51
|
Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 2016; 539:378-383. [PMID: 27806374 PMCID: PMC6076225 DOI: 10.1038/nature20142] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.
Collapse
|
52
|
A kinome wide screen identifies novel kinases involved in regulation of monoamine transporter function. Neurochem Int 2016; 98:103-14. [DOI: 10.1016/j.neuint.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 11/21/2022]
|
53
|
Miranda F, Mannion D, Liu S, Zheng Y, Mangala LS, Redondo C, Herrero-Gonzalez S, Xu R, Taylor C, Chedom DF, Carrami EM, Albukhari A, Jiang D, Pradeep S, Rodriguez-Aguayo C, Lopez-Berestein G, Salah E, Abdul Azeez KR, Elkins JM, Campo L, Myers KA, Klotz D, Bivona S, Dhar S, Bast RC, Saya H, Choi HG, Gray NS, Fischer R, Kessler BM, Yau C, Sood AK, Motohara T, Knapp S, Ahmed AA. Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell 2016; 30:273-289. [PMID: 27478041 DOI: 10.1016/j.ccell.2016.06.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/24/2015] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
Abstract
The adipocyte-rich microenvironment forms a niche for ovarian cancer metastasis, but the mechanisms driving this process are incompletely understood. Here we show that salt-inducible kinase 2 (SIK2) is overexpressed in adipocyte-rich metastatic deposits compared with ovarian primary lesions. Overexpression of SIK2 in ovarian cancer cells promotes abdominal metastasis while SIK2 depletion prevents metastasis in vivo. Importantly, adipocytes induce calcium-dependent activation and autophosphorylation of SIK2. Activated SIK2 plays a dual role in augmenting AMPK-induced phosphorylation of acetyl-CoA carboxylase and in activating the PI3K/AKT pathway through p85α-S154 phosphorylation. These findings identify SIK2 at the apex of the adipocyte-induced signaling cascades in cancer cells and make a compelling case for targeting SIK2 for therapy in ovarian cancer.
Collapse
Affiliation(s)
- Fabrizio Miranda
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - David Mannion
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Shujuan Liu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Lingegowda S Mangala
- Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Clara Redondo
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sandra Herrero-Gonzalez
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruoyan Xu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Charlotte Taylor
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Donatien Fotso Chedom
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Eli M Carrami
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ashwag Albukhari
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| | - Dahai Jiang
- Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sunila Pradeep
- Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Eidarus Salah
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Kamal R Abdul Azeez
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kevin A Myers
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Daniel Klotz
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Serena Bivona
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hwan Geun Choi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Christopher Yau
- Wellcome Trust Centre for Human Genetics, NIHR Biomedical Research Centre, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Anil K Sood
- Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK; Goethe-University Frankfurt, Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
54
|
Pterosin B has multiple targets in gluconeogenic programs, including coenzyme Q in RORα–SRC2 signaling. Biochem Biophys Res Commun 2016; 473:415-20. [DOI: 10.1016/j.bbrc.2016.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
|
55
|
Li Y, Chen D, Li Y, Jin L, Liu J, Su Z, Qi Z, Shi M, Jiang Z, Ni L, Yang S, Gui Y, Mao X, Chen Y, Lai Y. Oncogenic cAMP responsive element binding protein 1 is overexpressed upon loss of tumor suppressive miR-10b-5p and miR-363-3p in renal cancer. Oncol Rep 2016; 35:1967-78. [PMID: 26796749 DOI: 10.3892/or.2016.4579] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/09/2015] [Indexed: 11/05/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer in adults and has a poor prognosis. cAMP responsive element binding protein 1 (CREB1) is a proto‑oncogenic transcription factor involved in malignancies of various organs. However, its functional role(s) have not yet been elucidated in RCC. We investigated the expression pattern, function and regulation of CREB1 in RCC. CREB1 was overexpressed in the RCC tissues and cell lines. Downregulation of CREB1 inhibited RCC tumorigenesis by affecting cell proliferation, migration and apoptosis. Multiple computational algorithms predicted that the 3'‑untranslated region (3'‑UTR) of human CREB1 mRNA is a target for miR‑10b‑5p and miR‑363‑3p. Luciferase reporter assay, qPCR and western blot analysis confirmed that miR‑10b‑5p and miR‑363‑3p bind directly to the 3'‑UTR of CREB1 mRNA and inhibit mRNA and protein expression of CREB1. qPCR data also revealed a significantly lower expression of miR‑10b‑5p and miR‑363‑3p in RCC tissues. Introduction of miR‑10b‑5p and miR‑363‑3p mimics led to suppressed expression of CREB1 and inhibited cell proliferation, migration and apoptosis reduction. Taken together, we propose that CREB1 is an oncogene in RCC and that upregulation of CREB1 by loss of tumor suppressive miR‑10b‑5p and miR‑363‑3p plays an important role in the tumorigenesis of RCC.
Collapse
Affiliation(s)
- Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Duqun Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yuchi Li
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhengming Su
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhengyu Qi
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Min Shi
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhimao Jiang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liangchao Ni
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound Division, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
56
|
Hu Z, Hu J, Shen WJ, Kraemer FB, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry 2015; 54:6917-30. [PMID: 26567857 DOI: 10.1021/acs.biochem.5b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salt-inducible kinase 1 (SIK1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMPK family of kinases. SIK1 expression is rapidly induced in Y1 adrenal cells in response to ACTH via the cAMP-PKA signaling cascade, and it has been suggested that an increased level of SIK1 expression inhibits adrenal steroidogenesis by repressing the cAMP-dependent transcription of steroidogenic proteins, CYP11A1 and StAR, by attenuating CREB transcriptional activity. Here we show that SIK1 stimulates adrenal steroidogenesis by modulating the selective HDL-CE transport activity of SR-B1. Overexpression of SIK1 increases cAMP-stimulated and SR-B1-mediated selective HDL-BODIPY-CE uptake in cell lines without impacting SR-B1 protein levels, whereas knockdown of SIK1 attenuated cAMP-stimulated selective HDL-BODIPY-CE uptake. SIK1 forms a complex with SR-B1 by interacting with its cytoplasmic C-terminal domain, and in vitro kinase activity measurements indicate that SIK1 can phosphorylate the C-terminal domain of SR-B1. Among potential phosphorylation sites, SIK1-catalyzed phosphorylation of Ser496 is critical for SIK1 stimulation of the selective CE transport activity of SR-B1. Mutational studies further demonstrated that both the intact catalytic activity of SIK1 and its PKA-catalyzed phosphorylation are essential for SIK1 stimulation of SR-B1 activity. Finally, overexpression of SIK1 caused time-dependent increases in SR-B1-mediated and HDL-supported steroid production in Y1 cells; however, these effects were lost with knockdown of SR-B1. Taken together, these studies establish a role for SIK1 in the positive regulation of selective HDL-CE transport function of SR-B1 and steroidogenesis and suggest a potential mechanism for SIK1 signaling in modulating SR-B1-mediated selective CE uptake and associated steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| |
Collapse
|
57
|
Nixon M, Stewart-Fitzgibbon R, Fu J, Akhmedov D, Rajendran K, Mendoza-Rodriguez MG, Rivera-Molina YA, Gibson M, Berglund ED, Justice NJ, Berdeaux R. Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity. Mol Metab 2015; 5:34-46. [PMID: 26844205 PMCID: PMC4703802 DOI: 10.1016/j.molmet.2015.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Insulin resistance causes type 2 diabetes mellitus and hyperglycemia due to excessive hepatic glucose production and inadequate peripheral glucose uptake. Our objectives were to test the hypothesis that the proposed CREB/CRTC2 inhibitor salt inducible kinase 1 (SIK1) contributes to whole body glucose homeostasis in vivo by regulating hepatic transcription of gluconeogenic genes and also to identify novel SIK1 actions on glucose metabolism. METHODS We created conditional (floxed) SIK1-knockout mice and studied glucose metabolism in animals with global, liver, adipose or skeletal muscle Sik1 deletion. We examined cAMP-dependent regulation of SIK1 and the consequences of SIK1 depletion on primary mouse hepatocytes. We probed metabolic phenotypes in tissue-specific SIK1 knockout mice fed high fat diet through hyperinsulinemic-euglycemic clamps and biochemical analysis of insulin signaling. RESULTS SIK1 knockout mice are viable and largely normoglycemic on chow diet. On high fat diet, global SIK1 knockout animals are strikingly protected from glucose intolerance, with both increased plasma insulin and enhanced peripheral insulin sensitivity. Surprisingly, liver SIK1 is not required for regulation of CRTC2 and gluconeogenesis, despite contributions of SIK1 to hepatocyte CRTC2 and gluconeogenesis regulation ex vivo. Sik1 mRNA accumulates in skeletal muscle of obese high fat diet-fed mice, and knockout of SIK1 in skeletal muscle, but not liver or adipose tissue, improves insulin sensitivity and muscle glucose uptake on high fat diet. CONCLUSIONS SIK1 is dispensable for glycemic control on chow diet. SIK1 promotes insulin resistance on high fat diet by a cell-autonomous mechanism in skeletal muscle. Our study establishes SIK1 as a promising therapeutic target to improve skeletal muscle insulin sensitivity in obese individuals without deleterious effects on hepatic glucose production.
