51
|
The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci U S A 2020; 117:4971-4982. [PMID: 32075919 PMCID: PMC7060668 DOI: 10.1073/pnas.1913904117] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although converging evidence point to α-synuclein aggregation and Lewy body (LB) formation as central events in Parkinson’s disease, the molecular mechanisms that regulate these processes and their role in disease pathogenesis remain elusive. Herein, we describe a neuronal model that reproduces the key events leading to the formation of inclusions that recapitulate the biochemical, structural, and organizational features of bona fide LBs. This model allowed us to dissect the molecular events associated with the different stages of LB formation and how they contribute to neuronal dysfunctions and degeneration, thus providing a powerful platform for evaluating therapeutics targeting α-synuclein aggregation and LB formation and to identify and validate therapeutic targets for the treatment of Parkinson’s disease. Parkinson’s disease (PD) is characterized by the accumulation of misfolded and aggregated α-synuclein (α-syn) into intraneuronal inclusions named Lewy bodies (LBs). Although it is widely believed that α-syn plays a central role in the pathogenesis of PD, the processes that govern α-syn fibrillization and LB formation remain poorly understood. In this work, we sought to dissect the spatiotemporal events involved in the biogenesis of the LBs at the genetic, molecular, biochemical, structural, and cellular levels. Toward this goal, we further developed a seeding-based model of α-syn fibrillization to generate a neuronal model that reproduces the key events leading to LB formation, including seeding, fibrillization, and the formation of inclusions that recapitulate many of the biochemical, structural, and organizational features of bona fide LBs. Using an integrative omics, biochemical and imaging approach, we dissected the molecular events associated with the different stages of LB formation and their contribution to neuronal dysfunction and degeneration. In addition, we demonstrate that LB formation involves a complex interplay between α-syn fibrillization, posttranslational modifications, and interactions between α-syn aggregates and membranous organelles, including mitochondria, the autophagosome, and endolysosome. Finally, we show that the process of LB formation, rather than simply fibril formation, is one of the major drivers of neurodegeneration through disruption of cellular functions and inducing mitochondria damage and deficits, and synaptic dysfunctions. We believe that this model represents a powerful platform to further investigate the mechanisms of LB formation and clearance and to screen and evaluate therapeutics targeting α-syn aggregation and LB formation.
Collapse
|
52
|
Chen YF, Bian J, Zhang P, Bu LL, Shen Y, Yu WB, Lu XH, Lin X, Ye DY, Wang J, Chu Y. Design, synthesis and identification of N, N-dibenzylcinnamamide (DBC) derivatives as novel ligands for α-synuclein fibrils by SPR evaluation system. Bioorg Med Chem 2020; 28:115358. [PMID: 32081628 DOI: 10.1016/j.bmc.2020.115358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 11/18/2022]
Abstract
PET imaging of α-synuclein (α-syn) deposition in the brain will be an effective tool for earlier diagnosis of Parkinson's disease (PD) due to α-syn aggregation is the widely accepted biomarker for PD. However, the necessary PET radiotracer for imaging is clinically unavailable until now. The lead compound discovery is the first key step for the study. Herein, we initially established an efficient biologically evaluation system well in highthroughput based on SPR technology, and identified a novel class of N, N-dibenzylcinnamamide (DBC) compounds as α-syn ligands through the assay. These compounds were proved to have high affinities against α-syn aggregates (KD < 10 nM), which well met the requirement of binding activity for the PET probe. These DBC compounds were firstly reported as α-syn ligands herein and the preliminary obtained structure has been further modified into F-labeled ones. Among them, a high-affinity tracer (5-41) with 1.03 nM (KD) has been acquired, indicating its potential as a new lead compound for developing PET radiotracer.
Collapse
Affiliation(s)
- Yan-Fei Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiang Bian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu-Lu Bu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Shen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen-Bo Yu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiu-Hong Lu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - De-Yong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
53
|
Cabral-Costa J, Kowaltowski A. Neurological disorders and mitochondria. Mol Aspects Med 2020; 71:100826. [DOI: 10.1016/j.mam.2019.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/26/2022]
|
54
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:E259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
55
|
Quntanilla RA, Tapia-Monsalves C. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection. Curr Neuropharmacol 2020; 18:1076-1091. [PMID: 32448104 PMCID: PMC7709157 DOI: 10.2174/1570159x18666200525020259] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulative evidence has shown that mitochondrial dysfunction plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial impairment actively contributes to the synaptic and cognitive failure that characterizes AD. The presence of soluble pathological forms of tau like hyperphosphorylated at Ser396 and Ser404 and cleaved at Asp421 by caspase 3, negatively impacts mitochondrial bioenergetics, transport, and morphology in neurons. These adverse effects against mitochondria health will contribute to the synaptic impairment and cognitive decline in AD. Current studies suggest that mitochondrial failure induced by pathological tau forms is likely the result of the opening of the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial mega-channel that is activated by increases in calcium and is associated with mitochondrial stress and apoptosis. This structure is composed of different proteins, where Ciclophilin D (CypD) is considered to be the primary mediator of mPTP activation. Also, new studies suggest that mPTP contributes to Aβ pathology and oxidative stress in AD. Further, inhibition of mPTP through the reduction of CypD expression prevents cognitive and synaptic impairment in AD mouse models. More importantly, tau protein contributes to the physiological regulation of mitochondria through the opening/interaction with mPTP in hippocampal neurons. Therefore, in this paper, we will discuss evidence that suggests an important role of pathological forms of tau against mitochondrial health. Also, we will discuss the possible role of mPTP in the mitochondrial impairment produced by the presence of tau pathology and its impact on synaptic function present in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quntanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
56
|
Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP. Biomolecules 2019; 9:biom9100564. [PMID: 31590236 PMCID: PMC6843129 DOI: 10.3390/biom9100564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 h after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain’s vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions.
Collapse
|
57
|
Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 2019; 217:119292. [PMID: 31279098 PMCID: PMC7081518 DOI: 10.1016/j.biomaterials.2019.119292] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases and disorders seriously impact memory and cognition and can become life-threatening. Current medical techniques attempt to combat these detrimental effects mainly through the administration of neuromedicine. However, drug efficacy is limited by rapid dispersal of the drugs to off-target sites while the site of administration is prone to overdose. Many neuropathological conditions are accompanied by excessive reactive oxygen species (ROS) due to the inflammatory response. Accordingly, ROS-responsive drug delivery systems have emerged as a promising solution. To guide intelligent and comprehensive design of ROS-responsive drug delivery systems, this review article discusses the two following topics: (1) the biology of ROS in both healthy and diseased nervous systems and (2) recent developments in ROS-responsive, drug delivery system design. Overall, this review article would assist efforts to make better decisions about designing ROS-responsive, neural drug delivery systems, including the selection of ROS-responsive functional groups.
