51
|
Yu ML, Wang JF, Wang GK, You XH, Zhao XX, Jing Q, Qin YW. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J 2011; 75:703-9. [PMID: 21266788 DOI: 10.1253/circj.cj-10-0393] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Several microRNAs (miRNAs) have been reported to regulate cardiovascular biological and pathological processes through inhibiting the translation of certain RNA transcripts. However, little is known about the association between miRNAs and vascular smooth muscle cell (VSMC) proliferation. The aim was to investigate the role of miRNAs in VSMC growth and the potential mechanism. METHODS AND RESULTS Primary VSMCs were isolated from the medial layer of the thoracic aorta obtained from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). miRNA microarrays were used to analyze the difference in miRNA expression between VSMCs of SHR and WKY rats and were validated using TaqMan real-time PCR. Of the potentially related genes under the influence of let-7d identified through literature search, KRAS was verified by western blot and functionally analyzed using miRNA mimics transfection and analysis of transfectants by cell enumeration was made using CCK-8 and flow cytometric analysis of cell cycle progression. let-7d-transfected VSMCs from SHR, WKY and human coronary arteries expressed significantly lower amounts of KRAS protein, displayed reduced cell growth and led to a greater number of cells in the G1 phase than the G2/M phases of the cell cycle. CONCLUSIONS let-7d was significantly downregulated in VSMCs as an important regulator of cell proliferation. RAS might be involved in the proliferation regulation by let-7d.
Collapse
Affiliation(s)
- Man-Li Yu
- Department of Cardiology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Protein kinase Cδ mediates MCP-1 mRNA stabilization in vascular smooth muscle cells. Mol Cell Biochem 2010; 344:73-9. [PMID: 20607592 DOI: 10.1007/s11010-010-0530-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine that promotes atherosclerosis and is a mediator of the response to arterial injury. We previously demonstrated that platelet-derived growth factor (PDGF) and angiotensin II (Ang) induce the accumulation of MCP-1 mRNA in vascular smooth muscle cells mainly by increasing mRNA stability. In the present study, we have examined the signaling pathways involved in this stabilization of MCP-1 mRNA. The effect of PDGF (BB isoform) and Ang on MCP-1 mRNA stability was mediated by the PDGF β and angiotensin II receptor AT1R, respectively, and did not involve transactivation between the two receptors. The effect of PDGF-BB was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphoinositol 3-kinase (PI3K), Src, or NADPH oxidase (NADPHox). In contrast, the effect of Ang was blocked by inhibitors of Src, and PKC, but not by inhibitors of PI3 K, or NADPHox. The effect of PDGF BB on MCP-1 mRNA stability was blocked by siRNA directed against PKCδ and protein kinase D (PKD), whereas the effect of Ang was blocked only by siRNA directed against PKCδ. These results suggest that the enhancement of MCP-1 mRNA stability by PDGF-BB and Ang are mediated by distinct "proximal" signaling pathways that converge on activation of PKCδ. This study identifies a novel role for PKCδ in mediating mRNA stability in smooth muscle cells.
Collapse
|
53
|
Wang L, Gong F, Dong X, Zhou W, Zeng Q. Regulation of vascular smooth muscle cell proliferation by nuclear orphan receptor Nur77. Mol Cell Biochem 2010; 341:159-66. [DOI: 10.1007/s11010-010-0447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/17/2010] [Indexed: 12/11/2022]
|
54
|
Liu Y, Li W, Ye C, Lin Y, Cheang TY, Wang M, Zhang H, Wang S, Zhang L, Wang S. Gambogic Acid Induces G0/G1 Cell Cycle Arrest and Cell Migration Inhibition Via Suppressing PDGF Receptor β Tyrosine Phosphorylation and Rac1 Activity in Rat Aortic Smooth Muscle Cells. J Atheroscler Thromb 2010; 17:901-13. [DOI: 10.5551/jat.3491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yong Liu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Wen Li
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - CaiSheng Ye
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Ying Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Tuck-Yun Cheang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Mian Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Hui Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - SanMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - LongJuan Zhang
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - ShenMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
55
|
Yu JY, Lee JJ, Jung JK, Kim TJ, Yoo HS, Yun YP, Lee JC. JY0691, a newly synthesized obovatol derivative, inhibits cell cycle progression of rat aortic smooth muscle cells through up-regulation of p21cip1. Eur J Pharmacol 2009; 624:23-30. [DOI: 10.1016/j.ejphar.2009.09.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/17/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
|
56
|
Chung CH, Lin KT, Chang CH, Peng HC, Huang TF. The integrin alpha2beta1 agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br J Pharmacol 2009; 156:846-56. [PMID: 19239475 DOI: 10.1111/j.1476-5381.2008.00095.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE During the development of atherosclerotic plaques, vascular smooth muscle cells (VSMCs) migrate from the media to the intima through the basement membrane and interstitial collagenous matrix, and proliferate to form neointima. Here, we investigate the mechanism of VSMC migration and proliferation caused by aggretin, a snake venom integrin alpha2beta1 agonist. EXPERIMENTAL APPROACH Cultures of rat and human VSMCs were treated with aggretin and the signal transduction pathways induced by this agonist were examined by Western blotting, immunoprecipitation and electrophoretic mobility shift assay techniques. KEY RESULTS Aggretin-induced VSMC proliferation was blocked by a monoclonal antibody (mAb) against integrin alpha2 (AII2E10) or against the platelet-derived growth factor receptor (PDGFR)-beta. Proliferation was also blocked by inhibition of the tyrosine kinase Src with PP2, phospholipase C (PLC) with U73122, extracellular signal-regulated kinase (ERK) with PD98059 or nuclear factor-kappa B (NF-kB) activation with pyrrolidine dithiocarbamate (PDTC). VSMC migration towards immobilized aggretin was increased in a modified Boyden chamber and this effect was blocked by alpha2beta1-Src-PLC-MAPK axis inhibitors, but not by PDTC, PDGFR-beta mAb, or a phosphoinositide-3 kinase inhibitor, LY294002. Aggretin stimulated the phosphorylation of PDGFR-beta, Src and ERK in a time-dependent manner. NF-kB translocation and platelet-derived growth factor (PDGF)-BB production were also observed. The ERK activation, NF-kB translocation and PDGF-BB production were blocked by PP2, U73122 and PD98059. CONCLUSIONS AND IMPLICATIONS Aggretin induces VSMC proliferation and migration mainly through binding to integrin alpha2beta1, and subsequently activates Src, PLC and ERK pathways, inducing NF-kB activation and PDGF production.
Collapse
Affiliation(s)
- Ching-Hu Chung
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
57
|
Lin Z, Sugai JV, Jin Q, Chandler LA, Giannobile WV. Platelet-derived growth factor-B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res 2008; 43:440-9. [PMID: 18823454 DOI: 10.1111/j.1600-0765.2008.01089.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Platelet-derived growth factor-BB is a potent mediator of tooth-supporting periodontal tissue repair and regeneration. A limitation of the effects of topical platelet-derived growth factor-BB application is its short half-life in vivo. Gene therapy has shown strong promise for the long-term delivery of platelet-derived growth factor in both skin ulcer healing and periodontal tissue engineering. However, little is known regarding the extended effects of platelet-derived growth factor-B on cell signaling via gene delivery, especially at the level of phosphorylation of intracellular kinases. This study sought to evaluate the effect of gene transfer by Ad-PDGF-B on human gingival fibroblasts (HGFs) and the subsequent regulation of genes and cell-surface proteins associated with cellular signaling. MATERIAL AND METHODS HGFs from human subjects were treated by adenoviral PDGF-B, PDGF-1308 (a dominant negative mutant of PDGF) and recombinant human platelet-derived growth factor-BB, and then incubated in serum-free conditions for various time points and harvested at 1, 6, 12, 24, 48, 72 and 96 h. Exogenous PDGF-B was measured by RT-PCR and Western blot. Cell proliferation was evaluated by [methyl-3H]thymidine incorporation assay. We used proteomic arrays to explore phosphorylation patterns of 23 different intracellular kinases after PDGF-B gene transfer. The expression of alpha and beta PDGFR and Akt were measured by Western blot analysis. RESULTS Sustained in vitro expression of PDGF-B in HGFs by Ad-PDGF-B transduction was seen at both the mRNA and protein levels. Compared to rhPDGF-BB and Ad-PDGF-1308, Ad-PDGF-B maintained cell growth in serum-free conditions, with robust increases in DNA synthesis. Gene delivery of PDGF-B also prolonged downregulation of the growth arrest specific gene (gas) PDGF alpha R. Of the 23 intracellular kinases that we tested in proteomic arrays, Akt revealed the most notable long-term cell signaling effect as a result of the over-expression of Ad-PDGF-B, compared with pulse recombinant human platelet-derived growth factor BB. Prolonged Akt phosphorylation was induced by treatment with Ad-PDGF-B, for at least up to 96 h. CONCLUSION These findings further demonstrate that gene delivery of PDGF-B displays sustained signal transduction effects in human gingival fibroblasts that are higher than those conveyed by treatment with recombinant human platelet-derived growth factor-BB protein. These data on platelet-derived growth factor gene delivery contribute to an improved understanding of these pathways that are likely to play a role in the control of clinical outcomes of periodontal regenerative therapy.
