51
|
Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P, Gibbard C, Clarke M, Jennaway R, Bancroft I. The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 33:349-362. [PMID: 24489479 PMCID: PMC3901927 DOI: 10.1007/s11032-013-9954-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/05/2013] [Indexed: 05/18/2023]
Abstract
Many important plant species have polyploidy in their recent ancestry, complicating inferences about the genetic basis of trait variation. Although the principal locus controlling the proportion of polyunsaturated fatty acids (PUFAs) in seeds of Arabidopsis thaliana is known (fatty acid desaturase 2; FAD2), commercial cultivars of a related crop, oilseed rape (Brassica napus), with very low PUFA content have yet to be developed. We showed that a cultivar of oilseed rape with lower than usual PUFA content has non-functional alleles at three of the four orthologous FAD2 loci. To explore the genetic basis further, we developed an ethyl methanesulphonate mutagenised population, JBnaCAB_E, and used it to identify lines that also carried mutations in the remaining functional copy. This confirmed the hypothesised basis of variation, resulting in an allelic series of mutant lines showing a spectrum of PUFA contents of seed oil. Several lines had PUFA content of ~6 % and oleic acid content of ~84 %, achieving a long-standing industry objective: very high oleic, very low PUFA rapeseed without the use of genetic modification technology. The population contains a high rate of mutations and represents an important resource for research in B. napus.
Collapse
Affiliation(s)
- Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | - Leah Clissold
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present Address: The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Colin Morgan
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Peter Werner
- KWS UK Ltd., 56 Church Street, Thriplow, Hertfordshire, SG8 7RE UK
| | - Carl Gibbard
- KWS UK Ltd., 56 Church Street, Thriplow, Hertfordshire, SG8 7RE UK
| | | | - Richard Jennaway
- Saaten-Union UK Ltd., Rosalie Field Station, Bradley Road, Cowlinge, Newmarket, Suffolk, CB8 9HU UK
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present Address: Department of Biology, University of York, Heslington, York, YO41 5DD UK
| |
Collapse
|
52
|
A mutant Brassica napus (canola) population for the identification of new genetic diversity via TILLING and next generation sequencing. PLoS One 2013; 8:e84303. [PMID: 24376800 PMCID: PMC3869819 DOI: 10.1371/journal.pone.0084303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/13/2013] [Indexed: 12/19/2022] Open
Abstract
We have generated a Brassica napus (canola) population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075). This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus) with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.
Collapse
|
53
|
Chantreau M, Grec S, Gutierrez L, Dalmais M, Pineau C, Demailly H, Paysant-Leroux C, Tavernier R, Trouvé JP, Chatterjee M, Guillot X, Brunaud V, Chabbert B, van Wuytswinkel O, Bendahmane A, Thomasset B, Hawkins S. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC PLANT BIOLOGY 2013; 13:159. [PMID: 24128060 PMCID: PMC3853753 DOI: 10.1186/1471-2229-13-159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/09/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. RESULTS A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. CONCLUSIONS We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.
Collapse
Affiliation(s)
- Maxime Chantreau
- Université Lille Nord de France, Lille 1 UMR 1281, Villeneuve d'Ascq cedex F-59650, France
- INRA UMR, 281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d’Ascq F-59650, France
| | - Sébastien Grec
- Université Lille Nord de France, Lille 1 UMR 1281, Villeneuve d'Ascq cedex F-59650, France
- INRA UMR, 281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d’Ascq F-59650, France
| | - Laurent Gutierrez
- CRRBM, UFR des Sciences, UPJV, 33 rue Saint Leu, Amiens cedex 80039, France
| | - Marion Dalmais
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, INRA, 2 rue Gaston Crémieux CP 5708, Evry cedex 91057, France
| | | | - Hervé Demailly
- CRRBM, UFR des Sciences, UPJV, 33 rue Saint Leu, Amiens cedex 80039, France
| | | | | | - Jean-Paul Trouvé
- Terre de Lin, société cooperative agricole, Saint-Pierre-Le-Viger, 76 740, France
| | - Manash Chatterjee
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat 396195, India
- National University of Ireland Galway (NUIG), University Road, Galway, Ireland
| | | | - Véronique Brunaud
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, INRA, 2 rue Gaston Crémieux CP 5708, Evry cedex 91057, France
| | - Brigitte Chabbert
- INRA, UMR614 Fractionnement des AgroRessources et Environnement, Reims F-51100, France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, Reims F-51100, France
| | | | - Abdelhafid Bendahmane
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, INRA, 2 rue Gaston Crémieux CP 5708, Evry cedex 91057, France
| | - Brigitte Thomasset
- CNRS-FRE 3580, GEC, Université de Technologie de Compiègne, CS 60319, Compiègnecedex 60203, France
| | - Simon Hawkins
- Université Lille Nord de France, Lille 1 UMR 1281, Villeneuve d'Ascq cedex F-59650, France
- INRA UMR, 281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d’Ascq F-59650, France
| |
Collapse
|
54
|
Cheng J, Zhu LH, Salentijn EMJ, Huang B, Gruber J, Dechesne AC, Krens FA, Qi W, Visser RGF, van Loo EN. Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC PLANT BIOLOGY 2013; 13:146. [PMID: 24083776 PMCID: PMC3829706 DOI: 10.1186/1471-2229-13-146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/24/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Crambe abyssinica produces high erucic acid (C22:1, 55-60%) in the seed oil, which can be further increased by reduction of polyunsaturated fatty acid (PUFA) levels. The omega-6 fatty acid desaturase enzyme (FAD2) is known to be involved in PUFA biosynthesis. In crambe, three CaFAD2 genes, CaFAD2-C1, CaFAD2-C2 and CaFAD2-C3 are expressed. RESULTS The individual effect of each CaFAD2 gene on oil composition was investigated through studying transgenic lines (CaFAD2-RNAi) for differential expression levels in relation to the composition of seed-oil. Six first generation transgenic plants (T1) showed C18:1 increase (by 6% to 10.5%) and PUFA reduction (by 8.6% to 10.2%). The silencing effect in these T1-plants ranged from the moderate silencing (40% to 50% reduction) of all three CaFAD2 genes to strong silencing (95% reduction) of CaFAD2-C3 alone. The progeny of two T1-plants (WG4-4 and WG19-6) was further analysed. Four or five transgene insertions are characterized in the progeny (T2) of WG19-6 in contrast to a single insertion in the T2 progeny of WG4-4. For the individual T2-plants of both families (WG19-6 and WG4-4), seed-specific silencing of CaFAD2-C1 and CaFAD2-C2 was observed in several individual T2-plants but, on average in both families, the level of silencing of these genes was not significant. A significant reduction in expression level (P < 0.01) in both families was only observed for CaFAD2-C3 together with significantly different C18:1 and PUFA levels in oil. CONCLUSIONS CaFAD2-C3 expression is highly correlated to levels of C18:1 (r = -0.78) and PUFA (r = 0.75), which suggests that CaFAD2-C3 is the most important one for changing the oil composition of crambe.