Collapse
Affiliation(s)
- William C Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
58
|
Wang J, Zou Q, Suo Y, Tan X, Yuan T, Liu Z, Liu X. Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver-brain axis. Food Funct 2019; 10:2125-2137. [PMID: 30924473 DOI: 10.1039/c8fo02460j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic inflammation is an important determinant of synaptic dysfunction, but the underlying molecular mechanisms remain elusive. Lycopene (LYC), a major carotenoid present in tomato, is regarded as a nutraceutical that has significant antioxidant and anti-obesity bioactivities. In the current study, we randomly divided 3-month-old C57BL/6J mice into 3 groups: the control, LPS and LPS + LYC groups (LYC, 0.03% w/w, mixed with normal chow) for 5 weeks, and then mice were intraperitoneally injected with LPS (0.25 mg kg-1) for 9 days. Our results demonstrated that LYC supplementation effectively attenuated LPS-elicited neuronal damage and synaptic dysfunction through increasing the expressions of neurotrophic factors and the synaptic proteins SNAP-25 and PSD-95. LYC ameliorated LPS-induced insulin resistance and mitochondrial dysfunction in the mouse brain and liver. LYC alleviated the neuroinflammation and hepatic inflammation. Furthermore, LYC decreased the circulating levels of insulin and proinflammatory mediators LPS, TNF-α, IL-1β and IL-6. In conclusion, these results indicated that the supplementation of LYC might be a nutritional preventive strategy in systemic inflammation-induced synaptic dysfunction.
Collapse
Affiliation(s)
- Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | | | | | | | | | | | | |
Collapse
|
59
|
Akt Phosphorylates NQO1 and Triggers its Degradation, Abolishing Its Antioxidative Activities in Parkinson's Disease. J Neurosci 2019; 39:7291-7305. [PMID: 31358653 DOI: 10.1523/jneurosci.0625-19.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
The oxidative metabolism of dopamine and consequent oxidative stress are implicated in dopaminergic neuronal loss, mediating the pathogenesis of Parkinson's disease (PD). The inducible detoxifying antioxidative enzyme Quinone oxidoreductase (NQO1) (NAD(P)H: quinone oxidoreductase 1), neuroprotective to counteract reactive oxidative species, is most prominent in the active stage of the disease and virtually absent at the end stage of the disease. However, the molecular mechanism dictating NQO1 expression oscillation remains unclear. Here we show that Akt phosphorylates NQO1 at T128 residues and triggers its polyubiquitination and proteasomal degradation, abrogating its antioxidative effects in PD. Akt binds NQO1 in a phosphorylation-dependent manner. Interestingly, Akt, but not PINK1, provokes NQO1 phosphorylation and polyubiquitination with Parkin as an E3 ligase. Unphosphorylatable NQO1 mutant displays more robust neuroprotective activity than WT NQO1 in suppressing reactive oxidative species and against MPTP-induced dopaminergic cell death, rescuing the motor disorders in both α-synuclein transgenic transgenic male and female mice elicited by the neurotoxin. Thus, our findings demonstrate that blockade of Akt-mediated NQO1 degradation may ameliorate PD pathogenesis.SIGNIFICANCE STATEMENT Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with the imbalance of oxidative metabolism of dopamine. Quinone oxidoreductase (NQO1), a potent antioxidant system, its expression levels are prominently increased in the early and intermediate stages of PD and disappeared in the end-stage PD. The molecular modification behavior of NQO1 after it is upregulated by oxidative stress in the early stage of PD, however, remains unclear. This study shows that Akt binds and phosphorylates NQO1 at T128 residue and promotes its ubiquitination and degradation, and Parkin acts as an E3 ligase in this process, which affects the antioxidant capacity of NQO1. This finding provides a novel molecular mechanism for NQO1 oscillation in PD pathogenesis.
Collapse
|
60
|
Gupta AK, Pokhriyal R, Das U, Khan MI, Ratna Kumar D, Gupta R, Chadda RK, Ramachandran R, Goyal V, Tripathi M, Hariprasad G. Evaluation of α-synuclein and apolipoprotein E as potential biomarkers in cerebrospinal fluid to monitor pharmacotherapeutic efficacy in dopamine dictated disease states of Parkinson's disease and schizophrenia. Neuropsychiatr Dis Treat 2019; 15:2073-2085. [PMID: 31410011 PMCID: PMC6650621 DOI: 10.2147/ndt.s205550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Dopamine plays an important role in the disease pathology of Parkinson's disease and schizophrenia. These two neuropsychiatric disorders represent disease end points of the dopaminergic spectrum where Parkinson's disease represents dopamine deficit and schizophrenia represents dopamine hyperactivity in the mid-brain. Therefore, current treatment strategies aim to restore normal dopamine levels. However, during treatment patients develop adverse effects due to overshooting of physiological levels of dopamine leading to psychosis in Parkinson's disease, and extrapyramidal symptoms in schizophrenia. Absence of any laboratory tests hampers modulation of pharmacotherapy. Apolipoprotein E and α-synuclein have an important role in the neuropathology of these two diseases. The objective of this study was to evaluate cerebrospinal fluid (CSF) concentrations of apolipoprotein E and α-synuclein in patients with these two diseases so that they may serve as biomarkers to monitor therapy in Parkinson's disease and schizophrenia. METHODS Drug-naïve Parkinson's disease patients and Parkinson's disease patients treated with dopaminergic therapy, neurological controls, schizophrenic patients treated with antidopaminergic therapy, and drug-naïve schizophrenic patients were recruited for the study and CSF was collected. Enzyme-linked immunosorbent assays were carried out to estimate the concentrations of apolipoprotein E and α-synuclein. Pathway analysis was done to establish a possible role of these two proteins in various pathways in these two dopamine dictated diseases. RESULTS Apolipoprotein E and α-synuclein CSF concentrations have an inverse correlation along the entire dopaminergic clinical spectrum. Pathway analysis convincingly establishes a plausible hypothesis for their co-regulation in the pathogenesis of Parkinson's disease and schizophrenia. Each protein by itself or as a combination has encouraging sensitivity and specificity values of more than 55%. CONCLUSION The dynamic variation of these two proteins along the spectrum is ideal for them to be pursued as pharmacotherapeutic biomarkers in CSF to monitor pharmacological efficacy in Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi110029, India
| | | |
Collapse
|
61
|
Acosta G, Race N, Herr S, Fernandez J, Tang J, Rogers E, Shi R. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Mol Cell Neurosci 2019; 98:140-154. [PMID: 31201929 PMCID: PMC6690849 DOI: 10.1016/j.mcn.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
Survivors of blast-induced traumatic brain injury (bTBI) have increased susceptibility to Parkinson's disease (PD), characterized by α-synuclein aggregation and the progressive degeneration of nigrostriatal dopaminergic neurons. Using an established bTBI rat model, we evaluated the changes of α-synuclein and tyrosine hydroxylase (TH), known hallmarks of PD, and acrolein, a reactive aldehyde and marker of oxidative stress, with the aim of revealing key pathways leading to PD post-bTBI. Indicated in both animal models of PD and TBI, acrolein is likely a point of pathogenic convergence. Here we show that after a single mild bTBI, acrolein is elevated up to a week, systemically in urine, and in whole brain tissue, specifically the substantia nigra and striatum. Acrolein elevation is accompanied by heightened α-synuclein oligomerization, dopaminergic dysregulation, and acrolein/α-synuclein interaction in the same brain regions. We further show that acrolein can directly modify and oligomerize α-synuclein in vitro. Taken together, our data suggests acrolein likely plays an important role in inducing PD pathology following bTBI by encouraging α-synuclein aggregation. These results are expected to advance our understanding of the long-term post-bTBI pathological changes leading to the development of PD, and suggest intervention targets to curtail such pathology.