Collapse
Affiliation(s)
- Z Lin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
58
|
Peroxiredoxin I, platelet-derived growth factor A, and platelet-derived growth factor receptor alpha are overexpressed in carcinoma ex pleomorphic adenoma: association with malignant transformation. Hum Pathol 2008; 40:390-7. [PMID: 18992915 DOI: 10.1016/j.humpath.2008.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/21/2022]
Abstract
Carcinoma ex pleomorphic adenoma is a rare salivary gland malignancy. It constitutes an important model for the study of carcinogenesis, as it can display the tumor in different stages of progression, from benign pleomorphic adenoma to frankly invasive carcinoma. Growth signaling pathways undergo continuous activation in human tumors, commonly as a consequence of the overexpression of ligands and receptors such as platelet-derived growth factor and platelet-derived growth factor receptor. Hydrogen peroxide is produced after platelet-derived growth factor receptor activation, and it is essential for the sequential phosphorylation cascade that drives cell proliferation and migration. By their ability to degrade hydrogen peroxide, peroxiredoxins are involved in growth factor signaling regulation and in the oxidative stress response. To verify the potential association of peroxiredoxin I, platelet-derived growth factor-A, and platelet-derived growth factor receptor-alpha with carcinoma ex pleomorphic adenoma progression, we investigated the expression of these molecules in carcinoma ex pleomorphic adenoma showing different degrees of invasion. The peroxiredoxin I, platelet-derived growth factor-A, and platelet-derived growth factor receptor-alpha proteins were present in remnant pleomorphic adenoma to only a small extent, but, collectively, they were highly expressed as soon as the malignant phenotype was achieved and remained at elevated concentrations during progression to the advanced stages of carcinoma ex pleomorphic adenoma. In addition, their locations overlapped significantly, strengthening their connection to this growth-signaling pathway. Our results indicate that carcinoma ex pleomorphic adenoma cells acquire at least 2 significant advantages relative to their normal counterparts: resistance to oxidative stress-induced apoptosis, conferred by high peroxiredoxin I concentrations, and sustained growth, reflecting platelet-derived growth factor-A and platelet-derived growth factor receptor-alpha overexpression.
Collapse
|
59
|
Lange S, Heger J, Euler G, Wartenberg M, Piper HM, Sauer H. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc Res 2008; 81:159-68. [DOI: 10.1093/cvr/cvn258] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
60
|
Jacot JG, Wong JY. Endothelial injury induces vascular smooth muscle cell proliferation in highly localized regions of a direct contact co-culture system. Cell Biochem Biophys 2008; 52:37-46. [PMID: 18766304 DOI: 10.1007/s12013-008-9023-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
Abstract
Though previous studies have indicated a relationship between the proliferation of endothelial cells and vascular smooth muscle cells (VSMCs) in co-culture, the results have been contradictory and the signaling mechanism poorly understood. In this transmembrane co-culture study, VSMCs and endothelial cells were grown to confluence on opposite sides of a microporous membrane to mimic the intima/media border of vessels. The endothelial layer was injured, and then cultured for 3 days, resulting in partial re-endothelialization. VSMC proliferation across from the injured/partially recovered endothelial region was significantly higher than across from the de-endothelialized region (a sevenfold increase) and the uninjured region (a threefold increase). ELISA indicated that PDGF, which was undetectable in uninjured co-culture and homotypic controls, increased after injury and the addition of a piperazinyl-quinazoline carboxamide PDGF receptor inhibitor blocked VSMC proliferation across from the injured/partially recovered region. We conclude that co-culture signaling initiated by endothelial cell injury locally stimulates VSMC proliferation and that this signaling could be mediated by PDGF-BB.
Collapse
Affiliation(s)
- Jeffrey G Jacot
- Department of Biomedical Engineering, Boston University, 44 Cummington St, Boston, MA 02215, USA.
| | | |
Collapse
|
61
|
Wong RCB, Tellis I, Jamshidi P, Pera M, Pébay A. Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 2008; 16:989-1001. [PMID: 18047416 DOI: 10.1089/scd.2007.0057] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human embryonic stem (hES) cells hold great promise for use in regenerative medicine. However, technologies first need to be established to maintain hES cells efficiently in vitro. Understanding the signaling networks involved in hES cell maintenance will prove to be essential to the development of such culture systems. Previously, we described a serum-free medium capable of supporting prolonged hES cell maintenance using sphingosine-1-phosphate (S1P) and platelet-derived growth factor (PDGF). Here, we describe an anti-apoptotic effect of S1P and PDGF in hES cells and demonstrate a direct effect of S1P in preventing hES cell apoptosis. Western blot analysis shows that S1P stimulates the phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2 but not of Akt, whereas PDGF stimulates both Erk1/2 and Akt phosphorylation. Moreover, our study suggests that the Erk1/2 and PI3K/Akt signaling pathways act independently of each other. Furthermore, neither S1P nor PDGF modify intracellular calcium concentration ([Ca(2+)]( i )) and Smad2 phosphorylation. Using pharmacological inhibitors of Erk1/2 and PI3K, our results demonstrate a critical role of the Erk1/2 and PI3K/Akt signaling pathways in mediating the anti-apoptotic effect of S1P and PDGF on hES cells. However, inhibition of the mammalian target of rapamycin (mTOR), a common downstream effector of Erk1/2 and PI3K/Akt, has no effect on hES cell apoptosis.
Collapse
Affiliation(s)
- Raymond C B Wong
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
62
|
Abstract
Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including beta-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling.
Collapse
|
63
|
JM91, a newly synthesized indoledione derivative, inhibits rat aortic vascular smooth muscle cells proliferation and cell cycle progression through inhibition of ERK1/2 and Akt activations. Biochem Pharmacol 2008; 75:1331-40. [DOI: 10.1016/j.bcp.2007.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 11/19/2022]
|
64
|
Abstract
Arterial reconstruction procedures, including balloon angioplasty, stenting and coronary artery bypass, are used to restore blood flow in atherosclerotic arteries. Restenosis of these arteries has remained a major limitation of the application of these procedures, especially in the case of balloon angioplasty. Post-angioplasty restenosis results from two major processes: neointimal formation and constrictive remodelling. Neointimal formation is initiated by arterial injury with a resultant loss of contractile phenotype in tunica media, leading to VSMC [vascular SM (smooth muscle) cell] migration from the tunica media to the intima. Migrated VSMCs contribute to the intimal thickening by the excessive synthesis of ECM (extracellular matrix) and proliferation. However, increased neointimal mass is not solely responsible for luminal narrowing. Inward constrictive remodelling is also considered as a major cause of delayed failure of angioplasty. At later stages after angioplasty, the increase in contractile forces leads to lumen narrowing. Recent studies show that SM contractile proteins are re-expressed in the neointima, concomitant with late lumen loss. Therefore one important question is whether the restoration of contractile phenotype, which can suppress VSMC migration, is favourable or detrimental. In this review, the importance of viewing restenosis as a multistage process is discussed. Different stages of restenosis occur in a sequential manner and are related to each other, but in each stage a different strategy should be taken into consideration to reduce restenosis. Defining the role of each process not only reshapes the current concept, but also helps us to target restenosis with more efficacy.
Collapse
|
65
|
Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 2008; 85:261-301. [PMID: 19147009 DOI: 10.1016/s0070-2153(08)00810-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | |
Collapse
|
66
|
Wildemann B, Burkhardt N, Luebberstedt M, Vordemvenne T, Schmidmaier G. Proliferating and differentiating effects of three different growth factors on pluripotent mesenchymal cells and osteoblast like cells. J Orthop Surg Res 2007; 2:27. [PMID: 18093345 PMCID: PMC2234398 DOI: 10.1186/1749-799x-2-27] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 12/20/2007] [Indexed: 12/03/2022] Open
Abstract
Growth factors are in clinical use to stimulate bone growth and regeneration. BMP-2 is used in long bone and spinal surgery, PDGFbb for the treatment of periodontal defects and children with growth hormone receptor deficiency are treated with IGF-I. Aim of the present study was the comparative analysis of the effect of these growth factors released from a local drug delivery system on cells of the osteogenic lineage at differing differentiation stages. The experiments with the mesenchymal cell line C2C12 revealed a proliferating effect of all three growth factors and a differentiating effect of BMP-2 with a dramatic increase in alkaline phosphatase activity. None of the growth factors stimulated cell migration. Human osteoblast like cells showed similar results with an increase in proliferation after stimulation with IGF-I or PDGFbb. The enzymatic activity of alkaline phosphatase was enhanced only in the cells stimulated with BMP-2. This group showed also more mineralized matrix compared to the other groups. In conclusion, the growth factors IGF-I and PDGFbb delivered with a local drug delivery system stimulated cell proliferation, whereas BMP-2 showed a dramatic effect on differentiation on osteoblast precursor cells and osteoblast like cells.
Collapse
Affiliation(s)
- Britt Wildemann
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | |
Collapse
|
67
|
Labelle D, Jumarie C, Moreau R. Capacitative calcium entry and proliferation of human osteoblast-like MG-63 cells. Cell Prolif 2007; 40:866-84. [PMID: 18021176 DOI: 10.1111/j.1365-2184.2007.00477.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
UNLABELLED Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. OBJECTIVES The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast-like MG-63 cells. MATERIALS AND METHODS Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. RESULTS Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG-63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet-derived growth factor. Inhibitors of store-operated Ca2+ channels (2-APB and SKF-96365) prevented CCE, while voltage-dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage-dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2-APB and SKF-96395, inhibited it. Cell cycle analysis showed that 2-APB and SKF-96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. CONCLUSIONS Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation.
