51
|
Effects of lactobacilli with different regulatory behaviours on tight junctions in mice with dextran sodium sulphate-induced colitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
52
|
Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr 2018; 58:27-43. [PMID: 30043184 DOI: 10.1007/s00394-018-1790-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The first part of this review focuses on the role of cells and molecules of adipose tissue involved in metabolic syndrome-induced inflammation and in the maintenance of this pathology. In the second part of the review, the potential role of probiotics-modulating metabolic syndrome-related inflammatory components is summarized and discussed. METHODS The search for the current scientific literature was carried out using ScienceDirect, PubMed, and Google Scholar search engines. The keywords used were: metabolic syndrome, obesity, insulin resistant, adipose tissue, adipose tissue inflammation, chronic low-grade inflammation, immune cells, adipokines, cytokines, probiotics, and gut microbiota. RESULTS AND CONCLUSIONS Chronic low-grade inflammation that characterized metabolic syndrome can contribute to the development of the metabolic dysfunctions involved in the pathogenesis of its comorbidities. Adipose tissue is a complex organ that performs metabolic and immune functions. During metabolic syndrome, an imbalance in the inflammatory components of adipose tissue (immune cells, cytokines, and adipocytokines), which shift from an anti-inflammatory to a pro-inflammatory profile, can provoke metabolic syndrome linked complications. Further knowledge concerning the immune function of adipose tissue may contribute to finding better alternatives for the treatment or prevention of such disorders. The control of inflammation could result in the management of many of the pathologies related to metabolic syndrome. Due to the strong evidence that gut microbiota composition plays a role modulating the body weight, adipose tissue, and the prevalence of a low-grade inflammatory status, probiotics emerge as valuable tools for the prevention of metabolic syndrome and health recovery.
Collapse
|
53
|
Bumgardner SA, Zhang L, LaVoy AS, Andre B, Frank CB, Kajikawa A, Klaenhammer TR, Dean GA. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform. PLoS One 2018; 13:e0196950. [PMID: 29734365 PMCID: PMC5937747 DOI: 10.1371/journal.pone.0196950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform.
Collapse
Affiliation(s)
- Sara A. Bumgardner
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lin Zhang
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alora S. LaVoy
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara Andre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad B. Frank
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Akinobu Kajikawa
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gregg A. Dean
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
54
|
Kaur S, Sharma P, Kalia N, Singh J, Kaur S. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Vibrio spp. Front Cell Infect Microbiol 2018; 8:120. [PMID: 29740541 PMCID: PMC5928150 DOI: 10.3389/fcimb.2018.00120] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrheal disease caused by Vibrio cholerae is endemic in developing countries including India and is associated with high rate of mortality especially in children. V. cholerae is known to form biofilms on the gut epithelium, and the biofilms once formed are resistant to the action of antibiotics. Therefore agents that prevent the biofilm formation and disperse the preformed biofilms are associated with therapeutic benefits. The use of antibiotics for the treatment of cholera is associated with side effects such as gut dysbiosis due to depletion of gut microflora, and the increasing problem of antibiotic resistance. Thus search for safe alternative therapeutic agents is warranted. Herein, we screened the lactobacilli spp. isolated from the fecal samples of healthy children for their abilities to prevent biofilm formation and to disperse the preformed biofilms of V. cholerae and V. parahaemolyticus by using an in vitro assay. The results showed that the culture supernatant (CS) of all the seven isolates of Lactobacillus spp. used in the study inhibited the biofilm formation of V. cholerae by more than 90%. Neutralization of pH of CS completely abrogated their antimicrobial activities against V. cholera, but had negligible effects on their biofilm inhibitory potential. Further, CS of all the lactobacilli isolates caused the dispersion of preformed V. cholerae biofilms in the range 62–85%; however, pH neutralization of CS reduced the biofilm dispersal potential of the 4 out of 7 isolates by 19–57%. Furthermore, the studies showed that CS of none of the lactobacilii isolates had antimicrobial activity against V. parahaemolyticus, but 5 out of 7 isolates inhibited the formation of its biofilm in the range 62–82%. However, none of the CS dispersed the preformed biofilms of V. parahaemolyticus. The ability of CS to inhibit the adherence of Vibrio spp. to the epithelial cell line was also determined. Thus, we conclude that the biofilm dispersive action of CS of lactobacilli is strain-specific and pH-dependent. As Vibrio is known to form biofilms in the intestinal niche having physiological pH in the range 6–7, the probiotic strains that have dispersive action at high pH may have better therapeutic potential.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
55
|
Ng QX, Peters C, Venkatanarayanan N, Goh YY, Ho CYX, Yeo WS. Use of Lactobacillus spp. to prevent recurrent urinary tract infections in females. Med Hypotheses 2018; 114:49-54. [PMID: 29602464 DOI: 10.1016/j.mehy.2018.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 01/21/2023]
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections seen in the community, especially amongst females. The widespread use of antibiotics has led to the increased occurrence of E. coli resistant isolates worldwide. A promising non-antibiotic approach is the use of probiotic lactobacilli strains. This paper hypothesizes that Lactobacillus spp. containing products are able to prevent recurrent urinary tract infections in females. Using the keywords [lactobacillus OR lactobacilli OR probiotic] and [urinary tract infection OR UTI OR cystitis], a preliminary search on the PubMed, Ovid, Google Scholar and ClinicalTrials.gov database yielded 1,647 papers published in English between 1-Jan-1960 and 1-May-2017. 9 clinical trials with a total of 726 patients were reviewed. Different lactobacilli strains (in either oral or suppository formulation) were utilized and they demonstrated varying efficacy in the prevention of recurrent UTIs. Using a random-effects model, pooled risk ratio of at least one recurrent UTI episode during the entire study duration was 0.684 (95% CI 0.438 to 0.929, p < 0.001), per-protocol analysis. However, key limitations include significant inter-study variability and the limited duration of follow-up of most studies. Our hypothesis on the chemoprophylactic effects of probiotics for UTIs is plausible and supported by current data. Lactobacillus rhamnosus GR1 and Lactobacillus reuteri RC14 were the most commonly studied lactobacilli strains. Further and more robust randomized controlled trials with standardized lactobacilli strains and formulation are required for confirmation of effects.