Collapse
Affiliation(s)
- Jihua Cheng
- Wageningen UR Plant Breeding, P.O. Box 16, 6700, AA Wageningen, The Netherlands
- College of Life Science, Hubei University, Wuhan, People’s Republic of China
| | - Li-Hua Zhu
- Plant Breeding and Biotechnology, Swedish University of Agricultural Science, Alnarp, Sweden
| | - Elma MJ Salentijn
- Wageningen UR Plant Breeding, P.O. Box 16, 6700, AA Wageningen, The Netherlands
| | - Bangquan Huang
- College of Life Science, Hubei University, Wuhan, People’s Republic of China
| | - Jens Gruber
- Institute for Biology I-Botany, RWTH Aachen University, Aachen, Germany
| | | | - Frans A Krens
- Wageningen UR Plant Breeding, P.O. Box 16, 6700, AA Wageningen, The Netherlands
| | - Weicong Qi
- Wageningen UR Plant Breeding, P.O. Box 16, 6700, AA Wageningen, The Netherlands
- College of Life Science, Hubei University, Wuhan, People’s Republic of China
| | - Richard GF Visser
- Wageningen UR Plant Breeding, P.O. Box 16, 6700, AA Wageningen, The Netherlands
| | - Eibertus N van Loo
- Wageningen UR Plant Breeding, P.O. Box 16, 6700, AA Wageningen, The Netherlands
| |
Collapse
|
55
|
Wells R, Trick M, Fraser F, Soumpourou E, Clissold L, Morgan C, Pauquet J, Bancroft I. Sequencing-based variant detection in the polyploid crop oilseed rape. BMC PLANT BIOLOGY 2013; 13:111. [PMID: 23915099 PMCID: PMC3750413 DOI: 10.1186/1471-2229-13-111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND The detection and exploitation of genetic variation underpins crop improvement. However, the polyploid nature of the genomes of many of our most important crops represents a barrier, particularly for the analysis of variation within genes. To overcome this, we aimed to develop methodologies based on amplicon sequencing that involve the incorporation of barcoded amplification tags (BATs) into PCR products. RESULTS A protocol was developed to tag PCR products with 5' 6-base oligonucleotide barcode extensions before pooling for sequencing library production using standard Illumina adapters. A computational method was developed for the de-convolution of products and the robust detection and scoring of sequence variants. Using this methodology, amplicons targeted to gene sequences were screened across a B. napus mapping population and the resulting allele scoring strings for 24 markers linkage mapped to the expected regions of the genome. Furthermore, using one-dimensional 8-fold pooling, 4608 lines of a B. napus mutation population were screened for induced mutations in a locus-specific amplicon (an orthologue of GL2.b) and mixed product of three co-amplified loci (orthologues of FAD2), identifying 10 and 41 mutants respectively. CONCLUSIONS The utilisation of barcode tags to de-convolute pooled PCR products in multiplexed, variation screening via Illumina sequencing provides a cost effective method for SNP genotyping and mutation detection and, potentially, markers for causative changes, even in polyploid species. Combining this approach with existing Illumina multiplexing workflows allows the analysis of thousands of lines cheaply and efficiently in a single sequencing run with minimal library production costs.
