51
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
52
|
|
53
|
|
54
|
Novak J, Raska M, Mestecky J, Julian BA. IgA Nephropathy and Related Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
55
|
Abstract
The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
Collapse
|
56
|
Khalil M, Al-Mazrou Y, Findlow H, Chadha H, Bosch Castells V, Oster P, Borrow R. Meningococcal serogroup C serum and salivary antibody responses to meningococcal quadrivalent conjugate vaccine in Saudi Arabian adolescents previously vaccinated with bivalent and quadrivalent meningococcal polysaccharide vaccine. Vaccine 2014; 32:5715-21. [PMID: 25151042 DOI: 10.1016/j.vaccine.2014.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/30/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
Following repeated polysaccharide vaccination, reduced immune responses have been reported, but there are limited data on the mucosal response of meningococcal polysaccharide vaccine (PSV) or meningococcal conjugate vaccination. Saudi Arabian adolescents (aged 16-19 years) who had previously been vaccinated with ≥1 dose of bivalent meningococcal polysaccharide vaccine and 1 dose of quadrivalent meningococcal polysaccharide (MPSV4) were enrolled in a controlled, randomised, and modified observer-blind study (collectively termed the PSV-exposed group). The PSV-exposed group was randomised to receive either quadrivalent meningococcal conjugate vaccine (MCV4) (PSV-exposed/MCV4 group) or MPSV4 (PSV-exposed/MPSV4 group), and a PSV-naïve group received MCV4. Serum and saliva samples were collected pre-vaccination and 28 days post-vaccination. Serum serogroup-specific A, C, W and Y IgG were quantified as were salivary serogroup-specific C IgG and IgA together with total salivary IgG and IgA. For each serogroup, the post-vaccination serum geometric mean concentrations (GMCs) were significantly higher in the PSV-naïve and the PSV-exposed/MCV4 group than in the PSV-exposed/PSV4 group. For serogroup C, serum serogroup-specific IgG for the PSV-naïve group was significantly higher than both the PSV exposed groups. Higher levels of salivary serogroup C-specific IgG were found in the PSV-naïve group than those who had received two doses of polysaccharide but no significant differences were noted with regards to serogroup-specific IgA.
Collapse
Affiliation(s)
| | | | - Helen Findlow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Helen Chadha
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | | | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK; University of Manchester, Inflammation Sciences Research Group, School of Translational Medicine, Stopford Building, Manchester, UK.
| |
Collapse
|
57
|
Zaura E, Nicu EA, Krom BP, Keijser BJF. Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol 2014; 4:85. [PMID: 25019064 PMCID: PMC4071637 DOI: 10.3389/fcimb.2014.00085] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022] Open
Abstract
The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis—a microbial shift toward a disease, e.g., periodontitis or caries. Although processes that underlie oral diseases have been studied extensively, processes involved in maintaining of a normal, healthy microbiome are poorly understood. In this review we present our hypothesis on how a healthy oral microbiome is acquired and maintained. We introduce our view on the prenatal development of tolerance for the normal oral microbiome: we propose that development of fetal tolerance toward the microbiome of the mother during pregnancy is the major factor for a successful acquisition of a normal microbiome. We describe the processes that influence the establishment of such microbiome, followed by our perspective on the process of sustaining a healthy oral microbiome. We divide microbiome-maintenance factors into host-derived and microbe-derived, while focusing on the host. Finally, we highlight the need and directions for future research.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam Amsterdam, Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam Amsterdam, Netherlands
| | - Bart J F Keijser
- Microbiology and Systems Biology, TNO Earth, Environmental and Life Sciences Zeist, Netherlands ; Top Institute Food and Nutrition Wageningen, Netherlands
| |
Collapse
|
58
|
Takahashi K, Raska M, Stuchlova Horynova M, Hall SD, Poulsen K, Kilian M, Hiki Y, Yuzawa Y, Moldoveanu Z, Julian BA, Renfrow MB, Novak J. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One 2014; 9:e99026. [PMID: 24918438 PMCID: PMC4053367 DOI: 10.1371/journal.pone.0099026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
Patients with IgA nephropathy (IgAN) have elevated circulating levels of IgA1 with some O-glycans consisting of galactose (Gal)-deficient N-acetylgalactosamine (GalNAc) with or without N-acetylneuraminic acid (NeuAc). We have analyzed O-glycosylation heterogeneity of naturally asialo-IgA1 (Ale) myeloma protein that mimics Gal-deficient IgA1 (Gd-IgA1) of patients with IgAN, except that IgA1 O-glycans of IgAN patients are frequently sialylated. Specifically, serum IgA1 of healthy controls has more α2,3-sialylated O-glycans (NeuAc attached to Gal) than α2,6-sialylated O-glycans (NeuAc attached to GalNAc). As IgA1-producing cells from IgAN patients have an increased activity of α2,6-sialyltransferase (ST6GalNAc), we hypothesize that such activity may promote premature sialylation of GalNAc and, thus, production of Gd-IgA1, as sialylation of GalNAc prevents subsequent Gal attachment. Distribution of NeuAc in IgA1 O-glycans may play an important role in the pathogenesis of IgAN. To better understand biological functions of NeuAc in IgA1, we established protocols for enzymatic sialylation leading to α2,3- or α2,6-sialylation of IgA1 O-glycans. Sialylation of Gal-deficient asialo-IgA1 (Ale) myeloma protein by an ST6GalNAc enzyme generated sialylated IgA1 that mimics the Gal-deficient IgA1 glycoforms in patients with IgAN, characterized by α2,6-sialylated Gal-deficient GalNAc. In contrast, sialylation of the same myeloma protein by an α2,3-sialyltransferase yielded IgA1 typical for healthy controls, characterized by α2,3-sialylated Gal. The GalNAc-specific lectin from Helix aspersa (HAA) is used to measure levels of Gd-IgA1. We assessed HAA binding to IgA1 sialylated at Gal or GalNAc. As expected, α2,6-sialylation of IgA1 markedly decreased reactivity with HAA. Notably, α2,3-sialylation also decreased reactivity with HAA. Neuraminidase treatment recovered the original HAA reactivity in both instances. These results suggest that binding of a GalNAc-specific lectin is modulated by sialylation of GalNAc as well as Gal in the clustered IgA1 O-glycans. Thus, enzymatic sialylation offers a useful model to test the role of NeuAc in reactivities of the clustered O-glycans with lectins.
Collapse
Affiliation(s)
- Kazuo Takahashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Milada Stuchlova Horynova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Stacy D. Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Knud Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yoshiyuki Hiki
- Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew B. Renfrow
- UAB Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
59
|
Lin M, Du L, Brandtzaeg P, Pan-Hammarström Q. IgA subclass switch recombination in human mucosal and systemic immune compartments. Mucosal Immunol 2014; 7:511-20. [PMID: 24064668 DOI: 10.1038/mi.2013.68] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 08/14/2013] [Indexed: 02/04/2023]
Abstract
Human immunoglobulin A (IgA) comprises two IgA subclasses, IgA1 and IgA2, whose distribution has been shown by immunohistochemistry to be different in various body compartments. In comparison with systemic immune compartments, we investigated the IgA switch profiles at the molecular level in salivary and lacrimal glands, nasal mucosa, and proximal and distal gut mucosa. Direct switching from IgM to IgA1 or IgA2 predominated in all immune compartments analyzed. Similar composition of the Sμ-Sα1 and Sμ-Sα2 junctions was observed, including microhomology usage, which suggested that there is no major difference in the actual recombination mechanism utilized during IgA subclass switching. The proportion of IgA1/IgA2 switch recombination events largely paralleled the previously published immunohistochemical representation of IgA1(+) and IgA2(+) plasma cells, implying that the local subclass distribution generally reflects precommitted memory/effector B cells that have undergone IgA subclass switching before extravasation at the effector site. The extremely low or undetectable levels of activation-induced cytidine deaminase (AID) and Iα-Cμ circle transcripts in intestinal lamina propria samples as compared with Peyer's patches suggest that the cellular IgA subclass distribution outside of organized gut-associated lymphoid tissue is only to a minor extent, if at all, influenced by in situ switching.