Collapse
Affiliation(s)
- Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Nicholas Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Seth Herr
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, West Lafayette, IN, USA
| | - Joseph Fernandez
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan Tang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Edmond Rogers
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University, School of Medicine, Indianapolis, IN, USA; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
62
|
Lange KW, Nakamura Y, Chen N, Guo J, Kanaya S, Lange KM, Li S. Diet and medical foods in Parkinson’s disease. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
63
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
64
|
Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro. Neurochem Int 2019; 128:115-126. [PMID: 31028778 DOI: 10.1016/j.neuint.2019.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 01/30/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive dopaminergic neurodegeneration with a concomitant increase in oxidative stress and neuroinflammation in the substantia nigra pars compacta (SNc). Recent studies have focused on targeting neuroinflammation and oxidative stress to effectively treat PD. The present study evaluated the neuroprotective effect of thymoquinone (TQ) against 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced oxidative stress and neuroinflammation in a PD mouse model. TQ (10 mg/kg body weight [b. wt.]) was administered for 1 week prior to MPTP (25 mg/kg b. wt.). MPTP administration caused oxidative stress as evidenced by decreased activities of superoxide dismutase and catalase, a depletion of reduced glutathione, and a concomitant rise in malondialdehyde. It also significantly increased pro-inflammatory cytokines and elevated inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed dopamine neuron loss in the SNc and decreased dopamine transporters in the striatum following MPTP administration; however, these were rescued by TQ treatment. TQ treatment further restored antioxidant enzymes, prevented glutathione depletion, inhibited lipid peroxidation, and attenuated pro-inflammatory cytokines. TQ also decreased the raised levels of inflammatory mediators, such as COX-2 and iNOS. Therefore, TQ is thought to protect against MPTP-induced PD and the observed neuroprotective effects are attributed to its potent antioxidant and anti-inflammatory properties. Moreover, the in vitro analysis found that TQ significantly inhibited α-synuclein aggregation and prevented cell death induced by pre-formed fibrils. Thus, TQ not only scavenges the MPTP-induced toxicity but also prevents α-synuclein-fibril formation and its associated toxicity.
Collapse
|
65
|
Alecu I, Bennett SAL. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Front Neurosci 2019; 13:328. [PMID: 31031582 PMCID: PMC6470291 DOI: 10.3389/fnins.2019.00328] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, the main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system, and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights and new answers that will enhance our capacity for early diagnosis, tracking disease progression, predicting critical endpoints, and identifying risk in pre-symptomatic persons. In recent years, lipids have been implicated in many aspects of PD pathology. Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially not only to specific lipid families but also to specific molecular species and that these lipid-protein complexes enhance its interaction with synaptic membranes, influence its oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link between aberrant lipid metabolism and PD is even more direct, with mutations in GBA and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn aggregation and accumulation in experimental murine models. Moreover, a number of lipidomic studies have reported PD-specific lipid alterations in both patient brains and plasma, including alterations in the lipid composition of lipid rafts in the frontal cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative stress and inflammation, with proinflammatory lipid mediators such as platelet activating factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk factors of PD which are involved in normal lipid metabolism and function. Genes such as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid metabolism either directly or indirectly are associated with risk of PD. This review seeks to describe these facets of metabolic lipid dysregulation as they relate to PD pathology and potential pathomechanisms involved in disease progression, while highlighting incongruous findings and gaps in knowledge that necessitate further research.
Collapse
Affiliation(s)
- Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
66
|
Cao W, Dong Y, Zhao W, Lu X, Sun L. Mulberrin attenuates 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-induced Parkinson's disease by promoting Wnt/β-catenin signaling pathway. J Chem Neuroanat 2019; 98:63-70. [PMID: 30978489 DOI: 10.1016/j.jchemneu.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Abnormal neuroinflammation and oxidative stress has been shown to cause neuronal loss in the progressive neurodegenerative Parkinson's disease (PD). Mulberrin is the key component of Ramulus Mori that has various biological activities. This study was to investigate the functions and mechanisms of mulberrin in PD. PD models were established by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to Sprague Dawley rats in vivo and Lipopolysaccharide (LPS) treatment on microglial BV2 cells in vitro. Rota-rod test was applied to investigate the roles of mulberrin on MPTP-induced behavioral impairment. The effects of mulberrin on neuronal number and microglia activation were assessed by tyrosine hydroxylase (TH) immunohistochemistry and ionized calcium binding adaptor molecule-1 (Iba-1) immunofluorescence. Inflammatory cytokines and oxidative markers were measured by qRT-PCR. Wnt/β-catenin components were compared by Western blot. Mulberrin alleviated MPTP-induced impairment of motor coordination in a dose-dependent manner, and partially restored neuronal and microglial population. Neuroinflammation and oxidative stress were suppressed after mulberrin treatment both in vivo and in vitro. Wnt/β-catenin pathway was partially restored in BV2 cells. Finally, mulberrin rescued MPTP-induced abnormality in tracer elimination by MRI. Our study indicates that mulberrin is a potent suppressor of PD abnormalities and warrants further investigations in the clinical application of mulberrin for treating PD.
Collapse
Affiliation(s)
- Wenhui Cao
- Mudanjiang Medical University, Affiliated Hongqi Hospital, Department of Neurology, Ward 2, Mudanjiang, 157000, Heilongjiang, China
| | - Yan Dong
- Mudanjiang Medical University, Affiliated Hongqi Hospital, Department of Neurology, Ward 1, Mudanjiang, 157000, Heilongjiang, China
| | - Weina Zhao
- Mudanjiang Medical University, Affiliated Hongqi Hospital, Department of Neurology, Ward 4, Mudanjiang, 157000, Heilongjiang, China
| | - Xin Lu
- Mudanjiang Medical University, Affiliated Hongqi Hospital, Department of Neurology, Mudanjiang, 157000, Heilongjiang, China
| | - Li Sun
- Mudanjiang Medical University, Affiliated Hongqi Hospital, Department of Neurology, Ward 2, Mudanjiang, 157000, Heilongjiang, China.
| |
Collapse
|
67
|
Transplant and risk of Parkinson disease. Parkinsonism Relat Disord 2019; 63:149-155. [PMID: 30827837 DOI: 10.1016/j.parkreldis.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The pathophysiology of Parkinson's disease (PD) remains unclear, but growing evidence supports a role of neuroinflammation. The purpose of this study was to investigate the association between tissue transplantation and PD risk, given the importance of immunosuppressants in post-transplant management. METHODS We performed a case-control study among Medicare beneficiaries age 66-90 using claims from 2004 to 2009. We used International Classification of Diseases, Ninth Edition (ICD-9) and Current Procedural Terminology (CPT) codes to identify PD (89,790 incident cases, 118,095 population-based controls) and history of tissue transplant (kidney, heart, liver, lung, and bone marrow). We investigated risk of PD in relation to tissue transplant in logistic regression models, adjusting for age, sex, race, smoking, and overall use of medical care. RESULTS Beneficiaries who had received a tissue transplant at least five years prior to PD diagnosis or reference had a lower risk of PD (odds ratio [OR] 0.63, 95% confidence interval [CI] 0.53, 0.75) than those without tissue transplant. This inverse association was observed for kidney (OR 0.63, 95% CI 0.47, 0.84), heart (OR 0.58, 95% CI 0.40, 0.83), lung (OR 0.41, 95% CI 0.21, 0.77), and bone marrow (OR 0.57, 95% 0.38, 0.85) transplants. Associations were attenuated, but remained, following adjustment for indications for the respective type of transplant. Liver transplant was not associated with PD risk. CONCLUSIONS Patients undergoing tissue transplant may have a lower risk of developing PD than the general population. Further studies are needed to determine if this association is causal and if immunosuppressants mediate this association.
