51
|
Huang S, Yi Q, Lian X, Xu S, Yang C, Sun J, Wang L, Song L. The involvement of ecdysone and ecdysone receptor in regulating the expression of antimicrobial peptides in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103757. [PMID: 32485180 DOI: 10.1016/j.dci.2020.103757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The ecdysone, 20-hydroxyecdysone (20E) and ecdysone receptor (EcR), are regarded as the key regulators of development, metamorphosis, and growth in arthropods. In the present study, the role of 20E and EsEcR in regulating the expression of antimicrobial peptides (AMPs) was investigated in Chinese mitten crab, Eriocheir sinensis. The concentration of 20E in plasma was significantly (p < 0.05) up-regulated from 3 h to 12 h after lipopolysaccharide (LPS) stimulation. The mRNA expression level of EsEcR-4 in hemocytes was significantly (p < 0.01) up-regulated from 6 h to 24 h after LPS stimulation, while no significant changes of EsEcR-2 and EsEcR-3 transcripts were observed. After 20E injection, EsEcR-4 expression level was significantly increased from 12 h to 48 h with the highest level at 24 h (4.34-fold compared to the control group, p < 0.01), and the mRNA expression levels of AMPs (EsALF-2, EsLYZ and EsCrus) in hemocytes were significantly increased from 6 h to 24 h with the peak level of 2.93-fold (p < 0.01), 2.33-fold (p < 0.01) and 2.75-fold (p < 0.01) at 12 h, respectively. After EsEcR-4 expression was interfered with specific dsRNA, a significant reduction of EsALF-2 (0.56-fold compared to the control group, p < 0.01), EsLYZ (0.27-fold, p < 0.01) and EsCrus (0.41-fold, p < 0.01) mRNA expression level was observed in dsEsEcR-4+LPS group at 12 h post LPS stimulation. Moreover, the mRNA expression levels of EsDorsal and EsJNK in hemocytes were significantly (p < 0.05) increased from 6 h to 24 h post 20E injection, and the phosphorylation of Dorsal and JNK in the hemocytes were significantly (p < 0.01) up-regulated at 3 h post 20E injection, while that in dsEsEcR-4+LPS group were significantly decreased after LPS stimulation compared to dsEsEGFP+LPS group. Taken together, these results suggested that 20E and EsEcR-4 play important roles in regulating the expression level of AMPs in the immune responses of E. sinensis by regulating the mRNA expression level and phosphorylation of Dorsal and JNK.
Collapse
Affiliation(s)
- Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
52
|
Xing K, Liu Y, Yan C, Zhou Y, Sun Y, Su N, Yang F, Xie S, Zhang J. Transcriptome analysis of Neocaridina denticulate sinensis under copper exposure. Gene 2020; 764:145098. [PMID: 32861881 DOI: 10.1016/j.gene.2020.145098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
Neocaridina denticulate sinensis is a small freshwater economic shrimp, as well as excellent laboratory model for their short life cycle and easy availability. However, the response of N. denticulate sinensis to pervasive copper pollution in aquatic environments has not been deeply investigated yet. Herein, we preformed Illumina sequencing technology to mine the alterations of cephalothorax transcriptome under 2.5 μmol/L of Cu2+ after 48 h. 122,512 unigenes were assembled and 219 unigenes were identified as significantly differentially expressed genes (DEGs) between control and Cu2+ treatment groups. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses and molting, such as endocytosis, Fc gamma R-mediated phagocytosis and chitin metabolic process. Seven genes were chosen for qPCR verification, and the results showed that the transcriptome sequencing data were consistent with the qPCR results. This is the first report of transcriptome information about N. denticulate sinensis. These results provided a direction for the future research of resistance to Cu2+ in this shrimp, and simultaneously enriched gene information of N. denticulate sinensis.
Collapse
Affiliation(s)
- Kefan Xing
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yujie Liu
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yongzhao Zhou
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Naike Su
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Fusheng Yang
- Xiaoshan Donghai Aquaculture Co., Ltd, Xiaoshan 310012, China
| | - Song Xie
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
53
|
Shen ZJ, Liu YJ, Zhu F, Cai LM, Liu XM, Tian ZQ, Cheng J, Li Z, Liu XX. MicroRNA-277 regulates dopa decarboxylase to control larval-pupal and pupal-adult metamorphosis of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103391. [PMID: 32360955 DOI: 10.1016/j.ibmb.2020.103391] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/28/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Insect metamorphosis is a complex process involving many metabolic pathways, such as juvenile hormones and molting hormones, bioamines, microRNAs (miRNAs), etc. However, relatively little is known about the biogenic amines and their miRNAs to regulate cotton bollworm metamorphosis. Here we show that one miRNA, miR-277 regulates larval-pupal and pupal-adult metamorphosis of cotton bollworm by targeting the 3'UTR of Dopa decarboxylase (DDC), a synthetic catalytic enzyme of dopamine. Injection of miR-277 agomir inhibited the expression of DDC at the mRNA and protein levels, leading to defects in the pupation and emergence of H. armigera that was consistent with the phenotype obtained by injection of DDC double-stranded RNA (dsRNA). Injection of miR-277 antagomir induced the mRNA and protein expression of DDC and rescued the phenotype of pupation failure caused by DDC gene silencing. Unexpectedly, miR-277 antagomir can also cause failure of emergence of H. armigera and both agomir and antagomir of miR-277 injection could cause abnormal phenotypes in wing veins. This study reveals that elaborate regulation of miRNA and its target gene expression is prerequisite for insect development, which provides a new insight to study the developmental mechanisms of insect wing veins.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Li-Mei Cai
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao-Ming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhi-Qiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
54
|
Mellor C, Tollefsen K, LaLone C, Cronin M, Firman J. In Silico Identification of Chemicals Capable of Binding to the Ecdysone Receptor. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1438-1450. [PMID: 32335943 PMCID: PMC7781155 DOI: 10.1002/etc.4733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 04/22/2020] [Indexed: 05/30/2023]
Abstract
The process of molting, known alternatively as ecdysis, is a feature integral in the life cycles of species across the arthropod phylum. Regulation occurs as a function of the interaction of ecdysteroid hormones with the arthropod nuclear ecdysone receptor-a process preceding the triggering of a series of downstream events constituting an endocrine signaling pathway highly conserved throughout environmentally prevalent insect, crustacean, and myriapod organisms. Inappropriate ecdysone receptor binding and activation forms the essential molecular initiating event within possible adverse outcome pathways relating abnormal molting to mortality in arthropods. Definition of the characteristics of chemicals liable to stimulate such activity has the potential to be of great utility in mitigation of hazards posed toward vulnerable species. Thus the aim of the present study was to develop a series of rule-sets, derived from the key structural and physicochemical features associated with identified ecdysone receptor ligands, enabling construction of Konstanz Information Miner (KNIME) workflows permitting the flagging of compounds predisposed to binding at the site. Data describing the activities of 555 distinct chemicals were recovered from a variety of assays across 10 insect species, allowing for formulation of KNIME screens for potential binding activity at the molecular initiating event and adverse outcome level of biological organization. Environ Toxicol Chem 2020;39:1438-1450. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- C.L. Mellor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, Lancashire, England
| | - K.E. Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - C. LaLone
- US Environmental Protection Agency (EPA), Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd. Duluth, MN, USA
| | - M.T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - J.W. Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|
55
|
Jiang B, Jin X, Dong Y, Guo B, Cui L, Deng X, Zhang L, Yang Q, Li Y, Yang X, Smagghe G. Design, Synthesis, and Biological Activity of Novel Heptacyclic Pyrazolamide Derivatives: A New Candidate of Dual-Target Insect Growth Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6347-6354. [PMID: 32427469 DOI: 10.1021/acs.jafc.0c00522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insect growth regulators (IGRs) can cause abnormal growth and development in insects, resulting in incomplete metamorphosis or even death of the larvae. Ecdysone receptor (EcR) and chitinase in insects play indispensable roles in the molting process. Ecdysone analogues and chitinase inhibitors are considered as potential IGRs. In order to find new and highly effective IGR candidates, based on the structure-activity relationship and molecular docking results of the active compound 6i (3-(tert-butyl)-N-(4-(tert-butyl)phenyl)-1-phenyl-1H-pyrazole-5-carboxamide) discovered in our previous work, we changed the t-butyl group on the pyrazole ring into heptacycle to enhance the hydrophobicity. Consequently, a series of novel heptacyclic pyrazolamide derivatives were designed and synthesized. The bioassay results demonstrated that some compounds showed obvious insecticidal activity. Especially, D-27 (N-(4-(tert-butyl)phenyl)-2-phenyl-2,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-5-carboxamide) showed good activities against Plutella xylostella (LC50, 51.50 mg·L-1) and Mythimna separata (100% mortality at 2.5 mg·L-1). Furthermore, protein validation indicated that D-27 acts not only on the EcR but also on chitinase Of ChtI. Molecular docking and molecular dynamics simulation explained the vital factors in the interaction between D-27 and receptors. D-27 may be a new lead candidate with a dual target in which Of ChtI shall be the main one. This work created a new starting point for discovering a novel type of IGRs.