Collapse
Affiliation(s)
- M Lin
- 1] Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - L Du
- Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - P Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, and Department of Pathology, Oslo University Hospital, Rikshopitalet, Norway
| | - Q Pan-Hammarström
- Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
60
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
61
|
Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT, Plaut AG, Weiser JN. Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol 2014; 7:249-56. [PMID: 23820749 PMCID: PMC4456019 DOI: 10.1038/mi.2013.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/17/2013] [Indexed: 02/04/2023]
Abstract
Bacterial immunoglobulin A1 (IgA1) proteases may sabotage the protective effects of IgA. In vitro, both exogenous and endogenously produced IgA1 protease inhibited phagocytic killing of Streptococcus pneumoniae by capsule-specific IgA1 human monoclonal antibodies (hMAbs) but not IgA2. These IgA1 proteases cleaved and reduced binding of the the effector Fcα1 heavy chain but not the antigen-binding F(ab)/light chain to pneumococcal surfaces. In vivo, IgA1 protease-resistant IgA2, but not IgA1 protease-sensitive IgA1, supported 60% survival in mice infected with wild-type S. pneumoniae. IgA1 hMAbs protected mice against IgA1 protease-deficient but not -producing pneumococci. Parallel mouse sera with human IgA2 showed more efficient complement-mediated reductions in pneumococci with neutrophils than did IgA1, particularly with protease-producing organisms. After natural human pneumococcal bacteremia, purified serum IgG inhibited IgA1 protease activity in 7 of 11 patients (64%). These observations provide the first evidence in vivo that IgA1 protease can circumvent killing of S. pneumoniae by human IgA. Acquisition of IgA1 protease-neutralizing IgG after infection directs attention to IgA1 protease both as a determinant of successful colonization and infection and as a potential vaccine candidate.
Collapse
Affiliation(s)
- Edward N. Janoff
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Denver, Infectious Diseases, Aurora, CO 80045
| | - Jeffrey B. Rubins
- University of Minnesota School of Medicine, Minneapolis, Minnesota Denver Veterans Affairs Medical Center, Denver, CO 80220
| | - Claudine Fasching
- Veterans Affairs Medical Center Denver Veterans Affairs Medical Center, Denver, CO 80220
| | - Darlene Charboneau
- University of Minnesota School of Medicine, Minneapolis, Minnesota Denver Veterans Affairs Medical Center, Denver, CO 80220
| | - Jeremy T. Rahkola
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Denver, Infectious Diseases, Aurora, CO 80045
| | - Andrew G. Plaut
- Department of Medicine and Division of Gastroenterology, Tufts-New England Medical Center, Boston, Massachusetts
| | - Jeffrey N. Weiser
- Departments of Microbiology and Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Speicher DJ, Johnson NW. Comparison of salivary collection and processing methods for quantitative HHV-8 detection. Oral Dis 2013; 20:720-8. [PMID: 24134156 DOI: 10.1111/odi.12196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Saliva is a proved diagnostic fluid for the qualitative detection of infectious agents, but the accuracy of viral load determinations is unknown. Stabilising fluids impede nucleic acid degradation, compared with collection onto ice and then freezing, and we have shown that the DNA Genotek P-021 prototype kit (P-021) can produce high-quality DNA after 14 months of storage at room temperature. Here we evaluate the quantitative capability of 10 collection/processing methods. METHODS Unstimulated whole mouth fluid was spiked with a mixture of HHV-8 cloned constructs, 10-fold serial dilutions were produced, and samples were extracted and then examined with quantitative PCR (qPCR). Calibration curves were compared by linear regression and qPCR dynamics. RESULTS All methods extracted with commercial spin columns produced linear calibration curves with large dynamic range and gave accurate viral loads. Ethanol precipitation of the P-021 does not produce a linear standard curve, and virus is lost in the cell pellet. DNA extractions from the P-021 using commercial spin columns produced linear standard curves with wide dynamic range and excellent limit of detection. CONCLUSION When extracted with spin columns, the P-021 enables accurate viral loads down to 23 copies μl(-1) DNA. The quantitative and long-term storage capability of this system makes it ideal for study of salivary DNA viruses in resource-poor settings.
Collapse
Affiliation(s)
- D J Speicher
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia; Molecular Basis of Disease Research Program, Griffith Health Institute, Griffith University, Gold Coast, Qld, Australia; Population & Social Health Research Program (Population Oral Health), Griffith Health Institute, Griffith University, Gold Coast, Qld, Australia
| | | |
Collapse
|
63
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
64
|
Choudary SK, Qiu J, Plaut AG, Kritzer JA. Versatile Substrates and Probes for IgA1 Protease Activity. Chembiochem 2013; 14:2007-12. [DOI: 10.1002/cbic.201300281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Indexed: 12/31/2022]
|
65
|
Brandtzaeg P. Secretory IgA: Designed for Anti-Microbial Defense. Front Immunol 2013; 4:222. [PMID: 23964273 PMCID: PMC3734371 DOI: 10.3389/fimmu.2013.00222] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/16/2013] [Indexed: 01/30/2023] Open
Abstract
Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor - bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination).
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
66
|
Garner AL, Fullagar JL, Day JA, Cohen SM, Janda KD. Development of a high-throughput screen and its use in the discovery of Streptococcus pneumoniae immunoglobulin A1 protease inhibitors. J Am Chem Soc 2013; 135:10014-7. [PMID: 23808771 DOI: 10.1021/ja404180x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Streptococcus pneumoniae relies on a number of virulence factors, including immunoglobulin A1 protease (IgA1P), a Zn(2+) metalloprotease produced on the extracellular surface of the bacteria, to promote pathogenic colonization. IgA1P exhibits a unique function, in that it catalyzes the proteolysis of human IgA1 at its hinge region to leave the bacterial cell surface masked by IgA1 Fab, enabling the bacteria to evade the host's immune system and adhere to host epithelial cells to promote colonization. Thus, S. pneumoniae IgA1P has emerged as a promising antibacterial target; however, the lack of an appropriate screening assay has limited the investigation of this metalloprotease virulence factor. Relying on electrostatics-mediated AuNP aggregation, we have designed a promising high-throughput colorimetric assay for IgA1P. By using this assay, we have uncovered inhibitors of the enzyme that should be useful in deciphering its role in pneumococcal colonization and virulence.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Chemistry, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine, The Scripps Research Institute, University of California, San Diego, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
67
|
Capolunghi F, Rosado MM, Sinibaldi M, Aranburu A, Carsetti R. Why do we need IgM memory B cells? Immunol Lett 2013; 152:114-20. [PMID: 23660557 DOI: 10.1016/j.imlet.2013.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Immunological memory is our reservoir of ready-to-use antibodies and memory B cells. Because of immunological memory a secondary infection will be very light or not occur at all. Antibodies and cells, generated in the germinal center in response to the first encounter with antigen, are highly specific, remain in the organism virtually forever and are mostly of IgG isotype. Long lived plasma cells homing to the bone marrow ensure the constant production of protective antibodies, whereas switched memory B cells proliferate and differentiate in response to secondary challenge. IgM memory B cells represent our first-line defense against infections. They are generated by a T-cell independent mechanism probably triggered by Toll-like receptor-9. They produce natural antibodies with anti-bacterial specificity and the spleen is indispensable for their maintenance. We will review the characteristics and functions of IgM memory B cells that explain their importance in the immediate protection from pathogens. IgM memory B cells, similar to mouse B-1a B cells, may be a remnant of a primitive immune system that developed in the spleen of cartilaginous fish and persisted throughout evolution notwithstanding the sophisticated tools of the adaptive immune system.