Collapse
Key Words
- AKT, protein kinase B
- AMPK, AMP-activated protein kinase
- BAT, brown adipose tissue
- CHX, cycloheximide
- CREB
- CREB, cAMP response element-binding protein
- CRTC
- CRTC, CREB regulated transcription coactivator
- EndoRa, endogenous rate of glucose appearance
- FGF21, fibroblast growth factor 21
- FOXO1, forkhead box protein O1
- FSK, forskolin
- G6pase, glucose 6-phosphatase
- GDR, glucose disposal rate
- GIR, glucose infusion rate
- GTT, glucose tolerance test
- Glgn, glucagon
- Gluconeogenesis
- Glut, glucose transporter
- HDAC, histone deacetylase
- HFD, high fat diet
- HSP, heat shock protein
- IBMX, 3-isobutyl-1-methylxantine
- ITT, insulin tolerance test
- Insulin resistance
- PTT, pyruvate tolerance test
- Pepck, phosphoenolpyruvate carboxykinase
- Pgc, peroxisome proliferator-activated receptor gamma coactivator
- SIK, salt inducible kinase
- SIK1
- Salt inducible kinase
- WAT, white adipose tissue
- cAMP, cyclic adenosine monophosphate
Collapse
Affiliation(s)
- Mark Nixon
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Randi Stewart-Fitzgibbon
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA; Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston TX 77030, USA
| | - Jingqi Fu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Kavitha Rajendran
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Maria G Mendoza-Rodriguez
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yisel A Rivera-Molina
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Micah Gibson
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Eric D Berglund
- Advanced Imaging Research Center and Department of Pharmacology, University of Texas Southwestern Medical School, USA
| | - Nicholas J Justice
- Institute of Molecular Medicine Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center, Houston, TX 77030, USA; Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston TX 77030, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA; Institute of Molecular Medicine Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center, Houston, TX 77030, USA; Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston TX 77030, USA
| |
Collapse
|
58
|
McTague J, Ferguson M, Chik CL, Ho AK. The adrenergic-regulated CRTC1 and CRTC2 phosphorylation and cellular distribution is independent of endogenous SIK1 in the male rat pinealocyte. Mol Cell Endocrinol 2015. [PMID: 26210066 DOI: 10.1016/j.mce.2015.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Salt inducible kinase 1 (SIK1) has been reported to repress cAMP-response element binding protein (CREB)-mediated gene transcription by causing the nuclear export of CREB-regulated transcription coactivators (CRTCs) through phosphorylation. Although the repressor role of SIK1 in suppressing the expression of arylalkylamine N-acetyltransferase, the enzyme that controls the daily rhythm in melatonin production in the rat pineal gland, has been established, whether SIK1 regulates the phosphorylation and localization of CRTC1 and CRTC2 in this tissue remains unclear. The present study found that overexpressing SIK1 in NE-stimulated rat pinealocytes could increase the phosphorylation of CRTC1 and CRTC2, reduced selectively the nuclear level of CRTC2 (but not that of CRTC1), and elevated the cytosolic levels of both CRTC1 and CRTC2. In contrast, transient knockdown of endogenous SIK1 had no effect on the phosphorylation or distribution of CRTC1 and CRTC2 in norepinephrine (NE)-stimulated pinealocytes. Our results also showed that adrenergic blockade during NE stimulation led to a rapid rephosphorylation and decline in the nucleus levels of CRTC1 and CRTC2; however SIK1 knockdown had no effect on this rapid rephosphorylation. Moreover, studies with kinase inhibitors revealed that kinase(s) sensitive to KT5823 appeared to be involved in this rapid rephosphorylation. Together, these results indicate that although overexpressing SIK1 can phosphorylate CRTC1 and CRTC2 in the NE-stimulated pinealocyte, the endogenous SIK1, in spite of its induction by NE, does not appear to be the main regulator of the phosphorylation and intracellular localization of these two coactivators.
Collapse
Affiliation(s)
- J McTague
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - M Ferguson
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - C L Chik
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A K Ho
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
59
|
Itoh Y, Sanosaka M, Fuchino H, Yahara Y, Kumagai A, Takemoto D, Kagawa M, Doi J, Ohta M, Tsumaki N, Kawahara N, Takemori H. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 2015; 290:17879-17893. [PMID: 26048985 DOI: 10.1074/jbc.m115.640821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 01/24/2023] Open
Abstract
Salt-inducible kinases (SIKs), members of the 5'-AMP-activated protein kinase (AMPK) family, are proposed to be important suppressors of gluconeogenic programs in the liver via the phosphorylation-dependent inactivation of the CREB-specific coactivator CRTC2. Although a dramatic phenotype for glucose metabolism has been found in SIK3-KO mice, additional complex phenotypes, dysregulation of bile acids, cholesterol, and fat homeostasis can render it difficult to discuss the hepatic functions of SIK3. The aim of this study was to examine the cell autonomous actions of SIK3 in hepatocytes. To eliminate systemic effects, we prepared primary hepatocytes and screened the small compounds suppressing SIK3 signaling cascades. SIK3-KO primary hepatocytes produced glucose more quickly after treatment with the cAMP agonist forskolin than the WT hepatocytes, which was accompanied by enhanced gluconeogenic gene expression and CRTC2 dephosphorylation. Reporter-based screening identified pterosin B as a SIK3 signaling-specific inhibitor. Pterosin B suppressed SIK3 downstream cascades by up-regulating the phosphorylation levels in the SIK3 C-terminal regulatory domain. When pterosin B promoted glucose production by up-regulating gluconeogenic gene expression in mouse hepatoma AML-12 cells, it decreased the glycogen content and stimulated an association between the glycogen phosphorylase kinase gamma subunit (PHKG2) and SIK3. PHKG2 phosphorylated the peptides with sequences of the C-terminal domain of SIK3. Here we found that the levels of active AMPK were higher both in the SIK3-KO hepatocytes and in pterosin B-treated AML-12 cells than in their controls. These results suggest that SIK3, rather than SIK1, SIK2, or AMPKs, acts as the predominant suppressor in gluconeogenic gene expression in the hepatocytes.