Collapse
Affiliation(s)
- Biaobiao Jiang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jin
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingbo Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xile Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent B-9000, Belgium
| |
Collapse
|
56
|
Zhang QQ, Qiao M. Transcriptional response of springtail (Folsomia candida) exposed to decabromodiphenyl ether-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134859. [PMID: 31837853 DOI: 10.1016/j.scitotenv.2019.134859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Decabromodiphenyl ether (BDE209) is a widely used brominated flame retardant that has become a common soil contaminant of concern due to its persistence and toxicity. However, little is known about molecular-level effects of BDE209 on soil invertebrates. Here, we detected changes in gene transcription of the soil springtail, Folsomia candida, exposed to BDE209 (0.81 mg/kg) in soil for 2, 7 and 14 days. We identified 16 and 771 significantly differentially expressed genes after 2 and 7 days of exposure respectively, and no significantly regulated genes were shared among the two time points. No genes were affected after 14 days of exposure. According to the annotation of the significantly differently expressed genes at 2 and 7 day exposure, we found that BDE209 affected the transcription of genes involved in moulting, neural signal transmission and detoxification. Our results suggested that BDE209 could disrupt moulting of F. candida via the ecdysteroid pathway, and cause neurotoxicity through disrupting some neurotransmitter signalling pathways. This study provided insights into the toxic mechanism of BDE209 on F. candida.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
57
|
He C, Liu S, Liang J, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Genome-wide identification and analysis of nuclear receptors genes for lethal screening against Bemisia tabaci Q. PEST MANAGEMENT SCIENCE 2020; 76:2040-2048. [PMID: 31943718 DOI: 10.1002/ps.5738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/14/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) play an essential role in diverse biological processes, such as insect metamorphosis. Here, transcriptome analysis and functional studies were used to determine whether NRs are involved in metamorphosis of whitefly Bemisia tabaci Q, a serious pest to crops, and to find some potential insecticide targets. RESULTS Twenty NRs were identified in the Bemisia tabaci Q genome and categorized into the NR0-NR6 subfamilies. The phylogenetic tree of NRs from Bemisia tabaci Q and other representative species was constructed, which provided evolutionary insight into their genetic distances. The results of spatiotemporal gene expression indicated that the majority of NR gene expression was higher in the head than the abdomen and higher in eggs than adults. Further functional analysis using RNA interference (RNAi) showed that NR genes play an important role in Bemisia tabaci Q pupation and eclosion. With respect to high mortality and effects on growth, this was reflected in the unable to become pupa when the third-stage nymph treated with double-stranded RNA (dsRNA) and the developmental time delay (4-7 days) when pupae were treated with dsRNA for the 12 NR genes during molting compared with the development time in the control. CONCLUSION This study provides insight into NR functions during the metamorphosis stages of Bemisia tabaci Q. Several candidate genes could be potential insecticide targets for whitefly pest control due to their important roles in insect development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, P. R. China
| | - Jinjin Liang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
58
|
Koiwai K, Inaba K, Morohashi K, Enya S, Arai R, Kojima H, Okabe T, Fujikawa Y, Inoue H, Yoshino R, Hirokawa T, Kato K, Fukuzawa K, Shimada-Niwa Y, Nakamura A, Yumoto F, Senda T, Niwa R. An integrated approach to unravel a crucial structural property required for the function of the insect steroidogenic Halloween protein Noppera-bo. J Biol Chem 2020; 295:7154-7167. [PMID: 32241910 PMCID: PMC7242711 DOI: 10.1074/jbc.ra119.011463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Ecdysteroids are the principal steroid hormones essential for insect development and physiology. In the last 18 years, several enzymes responsible for ecdysteroid biosynthesis encoded by Halloween genes were identified and genetically and biochemically characterized. However, the tertiary structures of these proteins have not yet been characterized. Here, we report the results of an integrated series of in silico, in vitro, and in vivo analyses of the Halloween GST protein Noppera-bo (Nobo). We determined crystal structures of Drosophila melanogaster Nobo (DmNobo) complexed with GSH and 17β-estradiol, a DmNobo inhibitor. 17β-Estradiol almost fully occupied the putative ligand-binding pocket and a prominent hydrogen bond formed between 17β-estradiol and Asp-113 of DmNobo. We found that Asp-113 is essential for 17β-estradiol–mediated inhibition of DmNobo enzymatic activity, as 17β-estradiol did not inhibit and physically interacted less with the D113A DmNobo variant. Asp-113 is highly conserved among Nobo proteins, but not among other GSTs, implying that this residue is important for endogenous Nobo function. Indeed, a homozygous nobo allele with the D113A substitution exhibited embryonic lethality and an undifferentiated cuticle structure, a phenocopy of complete loss-of-function nobo homozygotes. These results suggest that the nobo family of GST proteins has acquired a unique amino acid residue that appears to be essential for binding an endogenous sterol substrate to regulate ecdysteroid biosynthesis. To the best of our knowledge, ours is the first study describing the structural characteristics of insect steroidogenic Halloween proteins. Our findings provide insights relevant for applied entomology to develop insecticides that specifically inhibit ecdysteroid biosynthesis.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kazue Inaba
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kana Morohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Sora Enya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Reina Arai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryunosuke Yoshino
- Graduate School of Comprehensive Human Sciences Majors of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koichiro Kato
- Mizuho Information & Research Institute, Inc., 2-3 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101-8443, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akira Nakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,School of High Energy Accelerator Science, Sokendai University, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Ryusuke Niwa
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
59
|
Ding N, Wang Z, Geng N, Zou H, Zhang G, Cao C, Li X, Zou C. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104041. [PMID: 32126216 DOI: 10.1016/j.jinsphys.2020.104041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) mediates developmental transitions and regulates molting processes through activation of a series of transcription factors. Broad-Complex (Br-C), a vital gene in the 20E signalling pathway, plays crucial roles during insect growth processes. However, whether Br-C affects chitin synthesis in insects remains unclear. In the present study, the Br-C gene from Lymantria dispar, a notorious defoliator of forestry, was identified based on transcriptome data, and subjected to bioinformatic analysis. The regulatory functions of LdBr-C in chitin synthesis and metabolism in L. dispar larvae were analysed by RNA interference (RNAi). The full-length LdBr-C gene (1431 bp) encodes a 477 amino acid (aa) polypeptide containing a common BRcore region (391 aa) at the N-terminus and a C-terminal Zinc finger domain (56 aa) harbouring two characteristic C2H2 motifs (CXXC and HXXXXH). Phylogenetic analyses showed that LdBr-C shares highest homology and identity with Br-C isoform 7 (83.12%) of Helicoverpa armigera. Expression profiles indicate that LdBr-C was expressed throughout larval and pupal stages, and highly expressed in prepupal and pupal stages. Furthermore, LdBr-C expression was strongly induced by exogenous 20E, and suppressed dramatically after application of dsLdBr-C. Bioassay results showed that knockdown of LdBr-C caused larval developmental deformity, significant weight loss, and a mortality rate of 67.18%. Knockdown of LdBr-C significantly down-regulated transcription levels of eight critical genes (LdTre1, LdTre2, LdG6PI, LdUAP, LdCHS1, LdCHS2, LdTPS and LdCHT) related to chitin synthesis and metabolism, thereby lowering the chitin content in the midgut and epidermis. Our findings demonstrate that Br-C knockdown impairs larval development and chitin synthesis in L. dispar.