Collapse
Affiliation(s)
- Federica Capolunghi
- Department of Laboratories, Children Hospital Bambino Gesù (IRCCS), Piazza S.Onofrio 4, 00165 Rome, Italy
| | | | | | | | | |
Collapse
|
68
|
Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol 2013; 5:20401. [PMID: 23487566 PMCID: PMC3595421 DOI: 10.3402/jom.v5i0.20401] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 11/14/2022] Open
Abstract
The two principal antibody classes present in saliva are secretory IgA (SIgA) and IgG; the former is produced as dimeric IgA by local plasma cells (PCs) in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR), also named membrane secretory component (SC). Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT) and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Per Brandtzaeg, Department of Pathology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Oslo, NO-0424 Norway. Tel: +47-23072743, Fax: 47-23071511.
| |
Collapse
|
69
|
Weiser JN. The battle with the host over microbial size. Curr Opin Microbiol 2013; 16:59-62. [PMID: 23395472 DOI: 10.1016/j.mib.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022]
Abstract
An eponymous feature of microbes is their small size, and size affects their pathogenesis. The recognition of microbes by host factors, for example, is often dependent on the density and number of molecular interactions occurring over a limited surface area. As a consequence, certain antimicrobial substances, such as complement, appear to target particles with a larger surface area more effectively. Although microbes may inhibit these antimicrobial activities by minimizing their effective size, the host uses defenses such as agglutination by immunoglobulin to counteract this microbial evasion strategy. Some successful pathogens in turn are able to prevent immune mediated clearance by expressing virulence factors that block agglutination. Thus, microbial size is one of the battlegrounds between microbial survival and host defense.
Collapse
Affiliation(s)
- Jeffrey N Weiser
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
70
|
Coscia MR, Giacomelli S, Oreste U. Allelic polymorphism of Immunoglobulin heavy chain genes in the Antarctic teleost Trematomus bernacchii. Mar Genomics 2012. [DOI: 10.1016/j.margen.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
71
|
Trochimiak T, Hübner-Woźniak E. Effect of exercise on the level of immunoglobulin a in saliva. Biol Sport 2012; 29:255-61. [PMID: 24868115 PMCID: PMC4033058 DOI: 10.5604/20831862.1019662] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2012] [Indexed: 11/13/2022] Open
Abstract
The aim of this paper is to describe the structure, production and function of secretory immunoglobulin A (sIgA) as well as changes of its concentration caused by exercise of various intensity and duration. Immunoglobulin A is the main class of antibodies present in the body secreted fluids such as saliva, tears or mucus from the intestines. It is generally recognized that IgA, due to its dominance in the immune system of mucous membranes, is the first line of defence against harmful environmental factors. The secretion and composition of saliva depends on the activity of the sympathetic and parasympathetic nervous systems. Physical activity, stimulating the autonomous nervous system, may reduce the amount of saliva and/or inhibit its secretion. The relationship between physical activity and the suppression of the immune system is not fully understood, but it is known that moderate intensity exercise can improve immune defences, while extreme effort can reduce them by creating an increased risk of upper respiratory tract inflammation (URTI). In athletes, the lowest risk of upper tract infection was connected with the case of moderate intensity exercise. It is now believed that the relationship between exercise volume and the risk of URTI has the shape of the letter "J". This means that both too little and too much physical activity may increase the risk of upper respiratory tract infection. Training optimization and correct balance between exercise and rest periods may reduce the risk of adverse changes in the immune system and decrease the frequency of URTI.
Collapse
Affiliation(s)
- T Trochimiak
- Dept. of Biochemistry, University of Physical Education, Warsaw, Poland
| | - E Hübner-Woźniak
- Dept. of Biochemistry, University of Physical Education, Warsaw, Poland
| |
Collapse
|
72
|
Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. mBio 2012; 3:mBio.00303-12. [PMID: 23033471 PMCID: PMC3518915 DOI: 10.1128/mbio.00303-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. The paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD have been identified as crucial for virulence of the human pathogen Streptococcus pneumoniae. This study maps the presence of the corresponding genes and enzyme activities in S. pneumoniae and in related commensal species of the genera Streptococcus, Gemella, and Granulicatella. The distribution, genome location, and sequence diversification indicate that zmpB is the ancestral gene predating the evolution of today’s humanoid species. The ZmpB protease may play an important but yet unidentified role in the association of streptococci of the Mitis and Salivarius groups with their human host, as it is ubiquitous in these two groups, except for a fragmented gene in Streptococcus thermophilus, the only species not associated with humans. The relative sequence diversification of the IgA1 protease, ZmpB, and ZmpD is striking evidence of differences in selection for diversification of these surface-exposed proteins in the pathogen S. pneumoniae compared to the closely related commensal streptococci.
Collapse
|
73
|
Saluja R, Kale A, Hallikerimath S. Determination of levels of salivary IgA subclasses in patients with minor recurrent aphthous ulcer. J Oral Maxillofac Pathol 2012; 16:49-53. [PMID: 22438643 PMCID: PMC3303523 DOI: 10.4103/0973-029x.92973] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Context: Recurrent Aphthous Ulcer (RAU) is an inflammatory disease characterized by recurrent, painful oral ulcers. It is of multifactorial etiology. Salivary immunoglobulins have important role in the protection of mucosal surfaces. Aim: The aim of this study was to determine salivary immunoglobulin A1 (IgA1) and IgA2 in acute and remission phases of the disease. Materials and Methods: Thirty clinically confirmed cases of RAU and 30 age-and sex-matched controls were included in the study. After detailed case history and thorough clinical examination, 2 mL of saliva was collected in both acute and remission phases of the disease. The obtained saliva samples were subjected to quantification of IgA1 and IgA2 levels using RID kit. Results: The mean IgA2 level was significantly higher (P<.001) in both acute and remission phase of the study group. The mean IgA1 level also showed a significant increase in the acute phase compared to remission as well as controls (P<.05). Females exhibited a higher level in acute phase for IgA1 and in both phases for IgA2 (P<.05). Conclusion: The results associated with clinical observations suggest that acute phase is characterized with increase in IgA2 that might reflect increased immune response as a possible result of the microbial stimulation seen in the acute phase in comparison to the remission period. IgA plays an important role in the pathogenesis of RAU and it can be used as a parameter to assess the mucosal immune status
Collapse
Affiliation(s)
- Ramandeep Saluja
- Department of Oral Pathology and Microbiology, Swami Devi Dyal Hospital and Dental College, Barwala, Haryana, India
| | | | | |
Collapse
|
74
|
Novak J, Julian BA, Mestecky J, Renfrow MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 2012; 34:365-82. [PMID: 22434325 DOI: 10.1007/s00281-012-0306-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/02/2012] [Indexed: 12/18/2022]
Abstract
IgA nephropathy, described in 1968 as IgA-IgG immune-complex disease, is an autoimmune disease. Galactose-deficient IgA1 is recognized by unique autoantibodies, resulting in the formation of pathogenic immune complexes that ultimately induce glomerular injury. Thus, formation of the galactose-deficient IgA1-containing immune complexes is a critical factor in the pathogenesis of IgA nephropathy. Studies of molecular defects of IgA1 can define new biomarkers specific for IgA nephropathy that can be developed into clinical assays to aid in the diagnosis, assessment of prognosis, and monitoring of disease progression.