Collapse
Affiliation(s)
- D Labelle
- Laboratoire du métabolisme osseux, Centre BioMed, Université du Québec à Montréal, Québec, Canada
| | | | | |
Collapse
|
68
|
Distinct effects of contraction agonists on the phosphorylation state of cofilin in pulmonary artery smooth muscle. Adv Pharmacol Sci 2007; 2008:362741. [PMID: 21188136 PMCID: PMC3005805 DOI: 10.1155/2008/362741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 07/24/2007] [Indexed: 11/17/2022] Open
Abstract
We hypothesized that agonist-induced contraction correlates with the phospho-cofilin/cofilin (P-CF/CF) ratio in pulmonary artery (PA) rings and cultured smooth muscle cells (PASMCs). PA rings were used for isometric contractions and along with PASMCs for assay of P-CF/CF by isoelectric focusing and immunoblotting. The P-CF/CF measured 22.5% in PA and differentiated PASMCs, but only 14.8% in undifferentiated PASMCs. With comparable contraction responses in PA, endothelin-1 (100 nM) and norepinephrine (1 μM) induced a 2-fold increase of P-CF/CF, while angiotensin II (1 μM) induced none. All agonists activated Rho-kinase and LIMK2, and activation was eliminated by inhibition of Rho-kinase. Microcystin LF (20 nM) potentiated the angiotensin II, but not the 5-hydroxytryptamine (1 μM)-mediated increase of P-CF/CF. In conclusion, all tested agonists activate the Rho-kinase-LIMK pathway and increase P-CF/CF. Angiotensin II activates PP2A and counteracts the LIMK-mediated CF phosphorylation. CF phosphorylation stabilizes peripheral actin structures and may contribute to the maximal contraction of PA.
Collapse
|
69
|
Reiterer G, Yen A. Platelet-Derived Growth Factor Receptor Regulates Myeloid and Monocytic Differentiation of HL-60 Cells. Cancer Res 2007; 67:7765-72. [PMID: 17699781 DOI: 10.1158/0008-5472.can-07-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we show that the platelet-derived growth factor receptor (PDGFR) regulates myeloid and monocytic differentiation of HL-60 myeloblastic leukemia cells in response to retinoic acid (RA) and vitamin D3 (D3), respectively. Both RA and D3 decreased the expression of PDGFR-alpha and PDGFR-beta throughout differentiation. When cells were treated with the PDGFR inhibitor AG1296 in addition to RA or D3, signs of terminal differentiation such as inducible oxidative metabolism and cell substrate adhesion were enhanced. These changes were accompanied by an increased extracellular signal-regulated kinase 1/2 activation. AG1296 also resulted in elevated expression of differentiation markers CD11b and CD66c when administered with RA or D3. Interestingly, other markers did not follow the same pattern. Cells receiving AG1296 in addition to RA or D3 showed decreased G1-G0 arrest and CD14, CD38, and CD89 expression. We thus provide evidence that certain sets of differentiation markers can be enhanced, whereas others can be inhibited by the PDGFR pathway. In addition, we found calcium levels to be decreased by RA and D3 but increased when AG1296 was given in addition to RA or D3, suggesting that calcium levels decrease during myeloid or monocytic differentiation, and elevated calcium levels can disturb the expression of certain differentiation markers.
Collapse
Affiliation(s)
- Gudrun Reiterer
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
70
|
Amagase K, Hayashi S, Nishikawa K, Aihara E, Takeuchi K. Impairment of gastric ulcer healing by alendronate, a nitrogen-containing bisphosphonate, in rats. Dig Dis Sci 2007; 52:1879-89. [PMID: 17410434 DOI: 10.1007/s10620-007-9769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 04/18/2006] [Indexed: 01/03/2023]
Abstract
Bisphosphonates such as alendronate have been developed as antiresorptive agents capable of treating diseases related to bone remodeling. In the present study, we examined the effect of alendronate on the healing of acetic acid-induced gastric ulcers in rats and investigated the mechanism involved in this action both in vivo and in vitro using the rat gastric epithelial cell line (RGM1). Acetic acid-induced gastric ulcers healed spontaneously, with up-regulation of COX-2/prostaglandin E2 production as well as expression of vascular endothelium-derived growth factor (VEGF) and basic fibroblast growth factor (bFGF) in ulcerated mucosa. The healing of ulcers was impaired by indomethacin (2 mg/kg, s.c.) or alendronate (60 mg/kg, p.o.) given once daily for 7 days, starting 3 days after acid application. Indomethacin, but not alendronate, inhibited mucosal prostaglandin E2 production. Alendronate as well as indomethacin decreased the protein expression of both VEGF and bFGF in ulcerated mucosa, resulting in a reduction of angiogenesis in the ulcer base. Supplementation of recombinant bFGF significantly reverted the delay in ulcer healing caused by alendronate. On the other hand, the size of cell-free areas in RGM1 cells in vitro decreased with time after wound induction, and this process was promoted by epidermal growth factor (EGF; 10 ng/ml). Co-incubation with alendronate (1 mM) did not affect the spontaneous healing but significantly suppressed the accelerated wound healing caused by EGF. These results suggest that alendronate impairs the healing of gastric ulcers in rats, and this effect may be related to down-regulation of VEGF and bFGF, the important growth factors for vascularization/granulation, as well as suppression of the stimulatory action of EGF on epithelial proliferation/migration.
Collapse
Affiliation(s)
- Kikuko Amagase
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
| | | | | | | | | |
Collapse
|
71
|
Boström K. Osteopontin, a missing link in PDGF-induced smooth muscle cell migration. Cardiovasc Res 2007; 75:634-5. [PMID: 17643404 PMCID: PMC2709406 DOI: 10.1016/j.cardiores.2007.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/29/2007] [Indexed: 11/26/2022] Open
Affiliation(s)
- Kristina Boström
- Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1570
- To whom correspondence should be addressed: Kristina Boström, M.D., Ph.D., Division of Cardiology, David Geffen School of Medicine at UCLA, Box 951679, Los Angeles, CA 90095-1679, Fax: 310-206-8553, Tel: 310-794-4417, E-mail:
| |
Collapse
|
72
|
Wang J, Gutala R, Sun D, Ma JZ, Sheela RCS, Ticku MK, Li MD. Regulation of platelet-derived growth factor signaling pathway by ethanol, nicotine, or both in mouse cortical neurons. Alcohol Clin Exp Res 2007; 31:357-75. [PMID: 17295719 DOI: 10.1111/j.1530-0277.2006.00331.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The higher incidence of smoking among alcoholic subjects suggests the presence of common molecular mechanisms underlying nicotine and alcohol use and abuse. However, these mechanisms are largely unknown. By using cultured fetal mouse cortical neurons as a model system, we sought to identify genes and pathways that are modulated in the cells by ethanol, nicotine, or both. METHODS Primary cerebral cortical cultures were prepared from the brains of 14-day-old C57BL/6 mouse fetuses and exposed to ethanol (75 mM), nicotine (0.1 mM), or both for 5 consecutive days. A homeostatic pathway-focused microarray consisting of 638 sequence-verified genes was used to measure transcripts differentially regulated by ethanol, nicotine, or both in 5 drug-treated cortical neuron samples and 5 control samples. Quantitative real-time reverse transcriptase-polymerase chain reaction analysis was used to verify the mRNA expression levels of genes of interest detected from the microarray experiments. RESULTS Through a pathway-focused cDNA microarray and balanced experimental design, we identified 65, 111, and 81 significantly regulated genes in the ethanol, nicotine, and ethanol/nicotine-treated neurons, respectively. Of them, the genes of Akt2, Nsg1, Pdgfa, Pfn1, Rbbp7, and Tcfeb were comodulated. The genes differentially expressed in 1 or more treatment groups could be classified into 4 major clusters, with each cluster consisting of genes involved in different biological processes. The platelet-derived growth factor (PDGF) signaling pathway was significantly regulated by all 3 treatments, but by different mechanisms, which may lead to different cellular consequences. CONCLUSIONS Our results indicate that the PDGF pathway represents one of the major biochemical mechanisms in the cellular and molecular responses to each drug in cortical neurons. Finally, we demonstrated that the pathway-focused microarray system used in the present study is a valuable tool for dissecting the mechanisms of complex signaling pathways such as the PDGF pathway.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia 22911, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chemical and functional families is presented, along with a summary of key signaling events mediating migration. Extracellular molecules that modulate migration include small biogenic amines, peptide growth factors, cytokines, extracellular matrix components, and drugs used in cardiovascular medicine. Promigratory stimuli activate signal transduction cascades that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the matrix, and activate motor proteins. This review focuses on the signaling pathways and effector proteins regulated by promigratory and antimigratory molecules. Prominent pathways include phosphatidylinositol 3-kinases, calcium-dependent protein kinases, Rho-activated protein kinase, p21-activated protein kinases, LIM kinase, and mitogen-activated protein kinases. Important downstream targets include myosin II motors, actin capping and severing proteins, formins, profilin, cofilin, and the actin-related protein-2/3 complex. Actin filament remodeling, focal contact remodeling, and molecular motors are coordinated to cause cells to migrate along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. The result is recruitment of cells to areas where the vessel wall is being remodeled. Vessel wall remodeling can be antagonized by common cardiovascular drugs that act in part by inhibiting vascular smooth muscle cell migration. Several therapeutically important drugs act by inhibiting cell cycle progression, which may reduce the population of migrating cells.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