Collapse
Affiliation(s)
- Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanwang Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Province Academy of Forestry Sciences, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
60
|
The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci Rep 2019; 9:16686. [PMID: 31723179 PMCID: PMC6853931 DOI: 10.1038/s41598-019-53032-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Calanus copepods are keystone species in marine ecosystems, mainly due to their high lipid content, which is a nutritious food source for e.g. juvenile fish. Accumulated lipids are catabolized to meet energy requirements during dormancy (diapause), which occurs during the last copepodite stage (C5). The current knowledge of lipid degradation pathways during diapause termination is limited. We characterized changes in lipid fullness and generated transcriptional profiles in C5s during termination of diapause and progression towards adulthood. Lipid fullness of C5s declined linearly during developmental progression, but more β-oxidation genes were upregulated in early C5s compared to late C5s and adults. We identified four possible master regulators of energy metabolism, which all were generally upregulated in early C5s, compared to late C5s and adults. We discovered that one of two enzymes in the carnitine shuttle is absent from the calanoid copepod lineage. Based on the geographical location of the sampling site, the field-samples were initially presumed to consist of C. finmarchicus. However, the identification of C. glacialis in some samples underlines the need for performing molecular analyses to reliably identify Calanus species. Our findings contributes to a better understanding of molecular events occurring during diapause and diapause termination in calanoid copepods.
Collapse
|
61
|
Evenseth LM, Kristiansen K, Song Y, Tollefsen KE, Sylte I. In silico site-directed mutagenesis of the Daphnia magna ecdysone receptor identifies critical amino acids for species-specific and inter-species differences in agonist binding. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
62
|
Skottene E, Tarrant AM, Olsen AJ, Altin D, Hansen BH, Choquet M, Olsen RE, Jenssen BM. A Crude Awakening: Effects of Crude Oil on Lipid Metabolism in Calanoid Copepods Terminating Diapause. THE BIOLOGICAL BULLETIN 2019; 237:90-110. [PMID: 31714858 DOI: 10.1086/705234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Calanus finmarchicus and Calanus glacialis are keystone zooplankton species in North Atlantic and Arctic marine ecosystems because they form a link in the trophic transfer of nutritious lipids from phytoplankton to predators on higher trophic levels. These calanoid copepods spend several months of the year in deep waters in a dormant state called diapause, after which they emerge in surface waters to feed and reproduce during the spring phytoplankton bloom. Disruption of diapause timing could have dramatic consequences for marine ecosystems. In the present study, Calanus C5 copepodites were collected in a Norwegian fjord during diapause and were subsequently experimentally exposed to the water-soluble fraction of a naphthenic North Sea crude oil during diapause termination. The copepods were sampled repeatedly while progressing toward adulthood and were analyzed for utilization of lipid stores and for differential expression of genes involved in lipid metabolism. Our results indicate that water-soluble fraction exposure led to a temporary pause in lipid catabolism, suggested by (i) slower utilization of lipid stores in water-soluble fraction-exposed C5 copepodites and (ii) more genes in the β-oxidation pathway being downregulated in water-soluble fraction-exposed C5 copepodites than in the control C5 copepodites. Because lipid content and/or composition may be an important trigger for termination of diapause, our results imply that the timing of diapause termination and subsequent migration to the surface may be delayed if copepods are exposed to oil pollution during diapause or diapause termination. This delay could have detrimental effects on ecosystem dynamics.
Collapse
|
63
|
In S, Yoon HW, Yoo JW, Cho H, Kim RO, Lee YM. Acute toxicity of bisphenol A and its structural analogues and transcriptional modulation of the ecdysone-mediated pathway in the brackish water flea Diaphanosoma celebensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:310-317. [PMID: 31030948 DOI: 10.1016/j.ecoenv.2019.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a representative endocrine disrupting chemical (EDC) that has estrogenic effects in aquatic animals. In recent years, due to the continuing usage of BPA, its analogues have been developed as alternative substances to replace its use. The molting process is a pivotal point in the development and reproduction of crustaceans. However, studies of the effects of EDCs on molting in crustaceans at the molecular level are scarce. In the present study, we examined the acute toxicity of BPA and its analogues bisphenol F (BPF) and S (BPS) to the brackish water flea Diaphanosoma celebensis. We further identified four ecdysteroid pathway - related genes (cyp314a1, EcRA, EcRB, and USP) in D. celebensis, and investigated the transcriptional modulation of these genes during molting and after exposure to BPA and its analogues for 48 h. Sequencing and phylogenetic analyses revealed that these four genes are highly conserved among arthropods and may be involved in development and reproduction in the adult stage. The mRNA expression patterns of cyp314a1, EcRA and USP were matched with the molting cycle, suggesting that these genes play a role in the molting process in the adult stage in cladocerans. Following relative real-time polymerase chain reaction (RT-PCR) analyses, BPA and its analogues were found to modulate the expression of each of these four genes differently, indicating that these compounds can disrupt the normal endocrine system function of D. celebensis. This study improves our understanding of the molecular mode of action of BPA and its analogues in D. celebensis.