Collapse
|
68
|
Rodriguez-Muñiz GM, Miranda MA, Marin ML. A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical. Molecules 2019; 24:E234. [PMID: 30634584 PMCID: PMC6359750 DOI: 10.3390/molecules24020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023] Open
Abstract
Reactive oxygen species (ROS) can provoke damage to cells, where their concentrations are regulated by antioxidants. As the hydroxyl radical (•OH) is the most oxidizing ROS, we have focused our attention on the use of a mechanistically based time-resolved methodology, such as laser flash photolysis, to determine the relative reactivity of alcoholic beverages towards •OH as an indicator of their antioxidant potential. The selected drinks were of two different origins: (i) those derived from grapes such as red wine, white wine, white vermouth, marc and brandy and (ii) spirits not derived from grapes: triple sec, gin, whisky, and rum. Initially, we determined the quenching rate constant of ethanol with •OH and then we explored the reactivity of the different beverages, which was higher than expected based on their alcoholic content. This can be attributed to the presence of antioxidants and was especially remarkable for the grape-derived drinks.
Collapse
Affiliation(s)
- Gemma M Rodriguez-Muñiz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022 Valencia, Spain.
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022 Valencia, Spain.
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022 Valencia, Spain.
| |
Collapse
|
69
|
Huang X, Zhen J, Dong S, Zhang H, Van Halm-Lutterodt N, Yuan L. DHA and vitamin E antagonized the Aβ25–35-mediated neuron oxidative damage through activation of Nrf2 signaling pathways and regulation of CD36, SRB1 and FABP5 expression in PC12 cells. Food Funct 2019; 10:1049-1061. [DOI: 10.1039/c8fo01713a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study was designed to explore the neuroprotective effects of docosahexaenoic acid (DHA) and/or vitamin E (VE) in vitro.
Collapse
Affiliation(s)
- Xiaochen Huang
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | - Jie Zhen
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | - Shengqi Dong
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | - Huiqiang Zhang
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | | | - Linhong Yuan
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| |
Collapse
|
70
|
Singh A, Zhi L, Zhang H. LRRK2 and mitochondria: Recent advances and current views. Brain Res 2019; 1702:96-104. [PMID: 29894679 PMCID: PMC6281802 DOI: 10.1016/j.brainres.2018.06.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene account for most common causes of familial and sporadic Parkinson's disease (PD) and are one of the strongest genetic risk factors in sporadic PD. Pathways implicated in LRRK2-dependent neurodegeneration include cytoskeletal dynamics, vesicular trafficking, autophagy, mitochondria, and calcium homeostasis. However, the exact molecular mechanisms still need to be elucidated. Both genetic and environmental causes of PD have highlighted the importance of mitochondrial dysfunction in the pathogenesis of PD. Mitochondrial impairment has been observed in fibroblasts and iPSC-derived neural cells from PD patients with LRRK2 mutations, and LRRK2 has been shown to localize to mitochondria and to regulate its function. In this review we discuss recent discoveries relating to LRRK2 mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Lianteng Zhi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Hui Zhang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| |
Collapse
|
71
|
Bonesi M, Brindisi M, Armentano B, Curcio R, Sicari V, Loizzo MR, Cappello MS, Bedini G, Peruzzi L, Tundis R. Exploring the anti-proliferative, pro-apoptotic, and antioxidant properties of Santolina corsica Jord. & Fourr. (Asteraceae). Biomed Pharmacother 2018; 107:967-978. [DOI: 10.1016/j.biopha.2018.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023] Open
|
72
|
Ribeiro JS, Santos MJMC, Silva LKR, Pereira LCL, Santos IA, da Silva Lannes SC, da Silva MV. Natural antioxidants used in meat products: A brief review. Meat Sci 2018; 148:181-188. [PMID: 30389412 DOI: 10.1016/j.meatsci.2018.10.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/16/2023]
Abstract
The lipoperoxidation and the oxidation of pigments and proteins reduces the quality and nutritional value of meat products. The use of antioxidants slows down this reaction, preserving the characteristics of the product during its storage and prolonging its useful life. The use of synthetic antioxidants in food products has been the subject of several toxicological studies. Currently, the call for antioxidants from natural sources stands out. Investigations in this sense should be conducted considering the complex mechanism of reactive oxygen species (ROS) and interactions with cellular constituents to elucidate the mechanism of action of synthetic antioxidants and natural sources. Although natural additives appear as an alternative to meet the various market niches and associate natural antioxidants to active packaging as they are progressively released into the product. In this review, we present research with natural antioxidants that could be used satisfactorily in meat products, in addition to recent studies that use them in active packaging.
Collapse
Affiliation(s)
- Jéssica Souza Ribeiro
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of the Recôncavo of Bahia (UFRB), Centenário Avenue, 697, SIM District, 44042-280 Feira de Santana, BA, Brazil.
| | | | | | | | | | - Suzana Caetano da Silva Lannes
- Pharmaceutical-Biochemical Technology Department, Pharmaceutical Sciences School, University of Sao Paulo (USP), São Paulo, SP, Brazil.
| | - Marcondes Viana da Silva
- Center of Studies in Food Science (NECAL), State University of the Southwest of Bahia (UESB), Itapetinga, BA, Brazil.
| |
Collapse
|
73
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
74
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
75
|
Kamireddy K, Chinnu S, Priyanka PS, Rajini PS, Giridhar P. Neuroprotective effect of Decalepis hamiltonii aqueous root extract and purified 2-hydroxy-4-methoxy benzaldehyde on 6-OHDA induced neurotoxicity in Caenorhabditis elegans. Biomed Pharmacother 2018; 105:997-1005. [PMID: 30021395 DOI: 10.1016/j.biopha.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the possible neuroprotective efficacy of Decalepis hamiltonii tuber extract against 6-Hydroxy dopamine (6-OHDA) induced neurotoxicity and associated effects in Caenorhabditis elegans. The major component of flavour rich extract from D. hamiltonii is 2-hydroxy-4-methoxy benzaldehyde (2H4MB) which is an isomer of vanillin. We have conducted preliminary experiments with different types of extracts and subsequently DHFE (D. hamiltonii Fresh Tuber Extract) and DHPF (D. hamiltonii purified 2H4MB fraction) were used for further studies. Here we attempted to enumerate the neuroprotective efficacy of the above compounds in worms by evaluating behavioural and mitochondrial function, dopamine content and selective degeneration of dopaminergic neurons in BZ555 strains in comparison with control and 6-OHDA treated organisms. The relative expression levels of selected antioxidant genes involved in defence mechanism like SOD-3, GST-2 and GST-4 were evaluated along with those of CAT-2 and DOP-2 at mRNA level. We observed that both DHPF and DHFE exhibited significant levels of neuroprotective property against 6-OHDA induced neurotoxicity, which was evident in mitochondrial/dopaminergic function and antioxidant defence mechanism.