Collapse
Affiliation(s)
- Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fiona Fraser
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Leah Clissold
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Colin Morgan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jérôme Pauquet
- BIOGEMMA S.A.S., Chemin de Panedautes, Domaine de Sandreau, 31700, Mondonville, France
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
56
|
Tsai H, Missirian V, Ngo KJ, Tran RK, Chan SR, Sundaresan V, Comai L. Production of a high-efficiency TILLING population through polyploidization. PLANT PHYSIOLOGY 2013; 161:1604-14. [PMID: 23417087 PMCID: PMC3613442 DOI: 10.1104/pp.112.213256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Targeting Induced Local Lesions in Genomes (TILLING) provides a nontransgenic method for reverse genetics that is widely applicable, even in species where other functional resources are missing or expensive to build. The efficiency of TILLING, however, is greatly facilitated by high mutation density. Species vary in the number of mutations induced by comparable mutagenic treatments, suggesting that genetic background may affect the response. Allopolyploid species have often yielded higher mutation density than diploids. To examine the effect of ploidy, we autotetraploidized the Arabidopsis (Arabidopsis thaliana) ecotype Columbia, whose diploid has been used for TILLING extensively, and mutagenized it with 50 mm ethylmethane sulfonate. While the same treatment sterilized diploid Columbia, the tetraploid M1 plants produced good seed. To determine the mutation density, we searched 528 individuals for induced mutations in 15 genes for which few or no knockout alleles were previously available. We constructed tridimensional pools from the genomic DNA of M2 plants, amplified target DNA, and subjected them to Illumina sequencing. The results were analyzed with an improved version of the mutation detection software CAMBa that accepts any pooling scheme. This small population provided a rich resource with approximately 25 mutations per queried 1.5-kb fragment, including on average four severe missense and 1.3 truncation mutations. The overall mutation density of 19.4 mutations Mb(-1) is 4 times that achieved in the corresponding diploid accession, indicating that genomic redundancy engenders tolerance to high mutation density. Polyploidization of diploids will allow the production of small populations, such as less than 2,000, that provide allelic series from knockout to mild loss of function for virtually all genes.
Collapse
|
57
|
Okabe Y, Ariizumi T, Ezura H. Updating the Micro-Tom TILLING platform. BREEDING SCIENCE 2013; 63:42-8. [PMID: 23641180 PMCID: PMC3621444 DOI: 10.1270/jsbbs.63.42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/25/2012] [Indexed: 05/25/2023]
Abstract
The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
58
|
Lai KS, Kaothien-Nakayama P, Iwano M, Takayama S. A TILLING resource for functional genomics in Arabidopsis thaliana accession C24. Genes Genet Syst 2013; 87:291-7. [PMID: 23412631 DOI: 10.1266/ggs.87.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that can be employed to generate allelic series of induced mutations in targeted genes for functional analyses. To date, TILLING resources in Arabidopsis thaliana are only available in accessions Columbia and Landsberg erecta. Here, we extended the Arabidopsis TILLING resources by developing a new population of ethyl methanesulfonate (EMS)-induced mutant lines in another commonly used A. thaliana accession C24. A permanent collection of 3,509 independent EMS mutagenized M2 lines was developed in A. thaliana accession C24, and designated C24TILL. Using the TILLING method to search C24TILL for mutations in four selected genes identified a total of 73 mutations, comprising 69.6% missense, 29.0% sense, and 1.4% nonsense mutations. Consistent with the propensity of EMS to induce guanine alkylation, 98.4% of the observed mutations were G/C to A/T transitions. Based on the mutations identified in the four target genes, the overall mutation density in the C24TILL collection was estimated to be 1/345 kb. TILLING the DUO POLLEN 1 (DUO1) gene from the C24TILL collection identified a truncation mutation leading to a deficiency in sperm cell differentiation. Taken together, a new TILLING resource, the C24TILL collection, was generated for A. thaliana accession C24. The C24TILL collection provides an allelic series of induced point mutations that will serve as a useful alternative reverse genetic resource for functional genetic studies in A. thaliana.
Collapse
Affiliation(s)
- Kok-Song Lai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | |
Collapse
|
59
|
Jasinski S, Lécureuil A, Miquel M, Loudet O, Raffaele S, Froissard M, Guerche P. Natural variation in seed very long chain fatty acid content is controlled by a new isoform of KCS18 in Arabidopsis thaliana. PLoS One 2012; 7:e49261. [PMID: 23145136 PMCID: PMC3493540 DOI: 10.1371/journal.pone.0049261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022] Open
Abstract
Oil from oleaginous seeds is mainly composed of triacylglycerols. Very long chain fatty acids (VLCFAs) are major constituents of triacylglycerols in many seed oils and represent valuable feedstock for industrial purposes. To identify genetic factors governing natural variability in VLCFA biosynthesis, a quantitative trait loci (QTL) analysis using a recombinant inbred line population derived from a cross between accessions Bay-0 and Shahdara was performed in Arabidopsis thaliana. Two fatty acid chain length ratio (CLR) QTL were identified, with one major locus, CLR.2, accounting for 77% of the observed phenotypic variation. A fine mapping and candidate gene approach showed that a key enzyme of the fatty acid elongation pathway, the β-ketoacyl-CoA synthase 18 (KCS18), was responsible for the CLR.2 QTL detected between Bay-0 and Shahdara. Association genetics and heterologous expression in yeast cells identified a single point mutation associated with an alteration of KCS18 activity, uncovering the molecular bases for the modulation of VLCFA content in these two natural populations of Arabidopsis. Identification of this kcs18 mutant with altered activity opens new perspectives for the modulation of oil composition in crop plants.
Collapse
Affiliation(s)
- Sophie Jasinski
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France.
| | | | | | | | | | | | | |
Collapse
|
60
|
Amoah S, Kurup S, Rodriguez Lopez CM, Welham SJ, Powers SJ, Hopkins CJ, Wilkinson MJ, King GJ. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC PLANT BIOLOGY 2012; 12:193. [PMID: 23082790 PMCID: PMC3507869 DOI: 10.1186/1471-2229-12-193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/09/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC) provides selective targeting of 5 mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. RESULTS We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose-response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose-response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP) profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and decreased oil content, as well as decreased erucic acid and corresponding increases in linoleic and/or palmitic acid. Each 5-AzaC-treated line represents a unique combination of hypomethylated epialleles. CONCLUSIONS The approach and populations developed are available for forward and reverse screening of epiallelic variation and subsequent functional and inheritance studies. The generation of stochastically hypomethylated populations has utility in epiallele discovery for a wide range of crop plants, and has considerable potential as an intervention strategy for crop improvement.