Collapse
Affiliation(s)
- Soyeon In
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hae-Won Yoon
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Je-Won Yoo
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hayoung Cho
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Ryeo-Ok Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
64
|
Yoon DS, Park JC, Park HG, Lee JS, Han J. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105213. [PMID: 31200332 DOI: 10.1016/j.aquatox.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T. japonicus, no mortality was shown in response to atrazine up to 20 mg/L in acute toxicity assessment. In nauplii, retardation in the growth and prolonged molting and metamorphosis resulted under chronic exposure of atrazine at 20 mg/L. In addition, body sizes of T. japonicus nauplii were significantly decreased (P < 0.01 in length and P < 0.001 in width) in response to 20 mg/L of atrazine. Furthermore, atrazine induced oxidative stress by the generation of reactive oxygen species at all concentrations compared to the control in the nauplii. Also, significant increase in glutathione-S transferase activity was observed in adult T. japonicus at low concentration of atrazine. To understand effects of atrazine on ecdysteroid biosynthetic pathway-involved genes (e.g., neverland, CYP307E1, CYP306A1, CYP302A1, CYP3022A1 [CYP315A1], CYP314A1, and CYP18D1) were examined with mRNA expressions of ecdysone receptor (EcR) and ultraspiracle (USP) in response to 20 mg/L atrazine in nauplii and adults. In the nauplii, these genes were significantly downregulated (P < 0.05) in response to atrazine, compared to the control but not in the adult T. japonicus. These results suggest that atrazine can interfere in vivo life parameters by oxidative stress-induced retrogression and ecdysteroid biosynthetic pathway in this species.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
65
|
Wu F, Luo J, Chen Z, Ren Q, Xiao R, Liu W, Hao J, Liu X, Guo J, Qu Z, Wu Z, Wang H, Luo J, Yin H, Liu G. MicroRNA let-7 regulates the expression of ecdysteroid receptor (ECR) in Hyalomma asiaticum (Acari: Ixodidae) ticks. Parasit Vectors 2019; 12:235. [PMID: 31092286 PMCID: PMC6521442 DOI: 10.1186/s13071-019-3488-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ticks are blood-sucking arthropods that can transmit diseases to humans and animals. These arthropods are the second most important vectors of pathogens. MicroRNAs are a class of conserved small noncoding RNAs that play regulatory roles in gene expression at the post-transcriptional level. Molting is an important biological process in arthropods. Research on the molting process is important for understanding tick physiology and control. Methods Dual-luciferase reporter assays were used to assess the role of miRNA let-7 in ecdysteroid receptor (ECR) biology. The expression levels of ECR and let-7 were measured by real-time qPCR before and after tick molting. To explore the function of let-7 and ECR, we performed overexpression and knocking down of let-7 and RNAi of ECR in tick nymphs. The biological function of let-7 in molting was explored by injecting nymphs, ten days after engorgement, with let-7 agomir for overexpression and let-7 antagomir for knocking down. The rate of molting was then determined. ECR dsRNA was injected into ticks to evaluate the function of ECR by gene silencing. The expression of ECR and let-7 was measured using RT-qPCR. All data were analyzed using GraphPad Prism v.6. Results The results of the luciferase assay using a eukaryotic expression system revealed that ECR was a natural target of let-7. Let-7 overexpressed by agomir affected the rate of molting (P < 0.01) and the period of molting (P < 0.01). Let-7 antagomir for knockdown affected the period of molting (P < 0.01), but there was no effect on the rate of molting (P = 0.27). ECR dsRNA gene silencing significantly affected the rate of molting (P < 0.05). Conclusions This study demonstrated that let-7 can regulate the expression of ECR and that let-7 can affect molting in ticks. Our results help to understand the regulation of let-7 by 20-hydroxyecdysone (20E) and will provide a reference for functional analysis studies of microRNAs in ticks.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ronghai Xiao
- Inspection and Comprehensive Technology Center of Ruili Entry-Exit Inspection and Quarantine Bureau No. 75, Ruihong Road, Ruili, 678600, Yunnan, People's Republic of China
| | - Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jiawei Hao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiaocui Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junhui Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Zhiqiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Zegong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Engineering, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
66
|
Uchibori-Asano M, Jouraku A, Uchiyama T, Yokoi K, Akiduki G, Suetsugu Y, Kobayashi T, Ozawa A, Minami S, Ishizuka C, Nakagawa Y, Daimon T, Shinoda T. Genome-wide Identification of Tebufenozide Resistant Genes in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Sci Rep 2019; 9:4203. [PMID: 30862839 PMCID: PMC6414682 DOI: 10.1038/s41598-019-40863-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
The smaller tea tortrix, Adoxophyes honmai, has developed strong resistance to tebufenozide, a diacylhydrazine-type (DAH) insecticide. Here, we investigated its mechanism by identifying genes responsible for the tebufenozide resistance using various next generation sequencing techniques. First, double-digest restriction site-associated DNA sequencing (ddRAD-seq) identified two candidate loci. Then, synteny analyses using A. honmai draft genome sequences revealed that one locus contained the ecdysone receptor gene (EcR) and the other multiple CYP9A subfamily P450 genes. RNA-seq and direct sequencing of EcR cDNAs found a single nucleotide polymorphism (SNP), which was tightly linked to tebufenozide resistance and generated an amino acid substitution in the ligand-binding domain. The binding affinity to tebufenozide was about 4 times lower in in vitro translated EcR of the resistant strain than in the susceptible strain. RNA-seq analyses identified commonly up-regulated genes in resistant strains, including CYP9A and choline/carboxylesterase (CCE) genes. RT-qPCR analysis and bioassays showed that the expression levels of several CYP9A and CCE genes were moderately correlated with tebufenozide resistance. Collectively, these results suggest that the reduced binding affinity of EcR is the main factor and the enhanced detoxification activity by some CYP9As and CCEs plays a supplementary role in tebufenozide resistance in A. honmai.
Collapse
Affiliation(s)
- Miwa Uchibori-Asano
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Toru Uchiyama
- Tea Research Center, Shizuoka Research Institute of Agriculture and Forestry, Kurasawa, Kikugawa, Shizuoka, 439-0002, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Gaku Akiduki
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kumamoto, 861-1192, Japan
| | - Yoshitaka Suetsugu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuya Kobayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Akihito Ozawa
- Tea Research Center, Shizuoka Research Institute of Agriculture and Forestry, Kurasawa, Kikugawa, Shizuoka, 439-0002, Japan
| | - Saki Minami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Chiharu Ishizuka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan.,Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tetsuro Shinoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
67
|
Sundaravadivelan C, Murugesh E, Preethy M, Sivaprasath P. Ariadne merione ecdysone receptor (AmEcR) protein: An in silico approach for comparison of agonist and antagonist compounds. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chandran Sundaravadivelan
- Department of Zoology, Padmavani Arts and Science College for Women, Salem 636 011, Tamil Nadu, India
| | - Easwaran Murugesh
- Department of Bioinformatics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mathew Preethy
- Department of Biotechnology, School of Life Sciences, Karpagam University, Karpagam Academy of Higher Education, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| | - Prabu Sivaprasath
- Department of Biotechnology, School of Life Sciences, Karpagam University, Karpagam Academy of Higher Education, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| |
Collapse
|
68
|
Structure-based virtual screening for insect ecdysone receptor ligands using MM/PBSA. Bioorg Med Chem 2019; 27:1065-1075. [DOI: 10.1016/j.bmc.2019.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
|
69
|