Collapse
Affiliation(s)
- Kiran Kamireddy
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India
| | - Salim Chinnu
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Food Protectants and Infestation Control Department, CSIR-CFTRI, Mysore, 570020, India
| | - P S Priyanka
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India
| | - P S Rajini
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Food Protectants and Infestation Control Department, CSIR-CFTRI, Mysore, 570020, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India.
| |
Collapse
|
76
|
Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E5815-E5823. [PMID: 29735655 DOI: 10.1073/pnas.1802179115] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parkinson's disease (PD) is characterized as a chronic and progressive neurodegenerative disorder, and the deposition of specific protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of PD patients. Although there are several available medications to treat PD symptoms, these medications do not prevent the progression of the disease. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with the pathogenesis of PD. Here we found that MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced neurotoxicity in the mouse striatum was attenuated by subsequent repeated administration of TPPU, a potent sEH inhibitor. Furthermore, deletion of the sEH gene protected against MPTP-induced neurotoxicity, while overexpression of sEH in the striatum significantly enhanced MPTP-induced neurotoxicity. Moreover, the expression of the sEH protein in the striatum from MPTP-treated mice or postmortem brain samples from patients with dementia of Lewy bodies (DLB) was significantly higher compared with control groups. Interestingly, there was a positive correlation between sEH expression and phosphorylation of α-synuclein in the striatum. Oxylipin analysis showed decreased levels of 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid in the striatum of MPTP-treated mice, suggesting increased activity of sEH in this region. Interestingly, the expression of sEH mRNA in human PARK2 iPSC-derived neurons was higher than that of healthy control. Treatment with TPPU protected against apoptosis in human PARK2 iPSC-derived dopaminergic neurons. These findings suggest that increased activity of sEH in the striatum plays a key role in the pathogenesis of neurodegenerative disorders such as PD and DLB. Therefore, sEH may represent a promising therapeutic target for α-synuclein-related neurodegenerative disorders.
Collapse
|
77
|
Anichini C, Lotti F, Longini M, Felici C, Proietti F, Buonocore G. Antioxidant Strategies in Genetic Syndromes with High Neoplastic Risk in Infant Age. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Anichini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federica Lotti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cosetta Felici
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabrizio Proietti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
78
|
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J Neurochem 2018; 144:691-709. [PMID: 29341130 PMCID: PMC5897151 DOI: 10.1111/jnc.14308] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
Collapse
Affiliation(s)
- Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| | - M Lillian Culp
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jason G Craver
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
79
|
Chen SM, Umamaheswari R, Mani G, Chen TW, Ali MA, Fahad M. A. AH, Elshikh MS, Farah MA. Hierarchically structured CuFe2O4 ND@RGO composite for the detection of oxidative stress biomarker in biological fluids. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00799j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, stable and catalytically active copper ferrite nanodots (CuFe2O4) entrapped by porous RGO nanosheets were prepared via a facile condensation process using a green reducing agent.
Collapse
Affiliation(s)
- Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Rajaji Umamaheswari
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Govindasamy Mani
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - M. Ajmal Ali
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| | - Al-Hemaid Fahad M. A.
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| | - M. S. Elshikh
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| | - M. Abul Farah
- Department of Zoology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| |
Collapse
|
80
|
Gong P, Deng F, Zhang W, Ji J, Liu J, Sun Y, Hu J. Tectorigenin attenuates the MPP +-induced SH-SY5Y cell damage, indicating a potential beneficial role in Parkinson's disease by oxidative stress inhibition. Exp Ther Med 2017; 14:4431-4437. [PMID: 29067118 DOI: 10.3892/etm.2017.5049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/03/2017] [Indexed: 01/20/2023] Open
Abstract
Tectorigenin is a plant isoflavonoid primarily derived from the flowers of Pueraria thomsonii Benth. Although various biological properties of tectorigenin have been reported, such as its antioxidant activity, the effects of tectorigenin on the cellular models of Parkinson's disease have not yet been elucidated. The aims of the current study were to investigate whether tectorigenin prevents neurotoxicity induced by MPP+ (also known as 1-methyl-4-phenylpyridinium) in SH-SY5Y cells and to elucidate the underlying protective mechanism. Cell viability and lactate dehydrogenase release were measured. The morphological changes of apoptotic cells were observed by Hoechst 33258 staining. Caspase-3, superoxide dismutase, catalase and glutathione peroxidase activity was measured using commercially available ELISA kits. The expression of cytochrome c, Bax, Bcl-2 and NADPH oxidase were detected by western blot analysis. The results indicated that treatment with MPP+ causes a significant decrease in the viability of cells and an increase in apoptosis, as evidenced by the upregulation of apoptotic cells, caspase-3 activity and cytochrome c expression. By contrast, these effects were all reversed by pretreatment with tectorigenin in SH-SY5Y cells. Tectorigenin also inhibited the MPP+-induced changes of Bax and Bcl-2 levels. In addition, pretreatment with tectorigenin mitigated the MPP+-caused increases in the levels of reactive oxygen species and NADPH oxidase protein in SH-SY5Y cells. Simultaneously, tectorigenin abolished the downregulation of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase, that was induced by MPP+. In conclusion, the present study data indicate that the neuroprotective effect of tectorigenin against MPP+-induced cytotoxicity and apoptosis may be involved in attenuating oxidative stress and enhancing antioxidant defense.
Collapse
Affiliation(s)
- Ping Gong
- Department of Geriatrics, Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Zhang
- Department of Neurological Disease Center, Beijing Friendship Hospital Affiliated to The Capital University of Medical Sciences, Beijing 100050, P.R. China
| | - Jin Ji
- Department of Geriatrics, Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Jia Liu
- Department of Geriatrics, Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Yinan Sun
- Department of Geriatrics, Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Jiayu Hu
- Department of Geriatrics, Third Hospital of Peking University, Beijing 100191, P.R. China
| |
Collapse
|
81
|
Patel M, McElroy PB. Mitochondrial Dysfunction in Parkinson’s Disease. OXIDATIVE STRESS AND REDOX SIGNALLING IN PARKINSON’S DISEASE 2017. [DOI: 10.1039/9781782622888-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders where oxidative stress and mitochondrial dysfunction have been implicated as etiological factors. Mitochondria are the major producers of reactive oxygen species (ROS) that can have damaging effects to cellular macromolecules leading to neurodegeneration. The most compelling evidence for the role of mitochondria in the pathogenesis of PD has been derived from toxicant-induced models of parkinsonism. Over the years, epidemiological studies have suggested a link between exposure to environmental toxins such as pesticides and the risk of developing PD. Data from human and experimental studies involving the use of chemical agents like paraquat, diquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone and maneb have provided valuable insight into the underlying mitochondrial mechanisms contributing to PD and associated neurodegeneration. In this review, we have discussed the role of mitochondrial ROS and dysfunction in the pathogenesis of PD with a special focus on environmental agent-induced parkinsonism. We have described the various mitochondrial mechanisms by which such chemicals exert neurotoxicity, highlighting some landmark epidemiological and experimental studies that support the role of mitochondrial ROS and oxidative stress in contributing to these effects. Finally, we have discussed the significance of these studies in understanding the mechanistic underpinnings of PD-related dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| | - Pallavi Bhuyan McElroy
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| |
Collapse
|
82
|
Bhatnagar M, Goel I, Roy T, Shukla SD, Khurana S. Complete Comparison Display (CCD) evaluation of ethanol extracts of Centella asiatica and Withania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson's model of mice. PLoS One 2017; 12:e0177254. [PMID: 28510600 PMCID: PMC5433711 DOI: 10.1371/journal.pone.0177254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease remains as one of the most common debilitating neurodegenerative disorders. With the hopes of finding agents that can cure or reduce the pace of progression of the disease, we studied two traditional medicinal plants: Centella asiatica and Withania somnifera that have been explored in some recent studies. In agreement with the previous work on ethanol extracts of these two plants in mice model, we saw an improvement in oxidative stress profile as well as behavioral performance in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced Parkinson-like symptoms in Balb/c mice. Given the known potential of both the herbal extracts in improving Parkinson-like symptoms, we expected the combination of the two to show better results than either of the two but surprisingly there was no additivity in either oxidative stress or behavioural recovery. In fact, in some assays, the combination performed worse than either of the two individual constituents. This effect of mixtures highlights the need of testing mixtures in supplements market using enthomedicine. The necessity of comparing multiple groups in this study to get most information from the experiments motivated us to design a ladder-like visualization to show comparison with different groups that we call complete comparison display (CCD). In summary, we show the potential of Centella asiatica and Withania somnifera to ameliorate Parkinson's disorder.