74
|
Nomiyama T, Nakamachi T, Gizard F, Heywood EB, Jones KL, Ohkura N, Kawamori R, Conneely OM, Bruemmer D. The NR4A orphan nuclear receptor NOR1 is induced by platelet-derived growth factor and mediates vascular smooth muscle cell proliferation. J Biol Chem 2006; 281:33467-76. [PMID: 16945922 PMCID: PMC1829169 DOI: 10.1074/jbc.m603436200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Members of the nuclear hormone receptor superfamily function as key transcriptional regulators of inflammation and proliferation in cardiovascular diseases. In addition to the ligand-dependent peroxisome proliferator-activated receptors and liver X receptors, this family of transcription factors includes a large number of orphan receptors, and their role in vascular diseases remains to be investigated. The neuron-derived orphan receptor-1 (NOR1) belongs to the ligand-independent NR4A subfamily, which has been implicated in cell proliferation, differentiation, and apoptosis. In this study, we demonstrate NOR1 expression in vascular smooth muscle cells (SMC) of human atherosclerotic lesions. In response to mitogenic stimulation with platelet-derived growth factor (PDGF), SMC rapidly express NOR1 through an ERK-MAPK-dependent signaling pathway. 5'-deletion analysis, site-directed mutagenesis, and transactivation experiments demonstrate that PDGF-induced NOR1 expression is mediated through a cAMP-response element-binding protein (CREB)-dependent transactivation of the NOR1 promoter. Consequently, short interfering RNA-mediated depletion of CREB abolished PDGF-induced NOR1 expression in SMC. Furthermore, PDGF induced Ser-133 phosphorylation of CREB and subsequent binding to the CRE sites of the endogenous NOR1 promoter. Functional analysis demonstrated that PDGF induces NOR1 transactivation of its consensus NGFI-B-response elements (NBRE) in SMC. We finally demonstrate that SMC isolated from NOR1-deficient mice exhibit decreased cell proliferation and characterize cyclin D1 and D2 as NOR1 target genes in SMC. These experiments indicate that PDGF-induced NOR1 transcription in SMC is mediated through CREB-dependent transactivation of the NOR1 promoter and further demonstrate that NOR1 functions as a key transcriptional regulator of SMC proliferation.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Humans
- MAP Kinase Signaling System
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phosphoserine/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/genetics
- Rats
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Response Elements
- Transcription, Genetic/genetics
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Takashi Nomiyama
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Takafumi Nakamachi
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Florence Gizard
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Elizabeth B. Heywood
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Karrie L. Jones
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Naganari Ohkura
- National Cancer Center Research Institute, Tumor Endocrinology Project, Tokyo 104-0045, Japan
| | - Ryuzo Kawamori
- Department of Medicine, Metabolism, and Endocrinology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Orla M. Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Dennis Bruemmer
- From the Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536
- To whom correspondence should be addressed: Wethington Health Sciences Bldg., Rm. 575, 900 South Limestone St., Lexington, KY 40536-0200. Tel.: 859-323-4933(ext.81418);Fax:859-257-3646;E-mail:
| |
Collapse
|
75
|
Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR, Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 2006; 17:13-20. [PMID: 16317285 DOI: 10.1097/01.cad.0000185180.72604.ac] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.
Collapse
Affiliation(s)
- Pathirage G Dharmawardana
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
76
|
Liu PY, Liu K, Wang XT, Badiavas E, Rieger-Christ KM, Tang JB, Summerhayes IC. Efficacy of Combination Gene Therapy with Multiple Growth Factor cDNAs to Enhance Skin Flap Survival in a Rat Model. DNA Cell Biol 2005; 24:751-7. [PMID: 16274295 DOI: 10.1089/dna.2005.24.751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to investigate the efficacy of combination gene therapy with multiple angiogenic growth factor cDNAs to enhance survival of ischemic skin flaps in a rat model. Sixty Sprague-Dawley rats were divided into six groups. Varying combinations of VEGF165, PDGF-B, and bFGF-plasmids were injected to prefabricate the flaps. Random skin flaps were raised on the dorsal aspect of rats following prefabrication with growth factor cDNAs. Flap viability was determined by measurement of percentage area of survival. The efficacy of gene therapy was evaluated by flap survival and neovascularization of representative histologic sections stained immunohistologically. The VEGF165 plus bFGF cDNAs enhanced the viability of the flap and neovascularization most effectively; the flap survival area was 64.3 +/- 8.7% after transfer of these two growth factor genes. Addition of PDGF-B cDNA is deleterious to the effects of combined VEGF165 and bFGF, leading to a significant decrease in flap viability (44.9 +/- 2.7%). Viability of the flaps with combined VEGF165 and bFGF cDNA transfer was significantly greater than that of the flaps with VEGF165 transfer alone (57.6 +/- 5.2%) or sham plasmid control (52.3 +/- 5.0%). Combined transfer of VEGF165 and bFGF cDNA is the most effective combination of multiple growth factor genes to improve flap viability in this model. Simultaneous transfer of three growth factor genes (VEGF165, PDGF-B, and bFGF) is deleterious to flap survival, at least for the ratio of lipofectin:transgene employed.
Collapse
Affiliation(s)
- Paul Y Liu
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island 02908, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Tarnawski AS. Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig Dis Sci 2005; 50 Suppl 1:S24-33. [PMID: 16184417 DOI: 10.1007/s10620-005-2803-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/06/2005] [Indexed: 02/06/2023]
Abstract
This paper reviews cellular and molecular mechanisms of gastrointestinal ulcer healing. Ulcer healing, a genetically programmed repair process, includes inflammation, cell proliferation, re-epithelialization, formation of granulation tissue, angiogenesis, interactions between various cells and the matrix and tissue remodeling, all resulting in scar formation. All these events are controlled by the cytokines and growth factors (EGF, PDGF, KGF, HGF, TGFbeta, VEGF, angiopoietins) and transcription factors activated by tissue injury in spatially and temporally coordinated manner. These growth factors trigger mitogenic, motogenic and survival pathways utilizing Ras, MAPK, PI-3K/Akt, PLC-gamma and Rho/Rac/actin signaling. Hypoxia activates pro-angiogenic genes (e.g., VEGF, angiopoietins) via HIF, while serum response factor (SRF) is critical for VEGF-induced angiogenesis, re-epithelialization and muscle restoration. EGF, its receptor, HGF and Cox2 are important for epithelial cell proliferation, migration re-epithelializaton and reconstruction of gastric glands. VEGF, angiopoietins, nitric oxide, endothelin and metalloproteinases are important for angiogenesis, vascular remodeling and mucosal regeneration within ulcer scar. Circulating progenitor cells are also important for ulcer healing. Local gene therapy with VEGF + Ang1 and/or SRF cDNAs dramatically accelerates esophageal and gastric ulcer healing and improves quality of mucosal restoration within ulcer scar. Future directions to accelerate and improve healing include the use of stem cells and tissue engineering.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Department of Medicine, VA Long Beach Healthcare System Long Beach, Long Beach, California 90822, USA.
| |
Collapse
|
78
|
Yoshimura H, Nariai Y, Terashima M, Mitani T, Tanigawa Y. Taurine suppresses platelet-derived growth factor (PDGF) BB-induced PDGF-β receptor phosphorylation by protein tyrosine phosphatase-mediated dephosphorylation in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:350-60. [PMID: 16112211 DOI: 10.1016/j.bbamcr.2005.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/06/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
In atherosclerosis, abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role to form fibroproliferative lesions and platelet-derived growth factor (PDGF)-BB is one of the most potent chemoattractants and proliferative factors for VSMCs. Taurine, sulfur-containing beta-amino acid, has been considered to prevent the development of atherosclerosis, although the molecular mechanism remains obscure. Previously, we demonstrated that taurine significantly suppressed PDGF-BB-induced cell proliferation, DNA synthesis, immediate-early gene expressions and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in VSMCs. The present study was aimed at elucidating the precise molecular mechanism of taurine in PDGF-BB signaling pathway. We showed that taurine significantly suppressed PDGF-BB-induced phosphorylation of PDGF-beta receptor and activation of its downstream signaling molecules such as Ras, MAPK/ERK kinase (MEK)1/2 and Akt. Because taurine did not attenuate phorbol 12-myristate 13-acetate (PMA)-induced PDGF-beta receptor-independent ERK1/2 phosphorylation, we further investigated the suppressive mechanism of taurine in PDGF-beta receptor level. Although taurine did not directly affect PDGF receptor autophosphorylation in vitro, taurine promoted PDGF-beta receptor dephosphorylation and restored PDGF-BB-induced suppression of protein tyrosine phosphatase (PTPase) activity. Taken together, we propose that taurine could prevent or delay the progression of atherosclerosis by PTPase-mediated suppression of PDGF-beta receptor phosphorylation, and by decreasing the activation of its downstream signaling molecules in VSMCs.