Liu L, Wang Y, Li Y, Ding C, Zhao P, Xia Q, He H. Cross-talk between juvenile hormone and ecdysone regulates transcription of fibroin modulator binding protein-1 in Bombyx mori. Int J Biol Macromol 2019; 128:28-39. [PMID: 30682471 DOI: 10.1016/j.ijbiomac.2019.01.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/05/2023]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E) are the most important hormones in silkworm and play vital roles in silkworm development, metamorphosis, and silk protein synthesis. Fibroin modulator binding protein-1 (FMBP-1) is a novel transcription factor regulating fibroin heavy chain (fib-H) transcription in Bombyx mori. The roles of JH and 20E on FMBP-1 transcription are less known. Here, we show FMBP-1 transcription is repressed by juvenile hormone analog (JHA) and activated by 20E. We identify two Krüppel homolog 1 (Kr-h1) binding sites (KBS1 and KBS2) and an E74A binding site (EBS) in the promoter of FMBP-1. We demonstrate Kr-h1 directly binds to KBS1 and KBS2 to repress FMBP-1 transcription, and 20E promotes FMBP-1 transcription through E74A. In the presence of JH and 20E, E74A abolishes the repression of Kr-h1 and activates FMBP-1 transcription through direct binding to EBS between KBS1 and KBS2 in FMBP-1 promoter. Further, JHA and 20E treatment and RNA interference confirm the effects of JH and 20E on FMBP-1 transcription in vivo, thus affecting fib-H transcription. Our results reveal the molecular mechanism of FMBP-1 transcription regulated by the cross-talk between JH and 20E in Bombyx mori, and provide novel insights into FMBP-1 transcriptional regulation and silk protein synthesis.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Chaoxiang Ding
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
70
|
Gismondi E, Joaquim-Justo C. Relative expression of three key genes involved in the hormonal cycle of the freshwater amphipod, Gammarus pulex. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:227-233. [DOI: 10.1002/jez.2256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and Oceanic Sciences Unit of Research (FOCUS), University of Liège; Liège Belgium
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and Oceanic Sciences Unit of Research (FOCUS), University of Liège; Liège Belgium
| |
Collapse
|
71
|
Hussain T, Aksoy E, Çalışkan ME, Bakhsh A. Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res 2019; 28:151-164. [DOI: 10.1007/s11248-018-0109-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/11/2018] [Indexed: 01/11/2023]
|
72
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
73
|
Yokoi T, Nakagawa Y, Miyagawa H. Asymmetric synthesis of tetrahydroquinoline-type ecdysone agonists and QSAR for their binding affinity against Aedes albopictus ecdysone receptors. PEST MANAGEMENT SCIENCE 2019; 75:115-124. [PMID: 30070016 DOI: 10.1002/ps.5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tetrahydroquinolines (THQs) are a class of non-steroidal ecdysone agonists that specifically bind to mosquito ecdysone receptors (EcR). The THQ scaffold contains two chiral centers at the C-2 and C-4 positions, resulting in four stereoisomers. We have previously shown that the (2R,4S)-isomers are the most biologically active; however, the lack of a practical synthetic method for these isomers has hampered further structure-activity studies. RESULTS In this study, a chiral phosphoric acid-catalyzed Povarov reaction was employed to develop a facile asymmetric synthesis of THQs with a (2R,4S)-configuration, which allowed the preparation of a 40-compound library of enantiopure THQs. Evaluation of their binding affinity against Aedes albopictus EcR, followed by quantitative structure-activity relationship (QSAR) analyses, uncovered the physicochemical properties of THQs that are important for the ligand-receptor interaction. The most potent THQ derivative was twofold more active than the molting hormone, 20-hydroxyecdysone. CONCLUSION The QSAR results provide valuable information for the rational design of novel mosquito-specific ecdysone agonists. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Taiyo Yokoi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
74
|
Gao X, Xie XJ, Hsu FN, Li X, Liu M, Hemba-Waduge RUS, Xu W, Ji JY. CDK8 mediates the dietary effects on developmental transition in Drosophila. Dev Biol 2018; 444:62-70. [PMID: 30352217 PMCID: PMC6263851 DOI: 10.1016/j.ydbio.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/08/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023]
Abstract
The complex interplay between genetic and environmental factors, such as diet and lifestyle, defines the initiation and progression of multifactorial diseases, including cancer, cardiovascular and metabolic diseases, and neurological disorders. Given that most of the studies have been performed in controlled experimental settings to ensure the consistency and reproducibility, the impacts of environmental factors, such as dietary perturbation, on the development of animals with different genotypes and the pathogenesis of these diseases remain poorly understood. By analyzing the cdk8 and cyclin C (cycC) mutant larvae in Drosophila, we have previously reported that the CDK8-CycC complex coordinately regulates lipogenesis by repressing dSREBP (sterol regulatory element-binding protein)-activated transcription and developmental timing by activating EcR (ecdysone receptor)-dependent gene expression. Here we report that dietary nutrients, particularly proteins and carbohydrates, modulate the developmental timing through the CDK8/CycC/EcR pathway. We observed that cdk8 and cycC mutants are sensitive to the levels of dietary proteins and seven amino acids (arginine, glutamine, isoleucine, leucine, methionine, threonine, and valine). Those mutants are also sensitive to dietary carbohydrates, and they are more sensitive to monosaccharides than disaccharides. These results suggest that CDK8-CycC mediates the dietary effects on lipid metabolism and developmental timing in Drosophila larvae.
Collapse
Affiliation(s)
- Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | | | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
75
|
Roy A, Palli SR. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics 2018; 19:934. [PMID: 30547764 PMCID: PMC6295036 DOI: 10.1186/s12864-018-5323-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic modifications including DNA methylation and post-translational modifications of histones are known to regulate gene expression. Antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate transcriptional reprogramming during insect development as shown in Drosophila melanogaster and other insects. Juvenile hormones (JH) play vital roles in the regulation of growth, development, metamorphosis, reproduction and other physiological processes. However, our current understanding of epigenetic regulation of JH action is still limited. Hence, we studied the role of CREB binding protein (CBP, contains HAT domain) and Trichostatin A (TSA, HDAC inhibitor) on JH action. RESULTS Exposure of Tribolium castaneum cells (TcA cells) to JH or TSA caused an increase in expression of Kr-h1 (a known JH-response gene) and 31 or 698 other genes respectively. Knockdown of the gene coding for CBP caused a decrease in the expression of 456 genes including Kr-h1. Interestingly, the expression of several genes coding for transcription factors, nuclear receptors, P450 and fatty acid synthase family members that are known to mediate JH action were affected by CBP knockdown or TSA treatment. CONCLUSIONS These data suggest that acetylation and deacetylation mediated by HATs and HDACs play an important role in JH action.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
- Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21 Suchdol, Czech Republic
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
76
|
Wycisk K, Tarczewska A, Kaus-Drobek M, Dadlez M, Hołubowicz R, Pietras Z, Dziembowski A, Taube M, Kozak M, Orłowski M, Ożyhar A. Intrinsically disordered N-terminal domain of the Helicoverpa armigera Ultraspiracle stabilizes the dimeric form via a scorpion-like structure. J Steroid Biochem Mol Biol 2018; 183:167-183. [PMID: 29944921 DOI: 10.1016/j.jsbmb.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are a family of ligand-dependent transcription factors activated by lipophilic compounds. NRs share a common structure comprising three domains: a variable N-terminal domain (NTD), a highly conserved globular DNA-binding domain and a ligand-binding domain. There are numerous papers describing the molecular details of the latter two globular domains. However, very little is known about the structure-function relationship of the NTD, especially as an intrinsically disordered fragment of NRs that may influence the molecular properties and, in turn, the function of globular domains. Here, we investigated whether and how an intrinsically disordered NTD consisting of 58 amino acid residues affects the functions of the globular domains of the Ultraspiracle protein from Helicoverpa armigera (HaUsp). The role of the NTD was examined for two well-known and easily testable NR functions, i.e., interactions with specific DNA sequences and dimerization. Electrophoretic mobility shift assays showed that the intrinsically disordered NTD influences the interaction of HaUsp with specific DNA sequences, apparently by destabilization of HaUsp-DNA complexes. On the other hand, multi-angle light scattering and sedimentation velocity analytical ultracentrifugation revealed that the NTD acts as a structural element that stabilizes HaUsp homodimers. Molecular models based on small-angle X-ray scattering indicate that the intrinsically disordered NTD may exert its effects on the tested HaUsp functions by forming an unexpected scorpion-like structure, in which the NTD bends towards the ligand-binding domain in each subunit of the HaUsp homodimer. This structure may be crucial for specific NTD-dependent regulation of the functions of globular domains in NRs.