Collapse
Affiliation(s)
- Maheep Bhatnagar
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ishan Goel
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
| | - Tathagato Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Haringhata Farm, West Bengal, India
| | - Sunil Dutt Shukla
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
- Government Meera Girl's College, Udaipur, Rajasthan, India
- * E-mail: (SS); (SK)
| | - Sukant Khurana
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Haringhata Farm, West Bengal, India
- * E-mail: (SS); (SK)
| |
Collapse
|
83
|
Kim M, Lee S, Cho J, Kim G, Won C. Dopamine D3 receptor-modulated neuroprotective effects of lisuride. Neuropharmacology 2017; 117:14-20. [DOI: 10.1016/j.neuropharm.2017.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
|
84
|
Liu A, Yu Q, Xiao S, Peng Z, Huang Y, Diao S, Cheng J, Hong M. Role of sestrin2 in H 2O 2-induced PC12 apoptosis. Neurosci Lett 2017; 646:1-7. [PMID: 27793701 DOI: 10.1016/j.neulet.2016.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 01/12/2023]
Abstract
Sestrin2 is involved in different kind of cellular response to stress conditions. However, the function of Sestrin2 in oxidative stress related neurological diseases remains unknown. In this study, we tested whether Sestrin2 has a beneficial effect on PC12 cell apoptosis induced by H2O2. We found that H2O2 induces expression of Sestrin2 in PC12 cells in a time-dependent and dose-dependent manner. We also found that Knockdown of Sestrin2 using small RNA interference promotes cell apoptosis induced by H2O2. In addition, our results show that the c-Jun NH(2)-terminal kinase (JNK)/c-Jun pathway is activated by H2O2. Inhibiting the activity of the JNK pathway and JNK siRNA transfection abolishes the increase of Sestrin2 induced by H2O2. These findings suggest that the inductive effect of Sestrin2 is mediated by the JNK/c-Jun pathway. In this study, we investigated the role of Sestrin2 in oxidative stress-induced cell apoptosis using PC12 cells as the model, implying that stimulating expression of Sestrin2 might be considered as a neuroprotective target against H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Aiqun Liu
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China; Jinan University, Guangzhou, Guangdong, China
| | - Qingyun Yu
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanzhou,Guangdong, China
| | - Zhongxing Peng
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China
| | - Yeqing Huang
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China
| | - Shengpeng Diao
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China
| | - Jing Cheng
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China
| | - Mingfan Hong
- Department of Neurology, School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou, Guangdong, China.
| |
Collapse
|
85
|
Liang LP, Huang J, Fulton R, Pearson-Smith JN, Day BJ, Patel M. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease. Toxicol Appl Pharmacol 2017; 326:34-42. [PMID: 28400118 DOI: 10.1016/j.taap.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States
| | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States
| | | | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States; Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
86
|
Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS One 2017; 12:e0174470. [PMID: 28369131 PMCID: PMC5378346 DOI: 10.1371/journal.pone.0174470] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which degeneration of nigrostriatal neurons and inflammation are key players. The aim of our study was to analyze the function of LXRs in neurodegenerative diseases as PD using in vivo, ex vivo and in vitro models of PD; for this purpose, we observed the effects of the LXR agonist, TO901317, in neuroinflammatory pathway related to PD. We performed an in vivo model of PD using the neurotoxin 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP) and our results clearly showed that TO901317 administration reduces all of the inflammatory markers involved in PD such as iNOS and COX2, IκB-α and NF-κB. Moreover, to confirm the neuroprotective properties of TO901317, that we obtained with the in vivo model, we performed also an ex vivo and in vitro models of PD. All the results taken, confirmed that TO901317 is able to modulate the neuroinflammatory pathway involved in PD increasing the locomotors function. Therefore, TO901317, LXR synthetic agonist, could be studied as a new target in a neurodegenerative disorder like PD.
Collapse
|
87
|
Bakthavachalam P, Shanmugam PST. Mitochondrial dysfunction - Silent killer in cerebral ischemia. J Neurol Sci 2017; 375:417-423. [PMID: 28320180 DOI: 10.1016/j.jns.2017.02.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunction aggravates ischemic neuronal injury through activation of various pathophysiological and molecular mechanisms. Ischemic neuronal injury is particularly intensified during reperfusion due to impairment of mitochondrial function. Mitochondrial mutilation instigates alterations in calcium homeostasis in neurons, which plays a pivotal role in the maintenance of normal neuronal function. Increase in intracellular calcium level in mitochondria triggers the opening of mitochondrial transition pore and over production of reactive oxygen species (ROS). Several investigations have concluded that ROS not only contribute to lipids and proteins damage, but also transduce apoptotic signals leading to neuronal death. In addition to the above mentioned reasons, endoplasmic reticulum (ER) stress due to excitotoxicity also leads to neuronal death. Recently, some newer proteins have been claimed to induce "mitophagy" by triggering the receptors on autophagic membranes leading to neurodegeneration. This review summarizes the mechanisms underlying neuronal death involving mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Pramila Bakthavachalam
- Sri Ramachandra University, No. 1, Ramachandra Nagar, Porur, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
88
|
Barodia SK, Creed RB, Goldberg MS. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull 2016; 133:51-59. [PMID: 28017782 DOI: 10.1016/j.brainresbull.2016.12.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Loss-of-function mutations in the genes encoding Parkin and PINK1 are causally linked to autosomal recessive Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, and PINK1, a mitochondrial-targeted kinase, function together in a common pathway to remove dysfunctional mitochondria by autophagy. Presumably, deficiency for Parkin or PINK1 impairs mitochondrial autophagy and thereby increases oxidative stress due to the accumulation of dysfunctional mitochondria that release reactive oxygen species. Parkin and PINK1 likely have additional functions that may be relevant to the mechanisms by which mutations in these genes cause neurodegeneration, such as regulating inflammation, apoptosis, or dendritic morphogenesis. Here we briefly review what is known about functions of Parkin and PINK1 related to oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Sandeep K Barodia
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
89
|
