Trk receptors display severe neuronal deficits in the peripheral nervous system but not in the CNS. In this study, we show that trkB (-/-) mice have a significant increase in apoptotic cell death in different regions of the brain during early postnatal life. The most affected region in the brain is the dentate gyrus of the hippocampus, although elevated levels of pyknotic nuclei were also detected in cortical layers II and III and V and VI, the striatum, and the thalamus. Furthermore, axotomized hippocampal and motor neurons of trkB (-/-) mice have significantly lower survival rates than those of wild-type littermates. These results suggest that neurotrophin signaling through TrkB receptors plays a role in the survival of CNS neurons during postnatal development. Moreover, they indicate that TrkB receptor signaling protects subpopulations of CNS neurons from injury- and axotomy-induced cell death.
Collapse
|
92
|
Zhou J, Bradford HF, Stern GM. Influence of BDNF on the expression of the dopaminergic phenotype of tissue used for brain transplants. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 100:43-51. [PMID: 9174245 DOI: 10.1016/s0165-3806(97)00019-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been shown by this laboratory among others to promote survival and differentiation of central dopaminergic neurons and to stimulate expression of the dopaminergic phenotype in fetal cerebrocortex in vitro. We have examined the effect of BDNF antibody on nigral dopaminergic neurons in vivo and in vitro. It reduced the survival of rat fetal dopaminergic neurons in culture (up to 40% died). The BDNF antibody also caused ipsilateral rotation after a single in vivo intranigral injection in the adult rats. Pre-treatment of fetal nigral neurons with BDNF improved the performance of dopaminergic cells in fetal nigral transplants based on surviving TH+ cells numbers. Thus, parkinsonian rats receiving fetal nigral cells treated with BDNF showed a significantly greater reduction of turning over the 3 weeks following transplantation, compared with the rats receiving untreated nigral transplants. However, the average number of tyrosine hydroxylase (TH)-positive neurons in the grafts of rats receiving fetal nigral cells treated with BDNF was 211 +/- 35 which was only about 20% of the cell number (1012 +/- 223, mean +/- S.E.M.) found in those receiving untreated nigral transplants. These results suggest that pretreatment of nigral dopaminergic neurons with BDNF may improve their functional performance, but not their survival in transplants. The ability of artificially induced cerebrocortical 'dopaminergic' cells to ameliorate behavioral asymmetry of Parkinsonian rats was assessed. A proportion (1.0% maximum) of the TH+ neurons in these transplants survived in the host brain and were likely to be responsible for the prominent reduction in rotation scores observed to occur 6 weeks after implantation. Thus, the combined treatment of fetal cerebral cortex with BDNF and dopamine created long-lived TH-expressing neuronal populations which were very effective in alleviating the rat parkinsonian model, and thus may be suitable for use in transplantation in treating human Parkinson's disease.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
93
|
Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 1997; 78:431-48. [PMID: 9145800 DOI: 10.1016/s0306-4522(96)00613-6] [Citation(s) in RCA: 409] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have generated and characterized a multi-functional polyclonal anti-brain-derived neurotrophic factor antibody. Western blot analysis, dorsal root ganglion neurite outgrowth and dorsal root ganglion neuron survival assays showed that this antibody specifically recognized brain-derived neurotrophic factor and not the other neurotrophins. Furthermore, it was capable of blocking the functional effects of brain-derived neurotrophic factor. Using this antibody, we examined the expression of brain-derived neurotrophic factor in adult rat brains by immunohistochemistry. We found distinct brain-derived neurotrophic factor immunoreactivity in several structures of the brain. These included the neocortex, piriform cortex, amygdaloid complex, hippocampal formation, claustrum, some thalamic and hypothalamic nuclei, the substantia nigra and some brainstem structures. In contrast to brain-derived neurotrophic factor messenger RNA expression, brain-derived neurotrophic factor immunoreactivity was also found in the lateral septum, bed nucleus of the stria teminalis, medial preoptic nucleus, olivery pretectal nucleus, lateral paragigantocellular nucleus and the dorsal horn of the spinal cord. In normal adult rat brains, there was little or no staining in the CA1 region or the granule cell layer of the dentate gyrus of the hippocampus. However, kainate treatments greatly increased brain-derived neurotrophic factor immunoreactivity in the pyramidal cells of the CA1 region, as well as in the dentate gyrus, CA2 and CA3 hippocampal regions. We present evidence for both the subcellular localization and anterograde transport of endogenous brain-derived neurotrophic factor in the central nervous system. The detection of brain-derived neurotrophic factor protein in several discrete regions of the adult brain, and brain-derived neurotrophic factor's dramatic up-regulation following kainate treatment, strongly supports a role of brain-derived neurotrophic factor in the maintenance of adult neurons and synapses. Since several populations of neurons lost during neurodegenerative diseases synthesize brain-derived neurotrophic factor protein, modulation of brain-derived neurotrophic factor levels may be clinically beneficial. The antibody described in this paper will be helpful in determining more precisely the functional activities of brain-derived neurotrophic factor in the adult.