Collapse
Affiliation(s)
| | - Smita Kurup
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Carlos Marcelino Rodriguez Lopez
- Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Sue J Welham
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | - Clare J Hopkins
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael J Wilkinson
- Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Graham J King
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Current address: Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
61
|
Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC PLANT BIOLOGY 2012; 12:148. [PMID: 22908993 PMCID: PMC3528476 DOI: 10.1186/1471-2229-12-148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lijun Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
62
|
Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC PLANT BIOLOGY 2012. [PMID: 22908993 DOI: 10.1186/1471-2229-12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
63
|
Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS One 2012; 7:e41570. [PMID: 22844501 PMCID: PMC3402408 DOI: 10.1371/journal.pone.0041570] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/28/2012] [Indexed: 12/04/2022] Open
Abstract
Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M2 mutants in a common wheat cultivar ‘Jinmai 47’. Numerous phenotypes with altered morphological and agronomic traits were observed from the M2 and M3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat improvement and functional genomics.
Collapse
|
64
|
Tackling drought stress: receptor-like kinases present new approaches. THE PLANT CELL 2012; 24:2262-78. [PMID: 22693282 DOI: 10.1105/tpc.112.096677] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.
Collapse
|
65
|
Love CG, Andongabo AE, Wang J, Carion PWC, Rawlings CJ, King GJ. InterStoreDB: a generic integration resource for genetic and genomic data. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:345-55. [PMID: 22494395 DOI: 10.1111/j.1744-7909.2012.01120.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research. InterStoreDB is a suite of integrated databases designed to assist in this process. The individual databases are species independent and generic in design, providing access to curated datasets relating to plant populations, phenotypic traits, genetic maps, marker loci and QTL, with links to functional gene annotation and genomic sequence data. Each component database provides access to associated metadata, including data provenance and parameters used in analyses, thus providing users with information to evaluate the relative worth of any associations identified. The databases include CropStoreDB, for management of population, genetic map, QTL and trait measurement data, SeqStoreDB for sequence-related data and AlignStoreDB, which stores sequence alignment information, and allows navigation between genetic and genomic datasets. Genetic maps are visualized and compared using the CMAP tool, and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser. This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal. We demonstrate the value of InterStoreDB as a tool for Brassica research. InterStoreDB is available from: http://www.interstoredb.org.
Collapse
Affiliation(s)
- Christopher G Love
- Ludwig Institute for Cancer Research, Centre for Medical Research, Royal Melbourne Hospital, Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | |
Collapse
|
66
|
Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C. A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:957-69. [PMID: 22198204 DOI: 10.1007/s00122-011-1760-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
We developed two mutant populations of oilseed rape (Brassica napus L.) using EMS (ethylmethanesulfonate) as a mutagen. The populations were derived from the spring type line YN01-429 and the winter type cultivar Express 617 encompassing 5,361 and 3,488 M(2) plants, respectively. A high-throughput screening protocol was established based on a two-dimensional 8× pooling strategy. Genes of the sinapine biosynthesis pathway were chosen for determining the mutation frequencies and for creating novel genetic variation for rapeseed breeding. The extraction meal of oilseed rape is a rich protein source containing about 40% protein. Its use as an animal feed or human food, however, is limited by antinutritive compounds like sinapine. The targeting-induced local lesions in genomes (TILLING) strategy was applied to identify mutations of major genes of the sinapine biosynthesis pathway. We constructed locus-specific primers for several TILLING amplicons of two sinapine synthesis genes, BnaX.SGT and BnaX.REF1, covering 80-90% of the coding sequences. Screening of both populations revealed 229 and 341 mutations within the BnaX.SGT sequences (135 missense and 13 nonsense mutations) and the BnaX.REF1 sequences (162 missense, 3 nonsense, 8 splice site mutations), respectively. These mutants provide a new resource for breeding low-sinapine oilseed rape. The frequencies of missense and nonsense mutations corresponded to the frequencies of the target codons. Mutation frequencies ranged from 1/12 to 1/22 kb for the Express 617 population and from 1/27 to 1/60 kb for the YN01-429 population. Our TILLING resource is publicly available. Due to the high mutation frequencies in combination with an 8× pooling strategy, mutants can be routinely identified in a cost-efficient manner. However, primers have to be carefully designed to amplify single sequences from the polyploid rapeseed genome.