Collapse
Affiliation(s)
- Yumi Itoh
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Masato Sanosaka
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, Tsukuba Division, Ibaraki, 305-0843, Japan
| | - Yasuhito Yahara
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Daisaku Takemoto
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan; Department of Life Science and Biotechnology, Kansai University, Osaka 564-8680, Japan
| | - Mai Kagawa
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Junko Doi
- Department of Food and Nutrition, Senri Kinran University, Osaka, 565-0873 Japan
| | - Miho Ohta
- Department of Nutrition and Health, Faculty of Human Development, Soai University, Osaka, 559-0033, Japan
| | - Noriyuki Tsumaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, Tsukuba Division, Ibaraki, 305-0843, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan.
| |
Collapse
|
60
|
Sanosaka M, Fujimoto M, Ohkawara T, Nagatake T, Itoh Y, Kagawa M, Kumagai A, Fuchino H, Kunisawa J, Naka T, Takemori H. Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of pro-inflammatory molecules in mice. Immunology 2015; 145:268-78. [PMID: 25619259 PMCID: PMC4427391 DOI: 10.1111/imm.12445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Macrophages play important roles in the innate immune system during infection and systemic inflammation. When bacterial lipopolysaccharide (LPS) binds to Toll-like receptor 4 on macrophages, several signalling cascades co-operatively up-regulate gene expression of inflammatory molecules. The present study aimed to examine whether salt-inducible kinase [SIK, a member of the AMP-activated protein kinase (AMPK) family] could contribute to the regulation of immune signal not only in cultured macrophages, but also in vivo. LPS up-regulated SIK3 expression in murine RAW264.7 macrophages and exogenously over-expressed SIK3 negatively regulated the expression of inflammatory molecules [interleukin-6 (IL-6), nitric oxide (NO) and IL-12p40] in RAW264.7 macrophages. Conversely, these inflammatory molecule levels were up-regulated in SIK3-deficient thioglycollate-elicited peritoneal macrophages (TEPM), despite no impairment of the classical signalling cascades. Forced expression of SIK3 in SIK3-deficient TEPM suppressed the levels of the above-mentioned inflammatory molecules. LPS injection (10 mg/kg) led to the death of all SIK3-knockout (KO) mice within 48 hr after treatment, whereas only one mouse died in the SIK1-KO (n = 8), SIK2-KO (n = 9) and wild-type (n = 8 or 9) groups. In addition, SIK3-KO bone marrow transplantation increased LPS sensitivity of the recipient wild-type mice, which was accompanied by an increased level of circulating IL-6. These results suggest that SIK3 is a unique negative regulator that suppresses inflammatory molecule gene expression in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Masato Sanosaka
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signalling, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signalling, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Yumi Itoh
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Mai Kagawa
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Hiroyuki Fuchino
- Research Centre for Medicinal Plant Resources, National Institute of Biomedical InnovationTsukuba, Ibaraki, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signalling, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| |
Collapse
|
61
|
Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S, Mizuno K, Garcia BA, Zhang NR, Giese K, Abel T. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics 2015; 16 Suppl 5:S5. [PMID: 26040834 PMCID: PMC4460846 DOI: 10.1186/1471-2164-16-s5-s5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. Results We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. Conclusions We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.
Collapse
|
62
|
Fang M, Pak ML, Chamberlain L, Xing W, Yu H, Green MR. The CREB Coactivator CRTC2 Is a Lymphoma Tumor Suppressor that Preserves Genome Integrity through Transcription of DNA Mismatch Repair Genes. Cell Rep 2015; 11:1350-7. [PMID: 26004186 DOI: 10.1016/j.celrep.2015.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/06/2015] [Accepted: 04/23/2015] [Indexed: 12/12/2022] Open
Abstract
The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here, we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1, and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1, and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are downregulated in specific T cell lymphoma subtypes, which are microsatellite unstable. The levels of acetylated histone H3 on the CRTC2 promoter are significantly reduced in lymphoma in comparison to normal tissue, explaining the decreased CRTC2 expression. Our results establish a role for CRTC2 as a lymphoma tumor suppressor gene that preserves genome integrity by stimulating transcription of MMR genes.
Collapse
Affiliation(s)
- Minggang Fang
- Howard Hughes Medical Institute, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Magnolia L Pak
- Howard Hughes Medical Institute, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lynn Chamberlain
- Howard Hughes Medical Institute, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Xing
- Department of Pathology, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hongbo Yu
- Department of Pathology, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Howard Hughes Medical Institute, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
63
|
Hansen J, Snow C, Tuttle E, Ghoneim D, Yang CS, Spencer A, Gunter S, Smyser C, Gurnett C, Shinawi M, Dobyns W, Wheless J, Halterman M, Jansen L, Paschal B, Paciorkowski A. De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet 2015; 96:682-90. [PMID: 25839329 DOI: 10.1016/j.ajhg.2015.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/19/2015] [Indexed: 10/23/2022] Open
Abstract
Developmental epilepsies are age-dependent seizure disorders for which genetic causes have been increasingly identified. Here we report six unrelated individuals with mutations in salt-inducible kinase 1 (SIK1) in a series of 101 persons with early myoclonic encephalopathy, Ohtahara syndrome, and infantile spasms. Individuals with SIK1 mutations had short survival in cases with neonatal epilepsy onset, and an autism plus developmental syndrome after infantile spasms in others. All six mutations occurred outside the kinase domain of SIK1 and each of the mutants displayed autophosphorylation and kinase activity toward HDAC5. Three mutations generated truncated forms of SIK1 that were resistant to degradation and also showed changes in sub-cellular localization compared to wild-type SIK1. We also report the human neuropathologic examination of SIK1-related developmental epilepsy, with normal neuronal morphology and lamination but abnormal SIK1 protein cellular localization. Therefore, these results expand the genetic etiologies of developmental epilepsies by demonstrating SIK1 mutations as a cause of severe developmental epilepsy.
Collapse
|
64
|
Bertorello AM, Pires N, Igreja B, Pinho MJ, Vorkapic E, Wågsäter D, Wikström J, Behrendt M, Hamsten A, Eriksson P, Soares-da-Silva P, Brion L. Increased Arterial Blood Pressure and Vascular Remodeling in Mice Lacking Salt-Inducible Kinase 1 (SIK1). Circ Res 2015; 116:642-52. [DOI: 10.1161/circresaha.116.304529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rationale:
In human genetic studies a single nucleotide polymorphism within the salt-inducible kinase 1 (
SIK1
) gene was associated with hypertension. Lower SIK1 activity in vascular smooth muscle cells (VSMCs) leads to decreased sodium-potassium ATPase activity, which associates with increased vascular tone. Also, SIK1 participates in a negative feedback mechanism on the transforming growth factor-β1 signaling and downregulation of SIK1 induces the expression of extracellular matrix remodeling genes.
Objective:
To evaluate whether reduced expression/activity of SIK1 alone or in combination with elevated salt intake could modify the structure and function of the vasculature, leading to higher blood pressure.
Methods and Results:
SIK1 knockout (
sik1
−/−
) and wild-type (
sik1
+/+
) mice were challenged to a normal- or chronic high-salt intake (1% NaCl). Under normal-salt conditions, the
sik1
−/−
mice showed increased collagen deposition in the aorta but similar blood pressure compared with the
sik1
+/+
mice. During high-salt intake, the
sik1
+/+
mice exhibited an increase in SIK1 expression in the VSMCs layer of the aorta, whereas the
sik1
−/−
mice exhibited upregulated transforming growth factor-β1 signaling and increased expression of endothelin-1 and genes involved in VSMC contraction, higher systolic blood pressure, and signs of cardiac hypertrophy. In vitro knockdown of SIK1 induced upregulation of collagen in aortic adventitial fibroblasts and enhanced the expression of contractile markers and of endothelin-1 in VSMCs.
Conclusions:
Vascular SIK1 activation might represent a novel mechanism involved in the prevention of high blood pressure development triggered by high-salt intake through the modulation of the contractile phenotype of VSMCs via transforming growth factor-β1-signaling inhibition.
Collapse
Affiliation(s)
- Alejandro M. Bertorello
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Nuno Pires
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Bruno Igreja
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Maria João Pinho
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Emina Vorkapic
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Dick Wågsäter
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Johannes Wikström
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Margareta Behrendt
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Anders Hamsten
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Per Eriksson
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Patricio Soares-da-Silva
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| | - Laura Brion
- From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division
| |
Collapse
|
65
|
Xie Y, Nakanishi T, Natarajan K, Safren L, Hamburger AW, Hussain A, Ross DD. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:317-27. [PMID: 25615818 DOI: 10.1016/j.bbagrm.2015.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways.