Collapse
Affiliation(s)
- Hitoshi Yoshimura
- Department of Biochemistry and Molecular Medicine, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
79
|
Dai YP, Bongalon S, Hatton WJ, Hume JR, Yamboliev IA. ClC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery. Br J Pharmacol 2005; 145:5-14. [PMID: 15723096 PMCID: PMC1576111 DOI: 10.1038/sj.bjp.0706135] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cl- channels have been implicated in essential cellular functions including volume regulation, progression of cell cycle, cell proliferation and contraction, but the physiological functions of the ClC-3 channel are controversial. We tested the hypothesis that the ClC-3 gene (ClCn-3) is upregulated in hypertensive pulmonary arteries of monocrotaline-treated rats, and upregulated ClC-3 channel aids viability of pulmonary artery smooth muscle cells (PASMCs). Experimental pulmonary hypertension was induced in rats by a single subcutaneous administration of monocrotaline (60 mg kg(-1)). Injected animals developed characteristic features of pulmonary hypertension including medial hypertrophy of pulmonary arteries and right ventricular hypertrophy. Reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry and Western immunoblot analysis indicated that histopathological alterations were associated with upregulation of the ClC-3 mRNA and protein expression in both smooth muscle cells of hypertensive pulmonary arteries and in cardiac myocytes. RT-PCR analysis of mRNA, extracted from canine cultured PASMCs, indicated that incubation with the inflammatory mediators endothelin-1 (ET-1), platelet-derived growth factor (PDGF), interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF alpha), but not transforming growth factor beta (TGFbeta), upregulated ClC-3 mRNA. Adenovirus-mediated delivery and overexpression of ClC-3 in canine PASMCs improved cell viability against increasing concentrations of hydrogen peroxide (H2O2, range 50-250 microM). In conclusion, upregulation of ClC-3 in rat hypertensive lung and heart is a novel observation. Our functional data suggest that upregulation of ClC-3 is an adaptive response of inflamed pulmonary artery, which enhances the viability of PASMCs against reactive oxygen species.
Collapse
Affiliation(s)
- Yan-Ping Dai
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
| | - Shaner Bongalon
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
| | - William J Hatton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
| | - Joseph R Hume
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
| | - Ilia A Yamboliev
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, U.S.A
- Author for correspondence:
| |
Collapse
|
80
|
Mehrotra M, Krane SM, Walters K, Pilbeam C. Differential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells. J Cell Biochem 2005; 93:741-52. [PMID: 15660418 DOI: 10.1002/jcb.20138] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteoblastic migration and proliferation in response to growth factors are essential for skeletal development, bone remodeling, and fracture repair, as well as pathologic processes, such as metastasis. We studied migration in response to platelet-derived growth factor (PDGF, 10 ng/ml) in a wounding model. PDGF stimulated a twofold increase in migration of osteoblastic MC3T3-E1 cells and murine calvarial osteoblasts over 24-48 h. PDGF also stimulated a tenfold increase in 3H-thymidine (3H-TdR) incorporation in MC3T3-E1 cells. Migration and DNA replication, as measured by BrdU incorporation, could be stimulated in the same cell. Blocking DNA replication with aphidicolin did not reduce the distance migrated. To examine the role of mitogen-activated protein (MAP) kinases in migration and proliferation, we used specific inhibitors of p38 MAP kinase, extracellular signal regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). For these signaling studies, proliferation was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE) using flow cytometry. Inhibition of the p38 MAP kinase pathway by SB203580 and SB202190 blocked PDGF-stimulated migration but had no effect on proliferation. Inhibition of the ERK pathway by PD98059 and U0126 inhibited proliferation but did not inhibit migration. Inhibition of JNK activity by SP600125 inhibited both migration and proliferation. Hence, the stimulation of migration and proliferation by PDGF occurred by both overlapping and independent pathways. The JNK pathway was involved in both migration and proliferation, whereas the p38 pathway was predominantly involved in migration and the ERK pathway predominantly involved in proliferation.
Collapse
Affiliation(s)
- Meenal Mehrotra
- University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
81
|
Ginnan R, Singer HA. PKC-δ-dependent pathways contribute to PDGF-stimulated ERK1/2 activation in vascular smooth muscle. Am J Physiol Cell Physiol 2005; 288:C1193-201. [PMID: 15677375 DOI: 10.1152/ajpcell.00499.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet-derived growth factor (PDGF) is an important regulator of vascular smooth muscle (VSM) cell growth and migration and has been identified as a key mediator of neointima formation resulting from vascular injury. PDGF exerts its effects, in part, through activation of ERK1/2. Previously, we reported that PKC-δ, specifically compared with PKC-α, mediated phorbol ester- and ATP-dependent activation of ERK1/2 in VSM cells. The purpose of this study was to determine whether PKC-δ was involved in PDGF-dependent activation of ERK1/2 in VSM cells. The addition of PDGF resulted in the activation, and Src family kinase-dependent tyrosine phosphorylation, of PKC-δ. Treatment with rottlerin (0.1–10 μM), a selective PKC-δ inhibitor, or adenoviral overexpression of kinase-negative PKC-δ significantly attenuated PDGF-induced activation of ERK1/2. The effects of the PKC-δ inhibitors decreased with increasing concentrations of activator PDGF. Interestingly, treatment with Gö6976 (0.1–3 μM), a selective inhibitor of cPKCs, or adenoviral overexpression of kinase-negative PKC-α also inhibited PDGF-stimulated ERK1/2. Furthermore, inhibition of cPKC activity with Gö6976 or overexpression of kinase-negative PKC-α attenuated PKC-δ activation and tyrosine phosphorylation in response to PDGF. These studies indicate involvement of both PKC-δ and PKC-α isozymes in PDGF-stimulated signaling in VSM and suggest an unexpected role for PKC-α in the regulation of PKC-δ activity.
Collapse
Affiliation(s)
- Roman Ginnan
- Center for Cardiovascular Sciences, Albany Medical College (MC8) 47 New Scotland Ave., Albany, NY 12208, USA.
| | | |
Collapse
|
82
|
Leung TF, Wong GWK, Ko FWS, Li CY, Yung E, Lam CWK, Fok TF. Analysis of growth factors and inflammatory cytokines in exhaled breath condensate from asthmatic children. Int Arch Allergy Immunol 2005; 137:66-72. [PMID: 15832052 DOI: 10.1159/000085106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/27/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF), AA isoform of platelet-derived growth factor (PDGF-AA), and epidermal growth factor (EGF) are involved in the pathogenesis of airway inflammation in asthma. These molecules are closely associated with cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-4. This study investigates the relation between childhood asthma and levels of these mediators in exhaled breath condensate (EBC). METHODS EBC was collected from asthmatic children and controls using a disposable collection kit, and the concentrations of VEGF, PDGF-AA, EGF, TNF-alpha and IL-4 in EBC were measured using sandwich enzyme immunoassays. Exhaled nitric oxide concentration was measured by a chemiluminescence analyzer. RESULTS Thirty-five asthmatic patients aged between 7 and 18 years and 11 controls were recruited. Sixteen patients had intermittent asthma (IA) whereas 19 of them suffered from persistent asthma (PA). A significant correlation was found between IL-4 and TNF-alpha in EBC (rho = 0.374, p = 0.010). PDGF-AA levels in EBC were higher in subjects with diminished FEV1 (p = 0.023) whereas IL-4 concentrations were increased in asthmatics (p = 0.007) as well as subjects with increased plasma total IgE (p = 0.033). Patients with PA receiving high-dose inhaled corticosteroid (ICS) had higher EBC IL-4 concentration than those on low-dose ICS (p = 0.007). Linear regression revealed that PDGF-AA levels in EBC were negatively associated with FEV1 percentage (beta = -0.459, p = 0.006) among the asthmatic patients. CONCLUSIONS IL-4 in EBC is increased in childhood asthma, and growth factors are detectable in a significant proportion of these children. Increased PDGF-AA is found in asthmatics with more severe airflow limitation.