Collapse
Affiliation(s)
- Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:515-31. [PMID: 22042481 DOI: 10.1007/s00122-011-1725-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 10/07/2011] [Indexed: 05/24/2023]
Abstract
Seed oil production in oilseed rape is greatly affected by the temperature during seed maturation. However, the molecular mechanism of the interaction between genotype and temperature in seed maturation remains largely unknown. We developed two near-isogenic lines (NIL-9 and NIL-1), differing mainly at a QTL region influencing oil content on Brassica napus chromosome C2 (qOC.C2.2) under high temperature during seed maturation. The NILs were treated under different temperatures in a growth chamber after flowering. RNA from developing seeds was extracted on the 25th day after flowering (DAF), and transcriptomes were determined by microarray analysis. Statistical analysis indicated that genotype, temperature, and the interaction between genotype and temperature (G × T) all significantly affected the expression of the genes in the 25 DAF seeds, resulting in 4,982, 19,111, and 839 differentially expressed unisequences, respectively. NIL-9 had higher seed oil content than NIL-1 under all of the temperatures in the experiments, especially at high temperatures. A total of 39 genes, among which six are located at qOC.C2.2, were differentially expressed among the NILs regardless of temperature, indicating the core genetic divergence that was unaffected by temperature. Increasing the temperature caused a reduction in seed oil content that was accompanied by the downregulation of a number of genes associated with red light response, photosynthesis, response to gibberellic acid stimulus, and translational elongation, as well as several genes of importance in the lipid metabolism pathway. These results contribute to our knowledge of the molecular nature of QTLs and the interaction between genotype and temperature.
Collapse
Affiliation(s)
- Yana Zhu
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sikora P, Chawade A, Larsson M, Olsson J, Olsson O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2011:314829. [PMID: 22315587 PMCID: PMC3270407 DOI: 10.1155/2011/314829] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 12/15/2011] [Indexed: 05/19/2023]
Abstract
Plant mutagenesis is rapidly coming of age in the aftermath of recent developments in high-resolution molecular and biochemical techniques. By combining the high variation of mutagenised populations with novel screening methods, traits that are almost impossible to identify by conventional breeding are now being developed and characterised at the molecular level. This paper provides a comprehensive overview of the various techniques and workflows available to researchers today in the field of molecular breeding, and how these tools complement the ones already used in traditional breeding. Both genetic (Targeting Induced Local Lesions in Genomes; TILLING) and phenotypic screens are evaluated. Finally, different ways of bridging the gap between genotype and phenotype are discussed.
Collapse
Affiliation(s)
- Per Sikora
- Department of Plant and Environmental Sciences, Göteborg University, 40530 Göteborg, Sweden
| | - Aakash Chawade
- CropTailorAB, Erik Dahlbergsgatan 11A, 41126 Göteborg, Sweden
| | - Mikael Larsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Johanna Olsson
- CropTailorAB, Erik Dahlbergsgatan 11A, 41126 Göteborg, Sweden
| | - Olof Olsson
- Department of Plant and Environmental Sciences, Göteborg University, 40530 Göteborg, Sweden
- CropTailorAB, Erik Dahlbergsgatan 11A, 41126 Göteborg, Sweden
| |
Collapse
|
69
|
Anai T. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. BREEDING SCIENCE 2012; 61:462-7. [PMID: 23136486 PMCID: PMC3406801 DOI: 10.1270/jsbbs.61.462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/14/2011] [Indexed: 05/04/2023]
Abstract
Mutant-based reverse genetics offers a powerful way to create novel mutant alleles at a selected locus. This approach makes it possible to directly identify plants that carry a specific modified gene from the nucleotide sequence data. Soybean [Glycine max (L.) Merr.] has a highly redundant paleopolyploid genome (approx. 1.1 Gb), which was completely sequenced in 2010. Using reverse genetics to support functional genomics studies designed to predict gene function would accelerate post-genomics research in soybean. Furthermore, the novel mutant alleles created by this approach would be useful genetic resources for improving various traits in soybean. A reverse genetic screening platform in soybean has been developed that combines more than 40,000 mutant lines with a high-throughput method, Targeting Local Lesions IN Genome (TILLING). In this review, the mutant-based reverse genetic approach based on this platform is described, and the likely evolution of this approach in the near future.
Collapse
Affiliation(s)
- Toyoaki Anai
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University, Honjyo-machi 1, Saga 840-8502, Japan
| |
Collapse
|
70
|
Lochlainn SÓ, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. PLANT METHODS 2011; 7:43. [PMID: 22152063 PMCID: PMC3251530 DOI: 10.1186/1746-4811-7-43] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/08/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. RESULTS We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. CONCLUSIONS Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.
Collapse
Affiliation(s)
- Seosamh Ó Lochlainn
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | - Neil S Graham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Khalid Alamer
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Juan J Rios
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | - John P Hammond
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, PO Box 157Lismore NSW 2480, Australia
| | - Phillip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
71
|
Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M. TILLING: a shortcut in functional genomics. J Appl Genet 2011; 52:371-90. [PMID: 21912935 PMCID: PMC3189332 DOI: 10.1007/s13353-011-0061-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/01/2022]
Abstract
Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200-500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING.
Collapse
Affiliation(s)
- Marzena Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miriam Szurman
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
72
|
Dahmani-Mardas F, Troadec C, Boualem A, Lévêque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 2010; 5:e15776. [PMID: 21209891 PMCID: PMC3012703 DOI: 10.1371/journal.pone.0015776] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. Methodology/Principal Findings To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. Conclusions/Significance We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.
Collapse
Affiliation(s)
- Fatima Dahmani-Mardas
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Christelle Troadec
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Adnane Boualem
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Sylvie Lévêque
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Aldoss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Catherine Dogimont
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
73
|
Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC PLANT BIOLOGY 2010; 10:233. [PMID: 20977772 PMCID: PMC3017853 DOI: 10.1186/1471-2229-10-233] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 10/27/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. RESULTS In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. CONCLUSIONS There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should consider and, when possible take advantage of, the implications of polyploidy.