Collapse
Affiliation(s)
- Yi Xie
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Karthika Natarajan
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lowell Safren
- Schnaper Summer Internship Program, University of Maryland Greenebaum Cancer Center, USA
| | - Anne W Hamburger
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Arif Hussain
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Douglas D Ross
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore VA Medical Center, Baltimore, MD 21201, USA; Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
66
|
Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, Ross-Adams H, Visser M, Hoffmann R, Ahmed AA, Neal DE, Mills IG. Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res 2014; 13:620-635. [PMID: 25548099 DOI: 10.1158/1541-7786.mcr-13-0182-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete. IMPLICATIONS This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Collapse
Affiliation(s)
- Hélène Bon
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Karan Wadhwa
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Alexander Schreiner
- Microscopy and Imaging Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Michelle Osborne
- Genomics Core, Cambridge Research Institute, Cambridge, CB2 ORE, UK
| | - Thomas Carroll
- Bioinformatics Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | | | - Helen Ross-Adams
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Matthieu Visser
- Health Care Innovation, Philips Research, Eidhoven, Netherlands
| | - Ralf Hoffmann
- Molecular Diagnostics, Philips Research, Eindhoven, Netherlands
| | - Ahmed Ashour Ahmed
- Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS and Nuffield Department of Obstetrics and Gynaecology, University of Oxford, OX3 9DU, UK
| | - David E Neal
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.,Department of Oncology, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Oslo University Hospital, 0424 Oslo, Norway.,Department of Cancer Prevention, Oslo University Hospital, 0424 Oslo, Norway.,Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo and Oslo University Hospital, N-0349, Oslo, Norway
| |
Collapse
|
67
|
Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Int J Mol Sci 2014; 15:16698-718. [PMID: 25244018 PMCID: PMC4200829 DOI: 10.3390/ijms150916698] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022] Open
Abstract
Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers.
Collapse
|
68
|
Popov S, Takemori H, Tokudome T, Mao Y, Otani K, Mochizuki N, Pires N, Pinho MJ, Franco-Cereceda A, Torielli L, Ferrandi M, Hamsten A, Soares-da-Silva P, Eriksson P, Bertorello AM, Brion L. Lack of salt-inducible kinase 2 (SIK2) prevents the development of cardiac hypertrophy in response to chronic high-salt intake. PLoS One 2014; 9:e95771. [PMID: 24752134 PMCID: PMC3994160 DOI: 10.1371/journal.pone.0095771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/28/2014] [Indexed: 01/01/2023] Open
Abstract
Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2−/− mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH.
Collapse
Affiliation(s)
- Sergej Popov
- Membrane Signaling Networks, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute for Biomedical Innovation, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Yuanjie Mao
- Department of Biochemistry, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Kentaro Otani
- Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Naoki Mochizuki
- Cell Biology, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Nuno Pires
- BIAL - Portela & C, S.A., S. Mamede do Coronado, Portugal
| | - Maria João Pinho
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Torielli
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy
| | - Mara Ferrandi
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Patricio Soares-da-Silva
- BIAL - Portela & C, S.A., S. Mamede do Coronado, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Per Eriksson
- Cardiovascular Genetics and Genomics, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Alejandro M. Bertorello
- Membrane Signaling Networks, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Laura Brion
- Membrane Signaling Networks, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
69
|
Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, Flanagan KC, Anthony D, Churchill GC, Wood MJA, Steiner G, Ebeling M, Hossbach M, Wettstein JG, Duffield GE, Gatti S, Hankins MW, Foster RG, Peirson SN. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 2013; 154:1100-1111. [PMID: 23993098 PMCID: PMC3898689 DOI: 10.1016/j.cell.2013.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms. Nocturnal light induces widespread transcriptional changes in the SCN The CRTC1-SIK1 cascade regulates entrainment of the circadian clock Negative feedback by SIK1 limits the effects of light on the clock Homeostatic regulation of entrainment ensures gradual adaptation to a new time zone
Collapse
Affiliation(s)
- Aarti Jagannath
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Rachel Butler
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sofia I H Godinho
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Kevin C Flanagan
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Guido Steiner
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martin Ebeling
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus Hossbach
- Axolabs GmbH Fritz-Hornschuch-Straße 9, 95326 Kulmbach, Germany
| | - Joseph G Wettstein
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Giles E Duffield
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Silvia Gatti
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
70
|
Wang Y, Hu Z, Liu Z, Chen R, Peng H, Guo J, Chen X, Zhang H. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy 2013; 9:2069-86. [PMID: 24189100 DOI: 10.4161/auto.26447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Here, we show that loss of TSC2 or PTEN enhanced etoposide-induced DNA damage and apoptosis, which was blunted by suppression of MTOR with either rapamycin or RNA interference. cAMP response element-binding protein 1 (CREB1), a nuclear transcription factor that regulates genes involved in survival and death, was positively regulated by MTOR in mouse embryonic fibroblasts (MEFs) and cancer cell lines. Silencing Creb1 expression with siRNA protected MTOR-hyperactive cells from DNA damage-induced apoptosis. Furthermore, loss of TSC2 or PTEN impaired either etoposide or nutrient starvation-induced autophagy, which in turn, leads to CREB1 hyperactivation. We further elucidated an inverse correlation between autophagy activity and CREB1 activity in the kidney tumor tissue obtained from a TSC patient and the mouse livers with hepatocyte-specific knockout of PTEN. CREB1 induced DNA damage and subsequent apoptosis in response to etoposide in autophagy-defective cells. Reactivation of CREB1 or inhibition of autophagy not only improved the efficacy of rapamycin but also alleviated MTOR inhibition-mediated chemoresistance. Therefore, autophagy suppression of CREB1 may underlie the MTOR inhibition-mediated chemoresistance. We suggest that inhibition of MTOR in combination with CREB1 activation may be used in the treatment of cancer caused by an abnormal PI3K-PTEN-AKT-TSC1/2-MTOR signaling pathway. CREB1 activators should potentiate the efficacy of chemotherapeutics in treatment of these cancers.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Medical Molecular Biology; Department of Physiology; Institute of Basic Medical Sciences and School of Basic Medicine; Graduate School of Peking Union Medical College; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Prostaglandin E₂ promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat Commun 2013; 4:1685. [PMID: 23575689 PMCID: PMC3644078 DOI: 10.1038/ncomms2684] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/28/2013] [Indexed: 01/08/2023] Open
Abstract
T helper 1 (Th1) cells have critical roles in various autoimmune and proinflammatory diseases. cAMP has long been believed to act as a suppressor of IFN-γ production and Th1 cell-mediated immune inflammation. Here we show that cAMP actively promotes Th1 differentiation by inducing gene expression of cytokine receptors involved in this process. PGE2 signalling through EP2/EP4 receptors mobilizes the cAMP-PKA pathway, which induces CREB- and its co-activator CRTC2-mediated transcription of IL-12Rβ2 and IFN-γR1. Meanwhile, cAMP-mediated suppression of T-cell receptor signalling is overcome by simultaneous activation of PI3-kinase through EP2/EP4 and/or CD28. Loss of EP4 in T cells restricts expression of IL-12Rβ2 and IFN-γR1, and attenuates Th1 cell-mediated inflammation in vivo. These findings clarify the molecular mechanisms and pathological contexts of cAMP-mediated Th1 differentiation and have clinical and therapeutic implications for deployment of cAMP modulators as immunoregulatory drugs.
Collapse
|
72
|
Low expression of cyclic amp response element modulator-1 can increase the migration and invasion of esophageal squamous cell carcinoma. Tumour Biol 2013; 34:3649-57. [DOI: 10.1007/s13277-013-0946-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/14/2013] [Indexed: 12/30/2022] Open
|
73
|
Yu J, Hu X, Yang Z, Takemori H, Li Y, Zheng H, Hong S, Liao Q, Wen X. Salt-inducible kinase 1 is involved in high glucose-induced mesangial cell proliferation mediated by the ALK5 signaling pathway. Int J Mol Med 2013; 32:151-7. [PMID: 23670276 DOI: 10.3892/ijmm.2013.1377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/16/2013] [Indexed: 01/18/2023] Open
Abstract
High glucose levels can induce mesangial cell proliferation and extracellular matrix (ECM) accumulation through the type I activin receptor-like kinase 5 (ALK5) signaling pathway. Salt-inducible kinase 1 (SIK1) prevents fibrosis by downregulating ALK5, while the expression level of the SIK1 protein itself is downregulated by glucose in neuronal cells following ischemia. In this study, we investigated the correlation between SIK1 and the ALK5 signaling pathway in a rat glomerular mesangial cell line (HBZY-1 cells). We found that high glucose levels downregulated the expression level of SIK1 and suppressed the phosphorylation of SIK1 at Thr-182. The downregulation of SIK1 by high glucose was accompanied by the activation of the ALK5 signaling pathway, while the overexpression of SIK1 in the HBZY-1 cells resulted in a decrease in the ALK5 protein level, as well in the levels of its downstream targets, including fibronectin and plasminogen activator inhibitor type I. In conclusion, high glucose may activate the ALK5 signaling pathway by downregulating SIK1, and SIK1 may be a protective factor against cellular proliferation and ECM accumulation in glomerular mesangial cells under high glucose conditions.