Collapse
Affiliation(s)
- Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
83
|
Sossey-Alaoui K, Li X, Ranalli TA, Cowell JK. WAVE3-mediated cell migration and lamellipodia formation are regulated downstream of phosphatidylinositol 3-kinase. J Biol Chem 2005; 280:21748-55. [PMID: 15826941 DOI: 10.1074/jbc.m500503200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WAVE3 is a member of the WASP/WAVE family of protein effectors of actin reorganization and cell movement. The precise role of WAVE3 in cell migration and its regulation, however, have not been elucidated. Here we show that endogenous WAVE3 was found to be concentrated in the lamellipodia at the leading edge of migrating MDA-MB-231 cells. Platelet-derived growth factor (PDGF) treatment induced lamellipodia formation as well as two-dimensional migration of cells in the wound-closure assay and chemotactic migration toward PDGF in three-dimensional migration chambers. Knockdown of WAVE3 expression by RNA interference prevented the PDGF-induced lamellipodia formation and cell migration. Treatment of cells with LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), also abrogated the PDGF-induced lamellipodia formation and cell migration, suggesting that PI3K may be required for WAVE3 activity. WAVE3 and the PI3K regulatory subunit, p85, were found to interact in a yeast two-hybrid screen, which was confirmed through co-immunoprecipitation. The WAVE3-p85 interaction was mediated by the N-terminal region of WAVE3 and the C-terminal SH2 domain of p85. These results imply that the WAVE3-mediated migration in MDA-MB-231 cells via lamellipodia formation is activated downstream of PI3K and induced by PDGF. The findings of the WAVE3-p85 partnership also suggest a potential regulatory role for p85 in WAVE3-dependent actin-cytoskeleton reorganization and cell migration.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | |
Collapse
|
84
|
Liu J, Wu LL, Li L, Zhang L, Song ZE. Growth-promoting effect of platelet-derived growth factor on rat cardiac myocytes. ACTA ACUST UNITED AC 2005; 127:11-8. [PMID: 15680465 DOI: 10.1016/j.regpep.2004.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 10/18/2004] [Accepted: 10/21/2004] [Indexed: 10/26/2022]
Abstract
Platelet-derived growth factor (PDGF) is a dimeric molecule consisting of disulfide-bonded A- and B-polypeptide chains. Homodimeric (PDGF-AA, PDGF-BB) as well as heterodimeric (PDGF-AB) isoforms exert their effects on target cells by binding with different specificities to two structurally related protein tyrosine kinase receptors, denoted alpha- and beta-receptors. PDGF stimulates growth in various cell types, but little is known about its effect on mammalian cardiomyocytes. Therefore, growth-promoting effect of PDGF on rat cardiomyocytes was investigated. Primary culture of neonatal rat ventricular myocytes was prepared and cellular growth was estimated by [3H]-leucine incorporation assay. Tyrosine-phosphorylated PDGF-beta receptor of cardiomyocytes was determined by immunoblotting analysis after immunoprecipitation. PDGF-beta receptor, extracellular signal-regulated kinase (ERK) 1/2 and phosphorylated ERK1/2 of cardiomyocytes were measured by immunoblotting analysis. [3H]-leucine incorporation into the cultured myocytes was increased in a time- and dose-dependent manner after PDGF-BB stimulation. Phosphorylation of PDGF-beta receptor and ERK1/2 in cardiomyocytes was increased after short-term stimulation of PDGF-BB. Protein expression of PDGF-beta receptor and ERK1/2 was increased after long-term stimulation of PDGF-BB. [(3)H]-leucine incorporation into the cultured myocytes induced by PDGF-BB was partly blocked by mitogen-activated ERK-activating kinase (MEK) inhibitor PD98059, phospholipase C (PLC) inhibitor U73122, and protein kinase C (PKC) inhibitor staurosporin aglycone, respectively. Therefore, PDGF beta receptor, ERK1/2, PLC and PKC are involved in the signal transduction of PDGF-induced growth response of rat cardiac myocytes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
85
|
Song BK, Levy S, Geisert EE. Increased density of retinal pigment epithelium in cd81-/- mice. J Cell Biochem 2005; 92:1160-70. [PMID: 15258899 PMCID: PMC2821794 DOI: 10.1002/jcb.20145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our laboratories have focused on the role of the tetraspanin CD81 in the regulation of mitotic activity. Previously we have shown that antibodies directed against CD81 can block the proliferation of cultured retinal pigment epithelial (RPE) cells. The present study investigates the role of this protein by analyzing the structure of the adult retina in mice with a null mutation of cd81. Adult cd81(-/-) mice were produced by crossing two inbred strains, NIHS-BC/Tac and 129X1/SvJ, carrying the cd81 mutation as heterozygotes (+/-). Seven cd81(-/-) mice and 11 wildtype (cd81(+/+)) littermates were anesthetized and perfused with paraformaldehyde. The eyes were removed and processed for examination by light and electron microscopy. In general, the retinas of the cd81(-/-) mice appeared normal. However, upon close examination, there was an 18% increase in the number of RPE nuclei in the cd81(-/-) mice. The photoreceptor layer of the cd81(-/-) mice was significantly thinner than that of the wild-type mice, even though there was no difference in the total thickness of the retinas in the two groups of mice. At the electron microscopic level we did not observe any differences in cell-cell junctions in the retinas of the cd81(-/-) mice as compared to their wild-type littermates. These data support a role for CD81 controlling cell-cycle and the number of RPE nuclei in the mouse retina.
Collapse
Affiliation(s)
- Bong K. Song
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shoshana Levy
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California 94305
| | - Eldon E. Geisert
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Correspondence to: Eldon E. Geisert, Jr., Department of Ophthalmology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, Tennessee 38163.
| |
Collapse
|
86
|
Hollenbeck ST, Itoh H, Louie O, Faries PL, Liu B, Kent KC. Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the α2β1 integrin and PDGFβ receptor. Biochem Biophys Res Commun 2004; 325:328-37. [PMID: 15522237 DOI: 10.1016/j.bbrc.2004.10.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Indexed: 01/12/2023]
Abstract
Smooth muscle cells (SMCs) are exposed to both platelet-derived growth factor (PDGF) and type I collagen (CNI) at the time of arterial injury. In these studies we explore the individual and combined effects of these agonists on human saphenous vein SMC proliferation. PDGF-BB produced a 5.5-fold increase in SMC DNA synthesis whereas CNI stimulated DNA synthesis to a much lesser extent (1.6-fold increase). Alternatively, we observed an 8.3-fold increase in DNA synthesis when SMCs were co-incubated with CNI and PDGF-BB. Furthermore, stimulation of SMCs with PDGF-BB produced a significant increase in ERK-2 activity whereas CNI alone had no effect. Co-incubation of SMCs with PDGF-BB and CNI resulted in ERK-2 activity that was markedly greater than that produced by PDGF-BB alone. In a similar fashion, PDGF-BB induced phosphorylation of the PDGF receptor beta (PDGFRbeta) and CNI did not, whereas concurrent agonist stimulation produced a synergistic increase in receptor activity. Blocking antibodies to the alpha2 and beta1 subunits eliminated this synergistic interaction, implicating the alpha2beta1 integrin as the mediator of this effect. Immunoprecipitation of the alpha2beta1 integrin in unstimulated SMCs followed by immunoblotting for the PDGFRbeta as well as Src family members, pp60(src), Fyn, Lyn, and Yes demonstrated coassociation of alpha2beta1 and the PDGFRbeta as well as pp60(src). Incubation of cells with CNI and/or PDGF-BB did not change the degree of association. Finally, inhibition of Src activity with SU6656 eliminated the synergistic effect of CNI on PDGF-induced PDGFRbeta phosphorylation suggesting an important role for pp60(src) in the observed receptor crosstalk. Together, these data demonstrate that CNI synergistically enhances PDGF-induced SMC proliferation through Src-dependent crosstalk between the alpha2beta1 integrin and the PDGFRbeta.
Collapse
Affiliation(s)
- Scott T Hollenbeck
- Columbia Weill Cornell Division of Vascular Surgery, Weill Medical College of Cornell University, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Bongalon S, Dai YP, Singer CA, Yamboliev IA. PDGF and IL-1β Upregulate Cofilin and LIMK2 in Canine Cultured Pulmonary Artery Smooth Muscle Cells. J Vasc Res 2004; 41:412-21. [PMID: 15467300 DOI: 10.1159/000081247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 07/27/2004] [Indexed: 01/02/2023] Open
Abstract
Actin cytoskeleton reorganization is regulated by various actin-binding proteins. Cofilin is the principal filament-depolymerizing protein, whose activity is reduced upon phosphorylation by LIMK. Thus, LIMK and cofilin comprise a signal transduction module regulating actin turnover and myogenic tone in healthy vasculature. Novel functions of smooth muscle cells (SMCs) in the hypertensive pulmonary artery, such as increased motility and proliferation, are supported by the actin cytoskeleton. We therefore hypothesized that bioactive peptides that affect these SMC functions may also result in an upregulation of LIMK and cofilin expression. Semiquantitative RT-PCR and immunoblotting indicated that LIMK2 and cofilin mRNA and protein expression is upregulated in canine pulmonary artery SMCs (PASMCs) exposed to PDGF or IL-1beta (10 ng/ml). Inhibition of ERK MAPKs (U-0126, 10 muM) or p38 MAPK (PD-169316, 10 muM), but not PI3Ks (LY-294002, 50 muM), reduced LIMK2 and cofilin gene expression stimulated by PDGF or IL-1beta. Inhibition of ROCK (Y-27632, 10 muM) reduced only the IL-1beta-stimulated LIMK2 and cofilin expression. These novel observations in PASMCs indicate that LIMK2 and cofilin expression can be induced by PDGF or IL-1beta. This parallel upregulation of LIMK2 and cofilin may have potentially broad functional significance for the progress of pulmonary artery disease.
Collapse
Affiliation(s)
- Shaner Bongalon
- Department of Pharmacology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
88
|
Soriano JV, Liu N, Gao Y, Yao ZJ, Ishibashi T, Underhill C, Burke TR, Bottaro DP. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1289.3.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Growth factor receptor bound protein 2 (Grb2) is an intracellular adaptor protein that participates in the signal transduction cascades of several angiogenic factors, including hepatocyte growth factor, basic fibroblast growth factor, and vascular endothelial growth factor. We described previously the potent blockade of hepatocyte growth factor–stimulated cell motility, matrix invasion, and epithelial tubulogenesis by synthetic Grb2-Src homology 2 (SH2) domain binding antagonists. Here, we show that these binding antagonists block basic morphogenetic events required for angiogenesis, including hepatocyte growth factor–, vascular endothelial growth factor–, and basic fibroblast growth factor–stimulated endothelial cell proliferation and migration, as well as phorbol 12-myristate 13-acetate–stimulated endothelial cell migration and matrix invasion. The Grb2-SH2 domain binding antagonists also impair angiogenesis in vitro, as shown by the inhibition of cord formation by macrovascular endothelial cells on Matrigel. We further show that a representative compound inhibits angiogenesis in vivo as measured using a chick chorioallantoic membrane assay. These results suggest that Grb2 is an important mediator of key proangiogenic events, with potential application to pathologic conditions where neovascularization contributes to disease progression. In particular, the well-characterized role of Grb2 in signaling cell cycle progression together with our present findings suggests that Grb2-SH2 domain binding antagonists have the potential to act as anticancer drugs that target both tumor and vascular cell compartments.