Collapse
Affiliation(s)
- Qin Xiang Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Christina Peters
- University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Nandini Venkatanarayanan
- University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Yan Yih Goh
- Anglo Singapore International School, Sukhumvit 64, Bangchark, Prakanong, Bangkok 10260, Thailand
| | - Collin Yih Xian Ho
- National University Hospital, National University Health System, 119074, Singapore
| | - Wee-Song Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; National University Hospital, National University Health System, 119074, Singapore
| |
Collapse
|
56
|
Štofilová J, Langerholc T, Botta C, Treven P, Gradišnik L, Salaj R, Šoltésová A, Bertková I, Hertelyová Z, Bomba A. Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07. Biomed Pharmacother 2017; 94:1176-1185. [PMID: 28830068 DOI: 10.1016/j.biopha.2017.07.138] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/21/2023] Open
Abstract
Over the past decade, it has become clear that specific probiotic lactobacilli are valuable in the prevention and treatment of infectious and inflammatory diseases of gastrointestinal tract but their successful application would benefit greatly from a better understanding of the mechanisms of individual strains. Hence, each probiotic strain should be characterized for their immune activity before being proposed for clinical applications. The aim of the study was to characterize the immunomodulatory activity of the strain Lactobacillus (L.) plantarum LS/07 in vitro using functional gut model and to study its anti-inflammatory potential in dextran sulphate sodium (DSS)-induced colitis in rats. We showed that L. plantarum LS/07 induced production of IL-10 in macrophages derived from blood monocytes as well as monocyte/macrophages cell line stimulated indirectly via enterocytes in vitro. In rat model of colitis, L. plantarum LS/07 attenuated the DSS-induced signs of inflammatory process in colon such as weight loss, diarrhoea, infiltration of inflammatory cells associated with decreased colon weight/length ratio, inhibited gut mucosa destruction and depletion of goblet cells. Moreover, the strain increased the concentration of anti-inflammatory cytokine IL-10 in mucosal tissue. In conclusion, the protective effects of L. plantarum LS/07 in the DSS-induced colitis model seem to be related to the stimulation of IL-10 and the restoration of goblet cells and indicate it as a good candidate to prevent and treat diseases associated with inflammation.
Collapse
Affiliation(s)
- Jana Štofilová
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovak Republic.
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
| | - Cristian Botta
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Primož Treven
- Institute of Dairy Science and Probiotics, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Lidija Gradišnik
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
| | - Rastislav Salaj
- Medirex, a.s., Magnezitárska 2/C, 040 13 Košice, Slovak Republic
| | - Alena Šoltésová
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Izabela Bertková
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Zdenka Hertelyová
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovak Republic
| | - Alojz Bomba
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovak Republic
| |
Collapse
|
57
|
Zhao X, Yang J, Wang L, Lin H, Sun S. Protection Mechanism of Clostridium butyricum against Salmonella Enteritidis Infection in Broilers. Front Microbiol 2017; 8:1523. [PMID: 28848530 PMCID: PMC5552664 DOI: 10.3389/fmicb.2017.01523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
This study was designed to evaluate the protection mechanism of oral administration of Clostridium butyricum against Salmonella enteritidis (SE) colonization in broilers. In the current study, 180 one-day-old healthy Arbor Acres (AA) broilers were meanly grouped into three, with three replicates of 20 birds each. An negative control group was fed basal diet without SE challenge and a positive control (PC) group was fed the basal diet and challenged with SE [106 colony forming unit (CFU)/0.2 mL]. An experimental (EXP) group was fed the basal diet, orally administered with C. butyricum (106 CFU/mL) and challenged with SE (106 CFU/0.2 mL). The results showed that compared to the PC group, the SE loads in livers, spleens, and cecal contents of chickens in EXP group were significantly reduced (P < 0.05) except in spleens at the 2-day post-infection; the production of interferon-γ, interleukin (IL)-1β, IL-8, and tumor necrosis factor-α in the livers, spleens, and cecal tissues of chickens in EXP group were decreased to different extents. The results of quantitative real-time polymerase chain reaction further revealed that the inflammation of chickens in EXP group was alleviated by C. butyricum via down-regulating TLR4, MyD88, and NF-κB-dependent pathways. Collectively, these findings indicated that oral administration of C. butyricum could be a suitable alternative for preventing SE infection in broilers.