Collapse
Affiliation(s)
- Carolyn Hutcheon
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Renata F Ditt
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Mark Beilstein
- Dept. of Biochemistry/Biophysics, Texas A&M University, TAMU 2128 College Station, TX 77843, USA
| | - Luca Comai
- Plant Biology and Genome Center, 451 Health Sciences Drive, University of California Davis, Davis, CA 95616, USA
| | - Jesara Schroeder
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Elianna Goldstein
- Plant Biology and Genome Center, 451 Health Sciences Drive, University of California Davis, Davis, CA 95616, USA
| | | | - Thu Nguyen
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Jay De Rocher
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Jack Kiser
- Sustainable Oils, LLC, 3208 Curlew St., Davis, CA 95616, USA
| |
Collapse
|
74
|
Wang N, Shi L, Tian F, Ning H, Wu X, Long Y, Meng J. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC PLANT BIOLOGY 2010; 10:137. [PMID: 20594317 PMCID: PMC3017795 DOI: 10.1186/1471-2229-10-137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/01/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND FAE1 (fatty acid elongase1) is the key gene in the control of erucic acid synthesis in seeds of Brassica species. Due to oil with low erucic acid (LEA) content is essential for human health and not enough LEA resource could be available, thus new LEA genetic resources are being sought for Brassica breeding. EcoTILLING, a powerful genotyping method, can readily be used to identify polymorphisms in Brassica. RESULTS Seven B. rapa, nine B. oleracea and 101 B. napus accessions were collected for identification of FAE1 polymorphisms. Three polymorphisms were detected in the two FAE1 paralogues of B. napus using EcoTILLING and were found to be strongly associated with differences in the erucic acid contents of seeds. In genomic FAE1 sequences obtained from seven B. rapa accessions, one SNP in the coding region was deduced to cause loss of gene function. Molecular evolution analysis of FAE1 homologues showed that the relationship between the Brassica A and C genomes is closer than that between the A/C genomes and Arabidopsis genome. Alignment of the coding sequences of these FAE1 homologues indicated that 18 SNPs differed between the A and C genomes and could be used as genome-specific markers in Brassica. CONCLUSION This study showed the applicability of EcoTILLING for detecting gene polymorphisms in Brassica. The association between B. napus FAE1 polymorphisms and the erucic acid contents of seeds may provide useful guidance for LEA breeding. The discovery of the LEA resource in B. rapa can be exploited in Brasscia cultivation.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Tian
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Huicai Ning
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoming Wu
- Oil Crops Research Institute, Chinese Academic of Agriculture Science, Wuhan, 430062, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
75
|
Girin T, Stephenson P, Goldsack CMP, Kempin SA, Perez A, Pires N, Sparrow PA, Wood TA, Yanofsky MF, Østergaard L. Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:329-338. [PMID: 20444234 DOI: 10.1111/j.1365-313x.2010.04244.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Members of the Brassicaceae family, including Arabidopsis thaliana and oilseed rape (Brassica napus), produce dry fruits that open upon maturity along a specialised tissue called the valve margin. Proper development of the valve margin in Arabidopsis is dependent on the INDEHISCENT (IND) gene, the role of which in genetic and hormonal regulation has been thoroughly characterised. Here we perform phylogenetic comparison of IND genes in Arabidopsis and Brassica to identify conserved regulatory sequences that are responsible for specific expression at the valve margin. In addition we have taken a comparative development approach to demonstrate that the BraA.IND.a and BolC.IND.a genes from B. rapa and B. oleracea share identical function with Arabidopsis IND since ethyl methanesulphonate (EMS) mutant alleles and silenced transgenic lines have valve margin defects. Furthermore we show that the degree of these defects can be fine-tuned for crop improvement. Wild-type Arabidopsis produces an outer replum composed of about six cell files at the medial region of the fruits, whereas Brassica fruits lack this tissue. A strong loss-of-function braA.ind.a mutant gained outer replum tissue in addition to its defect in valve margin development. An enlargement of replum size was also observed in the Arabidopsis ind mutant suggesting a general role of Brassicaceae IND genes in preventing valve margin cells from adopting replum identity.
Collapse
Affiliation(s)
- Thomas Girin
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Sherry A Kempin
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Amandine Perez
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Nuno Pires
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Penelope A Sparrow
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Thomas A Wood
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin F Yanofsky
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
76
|
Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S. Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1597-1610. [PMID: 20162256 DOI: 10.1007/s00122-010-1279-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/19/2010] [Indexed: 05/28/2023]
Abstract
Regulation of seed oil accumulation in oilseed rape (Brassica napus) has important economic significance. However, few genes have been characterized that affect final seed oil content. Through a mutant identification, the class IV homeodomain-ZIP transcription factor GLABRA2 (GL2) has been found to regulate seed oil accumulation in Arabidopsis, in addition to its role in trichome development. In this study, we isolated four distinct orthologues of GL2 from B. napus (AC-genome), B. rapa (A) and B. oleracea (C), using an overlapping-PCR strategy. The four GL2 orthologues were very similar, with 96.10-99.69% identity in exon regions, 75.45-93.84% in intron regions, 97.34-99.87% in amino acid sequences. Alignments of the four genes revealed that the A-genome sequences of BnaA.GL2.a from B. napus and BraA.GL2.a from B. rapa are more similar than the others, and likewise the C-genome sequences of BnaC.GL2.b from B. napus and BolC.GL2.a from B. oleracea are more similar. BnaA.GL2.a and BraA.GL2.a from the A-genome are highly expressed in roots, whilst BnaC.GL2.b and BolC.GL2.a from the C-genome are preferentially expressed in seeds. Transgenic ectopic overexpression and suppression of BnaC.GL2.b in Arabidopsis allowed further investigation of the effect on seed oil content. Overexpression generated two phenotypes: the wild-type-like and the gl2-mutant-like (an Arabidopsis glabrous mutant of gl2-2), with increases in seed oil content of 3.5-5.0% in the gl2-mutant-like transgenic plants. Suppression resulted in increases of 2.5-6.1% in seed oil content, and reduced trichome number at the leaf margins. These results suggest that BnaC.GL2.b can negatively regulate oil accumulation in Arabidopsis seeds. As a result of comparing the four GL2 genes, three A/C-genome-specific primer sets were developed and a C-genome-specific EcoRV cleavage site was identified, which can be used as functional markers to distinguish these orthologues within Brassica species. The genes identified and their molecular markers developed in this study will be valuable both for oilseed rape breeding focusing on improvement of seed oil content, and for detecting gene flow between populations.