Collapse
Affiliation(s)
- Jie Yu
- Department of Traditional Chinese Medicine and Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Tang HMV, Gao WW, Chan CP, Siu YT, Wong CM, Kok KH, Ching YP, Takemori H, Jin DY. LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription. Retrovirology 2013; 10:40. [PMID: 23577667 PMCID: PMC3640950 DOI: 10.1186/1742-4690-10-40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/02/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. RESULTS In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. CONCLUSIONS Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy.
Collapse
Affiliation(s)
- Hei-Man Vincent Tang
- Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Walkinshaw DR, Weist R, Kim GW, You L, Xiao L, Nie J, Li CS, Zhao S, Xu M, Yang XJ. The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J Biol Chem 2013; 288:9345-62. [PMID: 23393134 DOI: 10.1074/jbc.m113.456996] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases 4 (HDAC4), -5, -7, and -9 form class IIa within the HDAC superfamily and regulate diverse physiological and pathological cellular programs. With conserved motifs for phosphorylation-dependent 14-3-3 binding, these deacetylases serve as novel signal transducers that are able to modulate histone acetylation and gene expression in response to extracellular cues. Here, we report that in a PKA-sensitive manner the tumor suppressor kinase LKB1 acts through salt-inducible kinase 2 (SIK2) and SIK3 to promote nucleocytoplasmic trafficking of class IIa HDACs. Both SIK2 and SIK3 phosphorylate the deacetylases at the conserved motifs and stimulate 14-3-3 binding. SIK2 activates MEF2-dependent transcription and relieves repression of myogenesis by the deacetylases. Distinct from SIK2, SIK3 induces nuclear export of the deacetylases independent of kinase activity and 14-3-3 binding. These findings highlight the difference among members of the SIK family and indicate that LKB1-dependent SIK activation constitutes an important signaling module upstream from class IIa deacetylases for regulating cellular programs controlled by MEF2 and other transcription factors.
Collapse
Affiliation(s)
- Donald R Walkinshaw
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Finsterwald C, Carrard A, Martin JL. Role of salt-inducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. PLoS One 2013; 8:e54545. [PMID: 23349925 PMCID: PMC3551851 DOI: 10.1371/journal.pone.0054545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/14/2012] [Indexed: 01/02/2023] Open
Abstract
Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.
Collapse
Affiliation(s)
- Charles Finsterwald
- Center for Psychiatric Neuroscience, Department of Psychiatry-CHUV, Prilly-Lausanne, Switzerland
| | - Anthony Carrard
- Center for Psychiatric Neuroscience, Department of Psychiatry-CHUV, Prilly-Lausanne, Switzerland
| | - Jean-Luc Martin
- Center for Psychiatric Neuroscience, Department of Psychiatry-CHUV, Prilly-Lausanne, Switzerland
| |
Collapse
|
77
|
Walkinshaw DR, Weist R, Xiao L, Yan K, Kim GW, Yang XJ. Dephosphorylation at a conserved SP motif governs cAMP sensitivity and nuclear localization of class IIa histone deacetylases. J Biol Chem 2013; 288:5591-605. [PMID: 23297420 DOI: 10.1074/jbc.m112.445668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Histone deacetylase 4 (HDAC4) and its paralogs, HDAC5, -7, and -9 (all members of class IIa), possess multiple phosphorylation sites crucial for 14-3-3 binding and subsequent nuclear export. cAMP signaling stimulates nuclear import of HDAC4 and HDAC5, but the underlying mechanisms remain to be elucidated. Here we show that cAMP potentiates nuclear localization of HDAC9. Mutation of an SP motif conserved in HDAC4, -5, and -9 prevents cAMP-stimulated nuclear localization. Unexpectedly, this treatment inhibits phosphorylation at the SP motif, indicating an inverse relationship between the phosphorylation event and nuclear import. Consistent with this, leptomycin B-induced nuclear import and adrenocorticotropic hormone (ACTH) treatment result in the dephosphorylation at the motif. Moreover, the modification synergizes with phosphorylation at a nearby site, and similar kinetics was observed for both phosphorylation events during myoblast and adipocyte differentiation. These results thus unravel a previously unrecognized mechanism whereby cAMP promotes dephosphorylation and differentially regulates multisite phosphorylation and the nuclear localization of class IIa HDACs.
Collapse
Affiliation(s)
- Donald R Walkinshaw
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | |
Collapse
|
78
|
Feng Y, Wang Y, Wang Z, Fang Z, Li F, Gao Y, Liu H, Xiao T, Li F, Zhou Y, Zhai Q, Liu X, Sun Y, Bardeesy N, Wong KK, Chen H, Xiong ZQ, Ji H. The CRTC1-NEDD9 signaling axis mediates lung cancer progression caused by LKB1 loss. Cancer Res 2012; 72:6502-11. [PMID: 23074285 DOI: 10.1158/0008-5472.can-12-1909] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Somatic mutation of the tumor suppressor gene LKB1 occurs frequently in lung cancer where it causes tumor progression and metastasis, but the underlying mechanisms remain mainly unknown. Here, we show that the oncogene NEDD9 is an important downstream mediator of lung cancer progression evoked by LKB1 loss. In de novo mouse models, RNAi-mediated silencing of Nedd9 inhibited lung tumor progression, whereas ectopic NEDD9 expression accelerated this process. Mechanistically, LKB1 negatively regulated NEDD9 transcription by promoting cytosolic translocation of CRTC1 from the nucleus. Notably, ectopic expression of either NEDD9 or CRTC1 partially reversed the inhibitory function of LKB1 on metastasis of lung cancer cells. In clinical specimens, elevated expression of NEDD9 was associated with malignant progression and metastasis. Collectively, our results decipher the mechanism through which LKB1 deficiency promotes lung cancer progression and metastasis, and provide a mechanistic rationale for therapeutic attack of these processes.
Collapse
Affiliation(s)
- Yan Feng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ch'ng TH, Uzgil B, Lin P, Avliyakulov NK, O'Dell TJ, Martin KC. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 2012; 150:207-21. [PMID: 22770221 DOI: 10.1016/j.cell.2012.05.027] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 04/05/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022]
Abstract
Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity.
Collapse
Affiliation(s)
- Toh Hean Ch'ng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
80
|
Huang BS, White RA, Leenen FHH. Possible role of brain salt-inducible kinase 1 in responses to central sodium in Dahl rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R236-45. [DOI: 10.1152/ajpregu.00381.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Dahl salt-sensitive (S) rats, Na+ entry into the cerebrospinal fluid (CSF) and sympathoexcitatory and pressor responses to CSF Na+ are enhanced. Salt-inducible kinase 1 (SIK1) increases Na+/K+-ATPase activity in kidney cells. We tested the possible role of SIK1 in regulation of CSF [Na+] and responses to Na+ in the brain. SIK1 protein and activity were lower in hypothalamic tissue of Dahl S (SS/Mcw) compared with salt-resistant SS.BN13 rats. Intracerebroventricular infusion of the protein kinase inhibitor staurosporine at 25 ng/day, to inhibit SIK1 further increased mean arterial pressure (MAP) and HR but did not affect the increase in CSF [Na+] or hypothalamic aldosterone in Dahl S on a high-salt diet. Intracerebroventricular infusion of Na+-rich artificial CSF caused significantly larger increases in renal sympathetic nerve activity, MAP, and HR in Dahl S vs. SS.BN13 or Wistar rats on a normal-salt diet. Intracerebroventricular injection of 5 ng staurosporine enhanced these responses, but the enhancement in Dahl S rats was only one-third that in SS.BN13 and Wistar rats. Staurosporine had no effect on MAP and HR responses to intracerebroventricular ANG II or carbachol, whereas the specific protein kinase C inhibitor GF109203X inhibited pressor responses to intracerebroventricular Na+-rich artificial CSF or ANG II. These results suggest that the SIK1-Na+/K+-ATPase network in neurons acts to attenuate sympathoexcitatory and pressor responses to increases in brain [Na+]. The lower hypothalamic SIK1 activity and smaller effect of staurosporine in Dahl S rats suggest that impaired activation of neuronal SIK1 by Na+ may contribute to their enhanced central responses to sodium.