Collapse
Affiliation(s)
- Xiaonan Zhao
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Jie Yang
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Lili Wang
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| |
Collapse
|
58
|
Functional Profile Evaluation of Lactobacillus fermentum TCUESC01: A New Potential Probiotic Strain Isolated during Cocoa Fermentation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5165916. [PMID: 28808659 PMCID: PMC5541819 DOI: 10.1155/2017/5165916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/16/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The use of intestinal probiotic bacteria is very common in the food industry and has been the focus of the majority of research in this field. Yet in recent years, research on extraintestinal microorganisms has greatly increased due to their well-known potential as probiotics. Thus, we studied a strain of Lactobacillus fermentum (TCUESC01) extracted from fermenting cocoa. First, we examined the impact of pH on the growth of this strain and studied its survival under conditions similar to those of the human gastrointestinal tract. L. fermentum TCUESC01 demonstrated resistance to conditions mimicking the human stomach and intestines and grew well between pH 5 and pH 7. Next, we subjected L. fermentum TCUESC01 to storage at 4°C in a milk solution and found that it survived well for 28 days. Lastly, we measured the susceptibility of this strain to numerous antibiotics and its tendency to autoaggregate. L. fermentum TCUESC01 showed significant autoaggregation, as well as susceptibility to the majority of antibiotics tested. Overall, our findings support the potential use of this extraintestinal bacterium as a dietary probiotic.
Collapse
|
59
|
Marcial GE, Ford AL, Haller MJ, Gezan SA, Harrison NA, Cai D, Meyer JL, Perry DJ, Atkinson MA, Wasserfall CH, Garrett T, Gonzalez CF, Brusko TM, Dahl WJ, Lorca GL. Lactobacillus johnsonii N6.2 Modulates the Host Immune Responses: A Double-Blind, Randomized Trial in Healthy Adults. Front Immunol 2017; 8:655. [PMID: 28659913 PMCID: PMC5466969 DOI: 10.3389/fimmu.2017.00655] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus johnsonii N6.2 mitigates the onset of type 1 diabetes (T1D) in biobreeding diabetes-prone rats, in part, through changes in kynurenine:tryptophan (K:T) ratios. The goal of this pilot study was to determine the safety, tolerance, and general immunological response of L. johnsonii N6.2 in healthy subjects. A double-blind, randomized clinical trial in 42 healthy individuals with no known risk factors for T1D was undertaken to evaluate subject responses to the consumption of L. johnsonii N6.2. Participants received 1 capsule/day containing 108 colony-forming units of L. johnsonii N6.2 or placebo for 8 weeks. Comprehensive metabolic panel (CMP), leukocyte subpopulations by complete blood count (CBC) and flow cytometry, serum cytokines, and relevant metabolites in the indoleamine-2,3-dioxygenase pathway were assessed. L. johnsonii N6.2 survival and intestinal microbiota was analyzed. Daily and weekly questionnaires were assessed for potential effects of probiotic treatment on general wellness. The administration of L. johnsonii N6.2 did not modify the CMP or CBC of participants suggesting general safety. In fact, L. johnsonii N6.2 administration significantly decreased the occurrence of abdominal pain, indigestion, and cephalic syndromes. As predicted, increased serum tryptophan levels increased resulting in a decreased K:T ratio was observed in the L. johnsonii N6.2 group. Interestingly, immunophenotyping assays revealed that monocytes and natural killer cell numbers were increased significantly after washout (12 weeks). Moreover, an increase of circulating effector Th1 cells (CD45RO+CD183+CD196−) and cytotoxic CD8+ T cells subset was observed in the L. johnsonii N6.2 group. Consumption of L. johnsonii N6.2 is well tolerated in adult control subjects, demonstrates systemic impacts on innate and adaptive immune populations, and results in a decreased K:T ratio. These data provide support for the safety and feasibility of using L. johnsonii N6.2 in prevention trials in subjects at risk for T1D. Trial registration: This trial was registered at http://clinicaltrials.gov as NCT02349360.