Collapse
Affiliation(s)
- Guohua Chai
- The Key Lab of Oil Crops Biology, The Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan, 430062, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Jiang SY, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci 2010; 6:228-51. [PMID: 20440406 PMCID: PMC2862397 DOI: 10.7150/ijbs.6.228] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022] Open
Abstract
With the completion of rice genome sequencing, large collection of expression data and the great efforts in annotating rice genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. In this study, we have reviewed currently employed tools to generate such mutant populations. These tools include natural, physical, chemical, tissue culture, T-DNA, transposon or gene silencing based mutagenesis. We also reviewed how these tools were used to generate a large collection of mutants and how these mutants can be screened and detected for functional analysis of a gene. The data suggested that the current population of mutants might be large enough to tag all predicted genes. However, the collection of flanking sequencing tags (FSTs) is limited due to the relatively higher cost. Thus, we have proposed a new strategy to generate gene-silencing mutants at the genome-wide level. Due to the large collection of insertion mutants, the next step to rice functional genomics should be focusing on functional characterization of tagged genes by detailed survey of corresponding mutants. Additionally, we also evaluated the utilization of these mutants as valuable resources for molecular breeding.
Collapse
Affiliation(s)
| | - Srinivasan Ramachandran
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
| |
Collapse
|
78
|
Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L. A rich TILLING resource for studying gene function in Brassica rapa. BMC PLANT BIOLOGY 2010; 10:62. [PMID: 20380715 PMCID: PMC2923536 DOI: 10.1186/1471-2229-10-62] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 04/09/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. RESULTS Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS) to produce a TILLING (Targeting Induced Local Lesions In Genomes) population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This analysis also demonstrated that screening a 1 kb amplicon in just one third of the population (3072 M2 plants) will provide an average of 68 mutations and a 97% probability of obtaining a stop-codon mutation resulting in a truncated protein. We furthermore calculated that each plant contains on average approximately 10,000 mutations and due to the large number of plants, it is predicted that mutations in approximately half of the GC base pairs in the genome exist within this population. CONCLUSIONS We have developed the first EMS TILLING resource in the diploid Brassica species, B. rapa. The mutation density in this population is approximately 1 per 60 kb, which makes it the most densely mutated diploid organism for which a TILLING population has been published. This resource is publicly available through the RevGenUK reverse genetics platform http://revgenuk.jic.ac.uk.
Collapse
Affiliation(s)
| | - David Baker
- John Innes Genome Laboratory, John Innes Centre, Norwich, NR4 7UH, UK
| | - Thomas Girin
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Amandine Perez
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Stephen Amoah
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Graham J King
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| |
Collapse
|
79
|
Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics 2010; 37:231-40. [DOI: 10.1016/s1673-8527(09)60041-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 02/11/2010] [Accepted: 02/24/2010] [Indexed: 01/14/2023]
|
80
|
Panthee DR, Chen F. Genomics of fungal disease resistance in tomato. Curr Genomics 2010; 11:30-9. [PMID: 20808521 PMCID: PMC2851114 DOI: 10.2174/138920210790217927] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important vegetable crop worldwide. Often times, its production is hindered by fungal diseases. Important fungal diseases limiting tomato production are late blight, caused by Phytophthora infestans, early blight, caused by Alternaria solanii, and septoria leaf spot, caused by Septoria lycopersici, fusarium wilt caused by Fusarium oxysporium fsp. oxysporium, and verticilium wilt caused by Verticilium dahlea. The Phytophthora infestans is the same fungus that caused the devastating loss of potato in Europe in 1845. A similar magnitude of crop loss in tomato has not occurred but Phytophthora infestans has caused the complete loss of tomato crops around the world on a small scale. Several attempts have been made through conventional breeding and the molecular biological approaches to understand the biology of host-pathogen interaction so that the disease can be managed and crop loss prevented. In this review, we present a comprehensive analysis of information produced by molecular genetic and genomic experiments on host-pathogen interactions of late blight, early blight, septoria leaf spot, verticilim wilt and fusarium wilt in tomato. Furthermore, approaches adopted to manage these diseases in tomato including genetic transformation are presented. Attempts made to link molecular markers with putative genes and their use in crop improvement are discussed.