Collapse
Affiliation(s)
| | - Ningfei Liu
- 4Department of Cell Biology, Georgetown University, Washington, District of Columbia
| | - Yang Gao
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhu-Jun Yao
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | - Toshio Ishibashi
- 3Department of Otolaryngology, Social Insurance Central General Hospital, Tokyo, Japan; and
| | - Charles Underhill
- 4Department of Cell Biology, Georgetown University, Washington, District of Columbia
| | - Terrence R. Burke
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | | |
Collapse
|
89
|
Cai Q, Lanting L, Natarajan R. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. Am J Physiol Cell Physiol 2004; 287:C707-14. [PMID: 15140748 DOI: 10.1152/ajpcell.00170.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte β1- and β2-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.
Collapse
Affiliation(s)
- Qiangjun Cai
- Gonda Diabetes Center, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
90
|
Zahradka P, Harding G, Litchie B, Thomas S, Werner JP, Wilson DP, Yurkova N. Activation of MMP-2 in response to vascular injury is mediated by phosphatidylinositol 3-kinase-dependent expression of MT1-MMP. Am J Physiol Heart Circ Physiol 2004; 287:H2861-70. [PMID: 15297252 DOI: 10.1152/ajpheart.00230.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is required for smooth muscle cell (SMC) proliferation. This study reports that inhibitors of PI3K also prevent SMC migration and block neointimal hyperplasia in an organ culture model of restenosis. Inhibition of neointimal formation by LY-294002 was concentration and time dependent, with 10 muM yielding the maximal effect. Continuous exposure for at least the first 4-7 days of culture was essential for significant inhibition. To assess the role of matrix metalloproteinases (MMPs) in this process, we monitored MMP secretion by injured vessels in culture. Treatment with LY-294002 selectively reduced active MMP-2 in media samples according to zymography and Western blot analysis without concomitant changes in latent MMP-2. Parallel results with wortmannin indicate that MMP-2 activation is PI3K dependent. Previous research has shown a role for both furin and membrane-type 1 (MT1)-MMP (MMP-14) in the activation of MMP-2. The furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone did not prevent MMP-2 activation after balloon angioplasty. In contrast, balloon angioplasty induced a significant increase in the levels of MT1-MMP, which was suppressed by LY-294002. No change in MT1-MMP mRNA was observed with LY-294002, because equivalent amounts of this mRNA were present in both injured and noninjured vessels. These results implicate PI3K-dependent regulation of MT1-MMP protein synthesis and subsequent activation of latent MMP-2 as critical events in neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6.
| | | | | | | | | | | | | |
Collapse
|
91
|
Di Girolamo N, Chui J, Coroneo MT, Wakefield D. Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 2004; 23:195-228. [PMID: 15094131 DOI: 10.1016/j.preteyeres.2004.02.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pterygium is a common ocular surface disease apparently only observed in humans. Chronic UV exposure is a widely accepted aetiological factor in the pathogenesis of this disease and this concept is supported by epidemiological data, ray tracing models and histopathological changes that share common features with UV damaged skin. The mechanism(s) of pterygium formation is incompletely understood. Recent data have provided evidence implicating a genetic component, anti-apoptotic mechanisms, cytokines, growth factors, extracellular matrix remodelling (through the actions of matrix metalloproteinases), immunological mechanisms and viral infections in the pathogenesis of this disease. In this review, the current knowledge on pterygium pathogenesis is summarised, highlighting recent developments. In addition, we provide novel data further demonstrating the complexity of this intriguing disease.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Department of Pathology, Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | | | |
Collapse
|
92
|
Hunger-Glaser I, Fan RS, Perez-Salazar E, Rozengurt E. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: Dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol 2004; 200:213-22. [PMID: 15174091 DOI: 10.1002/jcp.20018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but very little is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with platelet-derived growth factor (PDGF) promoted a striking increase in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. FAK phosphorylation at Ser-910 could be distinguished from that at Tyr-397 in terms of dose-response relationships and kinetics. Furthermore, the selective phosphoinositide 3-kinase (PI 3-kinase) inhibitors wortmannin and LY 294002 abrogated FAK phosphorylation at Tyr-397 but did not interfere with PDGF-induced FAK phosphorylation at Ser-910. Conversely, treatment with U0126, a potent inhibitor of MEK-mediated ERK activation, prevented FAK phosphorylation at Ser-910 induced by PDGF but did not interfere with PDGF-induced FAK phosphorylation at Tyr-397. These results were extended using growth factors that either stimulate, fibroblast growth factor (FGF), or do not stimulate (insulin) the ERK pathway activation in Swiss 3T3 cells. FGF but not insulin promoted a striking ERK-dependent phosphorylation of FAK at Ser-910. Our results indicate that FAK phosphorylation at Tyr-397 and FAK phosphorylation at Ser-910 are induced in response to PDGF stimulation through different signaling pathways, namely PI 3-kinase and ERK, respectively.
Collapse
Affiliation(s)
- Isabel Hunger-Glaser
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
93
|
Chen Y, Ke Q, Yang Y, Rana JS, Tang J, Morgan JP, Xiao YF. Cardiomyocytes overexpressing TNF‐α attract migration of embryonic stem cells via activation of p38 and c‐Jun amino‐terminal kinase. FASEB J 2003; 17:2231-9. [PMID: 14656985 DOI: 10.1096/fj.03-0030com] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays an important role in the pathogenesis of myocardial infarction. Stem cells are able to regenerate infarcted myocardium. This study investigated whether TNF-alpha was able to induce migration of embryonic stem cells (ESCs) in vitro. We used a Transwell assay in which neonatal rat cardiomyocytes, with or without transfection of TNF-alpha cDNA, were plated in the lower compartments and mouse ESCs tagged with green fluorescent protein were added to the upper compartments. TNF-alpha level was significantly increased in the medium of the lower compartments seeded with TNF-alpha-transfected cardiomyocytes. Compared with the controls, overexpression of TNF-alpha significantly enhanced migration of ESCs to the lower compartments. This enhancement was attenuated by preincubation of ESCs with the antibody against the type II TNF-alpha receptor (TNF-RII), but not by the antibody against the type I TNF-alpha receptor (TNF-RI). Western blot analysis showed that the phosphorylated protein levels of p38 and c-Jun amino-terminal kinase (JNK) were significantly increased in TNF-alpha-treated ESCs. Inhibition of the activity of p38 or JNK significantly attenuated TNF-alpha-induced ESC migration. Our data demonstrate that excessive TNF-alpha stimulates TNF-RII and enhances migration of ESCs in vitro. Activation of p38 and JNK is required for TNF-alpha-enhanced ESC migration.
Collapse
Affiliation(s)
- Yu Chen
- Stem Cells Research Laboratory, The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Kaplan-Albuquerque N, Garat C, Desseva C, Jones PL, Nemenoff RA. Platelet-derived growth factor-BB-mediated activation of Akt suppresses smooth muscle-specific gene expression through inhibition of mitogen-activated protein kinase and redistribution of serum response factor. J Biol Chem 2003; 278:39830-8. [PMID: 12882977 DOI: 10.1074/jbc.m305991200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor (PDGF) inhibits expression of smooth muscle (SM) genes in vascular smooth muscle cells and blocks induction by arginine vasopressin (AVP). We have previously demonstrated that suppression of SM-alpha-actin by PDGF-BB is mediated in part through a Ras-dependent pathway. This study examined the role of phosphatidylinositol 3-kinase (PI3K)y and its downstream effector, Akt, in regulating SM gene expression. PDGF caused a rapid sustained activation of Akt, whereas AVP caused only a small transient increase. PDGF selectively caused a sustained stimulation of p85/p110 alpha PI3K. In contrast, p85/110 beta PI3K activity was not altered by either PDGF or AVP, whereas both agents caused a delayed activation of Class IB p101/110 gamma PI3K. Expression of a gain-of-function PI3K or myristoylated Akt (myr-Akt) mimicked the inhibitory effect of PDGF on SM-alpha-actin and SM22 alpha expression. Pretreatment with LY 294002 reversed the inhibitory effect of PDGF. Expression of myr-Akt selectively inhibited AVP-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinases, which we have shown are critical for induction of these genes. Nuclear extracts from PDGF-stimulated or myr-Akt expressing cells showed reduced serum response factor binding to SM-specific CArG elements. This was associated with appearance of serum response factor in the cytoplasm. These data indicate that activation of p85/p110 alpha/Akt mediates suppression of SM gene expression by PDGF.