Collapse
Affiliation(s)
- Q Yan
- Department of Neuroscience, Amgen Inc., Thousand Oaks, CA 91320, U.S.A
| | | | | | | | | | | | | |
Collapse
|
94
|
Fournier A, Beer J, Arregui C, Essagian C, Aguayo A, McKerracher L. Brain-derived neurotrophic factor modulates GAP-43 but not t?1 expression in injured retinal ganglion cells of adult rats. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970315)47:6<561::aid-jnr1>3.0.co;2-b] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
95
|
Abstract
Neurotrophins play important roles in the survival, differentiation, and maintenance of CNS neurons. To begin to investigate specific roles for these factors in the mammalian visual system, we have examined the cellular localization of the neurotrophin receptor trkB within the developing cerebral cortex and thalamus of the ferret using extracellular domain-specific antibodies. At prenatal ages (gestation is 41 d), trkB-immunostained fibers were observed in the internal capsule and as two distinct fascicles within the intermediate zone of the cerebral cortex. The staining of these fiber tracts declined with increasing age, whereas soma and dendrite staining of cortical neurons was first evident in early postnatal life and increased during subsequent development. Staining of subplate neurons [by prenatal day 5 (P5)] was followed by staining of cortical layer 5 neurons (at P10). By P31, trkB immunoreactivity was particularly prominent in layers 3 and 5 but was absent from subplate neurons. Staining included cells, especially pyramidal neurons, in all cortical layers by P45, and this pattern was maintained into adulthood. The optic tract and fibers within the lateral geniculate nucleus (LGN) were also strongly trkB immunoreactive at prenatal ages. Cellular staining of a subset of LGN neurons, those within the C-layers and perigeniculate nucleus, was apparent by P10 and maintained until P45, when the adult pattern of highly trkB-immunoreactive neurons in all layers of the LGN first appeared. The pattern of trkB immunoreactivity suggests that specific subsets of cortical and thalamic neurons may respond to neurotrophins such as brain-derived neurotrophic factor and/or NT-4/5 at discrete developmental times and locations. The appearance of trkB on axon fibers early in development and then on cell bodies and dendritic processes later is consistent with roles for both long-range and local, including autocrine and/or paracrine, delivery of neurotrophins in cell survival and maturation.
Collapse
|
96
|
Mathern GW, Babb TL, Micevych PE, Blanco CE, Pretorius JK. Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 30:53-76. [PMID: 9138429 DOI: 10.1007/bf02815150] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study determined in temporal lobe epilepsy patients if there were correlations among hippocampal granule cell expression of neurotrophin mRNAs, aberrant supragranular mossy fiber sprouting, and neuron losses. Consecutive surgically resected hippocampi (n = 9) and comparison tissue from autopsies (n = 3) were studied for: 1. Granule cell mRNA levels using in situ hybridization for brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3); 2. neo-Timm supragranular mossy fiber sprouting; and 3. Ammon's horn neuron densities. Clinically, patients were classified into those with hippocampal sclerosis (HS; n = 7) and non-HS cases (i.e., mass lesions and autopsies; n = 5). Results showed that compared to non-HS cases, HS patients showed increased granule cell mRNA levels for BDNF, NGF, and NT-3 (p = 0.035, p = 0.04, p = 0.045 respectively; one-tail directional test). Moreover, granule cell BDNF mRNA levels correlated inversely with Ammon's horn neuron densities (p = 0.02) and correlated positively with greater supragranular mossy fiber sprouting (p = 0.02). NGF mRNA levels correlated inversely with Ammon's horn neuron densities (p = 0.02), and NT-3 mRNA levels correlated inversely with age at surgery (p = 0.04) and correlated positively with greater mossy fiber sprouting (p = 0.026). These results indicate in the chronically damaged human hippocampus that granule cells express neurotrophin mRNAs, and mRNA levels correlate with either hippocampal neuron losses or aberrant supragranular mossy fiber sprouting. These data support the hypothesis that in the epileptic human hippocampus, there may be pathophysiologic associations among mossy fiber synaptic plasticity, hippocampal neuron damage, and granule cell mRNA neurotrophin levels.
Collapse
Affiliation(s)
- G W Mathern
- Department of Neurology, UCLA School of Medicine 90095-1769, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
Neurotrophic factors are traditionally viewed as secretory proteins that regulate long-term survival and differentiation of neurons. The role of neurotrophic factors in the structural integrity of the nervous system makes them attractive candidates as therapeutic agents for neurodegenerative diseases. However, the fact that expression of many neurotrophic factors in the central nervous system is rapidly enhanced by neuronal activity suggests a new role for these factors in activity-dependent processes, such as synaptic development and plasticity. A series of recent studies has provided strong evidence for this novel function of neurotrophic factors. The neurotrophin family of proteins has been shown to acutely potentiate synaptic transmission at the neuromuscular junction and in the brain. These factors are also involved in the maturation of the neuromuscular synapses and in the development of synapses in the visual system. Gene targeting and physiological experiments demonstrate that brain-derived neurotrophic factor (BDNF) plays an important role in long-term potentiation (LTP), a cellular model for learning and memory. These findings have brought together two hotly pursued areas of neuroscience, namely, the function of neurotrophic factors and the mechanisms for synaptic plasticity. Continuous studies in this new field will help understand how synapses develop and function in the brain, and may have significant implications in treating learning disorders in both children and adults.