Collapse
Affiliation(s)
- Jan Novak
- University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
75
|
Lewis WG, Robinson LS, Perry J, Bick JL, Peipert JF, Allsworth JE, Lewis AL. Hydrolysis of secreted sialoglycoprotein immunoglobulin A (IgA) in ex vivo and biochemical models of bacterial vaginosis. J Biol Chem 2011; 287:2079-89. [PMID: 22134918 DOI: 10.1074/jbc.m111.278135] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial vaginosis (BV) is a common polymicrobial imbalance of the vaginal flora associated with a wide variety of obstetric and gynecologic complications including serious infections and preterm birth. As evidenced by high recurrence rates following treatment, interventions for BV are still lacking. Several hydrolytic activities, including glycosidases and proteases, have been previously correlated with BV and have been hypothesized to degrade host sialoglycoproteins that participate in mucosal immune functions. Sialidase activity is most predictive of BV status and correlates strongly with adverse health outcomes. Here we combine clinical specimens with biochemical approaches to investigate secretory immunoglobulin A (SIgA) as a substrate of BV-associated glycosidases and proteases. We show that BV clinical specimens hydrolyze sialic acid from SIgA, but not in the presence of the sialidase inhibitor dehydro-deoxy-sialic acid. The collective action of BV-associated glycosidases exposes underlying mannose residues of SIgA, most apparent on the heavily N-glycosylated secretory component of the antibody. Terminal sialic acid residues on SIgA protect underlying carbohydrate residues from exposure and hydrolysis by exoglycosidases (galactosidase and hexosaminidase). It is known that both IgG and SIgA are present in the human reproductive tract. We show that the IgG heavy chain is more susceptible to proteolysis than its IgA counterpart. Gentle partial deglycosylation of the SIgA secretory component enhanced susceptibility to proteolysis. Together, these data support a model of BV in which SIgA is subject to stepwise exodeglycosylation and enhanced proteolysis, likely compromising the ability of the reproductive mucosa to neutralize and eliminate pathogens.
Collapse
Affiliation(s)
- Warren G Lewis
- Departments of Medicine, Gynecology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Carneiro HA, Mavrakis A, Mylonakis E. Candida Peritonitis: An Update on the Latest Research and Treatments. World J Surg 2011; 35:2650-9. [DOI: 10.1007/s00268-011-1305-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
77
|
Vincents B, Guentsch A, Kostolowska D, von Pawel-Rammingen U, Eick S, Potempa J, Abrahamson M. Cleavage of IgG1 and IgG3 by gingipain K from Porphyromonas gingivalis may compromise host defense in progressive periodontitis. FASEB J 2011; 25:3741-50. [PMID: 21768393 PMCID: PMC3177567 DOI: 10.1096/fj.11-187799] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/01/2011] [Indexed: 01/08/2023]
Abstract
Degradation of immunoglobulins is an effective strategy of bacteria to evade the immune system. We have tested whether human IgG is a substrate for gingipain K of Porphyromonas gingivalis and found that the enzyme can hydrolyze subclass 1 and 3 of human IgG. The heavy chain of IgG(1) was cleaved at a single site within the hinge region, generating Fab and Fc fragments. IgG(3) was also cleaved within the heavy chain, but at several sites around the CH2 region. Investigation of the enzyme kinetics of IgG proteolysis by gingipain K, using FPLC- and isothermal titration calorimetry-based assays followed by Hill plots, revealed non-Michaelis-Menten kinetics involving a mechanism of positive cooperativity. In ex vivo studies, it was shown that gingipain K retained its IgG hydrolyzing activity in human plasma despite the high content of natural protease inhibitors; that IgG(1) cleavage products were detected in gingival crevicular fluid samples from patients with severe periodontitis; and that gingipain K treatment of serum samples from patients with high antibody titers against P. gingivalis significantly hindered opsonin-dependent phagocytosis of clinical isolates of P. gingivalis by neutrophils. Altogether, these findings underline a biological function of gingipain K as an IgG protease of pathophysiological importance.
Collapse
Affiliation(s)
- Bjarne Vincents
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, University Hospital, Lund, Sweden
| | - Arndt Guentsch
- Department of Conservative Dentistry, University Hospital of Jena, Jena, Germany
| | - Dominika Kostolowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Sigrun Eick
- Department of Periodontology, Laboratory of Oral Microbiology, University of Bern, Bern, Switzerland; and
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- University of Louisville Dental School, Center for Oral Health and Systemic Diseases, Louisville, Kentucky, USA
| | - Magnus Abrahamson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, University Hospital, Lund, Sweden
| |
Collapse
|
78
|
Abstract
Although immunoglobulin (Ig) A is commonly recognized as the most prevalent antibody subclass at mucosal sites with an important role in mucosal defense, its potential as a therapeutic monoclonal antibody is less well known. However, IgA has multifaceted anti-, non-, and pro-inflammatory functions that can be exploited for different immunotherapeutical strategies, which will be the focus of this review.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
79
|
Hobbs MM, Sparling PF, Cohen MS, Shafer WM, Deal CD, Jerse AE. Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC. Front Microbiol 2011; 2:123. [PMID: 21734909 PMCID: PMC3119411 DOI: 10.3389/fmicb.2011.00123] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/17/2011] [Indexed: 11/30/2022] Open
Abstract
Experimental infection of male volunteers with Neisseria gonorrhoeae is safe and reproduces the clinical features of naturally acquired gonococcal urethritis. Human inoculation studies have helped define the natural history of experimental infection with two well-characterized strains of N. gonorrhoeae, FA1090 and MS11mkC. The human model has proved useful for testing the importance of putative gonococcal virulence factors for urethral infection in men. Studies with isogenic mutants have improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins, IgA1 protease, and the ability of infecting organisms to obtain iron from human transferrin and lactoferrin during uncomplicated urethritis. The model also presents opportunities to examine innate host immune responses that may be exploited or improved in development and testing of gonococcal vaccines. Here we review results to date with human experimental gonorrhea.