Collapse
Affiliation(s)
- Bing S. Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Roselyn A. White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
81
|
Uebi T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T, Sasagawa S, Doi J, Tatsumi K, Mitamura K, Morii E, Aozasa K, Kawamura T, Okumura M, Nakae J, Takikawa H, Fukusato T, Koura M, Nish M, Hamsten A, Silveira A, Bertorello AM, Kitagawa K, Nagaoka Y, Kawahara H, Tomonaga T, Naka T, Ikegawa S, Tsumaki N, Matsuda J, Takemori H. Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 2012; 7:e37803. [PMID: 22662228 PMCID: PMC3360605 DOI: 10.1371/journal.pone.0037803] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/24/2012] [Indexed: 01/20/2023] Open
Abstract
Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3(-/-) mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3(-/-) mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3(-/-) mice. Lipid metabolism disorders in Sik3(-/-) mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice.
Collapse
Affiliation(s)
- Tatsuya Uebi
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Yumi Itoh
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Osamu Hatano
- Department of Anatomy, Nara Medical University, Nara, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Masato Sanosaka
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoru Sasagawa
- Department of Bone and Cartilage Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junko Doi
- Food and Nutrition, Senri Kinran University, Osaka, Japan
| | - Keita Tatsumi
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuniko Mitamura
- Faculty of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuyuki Aozasa
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Kawamura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Fukusato
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Minako Koura
- Animal Models for Human Diseases, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Mayumi Nish
- Department of Anatomy, Nara Medical University, Nara, Japan
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics, Atherosclerosis Research Unit, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Genetics and Genomics, Atherosclerosis Research Unit, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Alejandro M. Bertorello
- Membrane Signaling Networks, Atherosclerosis Research Unit, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Kazuo Kitagawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Hidehisa Kawahara
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Tetsuji Naka
- Laboratory for Immune Signal, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Shigeo Ikegawa
- Faculty of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Noriyuki Tsumaki
- Department of Bone and Cartilage Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junichiro Matsuda
- Animal Models for Human Diseases, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- * E-mail:
| |
Collapse
|
82
|
Carriba P, Pardo L, Parra-Damas A, Lichtenstein MP, Saura CA, Pujol A, Masgrau R, Galea E. ATP and noradrenaline activate CREB in astrocytes via noncanonical Ca(2+) and cyclic AMP independent pathways. Glia 2012; 60:1330-44. [PMID: 22593004 DOI: 10.1002/glia.22352] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/20/2012] [Indexed: 12/20/2022]
Abstract
In neurons, it is well established that CREB contributes to learning and memory by orchestrating the translation of experience into the activity-dependent (i.e., driven by neurotransmitters) transcription of plasticity-related genes. The activity-dependent CREB-triggered transcription requires the concerted action of cyclic AMP/protein kinase A and Ca(2+) /calcineurin via the CREB-regulated transcription co-activator (CRTC). It is not known, however, whether a comparable molecular sequence occurs in astrocytes, despite the unquestionable contribution of these cells to brain plasticity. Here we sought to determine whether and how ATP and noradrenaline cause CREB-dependent transcription in rat cortical astrocyte cultures. Both transmitters induced CREB phosphorylation (Western Blots), CREB-dependent transcription (CRE-luciferase reporter assays), and the transcription of Bdnf, a canonical regulator of synaptic plasticity (quantitative RT-PCR). We indentified a Ca(2+) and diacylglycerol-independent protein kinase C at the uppermost position of the cascade leading to CREB-dependent transcription. Notably, CREB-dependent transcription was partially dependent on ERK1/2 and CRTC, but independent of cyclic AMP/protein kinase A or Ca(2+) /calcineurin. We conclude that ATP and noradrenaline activate CREB-dependent transcription in cortical astrocytes via an atypical protein kinase C. It is of relevance that the signaling involved be starkly different to the one described in neurons since there is no convergence of Ca(2+) and cyclic AMP-dependent pathways on CRTC, which, moreover, exerts a modulatory rather than a central role. Our data thus point to the existence of an alternative, non-neuronal, glia-based role of CREB in plasticity.
Collapse
Affiliation(s)
- Paulina Carriba
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Eneling K, Brion L, Pinto V, Pinho MJ, Sznajder JI, Mochizuki N, Emoto K, Soares-da-Silva P, Bertorello AM. Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability. FASEB J 2012; 26:3230-9. [PMID: 22522110 DOI: 10.1096/fj.12-205609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The protein kinase liver kinase B1 (LKB1) regulates cell polarity and intercellular junction stability. Also, LKB1 controls the activity of salt-inducible kinase 1 (SIK1). The role and relevance of SIK1 and its downstream effectors in linking the LKB1 signals within these processes are partially understood. We hypothesize that SIK1 may link LKB1 signals to the maintenance of epithelial junction stability by regulating E-cadherin expression. Results from our studies using a mouse lung alveolar epithelial (MLE-12) cell line or human renal proximal tubule (HK2) cell line transiently or stably lacking the expression of SIK1 (using SIK1 siRNAs or shRNAs), or with its expression abrogated (sik1(+/+) vs. sik1(-/-) mice), indicate that suppression of SIK1 (∼40%) increases the expression of the transcriptional repressors Snail2 (∼12-fold), Zeb1 (∼100%), Zeb2 (∼50%), and TWIST (∼20-fold) by activating cAMP-response element binding protein. The lack of SIK1 and activation of transcriptional repressors decreases the availability of E-cadherin (mRNA and protein expression by ∼100 and 80%, respectively) and the stability of intercellular junctions in epithelia (decreases in transepithelial resistance). Furthermore, LKB1-mediated increases in E-cadherin expression are impaired in cells where SIK1 has been disabled. We conclude that SIK1 is a key regulator of E-cadherin expression, and thereby contributes to the stability of intercellular junctions.
Collapse
Affiliation(s)
- Kristina Eneling
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital-Solna, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J 2012; 31:2275-95. [PMID: 22510882 PMCID: PMC3364737 DOI: 10.1038/emboj.2012.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 03/20/2012] [Indexed: 12/19/2022] Open
Abstract
Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Lepr(db/db) mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity.
Collapse
|
85
|
Hallenborg P, Feddersen S, Francoz S, Murano I, Sundekilde U, Petersen RK, Akimov V, Olson MV, Lozano G, Cinti S, Gjertsen BT, Madsen L, Marine JC, Blagoev B, Kristiansen K. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ 2012; 19:1381-9. [PMID: 22388350 DOI: 10.1038/cdd.2012.15] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of the E3 ubiquitin ligase murine double minute 2 (Mdm2) in regulating the stability of the p53 tumor suppressor is well documented. By contrast, relatively little is known about p53-independent activities of Mdm2 and the role of Mdm2 in cellular differentiation. Here we report a novel role for Mdm2 in the initiation of adipocyte differentiation that is independent of its ability to regulate p53. We show that Mdm2 is required for cAMP-mediated induction of CCAAT/enhancer-binding protein δ (C/EBPδ) expression by facilitating recruitment of the cAMP regulatory element-binding protein (CREB) coactivator, CREB-regulated transcription coactivator (Crtc2)/TORC2, to the c/ebpδ promoter. Our findings reveal an unexpected role for Mdm2 in the regulation of CREB-dependent transactivation during the initiation of adipogenesis. As Mdm2 is able to promote adipogenesis in the myoblast cell line C2C12, it is conceivable that Mdm2 acts as a switch in cell fate determination.