Collapse
Affiliation(s)
- Guillermo E Marcial
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Amanda L Ford
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Salvador A Gezan
- School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Natalie A Harrison
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Dan Cai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Julie L Meyer
- Department of Soil and Water Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Timothy Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wendy J Dahl
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
60
|
Park MS, Song NE, Baik SH, Pae HO, Park SH. Oral administration of lactobacilli isolated from Jeotgal, a salted fermented seafood, inhibits the development of 2,4-dinitrofluorobenzene-induced atopic dermatitis in mice. Exp Ther Med 2017; 14:635-641. [PMID: 28672978 PMCID: PMC5488544 DOI: 10.3892/etm.2017.4536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/03/2017] [Indexed: 12/28/2022] Open
Abstract
Certain strains of lactobacilli have been reported to exert favorable effects on atopic dermatitis (AD). Jeotgal, a traditional Korean food, is a salted fermented seafood known to harbor many lactic acid bacteria. In the present study, two novel lactobacillus strains were isolated from Jeotgal, and their anti-AD effects were investigated. Lactobacilli isolated from Jeotgal were identified, according to conjugated linoleic acid-producing activity, as Lactobacillus plantarum (JBCC105645 and JBCC105683). AD-like skin lesions were induced in BALB/c mice using dinitrofluorobenzene (DNFB). Ear swelling, histological analysis and serum immunoglobulin E (IgE) levels in mice were evaluated to investigate the anti-AD effects of lactobacilli. Cytokine production of ex vivo cluster of differentiation (CD)4+ T cells, and interleukin (IL)-12 production of in vitro macrophages were also evaluated to establish a putative mechanism of the action of lactobacilli. Administration of JBCC105645 or JBCC105683 suppressed ear swelling and serum IgE levels in DNFB-treated mice (P<0.05). Notably, JBCC105645 was more effective than JBCC105683 (P<0.05). Treatment with the lactobacilli also induced a significant decrease in IL-4 production with concomitant increase in interferon (IFN)-γ production in DNFB-exposed CD4+ T cells, and an increase in IL-12 production in macrophages (P<0.05). Taken together, the lactobacilli isolated from Jeotgal may suppress the development of AD-like skin inflammation in mice by modulating IL-4 and IFN-γ production in CD4+ T cells, presumably via enhancing IL-12 production by macrophages.
Collapse
Affiliation(s)
- Mi-Sung Park
- Institute for Metabolic Disease, Wonkwang University, Iksan, Jeollabuk 570-749, Republic of Korea
| | - Nho-Eul Song
- Department of Food Science and Human Nutrition, and Fermented Food Research Center, Chonbuk National University, Jeonju, Jeollabuk 561-756, Republic of Korea
| | - Sang-Ho Baik
- Department of Food Science and Human Nutrition, and Fermented Food Research Center, Chonbuk National University, Jeonju, Jeollabuk 561-756, Republic of Korea
| | - Hyun-Ock Pae
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Jeollabuk 570-749, Republic of Korea
| | - Seong Hoon Park
- Institute for Metabolic Disease, Wonkwang University, Iksan, Jeollabuk 570-749, Republic of Korea
| |
Collapse
|
61
|
Michalickova DM, Kostic-Vucicevic MM, Vukasinovic-Vesic MD, Stojmenovic TB, Dikic NV, Andjelkovic MS, Djordjevic BI, Tanaskovic BP, Minic RD. Lactobacillus helveticus Lafti L10 Supplementation Modulates Mucosal and Humoral Immunity in Elite Athletes: A Randomized, Double-Blind, Placebo-Controlled Trial. J Strength Cond Res 2017; 31:62-70. [PMID: 27100317 DOI: 10.1519/jsc.0000000000001456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Michalickova, DM, Kostic-Vucicevic, MM, Vukasinovic-Vesic, MD, Stojmenovic, TB, Dikic, NV, Andjelkovic, MS, Djordjevic, BI, Tanaskovic, BP, and Minic, RD. Lactobacillus helveticus Lafti L10 supplementation modulates mucosal and humoral immunity in elite athletes: a randomized, double-blind, placebo-controlled trial. J Strength Cond Res 31(1): 62-70, 2017-To test the influence of probiotic supplementation on humoral immune response, a double-blind, placebo-controlled trial was conducted. Thirty athletes (24 males and 6 females, females: V[Combining Dot Above]O2max 38.2 ± 4.9 ml·kg·min, age 23.2 ± 1.4 years; males: V[Combining Dot Above]O2max 57.5 ± 9.2 ml·kg·min, age 24.0 ± 2.4 years, mean ± SD) were randomized either to the probiotic group (Lactobacillus helveticus Lafti L10, 2 × 10 colony-forming units) or to the placebo group. Serum and saliva samples were collected at the baseline and after 14 weeks. Total and specific antibacterial antibody levels of IgM, IgG, and IgA classes were determined for different bacteria in the serum, and in saliva, total and specific antibacterial IgA levels were examined. Total IgM was elevated in both probiotic (18%, 15-20%; mean, 90% confidence interval; p = 0.02) and placebo group (35%, 22-47%; p = 0.02), without observed differences in changes between the groups. No significant changes in IgM levels specific for tested bacteria were found. Total IgG level was constant in both groups. A significant (16%, -2.8 to 35%, p = 0.04) reduction of anti-Enterococcus faecalis IgG was noted in the placebo group, in comparison with the probiotic group. There was a substantial decrease in total IgA level in the placebo group, when measured either in serum (15%, 12-18%, p = 0.04) or in saliva (35%, -1.4 to 53%, p = 0.03). Significantly reduced levels of serum anti-lactic acid bacteria IgA antibodies in the placebo group compared with the probiotic group were detected for Lactobacillus rhamnosus LA68 (24%, 5.8-42%, p = 0.02) and for L. rhamnosus LB64 (15%, 2.7-27%, p = 0.02). Probiotic administration could have beneficial effects on systemic humoral and mucosal immune responses.