Hughes KC, Gao X, Kim IY, Rimm E, Wang M, Weisskopf MG, Schwarzschild MA, Ascherio A. Intake of antioxidant vitamins and risk of Parkinson's disease. Mov Disord 2016; 31:1909-1914. [PMID: 27787934 PMCID: PMC5154924 DOI: 10.1002/mds.26819] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Oxidative stress is proposed to be one of the potential mechanisms leading to neurodegeneration in Parkinson's disease. However, previous epidemiologic studies investigating associations between antioxidant vitamins, such as vitamins E and C and carotenoids, and PD risk have produced inconsistent results. OBJECTIVE The objective of this work was to prospectively examine associations between intakes of antioxidant vitamins, including vitamins E and C and carotenoids, and PD risk. METHODS Cases were identified in two large cohorts: the Nurses' Health Study and the Health Professionals Follow-up Study. Cohort members completed semiquantitative food frequency questionnaires every 4 years. RESULTS A total of 1036 PD cases were identified. Dietary intakes of vitamin E and carotenoids were not associated with PD risk; the multivariable-adjusted relative risk comparing extreme intake quintiles were 0.93 (95% confidence interval: 0.75-1.14) and 0.97 (95% confidence interval: 0.69-1.37), respectively. Dietary vitamin C intake was significantly associated with reduced PD risk (relative risk: 0.81; 95% confidence interval: 0.65-1.01; ptrend , 0.01); however, this result was not significant in a 4-year lag analysis. For vitamins E and C, intake from foods and supplements combined were also unrelated to PD risk. CONCLUSIONS Our results do not support the hypothesis that intake of antioxidant vitamins reduces the risk of PD. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katherine C. Hughes
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xiang Gao
- Department of Nutritional Health, The Pennsylvania State University, University Park, PA, USA
| | - Iris Y. Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric Rimm
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marc G. Weisskopf
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Michael A. Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
90
|
Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry 2016; 6:e967. [PMID: 27898072 PMCID: PMC5290358 DOI: 10.1038/tp.2016.239] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022] Open
Abstract
Various lines of evidence suggest that brain bioenergetics and mitochondrial function may be altered in schizophrenia. On the basis of prior phosphorus-31 (31P)-magnetic resonance spectroscopy (MRS), post-mortem and preclinical studies, this study was designed to test the hypothesis that abnormal glycolysis leads to elevated lactate concentrations in subjects with schizophrenia. The high sensitivity of 7 Tesla proton (1H)-MRS was used to measure brain lactate levels in vivo. Twenty-nine controls and 27 participants with schizophrenia completed the study. MRS scanning was conducted on a Philips 'Achieva' 7T scanner, and spectra were acquired from a voxel in the anterior cingulate cortex. Patients were assessed for psychiatric symptom severity, and all participants completed the MATRICS Consensus Cognitive Battery (MCCB) and University of California, San Diego Performance-Based Skills Assessment (UPSA). The relationship between lactate, psychiatric symptom severity, MCCB and UPSA was examined. Lactate was significantly higher in patients compared with controls (P=0.013). Higher lactate was associated with lower MCCB (r=-0.36, P=0.01) and UPSA total scores (r=-0.43, P=0.001). We believe this is the first study to report elevated in vivo cerebral lactate levels in schizophrenia. Elevated lactate levels in schizophrenia may reflect increased anaerobic glycolysis possibly because of mitochondrial dysfunction. This study also suggests that altered cerebral bioenergetics contribute to cognitive and functional impairments in schizophrenia.
Collapse
|
91
|
Simon DK, Simuni T, Elm J, Clark-Matott J, Graebner AK, Baker L, Dunlop SR, Emborg M, Kamp C, Morgan JC, Ross GW, Sharma S, Ravina B. Peripheral Biomarkers of Parkinson's Disease Progression and Pioglitazone Effects. JOURNAL OF PARKINSONS DISEASE 2016; 5:731-6. [PMID: 26444095 PMCID: PMC5061495 DOI: 10.3233/jpd-150666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pioglitazone, an oral hypoglycemic agent, recently failed to show promise as a disease-modifying agent in a 44-week phase 2 placebo-controlled study in 210 Parkinson's disease (PD) subjects. We analyzed peripheral biomarkers, including leukocyte PGC-1α and target gene expression, plasma interleukin 6 (IL-6) as a marker of inflammation, and urine 8-hydroxydeoxyguanosine (8OHdG) as a marker of oxidative DNA damage. Baseline or changes from baseline in biomarker levels were not associated with the rate of progression of PD. Pioglitazone did not significantly alter biomarker levels. Other agents that more effectively target these mechanisms remain of potential interest as disease modifying therapies in PD.
Collapse
Affiliation(s)
- David K Simon
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tanya Simuni
- Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jordan Elm
- Biostatistics, Medical University of South Carolina, Charleston, SC, USA
| | - Joanne Clark-Matott
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Allison K Graebner
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Liana Baker
- Clinical Trials Coordination Center, University of Rochester, Medical Center, Rochester, NY, USA
| | | | - Marina Emborg
- Wisconsin National Primate Research Center and Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Cornelia Kamp
- Clinical Materials Services Unit, University of Rochester, Medical Center, Rochester, NY, USA
| | - John C Morgan
- Neurology, Medical College of Georgia, Augusta, GA, USA
| | - G Webster Ross
- Neurology, Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA
| | - Saloni Sharma
- Clinical Trials Coordination Center, University of Rochester, Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
92
|
Abstract
Breast cell pathology results from biochemical and molecular changes that culminate in the cell’s loss of functional responsiveness. The epithelial cell compartment in the breast ductal system is the site of approximately 98% of malignant proliferations, and it is from within these cells that the first biochemical signal of change may be expressed as an inflammatory response. Inflammation may be represented by biomarkers of early pathologic changes in breast cells and be associated with risk for the development of breast cancer. A theoretical model of the inflammatory process is proposed showing predictive linkages among stimuli in the breast microenvironment and the development of breast pathology, in particular, breast cancer. This model fuels intervention concepts that may prevent malignant breast health outcomes.
Collapse
|
93
|
Kim H, Kim SH, Cha H, Kim SR, Lee JH, Park JW. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease. Free Radic Res 2016; 50:853-60. [PMID: 27142242 DOI: 10.1080/10715762.2016.1185519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and its pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction and oxidative stress play central roles in the pathophysiology of PD, through activation of mitochondria-dependent apoptotic molecular pathways. Several mitochondrial internal regulating factors act to maintain mitochondrial function. However, the mechanism by which these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2), has been implicated in the regulation of mitochondrial redox balance and reduction of oxidative stress-induced cell injury. Here we report that IDH2 regulates mitochondrial dysfunction and cell death in MPP(+)/MPTP-induced DA neuronal cells, and in a mouse model of PD. Down-regulation of IDH2 increased DA neuron sensitivity to MPP(+); lowered IDH2 levels facilitated induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Deficient IDH2 also promoted loss of DA SNpc neurons in an MPTP mouse model of PD. Interestingly, Mito-TEMPO, a mitochondrial ROS-specific scavenger, protected degeneration of SNpc DA neurons in the MPTP model of PD. These findings demonstrate that IDH2 contributes to degeneration of the DA neuron in the neurotoxin model of PD and establish IDH2 as a molecular target of potential therapeutic significance for this disabling neurological illness.