Collapse
Affiliation(s)
- Krzysztof Wycisk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Kaus-Drobek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Pietras
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
77
|
Gassias E, Durand N, Demondion E, Bourgeois T, Bozzolan F, Debernard S. The insect HR38 nuclear receptor, a member of the NR4A subfamily, is a synchronizer of reproductive activity in a moth. FEBS J 2018; 285:4019-4040. [DOI: 10.1111/febs.14648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Nicolas Durand
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| | - Elodie Demondion
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris INRA Versailles France
| | - Thomas Bourgeois
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris INRA Versailles France
| | - Françoise Bozzolan
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| | - Stéphane Debernard
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| |
Collapse
|
78
|
Gismondi E. Identification of molt-inhibiting hormone and ecdysteroid receptor cDNA sequences in Gammarus pulex, and variations after endocrine disruptor exposures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:9-17. [PMID: 29656166 DOI: 10.1016/j.ecoenv.2018.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
In amphipods, growth, development and reproduction are mediated by the molt, which is a hormonally controlled process and which, therefore, could be impacted by endocrine disruption compounds (EDC). The molt process is controlled by both X-organ (XO) and Y-organ (YO) through a variety of hormones and receptors including the molt-inhibiting hormone (MIH) and the ecdysteroid receptor (EcR). However, although many studies were devoted to characterize MIH and EcR in crustaceans, only few works evaluated their variations under EDCs exposures. Consequently, the present work aimed to characterize MIH and EcR genes of the amphipod Gammarus pulex, as well as to study their relative expression variations after exposure to four EDCs, proved in vertebrates: ethinylestradiol (estrogen), 4-hydroxytamoxifen (anti-estrogen), 17α-methyltestosterone (androgen) and cyproterone acetate (anti-androgen). PCR amplification allowed to obtain 204 bp length and 255 bp length fragments, encoding for partial sequences of 68 amino acids and 85 amino acids, which correspond to EcR and MIH, respectively, and which are highly conserved in crustacean species. Results highlighted MIH and EcR expressions mainly in G. pulex head, which is the localization of XO and YO. Moreover, irrespective of the EDC exposure, increases of MIH and EcR relative expressions were observed, as it was observed after the exposure to 20-hydroxyecdysone (20HE), the natural molt hormone, used as positive control. Therefore, it appeared that tested EDCs behaved like 20HE, suggesting that their effects could occur through the ecdysteroids pathways, and so impact the molt process of G. pulex on the long term. Finally, the present study is a first step in the possibility of using MIH and EcR relative expressions as biomarkers of exposure for EDCs risk assessment. However additional studies must first be carried out to better characterize and understand their variations, and also better predicted consequences for the exposed amphipods.
Collapse
Affiliation(s)
- Eric Gismondi
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and Oceanic Sciences Unit of Research (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium.
| |
Collapse
|
79
|
Eichner C, Dondrup M, Nilsen F. RNA sequencing reveals distinct gene expression patterns during the development of parasitic larval stages of the salmon louse (Lepeophtheirus salmonis). JOURNAL OF FISH DISEASES 2018; 41:1005-1029. [PMID: 29368347 DOI: 10.1111/jfd.12770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The salmon louse (Lepeophtheirus salmonis), an ectoparasitic copepod on salmonids, has become a major threat for the aquaculture industry. In search for new drugs and vaccines, transcriptome analysis is increasingly used to find differently regulated genes and pathways in response to treatment. However, the underlying gene expression changes going along with developmental processes could confound such analyses. The life cycle of L. salmonis consists of eight stages divided by moults. The developmental rate of salmon lice on the host is not uniform. Individual- and sex-related differences are found leading to individuals of unlike developmental status at same sampling time point after infection. In this study, we analyse L. salmonis from a time series by RNA sequencing applying a method of separating individuals of different instar age independent of sampling time point. Lice of four stages divided into up to four age groups within the stage were analysed in triplicate (total of 66 samples). Gene expression analysis shows that the method for sorting individuals was successful. Many genes show cyclic expression patterns over the moulting cycles. Overall gene expression differs more between lice of different age within the same stage than between lice of different stage but same instar age.
Collapse
Affiliation(s)
- C Eichner
- Sea Lice Research Centre, Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - M Dondrup
- Sea Lice Research Centre, Department of Informatics, University of Bergen, Bergen, Norway
| | - F Nilsen
- Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
80
|
Yokoi T, Nakagawa Y, Miyagawa H. Quantitative structure–activity relationship of substituted imidazothiadiazoles for their binding against the ecdysone receptor of Sf-9 cells. Bioorg Med Chem Lett 2017; 27:5305-5309. [DOI: 10.1016/j.bmcl.2017.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 01/25/2023]
|
81
|
Structure and function of the alternatively spliced isoforms of the ecdysone receptor gene in the Chinese mitten crab, Eriocheir sinensis. Sci Rep 2017; 7:12993. [PMID: 29021633 PMCID: PMC5636884 DOI: 10.1038/s41598-017-13474-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022] Open
Abstract
Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. Ecdysone receptor (EcR), an essential nuclear receptor, is essential in the molting, growth, development, reproduction, and regeneration of crustaceans. In this study, the whole sequence of EcR gene from Eriocheir sinensis was obtained. The sequence was 45,481 bp in length with 9 exons. Moreover, four alternatively spliced EcR isoforms (Es-EcR-1, Es-EcR-2, Es-EcR-3 and Es-EcR-4) were identified. The four isoforms harbored a common A/B domain and a DNA-binding region but different D domains and ligand-binding regions. Three alternative splicing patterns (alternative 5′ splice site, exon skipping, and intron retention) were identified in the four isoforms. Functional studies indicated that the four isoforms have specific functions. Es-EcR-3 may play essential roles in regulating periodic molting. Es-EcR-2 may participate in the regulation of ovarian development. Our results indicated that Es-EcR has broad regulatory functions in molting and development and established the molecular basis for the investigation of ecdysteroid signaling related pathways in E. sinensis.
Collapse
|
82
|
Sugahara R, Tanaka S, Shiotsuki T. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. Dev Biol 2017; 429:71-80. [DOI: 10.1016/j.ydbio.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
83
|
Han Q, Wang Z, He Y, Xiong Y, Lv S, Li S, Zhang Z, Qiu D, Zeng H. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield. Int J Mol Sci 2017; 18:E1874. [PMID: 28867769 PMCID: PMC5618523 DOI: 10.3390/ijms18091874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.
Collapse
Affiliation(s)
- Qiang Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhenzhen Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yunxin He
- Cotton Science Research Institute of Hunan Province, Changde 415101, Hunan, China.
| | - Yehui Xiong
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shun Lv
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shupeng Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhigang Zhang
- Cotton Science Research Institute of Hunan Province, Changde 415101, Hunan, China.
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
84
|
Ito-Harashima S, Matsuura M, Kawanishi M, Nakagawa Y, Yagi T. New reporter gene assays for detecting natural and synthetic molting hormone agonists using yeasts expressing ecdysone receptors of various insects. FEBS Open Bio 2017; 7:995-1008. [PMID: 28680812 PMCID: PMC5494300 DOI: 10.1002/2211-5463.12239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 01/14/2023] Open
Abstract
Synthetic nonsteroidal ecdysone agonists, a class of insect growth regulators (IGRs), target the ecdysone receptor (EcR), which forms a heterodimer with ultraspiracle (USP) to transactivate ecdysone response genes. These compounds have high binding affinities to the EcR–USP complexes of certain insects and their toxicity is selective for certain taxonomic orders. In the present study, we developed reporter gene assay (RGA) systems to detect molting hormone (ecdysone) activity by introducing EcR–USP cDNA and a bacterial lacZ reporter gene into yeast. EcR and USP were derived from the insect species of three different taxonomic orders: Drosophila melanogaster (Diptera), Chilo suppressalis (Lepidoptera), and Leptinotarsa decemlineata (Coleoptera). Transcriptional coactivator taiman (Tai) cDNA cloned from D. melanogaster was also used in this RGA system. This yeast RGA system responded to various EcR ligands in a dose‐dependent and ecdysteroid‐specific manner. Furthermore, the insect order‐selective ligand activities of synthetic nonsteroidal ecdysone agonists were linearly related to their binding activities, which were measured against in vitro translated EcR–USP complexes. Our newly established yeast RGA is useful for screening new molting hormone agonists that work selectively on target insects.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Mai Matsuura
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Masanobu Kawanishi
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences Graduate School of Agriculture Kyoto University Sakyo-ku Kyoto Japan
| | - Takashi Yagi
- Department of Biology Graduate School of Science Osaka Prefecture University Sakai Osaka Japan.,Department of Life Science Dongguk University Biomedical Campus Goyang Gyeonggi-do South Korea
| |
Collapse
|
85
|
Honda Y, Ishiguro W, Ogihara MH, Kataoka H, Taylor D. Identification and expression of nuclear receptor genes and ecdysteroid titers during nymphal development in the spider Agelena silvatica. Gen Comp Endocrinol 2017; 247:183-198. [PMID: 28174130 DOI: 10.1016/j.ygcen.2017.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 01/03/2023]
Abstract
Ecdysteroids play an essential role in the regulation of the molting processes of arthropods. Nuclear receptors of the spider Agelena silvatica that showed high homology with other arthropods especially in the functional domains were identified, two isoforms of ecdysone receptor (AsEcRA, AsEcRB), retinoid X receptor (AsRXR) and two isoforms of E75 (AsE75A, AsE75D). AsEcR and AsRXR mRNA did not show major changes in expression but occurred throughout the third instar nymphal stage. AsE75DBD was low or non-existent at first then showed a sudden increase from D7 to D10. On the other hand, AsE75D was expressed in the first half and decreased from D6 to D10. Ecdysteroid titers showed a peak on D6 in A. silvatica third instar nymphs. LC-MS/MS analysis of the ecdysteroid peak revealed only 20-hydroxyecdysone (20E) was present. The 20E peak on D6 and increase in AsE75DBD from D7 is likely a result of ecdysteroids binding to the heterodimer formed with constant expression of the AsEcR and AsRXR receptors. These findings indicate the mechanisms regulating molting widely conserved in insects and other arthropods also similarly function in spiders.