Collapse
Affiliation(s)
- Danica M Michalickova
- 1Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; 2Sports Medicine Associations of Serbia, Belgrade, Serbia; and 3Institute of Virology, Vaccines and Sera, Torlak, Beograd, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Sci Rep 2017; 7:545. [PMID: 28373699 PMCID: PMC5428773 DOI: 10.1038/s41598-017-00623-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Probiotics have been used to treat gastrointestinal disorders. However, the effect of orally intubated probiotics on oral disease remains unclear. We assessed the potential of oral administration of Lactobacillus gasseri SBT2055 (LG2055) for Porphyromonas gingivalis infection. LG2055 treatment significantly reduced alveolar bone loss, detachment and disorganization of the periodontal ligament, and bacterial colonization by subsequent P. gingivalis challenge. Furthermore, the expression and secretion of TNF-α and IL-6 in gingival tissue was significantly decreased in LG2055-administered mice after bacterial infection. Conversely, mouse β-defensin-14 (mBD-14) mRNA and its peptide products were significantly increased in distant mucosal components as well as the intestinal tract to which LG2055 was introduced. Moreover, IL-1β and TNF-α production from THP-1 monocytes stimulated with P. gingivalis antigen was significantly reduced by the addition of human β-defensin-3. These results suggest that gastrically administered LG2055 can enhance immunoregulation followed by periodontitis prevention in oral mucosa via the gut immune system; i.e., the possibility of homing in innate immunity.
Collapse
|
63
|
Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M, Santos C, Nicoli J, Neumann E, Nunes Á. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol Res 2017; 200:1-13. [PMID: 28527759 DOI: 10.1016/j.micres.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
Abstract
From the birth, since their mucosal microbiota and immune system are not fully developed, newborn calves are susceptible to several mucosal pathogenic microorganisms. Operating through humoral and non-humoral mechanisms in the host, several lactic acid bacteria strains bearing probiotic features are often employed in livestock as food supplement, improving animal production performance, promoting health and reducing the severity of mucosal infections. Accordingly, we isolated, species-level identified and screened for their probiotic potentials seventy lactic acid bacteria strains from upper airway, vaginal and intestinal mucosa of healthy calves. Based on in vitro approaches, we selected three strains: Lactobacillus fermentum V3B-08 isolated from upper airway mucosa, Weissella hellenica V1V-30 isolated from vaginal mucosa and Lactobacillus farciminis B4F-06 isolated from intestinal mucosa were used to mono-colonize germ-free mice in the same site in which these strains were isolated, aiming to characterize their immunomodulatory features. These strains were able to colonize germ-free mice mucosa and trigger sIgA synthesis at a local level, in addition to stimulating, in different ways, adaptive immune responses at a systemic level.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luige Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Bruno Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cinara Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil; Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Campos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
64
|
Possible correlation between levansucrase production and probiotic activity of Bacillus sp. isolated from honey and honey bee. World J Microbiol Biotechnol 2017; 33:69. [PMID: 28271385 DOI: 10.1007/s11274-017-2231-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/17/2017] [Indexed: 01/06/2023]
Abstract
Five bacterial isolates from honey and bee gut were selected based on their high levansucrase activity and levan yield which were strongly positively correlated. All isolates showed good tolerance to temperature up to 70 °C, to NaCl up to 3 M and to 0.1% H2O2. They maintained over 59 and 64% survival at pH 9.0 and 2.0 respectively, but showed varying tolerance to 0.1% bile salts and pancreatic enzymes. Most isolates were susceptible to widely used antibiotics, but demonstrated diverse antimicrobial activity. Non hemolytic isolates were identified on the basis of 16S rRNA sequencing as Bacillus subtilis HMNig-2 and B. subtilis MENO2 with 97% homology. They exhibited promising probiotic characteristics and achieved highest levansucrase activity of 94.1 and 81.5 U/mL respectively. Both exhibited highest biofilm formation ability in static microtiter plate assay. Also, they achieved 34 and 26% adhesion respectively to Caco-2cells and had highest free radical scavenging activity of 30.8 and 26.2% respectively. The levans of the two isolates showed good antimicrobial activity against some pathogens and exhibited positive prebiotic effect (prebiotic index >1) with Lactobacillus casei and Lactobacillus reuteri. Results suggest a correlation between levansucrase production, levan yield and pre-probiotic activities of the studied strains.
