51
|
Buchman AS, Leurgans SE, Kim N, Agrawal S, Oveisgharan S, Zammit AR, VanderHorst V, Nag S, Bennett DA. Alzheimer's Disease Pathology Outside of the Cerebrum Is Related to a Higher Odds of Dementia. J Alzheimers Dis 2023; 96:563-578. [PMID: 37840485 PMCID: PMC11406461 DOI: 10.3233/jad-230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Assessments of Alzheimer's disease pathology do not routinely include lower brainstem, olfactory bulb, and spinal cord. OBJECTIVE Test if amyloid-β (Aβ) and paired helical filament (PHF) tau-tangles outside the cerebrum are associated with the odds of dementia. METHODS Autopsies were obtained in decedents with cognitive testing (n = 300). Aβ plaques and PHF tau-tangles were assessed in 24 sites: cerebrum (n = 14), brainstem (n = 5), olfactory bulb, and four spinal cord levels. Since spinal Aβ were absent in the first 165 cases, it was not assessed in the remaining cases. RESULTS Age at death was 91 years old. About 90% had Aβ in cerebrum and of these, half had Aβ in the brainstem. Of the latter, 85% showed Aβ in the olfactory bulb. All but one participant had tau-tangles in the cerebrum and 86% had brainstem tau-tangles. Of the latter, 80% had tau-tangles in olfactory bulb and 36% tau-tangles in one or more spinal cord levels. About 90% of adults with tau-tangles also had Aβ in one or more regions. In a logistic model controlling for demographics, Aβ and tau-tangles within the cerebrum, the presence of Aβ in olfactory bulb [OR, 1.74(1.00, 3.05)]; tau-tangles in brainstem [OR, 4.00(1.1.57,10.21)]; and spinal cord [OR, 1.87 (1.21,3.11)] were independently associated with higher odds of dementia. CONCLUSION Regional differences in Aβ and tau-tangle accumulation extend beyond cerebrum to spinal cord and their presence outside the cerebrum are associated with a higher odds of dementia. Further studies are needed to clarify the extent, burden, and consequences of AD pathology outside of cerebrum.
Collapse
Affiliation(s)
- Aron S Buchman
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Namhee Kim
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
| | - Sonal Agrawal
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Andrea R Zammit
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - Sukrit Nag
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
52
|
Minné D, Marnewick JL, Engel-Hills P. Early Chronic Stress Induced Changes within the Locus Coeruleus in Sporadic Alzheimer's Disease. Curr Alzheimer Res 2023; 20:301-317. [PMID: 37872793 DOI: 10.2174/1567205020666230811092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 10/25/2023]
Abstract
Chronic exposure to stress throughout the lifespan has been the focus of many studies on Alzheimer's disease (AD) because of the similarities between the biological mechanisms involved in chronic stress and the pathophysiology of AD. In fact, the earliest abnormality associated with the disease is the presence of phosphorylated tau protein in locus coeruleus neurons, a brain structure highly responsive to stress and perceived threat. Here, we introduce allostatic load as a useful concept for understanding many of the complex, interacting neuropathological changes involved in the AD degenerative process. In response to chronic stress, aberrant tau proteins that begin to accumulate within the locus coeruleus decades prior to symptom onset appear to represent a primary pathological event in the AD cascade, triggering a wide range of interacting brain changes involving neuronal excitotoxicity, endocrine alterations, inflammation, oxidative stress, and amyloid plaque exacerbation. While it is acknowledged that stress will not necessarily be the major precipitating factor in all cases, early tau-induced changes within the locus coeruleus-norepinephrine pathway suggests that a therapeutic window might exist for preventative measures aimed at managing stress and restoring balance within the HPA axis.
Collapse
Affiliation(s)
- Donné Minné
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| |
Collapse
|
53
|
Chow TE, Veziris CR, Mundada N, Martinez-Arroyo AI, Kramer JH, Miller BL, Rosen HJ, Gorno-Tempini ML, Rankin KP, Seeley WW, Rabinovici GD, La Joie R, Sturm VE. Medial Temporal Lobe Tau Aggregation Relates to Divergent Cognitive and Emotional Empathy Abilities in Alzheimer's Disease. J Alzheimers Dis 2023; 96:313-328. [PMID: 37742643 PMCID: PMC10894587 DOI: 10.3233/jad-230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), the gradual accumulation of amyloid-β (Aβ) and tau proteins may underlie alterations in empathy. OBJECTIVE To assess whether tau aggregation in the medial temporal lobes related to differences in cognitive empathy (the ability to take others' perspectives) and emotional empathy (the ability to experience others' feelings) in AD. METHODS Older adults (n = 105) completed molecular Aβ positron emission tomography (PET) scans. Sixty-eight of the participants (35 women) were Aβ positive and symptomatic with diagnoses of mild cognitive impairment, dementia of the Alzheimer's type, logopenic variant primary progressive aphasia, or posterior cortical atrophy. The remaining 37 (22 women) were asymptomatic Aβ negative healthy older controls. Using the Interpersonal Reactivity Index, we compared current levels of informant-rated cognitive empathy (Perspective-Taking subscale) and emotional empathy (Empathic Concern subscale) in the Aβ positive and negative participants. The Aβ positive participants also underwent molecular tau-PET scans, which were used to investigate whether regional tau burden in the bilateral medial temporal lobes related to empathy. RESULTS Aβ positive participants had lower perspective-taking and higher empathic concern than Aβ negative healthy controls. Medial temporal tau aggregation in the Aβ positive participants had divergent associations with cognitive and emotional empathy. Whereas greater tau burden in the amygdala predicted lower perspective-taking, greater tau burden in the entorhinal cortex predicted greater empathic concern. Tau burden in the parahippocampal cortex did not predict either form of empathy. CONCLUSIONS Across AD clinical syndromes, medial temporal lobe tau aggregation is associated with lower perspective-taking yet higher empathic concern.