Collapse
Affiliation(s)
- Marcia M. Hobbs
- Departments of Medicine, University of North CarolinaChapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North CarolinaChapel Hill, NC, USA
| | - P. Frederick Sparling
- Departments of Medicine, University of North CarolinaChapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North CarolinaChapel Hill, NC, USA
| | - Myron S. Cohen
- Departments of Medicine, University of North CarolinaChapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North CarolinaChapel Hill, NC, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of MedicineAtlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta)Decatur, GA, USA
| | - Carolyn D. Deal
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
80
|
Harvey RM, Stroeher UH, Ogunniyi AD, Smith-Vaughan HC, Leach AJ, Paton JC. A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence. PLoS One 2011; 6:e19650. [PMID: 21573186 PMCID: PMC3088708 DOI: 10.1371/journal.pone.0019650] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/08/2011] [Indexed: 01/12/2023] Open
Abstract
The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8 regions >1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal pathogenicity island 1 variable region (PPI-1v), phage-associated adherence factors, transporters and metabolic enzymes. In particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study have important implications for understanding the processes that drive progression from colonization to invasive disease and will help direct the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Richard M. Harvey
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Uwe H. Stroeher
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Heidi C. Smith-Vaughan
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Amanda J. Leach
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
81
|
The expression of soluble and active recombinant Haemophilus influenzae IgA1 protease in E. coli. J Biomed Biotechnol 2010; 2010:253983. [PMID: 21151648 PMCID: PMC2995913 DOI: 10.1155/2010/253983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023] Open
Abstract
Immunoglobulin A1 (IgA1) proteases from Haemophilus influenzae are extracellular proteases that specifically cleave the hinge region of human IgA1, the predominant class of immunoglobulin present on mucosal membranes. The IgA1 proteases may have the potential to cleave IgA1 complexes in the kidney and be a therapeutic agent for IgA1 nephropathy (IgAN), a disease characterized by deposition of the IgA1 antibody in the glomerulus. We have screened for the expression of recombinant H. influenzae IgA1 protease by combining various expression plasmids, IgA1 protease constructs, and E. coli strains under multiple conditions. Using the method we have developed, approximately 20–40 mg/L of soluble and active H. influenzae IgA1 protease can be produced from E. coli strain C41(DE3), a significant increase in yield compared to the yield upon expression in H. influenzae or other related bacteria.
Collapse
|
82
|
XIE LINSHEN, HUANG JUN, QIN WEI, FAN JUNMING. Brief Communication: Immunoglobulin A1 protease: A new therapeutic candidate for immunoglobulin A nephropathy. Nephrology (Carlton) 2010; 15:584-6. [DOI: 10.1111/j.1440-1797.2010.01278.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Brezski RJ, Jordan RE. Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity? MAbs 2010; 2:212-20. [PMID: 20400859 DOI: 10.4161/mabs.2.3.11780] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effective functioning of immunoglobulins and IgG mAbs in removing pathological cells requires that the antigen binding regions and the Fc (effector) domain act in concert. The hinge region that connects these domains itself presents motifs that engage Fc receptors on immune effector cells to achieve cell lysis. In addition, sequences in the lower hinge/CH2 and further down the CH2 region are involved in C1q binding and complement-mediated cell killing. Proteolytic enzymes of little relevance to human physiology were successfully used for decades to generate fragments of IgGs for reagent and therapeutic use. It was subsequently noted that tumor-related and microbial proteases also cleaved human IgG specifically in the hinge region. We have shown previously that the "nick" of just one of the lower hinge heavy chains of IgG unexpectedly prevented many effector functions without impacting antigen binding. Of interest, related single-cleaved IgG breakdown products were detected in breast carcinoma extracts. This suggested a pathway by which tumors might avoid host immune surveillance under a cloak of proteolytically-generated, dysfunctional antibodies that block competent IgG binding. The host immune system cannot be blind to this pathway since there exists a widespread, low-titer incidence of anti-hinge (cleavage-site) antibodies in the healthy population. The prevalence of anti-hinge reactivity may reflect an ongoing immune recognition of normal IgG catabolism. Tumor growth and bacterial infections potentially generate hostile proteolytic environments that may pose harsh challenges to host immunity. Recent findings involving physiologically-relevant proteases suggest that the potential loss of key effector functions of host IgGs may result from subtle and limited proteolytic cleavage of IgGs and that such events may facilitate the incursion of invasive cells in local proteolytic settings.
Collapse
|
84
|
Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 2009; 9:259. [PMID: 20003481 PMCID: PMC2805672 DOI: 10.1186/1471-2180-9-259] [Citation(s) in RCA: 867] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 12/15/2009] [Indexed: 01/03/2023] Open
Abstract
Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Cariology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
85
|
Vernersson M, Belov K, Aveskogh M, Hellman L. Cloning and structural analysis of two highly divergent IgA isotypes, IgA1 and IgA2 from the duck billed platypus, Ornithorhynchus anatinus. Mol Immunol 2009; 47:785-91. [PMID: 19913303 DOI: 10.1016/j.molimm.2009.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 01/29/2023]
Abstract
To trace the emergence of modern IgA isotypes during vertebrate evolution we have studied the immunoglobulin repertoire of a model monotreme, the platypus. Two highly divergent IgA-like isotypes (IgA1 and IgA2) were identified and their primary structures were determined from full-length cDNAs. A comparative analysis of the amino acid sequences for IgA from various animal species showed that the two platypus IgA isotypes form a branch clearly separated from their eutherian (placental) counterparts. However, they still conform to the general structure of eutherian IgA, with a hinge region and three constant domains. This indicates that the deletion of the second domain and the formation of a hinge region in IgA did occur very early during mammalian evolution, more than 166 million years ago. The two IgA isotypes in platypus differ in primary structure and appear to have arisen from a very early gene duplication, possibly preceding the metatherian eutherian split. Interestingly, one of these isotypes, IgA1, appears to be expressed in only the platypus, but is present in the echidna based on Southern blot analysis. The platypus may require a more effective mucosal immunity, with two highly divergent IgA forms, than the terrestrial echidna, due to its lifestyle, where it is exposed to pathogens both on land and in the water.
Collapse
Affiliation(s)
- M Vernersson
- Department of Cell and Molecular Biology, University of Uppsala, The Biomedical Center, Husargatan 3, Box 596, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
86
|
Benedetti P, Rassu M, Branscombe M, Sefton A, Pellizzer G. Gemella morbillorum: an underestimated aetiology of central nervous system infection? J Med Microbiol 2009; 58:1652-1656. [PMID: 19713361 DOI: 10.1099/jmm.0.013367-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A case is reported of cerebellar abscess and diffuse cerebritis due to Gemella morbillorum. The clinical course was 'biphasic', developing with an acute meningeal infection followed shortly afterwards by suppuration in the cerebellar and cerebral parenchyma; this pattern seemed to suggest a latent survival of the aetiological agent, probably within the central nervous system (CNS), despite systemic antibiotic therapy. Based upon a review of cases so far described, infections of the CNS caused by G. morbillorum appear to be an emerging reality.