Collapse
Affiliation(s)
- P Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sasagawa S, Takemori H, Uebi T, Ikegami D, Hiramatsu K, Ikegawa S, Yoshikawa H, Tsumaki N. SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development 2012; 139:1153-63. [PMID: 22318228 DOI: 10.1242/dev.072652] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Chondrocyte hypertrophy is crucial for endochondral ossification, but the mechanism underlying this process is not fully understood. We report that salt-inducible kinase 3 (SIK3) deficiency causes severe inhibition of chondrocyte hypertrophy in mice. SIK3-deficient mice showed dwarfism as they aged, whereas body size was unaffected during embryogenesis. Anatomical and histological analyses revealed marked expansion of the growth plate and articular cartilage regions in the limbs, accumulation of chondrocytes in the sternum, ribs and spine, and impaired skull bone formation in SIK3-deficient mice. The primary phenotype in the skeletal tissue of SIK3-deficient mice was in the humerus at E14.5, where chondrocyte hypertrophy was markedly delayed. Chondrocyte hypertrophy was severely blocked until E18.5, and the proliferative chondrocytes occupied the inside of the humerus. Consistent with impaired chondrocyte hypertrophy in SIK3-deficient mice, native SIK3 expression was detected in the cytoplasm of prehypertrophic and hypertrophic chondrocytes in developing bones in embryos and in the growth plates in postnatal mice. HDAC4, a crucial repressor of chondrocyte hypertrophy, remained in the nuclei in SIK3-deficient chondrocytes, but was localized in the cytoplasm in wild-type hypertrophic chondrocytes. Molecular and cellular analyses demonstrated that SIK3 was required for anchoring HDAC4 in the cytoplasm, thereby releasing MEF2C, a crucial facilitator of chondrocyte hypertrophy, from suppression by HDAC4 in nuclei. Chondrocyte-specific overexpression of SIK3 induced closure of growth plates in adulthood, and the SIK3-deficient cartilage phenotype was rescued by transgenic SIK3 expression in the humerus. These results demonstrate an essential role for SIK3 in facilitating chondrocyte hypertrophy during skeletogenesis and growth plate maintenance.
Collapse
Affiliation(s)
- Satoru Sasagawa
- Department of Bone and Cartilage Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 2012; 109:1305-10. [PMID: 22232675 DOI: 10.1073/pnas.1114122109] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.
Collapse
|
88
|
Liu Y, Poon V, Sanchez-Watts G, Watts AG, Takemori H, Aguilera G. Salt-inducible kinase is involved in the regulation of corticotropin-releasing hormone transcription in hypothalamic neurons in rats. Endocrinology 2012; 153:223-33. [PMID: 22109884 PMCID: PMC3249682 DOI: 10.1210/en.2011-1404] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of CRH transcription requires phosphorylation of cAMP response element-binding protein (CREB) and translocation of the CREB coactivator, transducer of regulated CREB activity (TORC) from cytoplasm to nucleus. In basal conditions, transcription is low because TORC remains in the cytoplasm, inactivated by phosphorylation through Ser/Thr protein kinases of the AMP-dependent protein kinases (AMPK) family, including salt-inducible kinase (SIK). To determine which kinase is responsible for TORC phosphorylation in CRH neurons, we measured SIK1 and SIK2 mRNA in the hypothalamic paraventricular nucleus of rats by in situ hybridization. In basal conditions, low mRNA levels of the two kinases were found in the dorsomedial paraventricular nucleus, consistent with location in CRH neurons. One hour of restraint stress increased SIK1 mRNA levels, whereas SIK2 mRNA showed only minor increases. In 4B hypothalamic neurons, or primary cultures, SIK1 mRNA (but not SIK2 mRNA) was inducible by the cAMP stimulator, forskolin. Overexpression of either SIK1 or SIK2 in 4B cells reduced nuclear TORC2 levels (Western blot) and inhibited forskolin-stimulated CRH transcription (luciferase assay). Conversely, the nonselective SIK inhibitor, staurosporine, increased nuclear TORC2 content and stimulated CRH transcription in 4Bcells and primary neuronal cultures (heteronuclear RNA). Unexpectedly, in 4B cells specific short hairpin RNA knockdown of endogenous SIK2 but not SIK1 induced nuclear translocation of TORC2 and CRH transcription, suggesting that SIK2 mediates TORC inactivation in basal conditions, whereas induction of SIK1 limits transcriptional activation. The study provides evidence that SIK represses CRH transcription by inactivating TORC, providing a potential mechanism for rapid on/off control of CRH transcription.
Collapse
Affiliation(s)
- Ying Liu
- Section on Endocrine Physiology, Developmental Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
89
|
Dietrich JB, Takemori H, Grosch-Dirrig S, Bertorello A, Zwiller J. Cocaine induces the expression of MEF2C transcription factor in rat striatum through activation of SIK1 and phosphorylation of the histone deacetylase HDAC5. Synapse 2011; 66:61-70. [PMID: 21954104 DOI: 10.1002/syn.20988] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/14/2011] [Indexed: 11/09/2022]
Abstract
Distinct forms of MEF2 transcription factor act as positive or negative regulators of dendritic spine formation, with MEF2C playing a key regulator role in synapse plasticity. We report here that acute cocaine treatment of rats induced the expression of MEF2C in the striatum through a recently discovered transduction pathway. Repeated injections were found to induce MEF2C to a lesser extent. The mechanism by which MEF2C was induced involves the subsequent activation of the salt-inducible kinase SIK1 and the phosphorylation of HDAC5, a member of the class IIa of HDACs. Cocaine activated SIK1 by phosphorylation on Thr-182 residue, which was accompanied by the nuclear import of the kinase. In the nuclear compartment, SIK1 then phosphorylated HDAC5 causing the shuttling of its phospho-form from the nucleus to the cytoplasm of striatal cells. Activation of SIK1 by cocaine was further validated by the phosphorylation of TORC1/3, which was followed by the shuttling of TORC proteins from the nucleus to the cytoplasm. Activation of MEF2C was assessed by measuring the expression of the MEF2C gene itself, since the gene is known to be under the control of its own product. Since MEF2C plays a key role in memory/learning processes, activation of this pathway by cocaine is probably involved in plasticity mechanisms whereby the drug establishes its long-term effects such as drug dependence.
Collapse
Affiliation(s)
- Jean-Bernard Dietrich
- Laboratoire d'Imagerie et de Neurosciences Cognitives, UMR 7237 CNRS, Université de Strasbourg, Strasbourg, France.
| | | | | | | | | |
Collapse
|
90
|
Peeters A, Fraisl P, van den Berg S, Ver Loren van Themaat E, Van Kampen A, Rider MH, Takemori H, van Dijk KW, Van Veldhoven PP, Carmeliet P, Baes M. Carbohydrate metabolism is perturbed in peroxisome-deficient hepatocytes due to mitochondrial dysfunction, AMP-activated protein kinase (AMPK) activation, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) suppression. J Biol Chem 2011; 286:42162-42179. [PMID: 22002056 DOI: 10.1074/jbc.m111.299727] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5(-/-) mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD(+)/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5(-/-) mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies.
Collapse
Affiliation(s)
- Annelies Peeters
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, University of Leuven, B-3000 Leuven, Belgium
| | - Peter Fraisl
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Flanders Institute of Biotechnology, B-3000 Leuven, Belgium; Department of Human Genetics, Leiden University Medical Center, NL-2333 ZA Leiden, The Netherlands
| | - Sjoerd van den Berg
- Department of Human Genetics, Leiden University Medical Center, NL-2333 ZA Leiden, The Netherlands
| | | | - Antoine Van Kampen
- Laboratory of Bioinformatics, Academic Medical Center, NL-1105 AZ Amsterdam, The Netherlands
| | - Mark H Rider
- Université Catholique de Louvain and de Duve Institute, B-1200 Brussels, Belgium
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, NL-2333 ZA Leiden, The Netherlands
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Molecular Cell Biology, University of Leuven, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, University of Leuven, B-3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Flanders Institute of Biotechnology, B-3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
91
|
A potent inhibitor of SIK2, 3, 3', 7-trihydroxy-4'-methoxyflavon (4'-O-methylfisetin), promotes melanogenesis in B16F10 melanoma cells. PLoS One 2011; 6:e26148. [PMID: 22022544 PMCID: PMC3192784 DOI: 10.1371/journal.pone.0026148] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/20/2011] [Indexed: 11/24/2022] Open
Abstract
Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 4′-methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt inducible kinase 2 (SIK2) as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding protein (CREB)-specific coactivator 1 (TORC1). Using an in vitro kinase assay targeting SIK2, we identified fisetin as a candidate inhibitor, possibly being capable of promoting melanogenesis. However, fisetin neither inhibited the CREB-inhibitory activity of SIK2 nor promoted melanogenesis in B16F10 melanoma cells. Conversely, mono-methyl-flavonoids, such as diosmetin (4′-O-metlylluteolin), efficiently inhibited SIK2 and promoted melanogenesis in this cell line. The cAMP-CREB system is impaired in Ay/a mice and these mice have yellow hair as a result of pheomelanogenesis, while Sik2+/−; Ay/a mice also have yellow hair, but activate eumelanogenesis when they are exposed to CREB stimulators. Feeding Sik2+/−; Ay/a mice with diets supplemented with fisetin resulted in their hair color changing to brown, and metabolite analysis suggested the presence of mono-methylfisetin in their feces. Thus, we decided to synthesize 4′-O-methylfisetin (4′MF) and found that 4′MF strongly induced melanogenesis in B16F10 melanoma cells, which was accompanied by the nuclear translocation of TORC1, and the 4′-O-methylfisetin-induced melanogenic programs were inhibited by the overexpression of dominant negative TORC1. In conclusion, compounds that modulate SIK2 cascades are helpful to regulate melanogenesis via TORC1 without affecting cAMP levels, and the combined analysis of Sik2+/− mice and metabolites from these mice is an effective strategy to identify beneficial compounds to regulate CREB activity in vivo.