Collapse
|
65
|
Redondo N, Nova E, Gheorghe A, Díaz LE, Hernández A, Marcos A. Evaluation of Lactobacillus coryniformis CECT5711 strain as a coadjuvant in a vaccination process: a randomised clinical trial in healthy adults. Nutr Metab (Lond) 2017; 14:2. [PMID: 28070204 PMCID: PMC5217323 DOI: 10.1186/s12986-016-0154-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the effects of probiotics on the immune system have been extensively evaluated under disease states, their role in healthy situations remains unclear, since changes are hardly expected under immunological homeostasis. EFSA indicates that vaccination protocols could be used to evaluate the potential role of probiotics to improve the immune response against antigen challenges. The aim of the study was to evaluate the effect of Lactobacillus coryniformis CECT5711 (Lc) on the specific immunity of healthy volunteers undergoing vaccination with Hepatitis A virus (HAV). METHODS One hundred twenty-three healthy adults were randomised into three groups to follow a 6-week (wk) intervention and all received an intramuscular HAV vaccine 2 weeks after starting the intervention: 1) PRO1 received Lc for 2weeks (1 capsule/day; 3 × 109 CFU/capsule) and placebo capsules after vaccination; 2) PRO2 received a daily capsule of Lc (3 × 109 cfu/day) before and after the challenge; 3) Control group (C) received a daily placebo capsule before and after the vaccine. Blood samples were collected at the beginning (visit 1; V1) and after 2 (V2) and 6 weeks (V3) of the intervention. At each visit, lymphocyte subset counts and cytokine levels were analysed. Specific HAV antibodies were analysed at V1 and V3. To evaluate differences between groups, one-way ANOVA with Bonferroni post-hoc test were used regarding lymphocyte subset counts and specific HAV antibodies production, and Friedman test of related samples and Kendall concordance coefficient for cytokines production. Chi square test was used to analyse seroconversion rates. RESULTS Specific HAV antibodies were significantly higher in PRO1 (50.54 ± 29.57) compared to C (36.23 ± 16.45) (P = 0.017) and showed an intermediate value in PRO2 (41.61 ± 15.74). Seroconversion rates were similar in the three groups (97.3, 92.3 and 97.4% in C, PRO1 and PRO2 respectively). Memory T-helper lymphocytes increased in V3 vs. V1 (P = 0.032) in PRO2. No differences were found in cytokine concentrations. CONCLUSION Mixed results have been found regarding the usefulness of Lc supplementation to increase the antigen-specific antibody response to an immune challenge. Clinical trial registration number: EudraCT Number 2016-000183-42. Registered 19 January 2016. Retrospectively registered.
Collapse
Affiliation(s)
- Noemí Redondo
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Esther Nova
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Alina Gheorghe
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Ligia Esperanza Díaz
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Aurora Hernández
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Ascensión Marcos
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| |
Collapse
|
66
|
Bae MJ, Kim HK, Lim S, Lee SY, Shin HS, Kim JE, Im SH, Kim S. Lactobacillus pentosus KF340 alleviates house dust mite-induced murine atopic dermatitis via the secretion of IL-10-producing splenic B10 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
67
|
Asgari F, Madjd Z, Falak R, Bahar MA, Nasrabadi MH, Raiani M, Shekarabi M. Probiotic feeding affects T cell populations in blood and lymphoid organs in chickens. Benef Microbes 2016; 7:669-675. [PMID: 27349931 DOI: 10.3920/bm2016.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was performed to evaluate the effects of Lactobacillus acidophilus bacteria as a probiotic on chicken T cell subset populations in peripheral blood and lymphoid tissues. Thirty chickens were divided into three groups and fed sterilised cow milk, a mixture of milk and L. acidophilus (probiotic), or neither, as the control group. Chickens were euthanised after 14 and 21 days, and whole blood and ileal, bursal, and caecal tonsillar tissues were collected. The populations of T cell subsets, including CD4+, CD8+, and TCR1+ cells, were evaluated by immunohistochemistry and flow cytometry. After 21 days of treatment the percentage of blood CD4+, CD8+, and TCR1+ cells was significantly higher in the probiotic-fed group than in the control group. After 14 days of treatment, a significantly greater number of CD4+ T cells were found in the ileum of probiotic-fed chickens than in chickens from the other two groups. This difference was even greater after 21 days. In addition, after 21 days, a significantly greater number of TCR1+ cells were found in the caecal tonsils of milk-fed chickens than in chickens from the control group. The findings indicate that probiotics may alter the distribution of T cells in the blood and lymphoid tissues in young chickens; however, transient changes in lymphoid tissues indicate that probiotics likely do not permanently affect mucosal immunity.