Collapse
Affiliation(s)
- Paolo Benedetti
- Unità Operativa di Malattie Infettive e Tropicali, Ospedale S. Bortolo, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Mario Rassu
- Laboratorio di Microbiologia, Ospedale S. Bortolo, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Michele Branscombe
- Institute of Cell and Molecular Science, Centre for Infectious Disease, Barts and the London School of Medicine and Dentistry, London E1 2AT, UK
| | - Armine Sefton
- Institute of Cell and Molecular Science, Centre for Infectious Disease, Barts and the London School of Medicine and Dentistry, London E1 2AT, UK
| | - Giampietro Pellizzer
- Unità Operativa di Malattie Infettive e Tropicali, Ospedale S. Bortolo, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
87
|
Yen YT, Karkal A, Bhattacharya M, Fernandez RC, Stathopoulos C. Identification and characterization of autotransporter proteins ofYersinia pestisKIM. Mol Membr Biol 2009; 24:28-40. [PMID: 17453411 DOI: 10.1080/09687860600927626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Yersinia pestis is a Gram-negative bacterium that causes plague. Currently, plague is considered a re-emerging infectious disease and Y. pestis a potential bioterrorism agent. Autotransporters (ATs) are virulence proteins translocated by a variety of pathogenic Gram-negative bacteria across the cell envelope to the cell surface or extracellular environment. In this study, we screened the genome of Yersinia pestis KIM for AT genes whose expression might be relevant for the pathogenicity of this plague-causing organism. By in silico analyses, we identified ten putative AT genes in the genomic sequence of Y. pestis KIM; two of these genes are located within known pathogenicity islands. The expression of all ten putative AT genes in Y. pestis KIM was confirmed by RT-PCR. Five genes, designated yapA, yapC, yapG, yapK and yapN, were subsequently cloned and expressed in Escherichia coli K12 for protein secretion studies. Two forms of the YapA protein (130 kDa and 115 kDa) were found secreted into the culture medium. Protease cleavage at the C terminus of YapA released the protein from the cell surface. Outer membrane localization of YapC (65 kDa), YapG (100 kDa), YapK (130 kDa), and YapN (60 kDa) was established by cell fractionation, and cell surface localization of YapC and YapN was demonstrated by protease accessibility experiments. In functional studies, YapN and YapK showed hemagglutination activity and YapC exhibited autoagglutination activity. Data reported here represent the first study on Y. pestis ATs.
Collapse
Affiliation(s)
- Yihfen T Yen
- Department of Biology and Biochemistry, University of Houston, Texas 77204, USA
| | | | | | | | | |
Collapse
|
88
|
Symposium Proceedings: “IgA and Periodontal Disease” Abstracts of the IADR symposium 26 June 1998, Nice, France. Oral Dis 2008. [DOI: 10.1111/j.1601-0825.1999.tb00065.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Russo TA, Carlino-MacDonald U. Extraintestinal pathogenic isolates of Escherichia coli do not possess active IgA1, IgA2, sIgA or IgG proteases. ACTA ACUST UNITED AC 2008; 53:65-71. [PMID: 18384367 DOI: 10.1111/j.1574-695x.2008.00393.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infections outside of the intestinal tract due to pathogenic strains of Escherichia coli result in significant morbidity, mortality and increased healthcare costs. The ability of these strains to cause both mucosal and systemic infections, as well as recurrent infections due to the same (homologous) strain suggests the hypothesis that strains of E. coli that cause infection outside of the intestinal tract possess proteases that are capable of cleaving IgA1, IgA2, sIgA or IgG. To test this hypothesis the ability of eight E. coli strains, isolated from sites outside of the urinary tract and 14 homologous and 11 heterologous strains of E. coli that were isolated from women with recurrent UTI, to cleave IgA1, IgA2, sIgA or IgG was evaluated. Our experimental design allowed for detection of cell-associated and secreted immunoglobulin proteases in both log and stationary phase. Surprisingly, none of these 33 human clinical isolates when grown in iron depleted Luria-Bertani medium or human urine were able to degrade the immunoglobulins assessed. Despite previous studies suggesting otherwise, the findings from this study support the concept that strains of E. coli that cause infection outside of the intestinal tract do not possess proteases that cleave the human immunoglobulins IgA1, IgA2, sIgA or IgG.
Collapse
Affiliation(s)
- Thomas A Russo
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, New York 14214, USA.
| | | |
Collapse
|
90
|
De Paolis F, Beghetto E, Spadoni A, Montagnani F, Felici F, Oggioni MR, Gargano N. Identification of a human immunodominant B-cell epitope within the immunoglobulin A1 protease of Streptococcus pneumoniae. BMC Microbiol 2007; 7:113. [PMID: 18088426 PMCID: PMC2225412 DOI: 10.1186/1471-2180-7-113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022] Open
Abstract
Background The IgA1 protease of Streptococcus pneumoniae is a proteolytic enzyme that specifically cleaves the hinge regions of human IgA1, which dominates most mucosal surfaces and is the major IgA isotype in serum. This protease is expressed in all of the known pneumococcal strains and plays a major role in pathogen's resistance to the host immune response. The present work was focused at identifying the immunodominant regions of pneumococcal IgA1 protease recognized by the human antibody response. Results An antigenic sequence corresponding to amino acids 420–457 (epiA) of the iga gene product was identified by screening a pneumococcal phage display library with patients' sera. The epiA peptide is conserved in all pneumococci and in two out of three S. mitis strains, while it is not present in other oral streptococci so far sequenced. This epitope was specifically recognized by antibodies present in sera from 90% of healthy adults, thus representing an important target of the humoral response to S. pneumoniae and S. mitis infection. Moreover, sera from 68% of children less than 4 years old reacted with the epiA peptide, indicating that the human immune response against streptococcal antigens occurs during childhood. Conclusion The broad and specific recognition of the epiA polypeptide by human sera demonstrate that the pneumococcal IgA1 protease contains an immunodominant B-cell epitope. The use of phage display libraries to identify microbe or disease-specific antigens recognized by human sera is a valuable approach to epitope discovery.
Collapse
|
91
|
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25:5467-84. [PMID: 17227687 DOI: 10.1016/j.vaccine.2006.12.001] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/08/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
Mucosal epithelia comprise an extensive vulnerable barrier which is reinforced by numerous innate defence mechanisms cooperating intimately with adaptive immunity. Local generation of secretory IgA (SIgA) constitutes the largest humoral immune system of the body. Secretory antibodies function both by performing antigen exclusion at mucosal surfaces and by virus and endotoxin neutralization within epithelial cells without causing tissue damage. SIgA is thus persistently containing commensal bacteria outside the epithelial barrier but can also target invasion of pathogens and penetration of harmful antigens. Resistance to toxin-producing bacteria such as Vibrio cholerae and enterotoxigenic Escherichia coli appears to depend largely on SIgA, and so does herd protection against horizontal faecal-oral spread of enteric pathogens under naïve or immunized conditions--with a substantial innate impact both on cross-reactivity and memory. Like natural infections, live mucosal vaccines or adequate combinations of non-replicating vaccines and mucosal adjuvants, give rise not only to SIgA antibodies but also to longstanding serum IgG and IgA responses. However, there is considerably disparity with regard to migration of memory/effector cells from mucosal inductive sites to secretory effector sites and systemic immune organs. Also, although immunological memory is generated after mucosal priming, this may be masked by a self-limiting response protecting the inductive lymphoid tissue in the gut. The intranasal route of vaccine application targeting nasopharynx-associated lymphoid tissue may be more advantageous for certain infections, but only if successful stimulation is achieved without the use of toxic adjuvants that might reach the central nervous system. The degree of protection obtained after mucosal vaccination ranges from reduction of symptoms to complete inhibition of re-infection. In this scenario, it is often difficult to determine the relative importance of SIgA versus serum antibodies, but infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents. Nevertheless, relatively few mucosal vaccines have been approved for human use, and more basic work is needed in vaccine and adjuvant design, including particulate or live-vectored combinations.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Institute and Department of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway.
| |
Collapse
|
92
|
Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 2007; 25:21-50. [PMID: 17029568 DOI: 10.1146/annurev.immunol.25.022106.141702] [Citation(s) in RCA: 1005] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunoglobulins are the major secretory products of the adaptive immune system. Each is characterized by a distinctive set of glycoforms that reflects the wide variation in the number, type, and location of their oligosaccharides. In a given physiological state, glycoform populations are reproducible; therefore, disease-associated alterations provide diagnostic biomarkers (e.g., for rheumatoid arthritis) and contribute to disease pathogenesis. The oligosaccharides provide important recognition epitopes that engage with lectins, endowing the immunoglobulins with an expanded functional repertoire. The sugars play specific structural roles, maintaining and modulating effector functions that are physiologically relevant and can be manipulated to optimize the properties of therapeutic antibodies. New molecular models of all the immunoglobulins are included to provide a basis for informed and critical discussion. The models were constructed by combining glycan sequencing data with oligosaccharide linkage and dynamics information from the Glycobiology Institute experimental database and protein structural data from "The Protein Data Bank."