Collapse
|
92
|
Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2011; 31:469-79. [PMID: 21706049 DOI: 10.1038/onc.2011.247] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
LKB1 is a tumor susceptibility gene for the Peutz-Jeghers cancer syndrome and is a target for mutational inactivation in sporadic human malignancies. LKB1 encodes a serine/threonine kinase that has critical roles in cell growth, polarity and metabolism. A novel and important function of LKB1 is its ability to regulate the phosphorylation of CREB-regulated transcription co-activators (CRTCs) whose aberrant activation is linked with oncogenic activities. However, the roles and mechanisms of LKB1 and CRTC in the pathogenesis of esophageal cancer have not been previously investigated. In this study, we observed altered LKB1-CRTC signaling in a subset of human esophageal cancer cell lines and patient samples. LKB1 negatively regulates esophageal cancer cell migration and invasion in vitro. Mechanistically, we determined that CRTC signaling becomes activated because of LKB1 loss, which results in the transcriptional activation of specific downstream targets including LYPD3, a critical mediator for LKB1 loss-of-function. Our data indicate that de-regulated LKB1-CRTC signaling might represent a crucial mechanism for esophageal cancer progression.
Collapse
|
93
|
|
94
|
Identification of salt-inducible kinase 3 as a novel tumor antigen associated with tumorigenesis of ovarian cancer. Oncogene 2011; 30:3570-84. [DOI: 10.1038/onc.2011.77] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
95
|
Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano KI, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K. SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 2011; 69:106-19. [PMID: 21220102 DOI: 10.1016/j.neuron.2010.12.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2010] [Indexed: 11/16/2022]
Abstract
The cAMP responsive element-binding protein (CREB) functions in a broad array of biological and pathophysiological processes. We found that salt-inducible kinase 2 (SIK2) was abundantly expressed in neurons and suppressed CREB-mediated gene expression after oxygen-glucose deprivation (OGD). OGD induced the degradation of SIK2 protein concomitantly with the dephosphorylation of the CREB-specific coactivator transducer of regulated CREB activity 1 (TORC1), resulting in the activation of CREB and its downstream gene targets. Ca(2+)/calmodulin-dependent protein kinase I/IV are capable of phosphorylating SIK2 at Thr484, resulting in SIK2 degradation in cortical neurons. Neuronal survival after OGD was significantly increased in neurons isolated from sik2(-/-) mice, and ischemic neuronal injury was significantly reduced in the brains of sik2(-)(/-) mice subjected to transient focal ischemia. These findings suggest that SIK2 plays critical roles in neuronal survival, is modulated by CaMK I/IV, and regulates CREB via TORC1.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
CRTC3 links catecholamine signalling to energy balance. Nature 2011; 468:933-9. [PMID: 21164481 DOI: 10.1038/nature09564] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 10/11/2010] [Indexed: 01/05/2023]
Abstract
The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of β-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating β-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.
Collapse
|
97
|
Phu DT, Wallbach M, Depatie C, Fu A, Screaton RA, Oetjen E. Regulation of the CREB coactivator TORC by the dual leucine zipper kinase at different levels. Cell Signal 2011; 23:344-53. [DOI: 10.1016/j.cellsig.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 10/25/2022]
|
98
|
Choi S, Kim W, Chung J. Drosophila salt-inducible kinase (SIK) regulates starvation resistance through cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC). J Biol Chem 2011; 286:2658-64. [PMID: 21127058 PMCID: PMC3024761 DOI: 10.1074/jbc.c110.119222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 11/30/2010] [Indexed: 11/06/2022] Open
Abstract
Salt-inducible kinase (SIK), one of the AMP-activated kinase (AMPK)-related kinases, has been suggested to play important functions in glucose homeostasis by inhibiting the cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC). To examine the role of SIK in vivo, we generated Drosophila SIK mutant and found that the mutant flies have higher amounts of lipid and glycogen stores and are resistant to starvation. Interestingly, SIK transcripts are highly enriched in the brain, and we found that neuron-specific expression of exogenous SIK fully rescued lipid and glycogen storage phenotypes as well as starvation resistance of the mutant. Using genetic and biochemical analyses, we demonstrated that CRTC Ser-157 phosphorylation by SIK is critical for inhibiting CRTC activity in vivo. Furthermore, double mutants of SIK and CRTC became sensitive to starvation, and the Ser-157 phosphomimetic mutation of CRTC reduced lipid and glycogen levels in the SIK mutant, suggesting that CRTC mediates the effects of SIK signaling. Collectively, our results strongly support the importance of the SIK-CRTC signaling axis that functions in the brain to maintain energy homeostasis in Drosophila.
Collapse
Affiliation(s)
- Sekyu Choi
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 and
- the National Creative Research Initiatives Center for Energy Homeostasis Regulation
| | - Wonho Kim
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 and
- the National Creative Research Initiatives Center for Energy Homeostasis Regulation
| | - Jongkyeong Chung
- the National Creative Research Initiatives Center for Energy Homeostasis Regulation
- Institute of Molecular Biology and Genetics, and
- School of Biological Sciences, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
99
|
Abstract
Activation of NMDA receptors during cerebral ischemia triggers signaling pathways that promote both neuronal death and survival. In this issue of Neuron, Sasaki et al. present evidence for a new endogenous survival pathway involving the kinase SIK2 and the CREB coactivator TORC1. The powerful neuroprotection conferred by this pathway has considerable translational potential for stroke therapy.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY
| | | |
Collapse
|
100
|
Sherman MH, Kuraishy AI, Deshpande C, Hong JS, Cacalano NA, Gatti RA, Manis JP, Damore MA, Pellegrini M, Teitell MA. AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. Mol Cell 2010; 39:873-85. [PMID: 20864035 DOI: 10.1016/j.molcel.2010.08.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/19/2010] [Accepted: 07/28/2010] [Indexed: 01/23/2023]
Abstract
During an immune response, B cells undergo rapid proliferation and activation-induced cytidine deaminase (AID)-dependent remodeling of immunoglobulin (IG) genes within germinal centers (GCs) to generate memory B and plasma cells. Unfortunately, the genotoxic stress associated with the GC reaction also promotes most B cell malignancies. Here, we report that exogenous and intrinsic AID-induced DNA strand breaks activate ATM, which signals through an LKB1 intermediate to inactivate CRTC2, a transcriptional coactivator of CREB. Using genome-wide location analysis, we determined that CRTC2 inactivation unexpectedly represses a genetic program that controls GC B cell proliferation, self-renewal, and differentiation while opposing lymphomagenesis. Inhibition of this pathway results in increased GC B cell proliferation, reduced antibody secretion, and impaired terminal differentiation. Multiple distinct pathway disruptions were also identified in human GC B cell lymphoma patient samples. Combined, our data show that CRTC2 inactivation, via physiologic DNA damage response signaling, promotes B cell differentiation in response to genotoxic stress.
Collapse
Affiliation(s)
- Mara H Sherman
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|