Collapse
Affiliation(s)
- B Lu
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4480, USA
| | | |
Collapse
|
98
|
Zhou J, Pliego-Rivero B, Bradford HF, Stern GM. The BDNF content of postnatal and adult rat brain: the effects of 6-hydroxydopamine lesions in adult brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:297-303. [PMID: 8997515 DOI: 10.1016/s0165-3806(96)00159-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been well studied for its effects in improving survival and differentiation of the central and peripheral nervous system. In order to understand the developing CNS and the pathogenesis of brain injury, an enzyme immunoassay was employed to detect BDNF protein in the various tissues of developing and adult animals. Increased levels of the BDNF were found in the hippocampus, cerebrocortex, striatum, cerebellum and ventral mesencephalon in 2-week-old rats, compared with that in postnatal day 0 pups. In the adult rat, the highest level of BDNF was detected in the hippocampus (14.5 +/- 0.8 ng/g wet tissue), with a relatively high level also observed in the cerebrocortex and striatum. In peripheral tissues, a substantial amount of BDNF protein was observed in various organs. The changes in BDNF levels in the striatum and the ventral mesencephalon of unilaterally 6-hydroxydopamine-lesioned young adult rats were also examined. Significant increases of BDNF levels were detected during 2 weeks after lesion.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
99
|
Abstract
Cajal-Retzius (CR) cells are transient, pioneer neurons of layer I of the cortex that are believed to play essential roles in corticogenesis, e.g., in neuronal migration and synaptogenesis. Here we have used calretinin immunostaining to study the characteristics, survival, and fate of CR cells in single organotypic slice cultures of mouse neocortex and hippocampus deprived of their extrinsic afferents. In neocortical explants, CR cells were observed after 1-3 d in vitro (DIV), but they disappeared after 5-7 DIV, which is similar to their time of degeneration in vivo. The disappearance of CR cells in neocortical slices was prevented by incubation with tetrodotoxin and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3,-dione but not by 2-amino-5-phosphonopentanoic acid, suggesting that neuronal activity and non-NMDA glutamate receptors may trigger CR cell death in the neocortex. In contrast to the situation in vivo, in which many hippocampal CR cells disappear at approximately the third postnatal week, CR cells survived in single hippocampal cultures after long incubation times (31 DIV), with their morphology essentially unaltered. In contrast, fewer CR cells were found when hippocampal slices were cocultured with explants from the entorhinal cortex. Because CR cells are transient synaptic targets for entorhinohippocampal afferents, these findings suggest a role for entorhinal afferents in the degeneration of CR cells in the hippocampus. In conclusion, this study shows different survival properties of CR cells in organotypic slice cultures of hippocampus and neocortex, and it suggests that different mechanisms are involved in the regulation of the process of naturally occurring CR cell death in the two cortical regions.
Collapse
|
100
|
Kawamoto Y, Nakamura S, Nakano S, Oka N, Akiguchi I, Kimura J. Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neuroscience 1996; 74:1209-26. [PMID: 8895887 DOI: 10.1016/0306-4522(96)00245-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the role of brain-derived neurotrophic factor in the central nervous system, we produced an anti-peptide antibody that specifically recognized brain-derived neurotrophic factor and performed immunohistochemistry for brain-derived neurotrophic factor-like immunoreactivity in normal adult rat brain. A synthetic peptide (EKVPVSKGQL), derived from mature brain-derived neurotrophic factor, was conjugated to bovine thyroglobulin at a ratio of 1:3 and used as an immunogen to produce a high-titre anti-brain-derived neurotrophic factor polyclonal antibody in Japanese white rabbits. Dot blotting demonstrated that the antiserum could detect 3.91 pmol of synthetic peptide, and Western blotting showed that the antiserum recognized one band with a molecular weight consistent with that of brain-derived neurotrophic factor. In immunohistochemistry, brain-derived neurotrophic factor-like immunoreactivity was widespread in adult rat brain, including cerebral cortex, hippocampus, basal forebrain, striatum, hypothalamus, brainstem and cerebellum. Not only neuronal somata but also nerve fibres showed positive staining. Our data suggest that brain-derived neurotrophic factor is transported through axons in a subpopulation of neurons in adult rat brain, and that brain-derived neurotrophic factor influences a great variety of neurons and acts as a neurotrophic factor in the central nervous system.
Collapse
Affiliation(s)
- Y Kawamoto
- Department of Neurology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|