Collapse
Affiliation(s)
- F Asgari
- 1 Immunology Research Center, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran.,2 Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran
| | - Z Madjd
- 3 Department of Pathology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran
| | - R Falak
- 1 Immunology Research Center, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran.,2 Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran
| | - M A Bahar
- 2 Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran
| | - M Heydari Nasrabadi
- 4 Department of Biology, Faculty of Basic Science, Islamic Azad University - Parand Branch, Parand, Bahonar Blvd, Parand, 3761396361 Tehran, Iran
| | - M Raiani
- 5 Keyhan Pathobiology Laboratory, Shadmehr Street, 1456945365 Tehran, Iran
| | - M Shekarabi
- 1 Immunology Research Center, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran.,2 Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, 1449614535 Tehran, Iran
| |
Collapse
|
68
|
Perlamutrov YN, Olhovskaya KB, Zakirova SA. Double-blind controlled randomised study of lactulose and lignin hydrolysed combination in complex therapy of atopic dermatitis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2016; 27:30418. [PMID: 27341938 PMCID: PMC4920936 DOI: 10.3402/mehd.v27.30418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/09/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023]
Abstract
Background Atopic dermatitis (AD) is an immune mediated disease with complex pathogenesis characterised by persistency, frequent exacerbations, and inefficacy of existing therapies. Damaged or weakened intestinal microbiocenosis is considered as an important aetiological factor of AD. The aim of this study was to evaluate the efficacy and safety of medical preparation Lactofiltrum (lactulose and sorbent (lignin hydrolysed)) in comparison with placebo in complex with standard therapy of AD. Methods Double-blind, placebo controlled, randomised comparative study of effectiveness and safety of 400 mg lactulose and 120 mg lignin hydrolysed combination as a part of standard combined AD treatment, conducted in parallel groups of patients aged 18–60. Results Comparison of clinical efficacy of Lactofiltrum in combination with the standard treatment has been demonstrated by measuring the following parameters: administration of Lactofiltrum results in 1) distinct clinical improvement in 56.75% of patients, 2) decrease of the mean values of scoring atopic dermatitis (SCORAD) index in 71.94% of patients, 3) elimination of itching in 50% of patients, and 4) life quality improvement for 76.41%. In the placebo group, 1) distinct clinical improvement was observed in 20% of patients, 2) decrease in SCORAD index values observed by 56.98%, 3) itching relief in 15.56%, and 4) life quality improvement by 36.38%. Conclusions Clinical improvement and persistent termination of clinical symptoms provide evidence of effectiveness in use of Lactofiltrum combined with the standard treatment of AD.
Collapse
Affiliation(s)
- Yuri N Perlamutrov
- Moscow State University of Medicine and Dentistry, Department of dermatovenerology, Moscow, Russia
| | - Kira B Olhovskaya
- Moscow State University of Medicine and Dentistry, Department of dermatovenerology, Moscow, Russia
| | | |
Collapse
|
69
|
Fermented milk with probiotic Lactobacillus rhamnosus S1K3 (MTCC5957) protects mice from salmonella by enhancing immune and nonimmune protection mechanisms at intestinal mucosal level. J Nutr Biochem 2016; 30:62-73. [DOI: 10.1016/j.jnutbio.2015.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
70
|
Guerreiro I, Serra CR, Enes P, Couto A, Salvador A, Costas B, Oliva-Teles A. Effect of short chain fructooligosaccharides (scFOS) on immunological status and gut microbiota of gilthead sea bream (Sparus aurata) reared at two temperatures. FISH & SHELLFISH IMMUNOLOGY 2016; 49:122-31. [PMID: 26721230 DOI: 10.1016/j.fsi.2015.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 05/27/2023]
Abstract
The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets.
Collapse
Affiliation(s)
- Inês Guerreiro
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Cláudia R Serra
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Paula Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Ana Couto
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Andreia Salvador
- CEB - Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Benjamín Costas
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Aires Oliva-Teles
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
71
|
Manuzak JA, Hensley-McBain T, Zevin AS, Miller C, Cubas R, Agricola B, Gile J, Richert-Spuhler L, Patilea G, Estes JD, Langevin S, Reeves RK, Haddad EK, Klatt NR. Enhancement of Microbiota in Healthy Macaques Results in Beneficial Modulation of Mucosal and Systemic Immune Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2401-9. [PMID: 26826246 DOI: 10.4049/jimmunol.1502470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022]
Abstract
Given the critical role of mucosal surfaces in susceptibility to infection, it is imperative that effective mucosal responses are induced when developing efficacious vaccines and prevention strategies for infection. Modulating the microbiota in the gastrointestinal (GI) tract through the use of probiotics (PBio) is a safe and well-tolerated approach to enhance mucosal and overall health. We assessed the longitudinal impact of daily treatment with the VSL#3 probiotic on cellular and humoral immunity and inflammation in healthy macaques. PBio therapy resulted in significantly increased frequencies of B cells expressing IgA in the colon and lymph node (LN), likely because of significantly increased LN T follicular helper cell frequencies and LN follicles. Increased frequencies of IL-23(+) APCs in the colon were found post-PBio treatment, which correlated with LN T follicular helper cells. Finally, VSL#3 significantly downmodulated the response of TLR2-, TLR3-, TLR4-, and TLR9-expressing HEK293 cells to stimulation with Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and ODN2006, respectively. These data provide a mechanism for the beneficial impact of PBio on mucosal health and implicates the use of PBio therapy in the context of vaccination or preventative approaches to enhance protection from mucosal infection by improving immune defenses at the mucosal portal of entry.