Collapse
Affiliation(s)
- Hyunjin Kim
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Taegu , Korea
| | - Sung Hwan Kim
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Taegu , Korea
| | - Hanvit Cha
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Taegu , Korea
| | - Sang Ryong Kim
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Taegu , Korea
| | - Jin Hyup Lee
- b Department of Food and Biotechnology , Korea University , Sejong , Korea ;,c Institutes of Natural Sciences, Korea University , Sejong , Korea
| | - Jeen-Woo Park
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Taegu , Korea
| |
Collapse
|
94
|
Bradley RM, Stark KD, Duncan RE. Influence of tissue, diet, and enzymatic remodeling on cardiolipin fatty acyl profile. Mol Nutr Food Res 2016; 60:1804-18. [PMID: 27061349 DOI: 10.1002/mnfr.201500966] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/10/2022]
Abstract
Cardiolipin is a specialized phospholipid found primarily in the inner mitochondrial membrane. Because of its unique dimeric structure, cardiolipin plays an important role in mitochondrial function, stability, and membrane fluidity. As such, cardiolipin is subject to a high degree of remodeling by phospholipases, acyltransferases, and transacylases that create a fatty acyl profile that tends to be highly tissue-specific. Despite this overarching regulation, the molecular species of cardiolipin produced are also influenced by dietary lipid composition. A number of studies have characterized the tissue-specific profile of cardiolipin species and have investigated the specific nature of cardiolipin remodeling, including the role of both enzymes and diet. The aim of this review is to highlight tissue specific differences in cardiolipin composition and, collectively, the enzymatic and dietary factors that contribute to these differences. Consequences of aberrant cardiolipin fatty acyl remodeling are also discussed.
Collapse
Affiliation(s)
- Ryan M Bradley
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Ken D Stark
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Robin E Duncan
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
95
|
Jiang HH, Yan FS, Shen L, Ji HF. Silymarin versus Silibinin: Differential Antioxidant and Neuroprotective Effects against H 2O 2-induced Oxidative Stress in PC12 Cells. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study assessed comparatively the antioxidant activities of silymarin and its major active component silibinin and their neuroprotective effects against hydrogen peroxide (H2O2)-induced oxidative stress in rat pheochromocytoma PC12 cells. It was found that despite newly prepared silymarin and silibinin solution possessing comparable superoxide anion (O2.–)-scavenging activities, with time the activity of silymarin lowered slightly, but that of silibinin decreased dramatically. Both silymarin and silibinin suppressed H2O2-induced oxidative stress and apoptosis, and the neuroprotective effect of silymarin was overall relatively stronger than that of silibinin. The findings provided clues for future studies on therapeutic potentials of the whole silymarin or purified silibinin for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui-Hui Jiang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, P. R. China
| | - Fa-Shun Yan
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, P. R. China
| | - Liang Shen
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, P. R. China
| | - Hong-Fang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, P. R. China
| |
Collapse
|
96
|
Sherzai AZ, Tagliati M, Park K, Gatto NM, Pezeshkian S, Sherzai D. Micronutrients and Risk of Parkinson's Disease: A Systematic Review. Gerontol Geriatr Med 2016; 2:2333721416644286. [PMID: 28138496 PMCID: PMC5119866 DOI: 10.1177/2333721416644286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Although the precise pathogenetic mechanisms of PD remain undetermined, there appears to be both genetic and environmental factors that contribute to the risk of developing PD. With regard to environmental risk factors, there has been significant interest related to the role of diet, nutrition, and nutrients on the onset and progression of PD. As the current treatments are predominantly focused on symptomatic management, efforts must be directed toward prevention of the PD and identification of potentially modifiable risk and preventive factors. This comprehensive review gives an overview of studies examining the role of micronutrients in PD, and provides guidance on the value of the reported outcomes.
Collapse
Affiliation(s)
- Ayesha Z Sherzai
- Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Park
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | | | - Shant Pezeshkian
- Loma Linda University School of Public Health, Loma Linda, CA, USA
| | - Dean Sherzai
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
97
|
Majima HJ, Indo HP, Nakanishi I, Suenaga S, Matsumoto KI, Matsui H, Minamiyama Y, Ichikawa H, Yen HC, Hawkins CL, Davies MJ, Ozawa T, St Clair DK. Chasing great paths of Helmut Sies “Oxidative Stress”. Arch Biochem Biophys 2016; 595:54-60. [DOI: 10.1016/j.abb.2015.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/11/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
|
98
|
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Med Genomics 2016; 9:12. [PMID: 26961748 PMCID: PMC4784386 DOI: 10.1186/s12920-016-0173-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly understood combination of genetic and environmental factors in Parkinson's disease (PD), which represents the major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to outperform individual approaches. METHODS A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene co-expression networks. RESULTS The consensus strategy outperformed the individual approaches in terms of statistical significance, overall enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD). 40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the early recognition ability of gene prioritization tools. CONCLUSIONS The proposed consensus strategy represents an efficient and biologically relevant approach for gene prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the development of disease-modifying PD therapeutics.
Collapse
|
99
|
Lysine-specific demethylase 1 inhibitors protect cochlear spiral ganglion neurons against cisplatin-induced damage. Neuroreport 2016; 26:539-47. [PMID: 26011390 DOI: 10.1097/wnr.0000000000000386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cisplatin is a widely used chemotherapeutic drug, but one of its side effects is ototoxicity. Epigenetic-related drugs, such as lysine-specific demethylase 1 (LSD1) inhibitors, have been reported to protect against cisplatin-induced hair cell loss by preventing demethylation of histone H3K4 (H3K4me2). However, the protective effect of LSD1 inhibitors in spiral ganglion neurons (SGNs) remains unclear. To investigate whether LSD1 inhibitors exert similar protective effects on SGNs, we treated mouse cochlear explant cultures with LSD1 inhibitors (2PCPA, S2101, or CBB1007) together with cisplatin. Low concentrations of cisplatin damaged SGNs much more than high concentrations, and blocking the demethylation of H3K4me2 with LSD1 inhibitors prevented the SGNs from injury. Reactive oxygen species are also involved in the injury process, and LSD1 inhibitors protected SGNs by increasing the expression level of the antioxidant gene Slc7a11 and decreasing the level of the pro-oxidant gene lactoperoxidase (Lpo). Our findings show that LSD1 inhibitors prevent cisplatin-induced SGN loss by regulating the demethylation of H3K4 and preventing increases of reactive oxygen species levels, which might provide a potential therapeutic strategy for cisplatin-induced hearing loss.
Collapse
|
100
|
Cassoli JS, Guest PC, Santana AG, Martins-de-Souza D. Employing proteomics to unravel the molecular effects of antipsychotics and their role in schizophrenia. Proteomics Clin Appl 2016; 10:442-55. [PMID: 26679983 DOI: 10.1002/prca.201500109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/15/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Schizophrenia is an incurable neuropsychiatric disorder managed mostly by treatment of the patients with antipsychotics. However, the efficacy of these drugs has remained only low to moderate despite intensive research efforts since the early 1950s when chlorpromazine, the first antipsychotic, was synthesized. In addition, antipsychotic treatment can produce often undesired severe side effects in the patients and addressing these remains a large unmet clinical need. One of the reasons for the low effectiveness of these drugs is the limited knowledge about the molecular mechanisms of schizophrenia, which impairs the development of new and more effective treatments. Recently, proteomic studies of clinical and preclinical samples have identified changes in the levels of specific proteins in response to antipsychotic treatment, which have converged on molecular pathways such as cell communication and signaling, inflammation and cellular growth, and maintenance. The findings of these studies are summarized and discussed in this review and we suggest that this provides validation of proteomics as a useful tool for mining drug mechanisms of action and potentially for pinpointing novel molecular targets that may enable development of more effective medications.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline G Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,UNICAMP Neurobiology Center, Campinas, São Paulo, Brazil
| |
Collapse
|