Collapse
Affiliation(s)
- Nihal Kaplan-Albuquerque
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
95
|
Duan C. The chemotactic and mitogenic responses of vascular smooth muscle cells to insulin-like growth factor-I require the activation of ERK1/2. Mol Cell Endocrinol 2003; 206:75-83. [PMID: 12943991 DOI: 10.1016/s0303-7207(03)00212-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insulin-like growth factors (IGFs) play an important role in regulating vascular smooth muscle cell (VSMC) proliferation and directed migration. IGFs exert these biological actions through the activation of the IGF-I receptor and its downstream signaling network. While the involvement of the IRS-PI3 kinase-Akt pathway in mediating the chemotactic and mitogenic actions of IGFs is clear, the role of the mitogen-activated protein kinase (MAPK) signaling pathway is still under debate. In this study, the role of ERK1 and 2 in mediating the chemotactic and mitogenic actions of IGF-I in cultured porcine VSMCs was investigated. IGF-I treatment caused a significant increase in the phosphorylation state, as well as the kinase activity, of ERK1 and 2. Compared to the strong and sustained MAPK activation induced by platelet-derived growth factor-BB, the IGF-I-induced MAPK activation was weaker and more transient. Specific inhibition of the MAPK activation by PD98059 or U0126, two selective MEK inhibitors, significantly inhibited IGF-I-stimulated cell proliferation, and reduced the number of cells that migrated towards IGF-I. The p38 MAPK inhibitor SB203580 had no such effect. Likewise, depletion of ERK1/2 using antisense oligonucleotides abolished the IGF-I-induced VSMC migration and proliferation. These results suggest that the chemotactic and mitogenic responses of VSMCs to IGF-I require the activation of ERK1 and 2.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
96
|
Draper BK, Komurasaki T, Davidson MK, Nanney LB. Epiregulin is more potent than EGF or TGFalpha in promoting in vitro wound closure due to enhanced ERK/MAPK activation. J Cell Biochem 2003; 89:1126-37. [PMID: 12898511 DOI: 10.1002/jcb.10584] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epiregulin (EPR) is a broad specificity EGF family member that activates ErbB1 and ErbB4 homodimers and all possible heterodimeric ErbB complexes. We have previously shown that topical EPR enhances the repair of murine excisional wounds. The purpose of this study was to determine whether EPR was more effective than EGF or TGFalpha in promoting in vitro wound closure and to compare the EPR induced signal transduction pathways with those activated by EGF and TGFalpha. Normal human epidermal keratinocytes or A431 cells were scratch wounded and treated for 24 h with varying doses of EPR, EGF or TGFalpha. Five-fold lower doses of EPR were significantly better than EGF or TGFalpha in stimulating in vitro wound closure. Mitomycin-c reduced EPR induced wound closure by 59%, versus a 9% and 25% decrease in EGF and TGFalpha induced closure. The ERK/MAPK inhibitor PD-98059 decreased EPR induced wound closure by 88%. By contrast, the PLC inhibitor U-73122, only reduced the EPR induced response by 21%. Immunoblot analysis revealed that 2 nM EPR stimulated a six-fold increase in p-ERK1/2, whereas 10 nM EGF or TGFalpha stimulated only a 3- and 2.5-fold increase in p-ERK1/2. When compared with EGF or TGFalpha, EPR is a more potent and more effective inducer of in vitro wound closure due to its ability to promote significantly greater ERK/MAPK activation.
Collapse
Affiliation(s)
- Bradley K Draper
- Department of Medicine (Dermatology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
97
|
Sundberg LJ, Galante LM, Bill HM, Mack CP, Taylor JM. An endogenous inhibitor of focal adhesion kinase blocks Rac1/JNK but not Ras/ERK-dependent signaling in vascular smooth muscle cells. J Biol Chem 2003; 278:29783-91. [PMID: 12782622 DOI: 10.1074/jbc.m303771200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Humoral factors and extracellular matrix are critical co-regulators of smooth muscle cell (SMC) migration and proliferation. We reported previously that focal adhesion kinase (FAK)-related non-kinase (FRNK) is expressed selectively in SMC and can inhibit platelet-derived growth factor BB homodimer (PDGF-BB)-induced proliferation and migration of SMC by attenuating FAK activity. The goal of the current studies was to identify the mechanism by which FAK/FRNK regulates SMC growth and migration in response to diverse mitogenic signals. Transient overexpression of FRNK in SMC attenuated autophosphorylation of FAK at Tyr-397, reduced Src family-dependent tyrosine phosphorylation of FAK at Tyr-576, Tyr-577, and Tyr-881, and reduced phosphorylation of the FAK/Src substrates Cas and paxillin. However, FRNK expression did not alter the magnitude or dynamics of ERK activation induced by PDGF-BB or angiotensin II. Instead, FRNK expression markedly attenuated PDGF-BB-, angiotensin II-, and integrin-stimulated Rac1 activity and attenuates downstream signaling to JNK. Importantly, constitutively active Rac1 rescued the proliferation defects in FRNK expressing cells. Based on these observations, we hypothesize that FAK activation is required to integrate integrin signals with those from receptor tyrosine kinases and G protein-coupled receptors through downstream activation of Rac1 and that in SMC, FRNK may control proliferation and migration by buffering FAK-dependent Rac1 activation.
Collapse
Affiliation(s)
- Liisa J Sundberg
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
98
|
Kaiser E, Chandrasekhar S. Distinct pathways of extracellular signal-regulated kinase activation by growth factors, fibronectin and parathyroid hormone 1-34. Biochem Biophys Res Commun 2003; 305:573-8. [PMID: 12763032 DOI: 10.1016/s0006-291x(03)00820-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Growth factors, hormones, and matrix proteins regulate osteoblast proliferation and differentiation, acting through cognate receptors. Since each of the receptors are coupled to a variety of distinct signal transduction pathways, in this report we evaluated whether there is a common convergent intermediate step that allows cross-talk among the various pathways. Since extracellular signal-regulated kinases 1 and 2 (Erk1/2) play a role in mitogenesis and differentiation processes, we evaluated the effects of various osteotrophic factors on Erk1/2 phosphorylation in osteoblasts. Osteoblasts isolated from the metaphyseal marrow (MM) and diaphyseal marrow (DM) of 4-6 week old male rat longitudinal bones were grown to confluency and Erk1/2-phosphorylation was evaluated using antibodies that recognized either the total or the phosphorylated form of the kinase. There was very little Erk1/2 phosphorylation in cells kept in suspension. Both MM and DM cells attached to fibronectin (FN), demonstrated Erk1/2 phosphorylation that persisted for at least up to 8h. Platelet-derived growth factor AB (PDGF-AB) induced a transient and robust Erk1/2 phosphorylation that was attenuated by 2h. Studies with specific inhibitors indicated that the effects of these factors were mediated by protein kinase C, by receptor tyrosine kinase, as well as by protein phosphatases. Parathyroid hormone (PTH 1-34), a bone anabolic agent however, caused a down-regulation of FN stimulated Erk1/2 phosphorylation in MM derived cells. The inhibitory effect of PTH was mediated through cAMP-dependent protein kinase A (PKA) activation. The data collectively suggest that a combination of diverse extracellular stimuli regulates Erk1/2 phosphorylation that may ultimately influence osteoblast proliferation and/or differentiation.
Collapse
Affiliation(s)
- Edelgard Kaiser
- Gene Regulation, Bone and Inflammation Research, Lilly Research Laboratories, DC 0403, Eli Lilly and Company, Corporate Center, Indianapolis, IN 46285, USA
| | | |
Collapse
|
99
|
Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJS, Cavenee WK, Cheng SY. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1083-93. [PMID: 12651601 PMCID: PMC1851242 DOI: 10.1016/s0002-9440(10)63905-3] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF)-B and its receptor (PDGF-R) beta are overexpressed in human gliomas and responsible for recruiting peri-endothelial cells to vessels. To establish the role of PDGF-B in glioma angiogenesis, we overexpressed PDGF-B in U87MG glioma cells. Although PDGF-B stimulated tyrosine phosphorylation of PDGF-Rbeta in U87MG cells, treatment with recombinant PDGF-B or overexpression of PDGF-B in U87MG cells had no effect on their proliferation. However, an increase of secreted PDGF-B in conditioned media of U87MG/PDGF-B cells promoted migration of endothelial cells expressing PDGF-R beta, whereas conditioned media from U87MG cells did not increase the cell migration. In mice, overexpression of PDGF-B in U87MG cells enhanced intracranial glioma formation by stimulating vascular endothelial growth factor (VEGF) expression in neovessels and by attracting vessel-associated pericytes. When PDGF-B and VEGF were overexpressed simultaneously by U87MG tumors, there was a marked increase of capillary-associated pericytes as seen in U87MG/VEGF(165)/PDGF-B gliomas. As a result of pericyte recruitment, vessels induced by VEGF in tumor vicinity migrated into the central regions of these tumors. These data suggest that PDGF-B is a paracrine factor in U87MG gliomas, and that PDGF-B enhances glioma angiogenesis, at least in part, by stimulating VEGF expression in tumor endothelia and by recruiting pericytes to neovessels.
Collapse
Affiliation(s)
- Ping Guo
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Wu L, Tanimoto A, Murata Y, Sasaguri T, Fan J, Sasaguri Y, Watanabe T. Matrix metalloproteinase-12 gene expression in human vascular smooth muscle cells. Genes Cells 2003; 8:225-34. [PMID: 12622720 DOI: 10.1046/j.1365-2443.2003.00628.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play an important role in smooth muscle cell (SMC) migration and proliferation during vascular remodelling. To investigate the expression of MMP-12 by SMCs, we examined the protein secretion and mRNA expression of MMP-12 by cultured medial SMCs and intimal SMCs derived from human aortic atherosclerotic lesions. To further elucidate the molecular mechanism for MMP-12 expression in SMCs, we determined the sequence requirements for MMP-12 gene transcriptional activity. RESULTS Cultured medial SMCs and intimal SMCs showed substantial MMP-12 expression at both the protein and mRNA levels. A series of 5'-deletion and site-directed mutants of the human MMP-12 promoter demonstrated that an AP-1 site spanning -81 to -75 bp was critical for the MMP-12 promoter activity in SMCs. An electrophoretic mobility shift assay confirmed the AP-1 binding activity in SMCs and showed that the protein bound to the AP-1 site consisted predominantly of c-Jun, JunD and Fra-1. Two structurally different inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002, inhibited MMP-12 transcriptional activity and AP-1 binding. CONCLUSION These results indicated the expression of MMP-12 in vascular SMCs and showed that the MMP-12 gene expression was dependent on the AP-1 binding activity. Phosphatidylinositol 3-kinase signalling may be involved in MMP-12 transcriptional activation through AP-1 binding activity.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Pathology, Institute of Basical Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|