Collapse
Affiliation(s)
- James N Arnold
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | |
Collapse
|
93
|
Wu J, Ji C, Xie F, Langefeld CD, Qian K, Gibson AW, Edberg JC, Kimberly RP. FcalphaRI (CD89) alleles determine the proinflammatory potential of serum IgA. THE JOURNAL OF IMMUNOLOGY 2007; 178:3973-82. [PMID: 17339498 DOI: 10.4049/jimmunol.178.6.3973] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human IgA FcR (FcalphaRI; CD89) mediates a variety of immune system functions including degranulation, endocytosis, phagocytosis, cytokine synthesis, and cytokine release. We have identified a common, nonsynonymous, single nucleotide polymorphism (SNP) in the coding region of CD89 (844A-->G) (rs16986050), which changes codon 248 from AGC (Ser(248)) to GGC (Gly(248)) in the cytoplasmic domain of the receptor. The two different alleles demonstrate significantly different FcalphaRI-mediated intracellular calcium mobilization and degranulation in rat basophilic leukemia cells and cytokine production (IL-6 and TNF-alpha) in murine macrophage P388D1 cells. In the absence of FcR gamma-chain association in P388D1 cells, the Ser(248)-FcalphaRI allele does not mediate cytokine production, but the Gly(248)-FcalphaRI allele retains the capacity to mediate a robust production of proinflammatory cytokine. This allele-dependent difference is also seen with FcalphaRI-mediated IL-6 cytokine release by human neutrophils ex vivo. These findings and the enrichment of the proinflammatory Gly(248)-FcalphaRI allele in systemic lupus erythematosus populations in two ethnic groups compared with their respective non-systemic lupus erythematosus controls suggest that FcalphaRI (CD89) alpha-chain alleles may affect receptor-mediated signaling and play an important role in the modulation of immune responses in inflammatory diseases.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line, Tumor
- Endocytosis/genetics
- Endocytosis/immunology
- Humans
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Interleukin-6/immunology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Mutation, Missense
- Neutrophils/immunology
- Phagocytosis/genetics
- Phagocytosis/immunology
- Polymorphism, Single Nucleotide/immunology
- Rats
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Jianming Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Two major antibody classes operate in saliva: secretory IgA (SIgA) and IgG. The former is synthesized as dimeric IgA by plasma cells (PCs) in salivary glands and is exported by the polymeric Ig receptor (pIgR). Most IgG in saliva is derived from serum (mainly via gingival crevices), although some is locally produced. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to mucosal PCs throughout the body. Thus, enteric immunostimulation is an inadequate mode of stimulating salivary IgA antibodies, which are poorly associated with the intestinal SIgA response, for instance after enteric cholera vaccination. Nevertheless, the IgA response in submandibular/sublingual glands is better related to B cell induction in GALT than the parotid response. Such disparity is suggested by the elevated levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system. Moreover, in patients with active celiac disease, IgA antibodies to disease-precipitating gliadin are reliably represented in whole saliva but not in parotid secretion. Parotid SIgA may be more consistently linked to immune induction in palatine tonsils and adenoids (human NALT), as supported by the homing molecule profile of NALT-derived B cell blasts. Also several other variables influence the levels of antibodies in oral secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite such problems, saliva remains an interesting biological fluid with great scientific and clinical potentials.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Department and Institute of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Norway.
| |
Collapse
|
95
|
Martinez KDO, Mendes LL, Alves JB. Secretory A immunoglobulin, total proteins and salivary flow in Recurrent Aphthous Ulceration. Braz J Otorhinolaryngol 2007; 73:323-8. [PMID: 17684652 PMCID: PMC9445652 DOI: 10.1016/s1808-8694(15)30075-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/02/2006] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Clinical and experimental study. Introduction. Of debatable etiology, Recurrent Aphthous Ulcerations (R.A.U), is most of the time considered an immunological deficiency. AIM The aim of this paper is to review the literature and clinical investigations regarding IgA-s, total proteins salivary concentration and basal salivary flow of patients with R.A.U. during activity and quiescence. METHODOLOGY Nephelometry was used to measure salivary IgA-s; Pyrogallol red was used for total salivary proteins and the gravimetrical analysis for salivary flow measurement. RESULTS Results demonstrated a significant increase in salivary IgA-s in active lesions in relation to quiescence. On the other hand, protein concentration rates were similar in both periods. CONCLUSION Salivary IgA-s can be used as a parameter to study the immune status of the oral mucosa.
Collapse
|
96
|
Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, Julian BA, Novak J. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol 2007; 44:2598-604. [PMID: 17275907 PMCID: PMC2788496 DOI: 10.1016/j.molimm.2006.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 12/07/2006] [Accepted: 12/13/2006] [Indexed: 12/12/2022]
Abstract
Lectins are proteins with specificity of binding to certain monosaccharides or oligosaccharides. They can detect abnormal glycosylation patterns on immunoglobulins in patients with various chronic inflammatory diseases, including rheumatoid arthritis and IgA nephropathy (IgAN). However, lectins exhibit binding heterogeneity, depending on their source and methods of isolation. To characterize potential differences in recognition of terminal N-acetylgalactosamine (GalNAc) on IgA1, we evaluated the binding characteristics of several commercial preparations of GalNAc-specific lectins using a panel of IgA1 and, as controls, IgA2 and IgG myeloma proteins. These lectins originated from snails Helix aspersa (HAA) and Helix pomatia (HPA), and the plant Vicia villosa (VV). Only HAA and HPA bound exclusively to IgA1, with its O-linked glycans composed of GalNAc, galactose, and sialic acid. In contrast, VV reacted with sugars of both IgA subclasses and IgG, indicating that it also recognized N-linked glycans without GalNAc. Furthermore, HAA and HPA from several manufacturers differed in their ability to bind various IgA1 myeloma proteins and other GalNAc-containing glycoproteins in ELISA and Western blot. For serum samples from IgAN patients, HAA was the optimal lectin to study IgA1 glycosylation in ELISA and Western blot assays, including identification of the sites of attachment of the aberrant glycans. The galactose-deficient glycans were site-specific, localized mostly at Thr228 and/or Ser230. Because of the heterogeneity of GalNAc-specific lectins, they should be carefully characterized with appropriate substrates before undertaking any study.