Collapse
Affiliation(s)
- Yoshiko Honda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Research and Development Department, Fumakilla Limited, Hatsukaichi, Hiroshima, Japan.
| | - Wataru Ishiguro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari H Ogihara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Hiroshi Kataoka
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - DeMar Taylor
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
86
|
Zhu B, Tang L, Yu Y, Yu H, Wang L, Qian C, Wei G, Liu C. Identification of ecdysteroid receptor-mediated signaling pathways in the hepatopancreas of the red swamp crayfish, Procambarus clarkii. Gen Comp Endocrinol 2017; 246:372-381. [PMID: 28069422 DOI: 10.1016/j.ygcen.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/30/2022]
Abstract
The hepatopancreas of crustaceans plays an important role in lipid and carbohydrate metabolism, digestion of food, and biogenesis. In this study, the hepatopancreas transcriptome from the red crayfish Procambarus clarkii was characterized for the first time using high-throughput sequencing, producing approximately 41.4 million reads were obtained. After de novo assembly, 57,363 unigenes with an average length of 725bp were identified, Gene Ontology analysis categorized 22,580 as being involved in biological processes, among which metabolic process and cellular process groups were the most highly enriched. A total of 8034 unigenes were assigned to 223 metabolic pathways following mapping against the Kyoto encyclopedia of genes and genomes (KEGG) database. Ecdysteroid receptor (EcR)-mediated signaling pathways were investigated using digital gene expression (DGE) analysis following RNA interference targeting the EcR. A total of 529 differentially expressed genes (DEGs) were identified, including 322 downregulated and 207 upregulated unigenes. Of these, 445 (84.12%) were annotated successfully by alignment with known sequences, many of which were related to catalytic activity and binding functional categories. Using KEGG enrichment analysis, 183 DEGs were clustered into 78 pathways, and six significantly enriched pathways were predicted. The expression patterns of candidate genes identified by real-time PCR were consistent with the DGE results.
Collapse
Affiliation(s)
- Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Lin Tang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Yingying Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Huimin Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Lei Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Cen Qian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Guoqing Wei
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Chaoliang Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
87
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
88
|
Lv J, Zhang L, Liu P, Li J. Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus. PLoS One 2017; 12:e0175315. [PMID: 28394948 PMCID: PMC5386282 DOI: 10.1371/journal.pone.0175315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Background Molting is an essential biological process throughout the life history of crustaceans, which is regulated by many neuropeptide hormones expressed in the eyestalk. To better understand the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE) to analyze single eyestalk samples during the molting cycle by high-throughput sequencing. Results We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt (InM), pre-molt (PrM) and post-molt (PoM) cDNA libraries, respectively. A total of 1,394 molt-related differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analysis identified some important processes and pathways with key roles in molting regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first observed a pattern associated with the neuromodulator-related pathways during the molting cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of important molting-related transcripts were clustered and most of them had similar expression patterns, which suggests that there is a connection between these genes throughout the molt cycle. Conclusion Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk at the whole transcriptome level. Together, our results, including DEGs, identification of molting-related biological processes and pathways, and observed expression patterns of important genes, provide a novel insight into the function of the eyestalk in molting regulation.
Collapse
Affiliation(s)
- Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
| | - Longtao Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
- * E-mail:
| |
Collapse
|
89
|
Zhu BJ, Tang L, Yu YY, Wang DJ, Liu CL. Identification and expression patterns of 20-hydroxyecdysone-responsive genes from Procambarus clarkii. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0527-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
90
|
Hwang DS, Lee MC, Kyung DH, Kim HS, Han J, Kim IC, Puthumana J, Lee JS. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:9-17. [PMID: 27939724 DOI: 10.1016/j.cbpc.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
Abstract
Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Do-Hyun Kyung
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
91
|
Wang W, Li K, Wan P, Lai F, Fu Q, Zhu T. Ras-like family small GTPases genes in Nilaparvata lugens: Identification, phylogenetic analysis, gene expression and function in nymphal development. PLoS One 2017; 12:e0172701. [PMID: 28241066 PMCID: PMC5328259 DOI: 10.1371/journal.pone.0172701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
Twenty-nine cDNAs encoding Ras-like family small GTPases (RSGs) were cloned and sequenced from Nilaparvata lugens. Twenty-eight proteins are described here: 3 from Rho, 2 from Ras, 9 from Arf and 14 from Rabs. These RSGs from N.lugens have five conserved G-loop motifs and displayed a higher degree of sequence conservation with orthologues from insects. RT-qPCR analysis revealed NlRSGs expressed at all life stages and the highest expression was observed in hemolymph, gut or wing for most of NlRSGs. RNAi demonstrated that eighteen NlRSGs play a crucial role in nymphal development. Nymphs with silenced NlRSGs failed to molt, eclosion or development arrest. The qRT-PCR analysis verified the correlation between mortality and the down-regulation of the target genes. The expression level of nuclear receptors, Kr-h1, Hr3, FTZ-F1 and E93 involved in 20E and JH signal pathway was impacted in nymphs with silenced twelve NlRSGs individually. The expression of two halloween genes, Cyp314a1 and Cyp315a1 involved in ecdysone synthesis, decreased in nymphs with silenced NlSar1 or NlArf1. Cyp307a1 increased in nymphs with silenced NlArf6. In N.lugens with silenced NlSRβ, NlSar1 and NlRab2 at 9th day individually, 0.0% eclosion rate and almost 100.0% mortality was demonstrated. Further analysis showed NlSRβ could be served as a candidate target for dsRNA-based pesticides for N.lugens control.