Collapse
Affiliation(s)
- Dilip R. Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Dr., Mills River, NC 28759, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
81
|
Martín B, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C. A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC PLANT BIOLOGY 2009; 9:147. [PMID: 20003424 PMCID: PMC2803491 DOI: 10.1186/1471-2229-9-147] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/14/2009] [Indexed: 05/08/2023]
Abstract
BACKGROUND Arabidopsis thaliana is the main model species for plant molecular genetics studies and world-wide efforts are devoted to identify the function of all its genes. To this end, reverse genetics by TILLING (Targeting Induced Local Lesions IN Genomes) in a permanent collection of chemically induced mutants is providing a unique resource in Columbia genetic background. In this work, we aim to extend TILLING resources available in A. thaliana by developing a new population of ethyl methanesulphonate (EMS) induced mutants in the second commonest reference strain. In addition, we pursue to saturate the number of EMS induced mutations that can be tolerated by viable and fertile plants. RESULTS By mutagenizing with different EMS concentrations we have developed a permanent collection of 3712 M2/M3 independent mutant lines in the reference strain Landsberg erecta (Ler) of A. thaliana. This population has been named as the Arabidopsis TILLer collection. The frequency of mutations per line was maximized by using M1 plants with low but sufficient seed fertility. Application of TILLING to search for mutants in 14 genes identified 21 to 46 mutations per gene, which correspond to a total of 450 mutations. Missense mutations were found for all genes while truncations were selected for all except one. We estimated that, on average, these lines carry one mutation every 89 kb, Ler population providing a total of more than five million induced mutations. It is estimated that TILLer collection shows a two to three fold higher EMS mutation density per individual than previously reported A. thaliana population. CONCLUSIONS Analysis of TILLer collection demonstrates its usefulness for large scale TILLING reverse genetics in another reference genetic background of A. thaliana. Comparisons with TILLING populations in other organisms indicate that this new A. thaliana collection carries the highest chemically induced mutation density per individual known in diploid species.
Collapse
Affiliation(s)
- Beatriz Martín
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mercedes Ramiro
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - José M Martínez-Zapater
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| |
Collapse
|
82
|
Hua S, Shamsi IH, Guo Y, Pak H, Chen M, Shi C, Meng H, Jiang L. Sequence, expression divergence, and complementation of homologous ALCATRAZ loci in Brassica napus. PLANTA 2009; 230:493-503. [PMID: 19504267 DOI: 10.1007/s00425-009-0961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/22/2009] [Indexed: 05/27/2023]
Abstract
The genomic era provides new perspectives in understanding polyploidy evolution, mostly on the genome-wide scale. In this paper, we show the sequence and expression divergence between the homologous ALCATRAZ (ALC) loci in Brassica napus, responsible for silique dehiscence. We cloned two homologous ALC loci, namely BnaC.ALC.a and BnaA.ALC.a in B. napus. Driven by the 35S promoter, both the loci complemented to the alc mutation of Arabidopsis thaliana, yet only the expression of BnaC.ALC.a was detectable in the siliques of B. napus. Sequence alignment indicated that BnaC.ALC.a and BolC.ALC.a, or BnaA.ALC.a and BraA.ALC.a, possess a high level of similarity. The understanding of the sequence and expression divergence among homologous loci of a gene is of due importance for an effective gene manipulation and TILLING (or ECOTILLING) analysis for the allelic DNA variation at a given locus.
Collapse
Affiliation(s)
- Shuijin Hua
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 268 Kaixuan Road, 310029, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn GW. Forward and reverse genetics of rapid-cycling Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:953-61. [PMID: 19132334 DOI: 10.1007/s00122-008-0952-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 12/08/2008] [Indexed: 05/20/2023]
Abstract
Seeds of rapid-cycling Brassica oleracea were mutagenized with the chemical mutagen, ethylmethane sulfonate. The reverse genetics technique, TILLING, was used on a sample population of 1,000 plants, to determine the mutation profile. The spectrum and frequency of mutations induced by ethylmethane sulfonate was similar to that seen in other diploid species such as Arabidopsis thaliana. These data indicate that the mutagenesis was effective and demonstrate that TILLING represents an efficient reverse genetic technique in B. oleracea that will become more valuable as increasing genomic sequence data become available for this species. The extensive duplication in the B. oleracea genome is believed to result in the genetic redundancy that has been important for the evolution of morphological diversity seen in today's B. oleracea crops (broccoli, Brussels sprouts, cauliflower, cabbage, kale and kohlrabi). However, our forward genetic screens identified 120 mutants in which some aspect of development was affected. Some of these lines have been characterized genetically and in the majority of these, the mutant trait segregates as a recessive allele affecting a single locus. One dominant mutation (curly leaves) and one semi-dominant mutation (dwarf-like) were also identified. Allelism tests of two groups of mutants (glossy and dwarf) revealed that for some loci, multiple independent alleles have been identified. These data indicate that, despite genetic redundancy, mutation of many individual loci in B. oleracea results in distinct phenotypes.
Collapse
Affiliation(s)
- Edward Himelblau
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL. Mutation discovery for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2817-25. [PMID: 19516074 DOI: 10.1093/jxb/erp189] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Increasing crop yields to ensure food security is a major challenge. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. The forward genetic approach enables the identification of improved or novel phenotypes that can be exploited in conventional breeding programmes. Powerful reverse genetic strategies that allow the detection of induced point mutations in individuals of the mutagenized populations can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for plant breeding. This review briefly discusses recent advances in the detection of mutants and the potential of mutagenesis for crop improvement.
Collapse
Affiliation(s)
- Martin A J Parry
- Department of Plant Science, Rothamsted Research, Centre for Crop Genetic Improvement, Harpenden, Herts AL5 2JQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|