Collapse
Affiliation(s)
- Jennifer A Manuzak
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121
| | - Tiffany Hensley-McBain
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121
| | - Alexander S Zevin
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121
| | - Charlene Miller
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121
| | | | - Brian Agricola
- Washington National Primate Research Center, Seattle, WA 98121
| | - Jill Gile
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121
| | - Laura Richert-Spuhler
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121
| | - Gabriela Patilea
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Stanley Langevin
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115; and
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19104
| | - Nichole R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121; Washington National Primate Research Center, Seattle, WA 98121;
| |
Collapse
|
72
|
Yang G, Tian X, Dong S, Peng M, Wang D. Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka). FISH & SHELLFISH IMMUNOLOGY 2015; 45:800-807. [PMID: 26052012 DOI: 10.1016/j.fsi.2015.05.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Probiotics have positive effects on the nutrient digestibility and absorption, immune responses, and growth of aquatic animals, including the sea cucumber (Apostichopus japonicus Selenka). A 60-day feeding trial was conducted to evaluate the effects of Bacillus cereus G19, B. cereus BC-01 and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression level of four immune-related genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) in coelomocytes and the intestine of juvenile sea cucumbers. One group was fed the basal diet (control group), while three other groups were fed the basal diet supplemented with B. cereus G19 (G19 group), B. cereus BC-01 (BC group), or P. marcusii DB11 (PM group). The growth rate of sea cucumbers fed diets with probiotics supplementation was significantly higher than that of the control group (P < 0.05). Sea cucumbers in the G19 and PM groups had a significantly greater phagocytic activity of coelomocytes compared to the control group (P < 0.05), while those in the G19 and BC groups had a greater respiratory burst activity (P < 0.05). The alkaline phosphatase (AKP) activity of coelomocytes in sea cucumbers fed diets with probiotics supplementation was significantly higher than the control group (P < 0.05). Comparatively, superoxide dismutase (SOD) activity of coelomocytes for sea cucumber in the PM group was significantly greater (P < 0.05). As for the immune-related genes, B. cereus G19 supplementation significantly increased the expression level of the Aj-rel gene in coelomocytes (P < 0.05), while B. cereus BC-01 supplementation significantly increased that of the Aj-p50 gene as compared to the control group (P < 0.05). In the intestine, the relative expression level of Aj-p105, Aj-p50, and Aj-lys genes in the PM group was significantly higher than that in the control group (P < 0.05). These results suggested that B. cereus G19 and B. cereus BC-01 supplementation could improve the growth performance and the immune response in coelomocytes, while P. marcusii DB11 supplementation could have a positive effect on the growth performance and immune response in coelomocytes and the intestine of sea cucumbers.
Collapse
Affiliation(s)
- Gang Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China.
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Mo Peng
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Dongdong Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
73
|
Yang S, Reid G, Challis JRG, Kim SO, Gloor GB, Bocking AD. Is there a role for probiotics in the prevention of preterm birth? Front Immunol 2015; 6:62. [PMID: 25741339 PMCID: PMC4330906 DOI: 10.3389/fimmu.2015.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/01/2015] [Indexed: 01/12/2023] Open
Abstract
Preterm birth (PTB) continues to be a global health challenge. An over-production of inflammatory cytokines and chemokines, as well as an altered maternal vaginal microbiome has been implicated in the pathogenesis of inflammation/infection-associated PTB. Lactobacillus represents the dominant species in the vagina of most healthy pregnant women. The depletion of Lactobacillus in women with bacterial vaginosis (BV) has been associated with an increased risk of PTB. It remains unknown at what point an aberrant vaginal microbiome composition specifically induces the cascade leading to PTB. The ability of oral or vaginal lactobacilli probiotics to reduce BV occurrence and/or dampen inflammation is being considered as a means to prevent PTB. Certain anti-inflammatory properties of lactobacilli suggest potential mechanisms. To date, clinical studies have not been powered with sufficiently high rates of PTB, but overall, there is merit in examining this promising area of clinical science.
Collapse
Affiliation(s)
- Siwen Yang
- Department of Physiology, Obstetrics and Gynecology, University of Toronto , Toronto, ON , Canada ; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, ON , Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - John R G Challis
- Department of Physiology, Obstetrics and Gynecology, University of Toronto , Toronto, ON , Canada ; Department of Obstetrics and Gynecology, The University of Western Australia , Perth, WA , Australia
| | - Sung O Kim
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - Gregory B Gloor
- Department of Biochemistry, Western University , London, ON , Canada
| | - Alan D Bocking
- Department of Physiology, Obstetrics and Gynecology, University of Toronto , Toronto, ON , Canada ; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, ON , Canada
| |
Collapse
|
74
|
Yang G, Xu Z, Tian X, Dong S, Peng M. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation. Biochem Biophys Res Commun 2015; 458:98-103. [PMID: 25640843 DOI: 10.1016/j.bbrc.2015.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/18/2015] [Indexed: 11/16/2022]
Abstract
β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota.
Collapse
Affiliation(s)
- Gang Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, China
| | - Zhenjiang Xu
- Biofrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, China.
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, China
| | - Mo Peng
- School of Animal Science and Technology, Jiangxi Agricultural University, China
| |
Collapse
|