Collapse
Affiliation(s)
- Jennifer S Moore
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Millar EV, O'Brien KL, Bronsdon MA, Madore D, Hackell JG, Reid R, Santosham M. Anticapsular serum antibody concentration and protection against pneumococcal colonization among children vaccinated with 7-valent pneumococcal conjugate vaccine. Clin Infect Dis 2007; 44:1173-9. [PMID: 17407035 DOI: 10.1086/513199] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/10/2007] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Pneumococcal conjugate vaccines prevent invasive and noninvasive disease due to infection with vaccine serotypes. Pneumococcal conjugate vaccines also prevent nasopharyngeal acquisition of vaccine serotypes, although the mechanism is incompletely understood. METHODS An efficacy trial of a 7-valent pneumococcal conjugate vaccine was conducted on the Navajo and White Mountain Apache reservations, located in the Southwestern United States; group C meningococcal conjugate vaccine was the control vaccine. Infants were randomized to receive 7-valent pneumococcal conjugate vaccine or group C meningococcal conjugate vaccine at 2, 4, 6, and 12 months of age. Immunogenicity and nasopharyngeal colonization studies were nested in the efficacy trial. We analyzed the correlation between serotype-specific serum IgG concentration at 7 and 13 months of age and nasopharyngeal acquisition of disease at 12 and 18 months of age, respectively. We adjusted for potential confounders using multivariate logistic regression. RESULTS Among 203 subjects, we observed 60 acquisitions of vaccine-type pneumococci, including 19 acquisitions of serotype 19F (31.7%), and 17 acquisitions of serotype 23F (28.3%). Among recipients of 7-valent pneumococcal conjugate vaccine, increased serotype-specific serum IgG was associated with a reduction in nasopharyngeal acquisition of serotype 23F (relative risk, 0.53; 95% confidence interval, 0.31-0.93) but was not associated with a reduction in acquisition of serotype 19F (relative risk, 1.07; 95% confidence interval, 0.57-2.03). Among group C meningococcal conjugate vaccine recipients, serotype-specific serum IgG was not associated with a reduction in nasopharyngeal acquisition for either serotype. CONCLUSION An increase in serum antibody concentration was associated with reduced acquisition of serotype 23F pneumococcus (but not with reduced acquisition of serotype 19F pneumococcus) among recipients of 7-valent pneumococcal conjugate vaccine. Differences in antibody concentration, in the functional characteristics of antibody, or in antibody kinetics during infancy may account for differences in carriage protection.
Collapse
Affiliation(s)
- Eugene V Millar
- Center for American Indian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Vitovski S, Sayers JR. Relaxed cleavage specificity of an immunoglobulin A1 protease from Neisseria meningitidis. Infect Immun 2007; 75:2875-85. [PMID: 17353288 PMCID: PMC1932897 DOI: 10.1128/iai.01671-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory pathogens, such as Neisseria meningitidis, secrete site-specific proteases able to cleave human immunoglobulin A1 (IgA1), the first line of defense at mucosal membranes. Bacterial isolates show wide variability in IgA1 protease activity, and those isolated from patients with clinical infection possess the highest levels of activity. A feature of this enzyme is the self-cleavage required for secretion of the mature extracellular form. Known cleavage targets contain a proline-rich consensus recognition sequence, Pro-Pro-Ser-Pro, residing in the variable linker region that connects the protease and translocator domains. Here, we report the sequence of the NMB IgA1 protease and the unexpected self-cleavage and subsequent extracellular release of mature IgA1 protease from mutants lacking the previously defined consensus cleavage site. We investigated the possible link between enzyme secretion and variability in the linker sequence segment using site-directed mutagenesis and linker domain swapping to construct mutated and chimeric forms of the IgA1 protease from N. meningitidis strain NMB. The observed change in secreted activity levels compared to the wild-type clone indicated that the precise amino acid sequence of the intervening region, between mature IgA1 protease and the beta-core translocator domain, influences the efficacy of autoproteolytic processing. The broader specificity uncovered for the NMB IgA1 protease suggests that it could cleave a far wider range of human proteins than previously appreciated.
Collapse
Affiliation(s)
- Srdjan Vitovski
- Section of Infection, Inflammation and Immunity, Henry Wellcome Laboratories for Medical Research, The University of Sheffield School of Medicine and Biomedical Science, Sheffield, UK
| | | |
Collapse
|
99
|
Scinicariello F, Masseoud F, Jayashankar L, Attanasio R. Sooty mangabey (Cercocebus torquatus atys) IGHG and IGHA genes. Immunogenetics 2006; 58:955-65. [PMID: 17048039 DOI: 10.1007/s00251-006-0152-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 08/14/2006] [Indexed: 12/21/2022]
Abstract
Antibodies are adaptor molecules of the immune system that link antigen recognition with the effector mechanisms responsible for antigen clearance. Several nonhuman primate species are widely used in biomedical research, especially for vaccine development and for AIDS-related studies. However, nonhuman primate antibody molecules have been characterized only partially and only in a few species. Here, we describe sooty mangabey (Cercocebus torquatus atys) IGHG and IGHA genes, which encode the heavy-chain constant region of IgG and IgA molecules, respectively. The four mangabey IGHG genes are highly homologous to the rhesus macaque and baboon IGHG genes (percent identity varies between 94.0 and 98.8, depending on the subclass), with most amino acid differences located in the hinge regions. Results obtained by real-time reverse transcription polymerase chain reaction show that the four IGHG genes are expressed at least at the mRNA level. The mangabey IGHA gene is highly homologous to the corresponding gene from rhesus macaques (percent identity ranges from 88.6 to 96.7, depending on the allele considered), the only other nonhominoid primate species for which the complete sequence of the IGHA gene is currently available. In the mangabey analyzed, two IGHA alleles are present, confirming that high levels of IGHA gene heterozygosity are present in monkey species. These results show that nonhuman primate gamma and alpha heavy chains differ from each other mostly at the level of the hinge region and that alpha sequence heterogeneity in nonhuman primate species is also present in other gamma regions. In addition, these results provide sequence information that can be used for residue frequency analysis of antibody heavy-chain constant region sequences.
Collapse
|
100
|
Edwards RK, Ferguson RJ, Reyes L, Brown M, Theriaque DW, Duff P. Assessing the relationship between preterm delivery and various microorganisms recovered from the lower genital tract. J Matern Fetal Neonatal Med 2006; 19:357-63. [PMID: 16801313 DOI: 10.1080/00207170600712071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine if the likelihood of preterm delivery is more dependent on the specific organisms present in the vagina than on the presence of bacterial vaginosis. METHODS We evaluated the vaginal fluid of a prospective cohort of women at 23-32 weeks of gestation with signs and symptoms of preterm labor and intact membranes. Forward stepwise logistic regression models were used to evaluate the relationship between preterm delivery and the presence of anaerobic bacteria, Gardnerella, ureaplasmas and mycoplasmas, and sialidase. RESULTS The cohort included 137 women, and complete delivery information was available for 134 of them. The rate of preterm delivery was 28% (37 of 134). Mycoplasma genitalium independently was associated with spontaneous preterm delivery (OR 3.48; 95% CI 1.41, 8.57). After controlling for this factor, none of the other variables were significantly prognostic for spontaneous preterm delivery (residual overall p = 0.19). CONCLUSION The presence of Mycoplasma genitalium in the vagina of pregnant women is an independent risk factor for spontaneous preterm delivery.
Collapse
Affiliation(s)
- Rodney K Edwards
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, FL 32610-0294, USA.
| | | | | | | | | | | |
Collapse
|