Collapse
Affiliation(s)
- Weixia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kailong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pinjun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- * E-mail: (QF); (THZ)
| | - Tingheng Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- * E-mail: (QF); (THZ)
| |
Collapse
|
92
|
Puthumana J, Lee MC, Han J, Kim HS, Hwang DS, Lee JS. Ecdysone receptor (EcR) and ultraspiracle (USP) genes from the cyclopoid copepod Paracyclopina nana: Identification and expression in response to water accommodated fractions (WAFs). Comp Biochem Physiol C Toxicol Pharmacol 2017; 192:7-15. [PMID: 27890717 DOI: 10.1016/j.cbpc.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023]
Abstract
Ecdysteroid hormones are pivotal in the development, growth, and molting of arthropods, and the hormone pathway is triggered by binding ecdysteroid to a heterodimer of the two nuclear receptors; ecdysone receptors (EcR) and ultraspiracle (USP). We have characterized EcR and USP genes, and their 5'-untranslated region (5'-UTR) from the copepod Paracyclopina nana, and studied mRNA transcription levels in post-embryonic stages and in response to water accommodated fractions (WAFs) of crude oil. The open reading frames (ORF) of EcR and USP were 1470 and 1287bp that encoded 490 and 429 amino acids with molecular weight of 121.18 and 105.03kDa, respectively. Also, a well conserved DNA-binding domain (DBD) and ligand-binding domain (LBD) were identified which confirmed by phylogenetic analysis. Messenger RNA transcriptional levels of EcR and USP were developmental stage-specific in early post-embryonic stages (N3-4). However, an evoked expression of USP was observed throughout copepodid stage and in adult females. WAFs (40 and 80%) were acted as an ecdysone agonist in P. nana, and elicited the mRNA transcription levels in adults. Developmental stage-specific transcriptional activation of EcR and USP in response to WAFs was observed. USP gene was down-regulated in the nauplius in response to WAF, whereas up-regulation of USP was observed in the adults. This study represents the first data of molecular elucidation of EcR and USP genes and their regulatory elements from P. nana and the developmental stage specific expression in response to WAFs, which can be used as potential biomarkers for environmental stressors with ecotoxicological evaluations in copepods.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Arthropod Proteins/genetics
- Arthropod Proteins/metabolism
- Copepoda/drug effects
- Copepoda/genetics
- Copepoda/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Environmental Monitoring/methods
- Gene Expression Regulation, Developmental/drug effects
- Genetic Markers
- Metamorphosis, Biological
- Phylogeny
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Regulatory Elements, Transcriptional
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
93
|
Abstract
MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Pompeu Fabra University (UPF), 08002 Barcelona, Spain;
| |
Collapse
|
94
|
Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proc Natl Acad Sci U S A 2017; 114:1057-1062. [PMID: 28096379 DOI: 10.1073/pnas.1615423114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.
Collapse
|
95
|
Yan T, Chen H, Sun Y, Yu X, Xia L. RNA Interference of the Ecdysone Receptor Genes EcR and USP in Grain Aphid (Sitobion avenae F.) Affects Its Survival and Fecundity upon Feeding on Wheat Plants. Int J Mol Sci 2016; 17:E2098. [PMID: 27983619 PMCID: PMC5187898 DOI: 10.3390/ijms17122098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA interference (RNAi) has been widely used in functional genomics of insects and received intensive attention in the development of RNAi-based plants for insect control. Ecdysone receptor (EcR) and ultraspiracle protein (USP) play important roles in molting, metamorphosis, and reproduction of insects. EcR and USP orthologs and their function in grain aphid (Sitobion avenae F.) have not been documented yet. Here, RT-PCR, qRT-PCR, dsRNA feeding assay and aphid bioassay were employed to isolate EcR and USP orthologs in grain aphid, investigate their expression patterns, and evaluate the effect of RNAi on aphid survival and fecundity, and its persistence. The results indicated that SaEcR and SaUSP exhibited similar expression profiles at different developmental stages. Oral administration of dsRNAs of SaEcR and dsSaUSP significantly decreased the survival of aphids due to the down-regulation of these two genes, respectively. The silencing effect was persistent and transgenerational, as demonstrated by the reduced survival and fecundity due to knock-down of SaEcR and SaUSP in both the surviving aphids and their offspring, even after switching to aphid-susceptible wheat plants. Taken together, our results demonstrate that SaEcR and SaUSP are essential genes in aphid growth and development, and could be used as RNAi targets for wheat aphid control.
Collapse
Affiliation(s)
- Ting Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Hongmei Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Yongwei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Xiudao Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
96
|
Uchida M, Hirano M, Ishibashi H, Kobayashi J, Kagami Y, Koyanagi A, Kusano T, Koga M, Arizono K. Transcriptional response of mysid crustacean, Americamysis bahia, is affected by subchronic exposure to nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:360-365. [PMID: 27497080 DOI: 10.1016/j.ecoenv.2016.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Nonylphenol (NP) has been classified as an endocrine-disrupting chemical. In this study, we conducted mysid DNA microarray analysis with which has 2240 oligo DNA probes to observe differential gene expressions in mysid crustacean (Americamysis bahia) exposed to 1, 3, 10 and 30 μg/l of NP for 14 days. As a result, we found 31, 27, 39 and 68 genes were differentially expressed in the respective concentrations. Among these genes, the expressions of five particular genes were regulated in a similar manner at all concentrations of the NP exposure. So, we focused on one gene encoding cuticle protein, and another encoding cuticular protein analogous to peritrophins 1-H precursor. These genes were down-regulated by NP exposure in a dose-dependent manner, and it suggested that they were related in a reduction of the number of molting in mysids. Thus, they might become useful molecular biomarker candidates to evaluate molting inhibition in mysids.
Collapse
Affiliation(s)
- Masaya Uchida
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan
| | - Hiroshi Ishibashi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Jun Kobayashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan
| | - Yoshihiro Kagami
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Akiko Koyanagi
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Teruhiko Kusano
- Mizuki biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Minoru Koga
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan.
| |
Collapse
|
97
|
Dai TH, Sserwadda A, Song K, Zang YN, Shen HS. Cloning and Expression of Ecdysone Receptor and Retinoid X Receptor from Procambarus clarkii: Induction by Eyestalk Ablation. Int J Mol Sci 2016; 17:ijms17101739. [PMID: 27763563 PMCID: PMC5085767 DOI: 10.3390/ijms17101739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Ecdysone receptor and retinoid X receptor are key regulators in molting. Here, full length ecdysone receptor (PcEcR) and retinoid X receptor (PcRXR) cDNAs from Procambarus clarkii were cloned. Full length cDNA of PcEcR has 2500 bp, encoding 576 amino acid proteins, and full length cDNA of PcRXR has 2593 bp, in which a 15 bp and a 204 bp insert/deletion splice variant regions in DNA binding domain and hinge domain were identified. The two splice variant regions in PcRXR result four isoforms: PcRXR1-4, encoding 525, 520, 457 and 452 amino acids respectively. PcEcR was highly expressed in the hepatopancreas and eyestalk and PcRXR was highly expressed in the eyestalk among eight examined tissues. Both PcEcR and PcRXR had induced expression after eyestalk ablation (ESA) in the three examined tissues. In muscle, PcEcR and PcRXR were upregulated after ESA, PcEcR reached the highest level on day 3 after ESA and increased 33.5-fold relative to day 0, and PcRXR reached highest the level on day 1 after ESA and increased 2.7-fold relative to day 0. In the hepatopancreas, PcEcR and PcRXR dEcReased continuously after ESA, and the expression levels of PcEcR and PcRXR were only 0.7% and 1.7% on day 7 after ESA relative to day 0, respectively. In the ovaries, PcEcR was upregulated after ESA, reached the highest level on day 3 after ESA, increased 3.0-fold relative to day 0, and the expression level of PcRXR changed insignificantly after ESA (p > 0.05). The different responses of PcEcR and PcRXR after ESA indicates that different tissues play different roles (and coordinates their functions) in molting.
Collapse
Affiliation(s)
- Tian-Hao Dai
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ali Sserwadda
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Kun Song
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ya-Nan Zang
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Huai-Shun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
98
|
Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:10-23. [PMID: 27180725 DOI: 10.1016/j.ibmb.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
99
|
Hwang DS, Han J, Won EJ, Kim DH, Jeong CB, Hwang UK, Zhou B, Choe J, Lee JS. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:285-294. [PMID: 27337698 DOI: 10.1016/j.aquatox.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P<0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P<0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5-6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P<0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. This information will be helpful in understanding the molting and metamorphosis delay mechanism in response to BDE-47 exposure.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
100
|
Masuoka Y, Maekawa K. Ecdysone signaling regulates soldier-specific cuticular pigmentation in the termiteZootermopsis nevadensis. FEBS Lett 2016; 590:1694-703. [DOI: 10.1002/1873-3468.12219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Yudai Masuoka
- Graduate School of Science and Engineering; University of Toyama; Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering; University of Toyama; Japan
| |
Collapse
|