Collapse
Affiliation(s)
- Tiffany E. Chow
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Christina R. Veziris
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexis I. Martinez-Arroyo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Howard J. Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Katherine P. Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
54
|
Jacobs HIL, Becker JA, Kwong K, Munera D, Ramirez-Gomez L, Engels-Domínguez N, Sanchez JS, Vila-Castelar C, Baena A, Sperling RA, Johnson KA, Lopera F, Quiroz YT. Waning locus coeruleus integrity precedes cortical tau accrual in preclinical autosomal dominant Alzheimer's disease. Alzheimers Dement 2023; 19:169-180. [PMID: 35298083 PMCID: PMC9481982 DOI: 10.1002/alz.12656] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Autopsy studies recognize the locus coeruleus (LC) as one of the first sites accumulating tau in Alzheimer's disease (AD). Recent AD work related in vivo LC magnetic resonance imaging (MRI) integrity to tau and cognitive decline; however, relationships of LC integrity to age, tau, and cognition in autosomal dominant AD (ADAD) remain unexplored. METHODS We associated LC integrity (3T-MRI) with estimated years of onset, cortical amyloid beta, regional tau (positron emission tomography [PET]) and memory (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word-List-Learning) among 27 carriers and 27 non-carriers of the presenilin-1 (PSEN1) E280A mutation. Longitudinal changes between LC integrity and tau were evaluated in 10 carriers. RESULTS LC integrity started to decline at age 32 in carriers, 12 years before clinical onset, and 20 years earlier than in sporadic AD. LC integrity was negatively associated with cortical tau, independent of amyloid beta, and predicted precuneus tau increases. LC integrity was positively associated with memory. DISCUSSION These findings support LC integrity as marker of disease progression in preclinical ADAD.
Collapse
Affiliation(s)
- Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - John Alex Becker
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth Kwong
- Athinoula A. Martinos Center for Biomedial Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Munera
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Liliana Ramirez-Gomez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Justin S Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Baena
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Reisa A Sperling
- Athinoula A. Martinos Center for Biomedial Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francisco Lopera
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
55
|
Rao SP, Xie W, Christopher Kwon YI, Juckel N, Xie J, Dronamraju VR, Vince R, Lee MK, More SS. Sulfanegen stimulates 3-mercaptopyruvate sulfurtransferase activity and ameliorates Alzheimer's disease pathology and oxidative stress in vivo. Redox Biol 2022; 57:102484. [PMID: 36183541 PMCID: PMC9530613 DOI: 10.1016/j.redox.2022.102484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 02/08/2023] Open
Abstract
Increased oxidative stress and inflammation are implicated in the pathogenesis of Alzheimer's disease. Treatment with hydrogen sulfide (H2S) and H2S donors such as sodium hydrosulfide (NaSH) can reduce oxidative stress in preclinical studies, however clinical benefits of such treatments are rather ambiguous. This is partly due to poor stability and bioavailability of the H2S donors, requiring impractically large doses that are associated with dose-limiting toxicity. Herein, we identified a bioavailable 3-mercaptopyruvate prodrug, sulfanegen, which is able to pose as a sacrificial redox substrate for 3-mercaptopyruvate sulfurtransferase (3MST), one of the H2S biosynthetic enzymes in the brain. Sulfanegen is able to mitigate toxicity emanating from oxidative insults and the Aβ1-42 peptide by releasing H2S through the 3MST pathway. When administered to symptomatic transgenic mouse model of AD (APP/PS1; 7 and 12 months) and mice that were intracerebroventricularly administered with the Aβ1-42 peptide, sulfanegen was able to reverse oxidative and neuroinflammatory consequences of AD pathology by restoring 3MST function. Quantitative neuropathological analyses confirmed significant disease modifying effect of the compound on amyloid plaque burden and brain inflammatory markers. More importantly, sulfanegen treatment attenuated progressive neurodegeneration in these mice, as evident from the restoration of TH+ neurons in the locus coeruleus. This study demonstrates a previously unknown concept that supplementation of 3MST function in the brain may be a viable approach for the management of AD. Finally, brought into the spotlight is the potential of sulfanegen as a promising AD therapeutic for future drug development efforts.
Collapse
Affiliation(s)
- Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Nicholas Juckel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
56
|
Parent JH, Ciampa CJ, Harrison TM, Adams JN, Zhuang K, Betts MJ, Maass A, Winer JR, Jagust WJ, Berry AS. Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Neuroimage 2022; 263:119658. [PMID: 36191755 PMCID: PMC10060440 DOI: 10.1016/j.neuroimage.2022.119658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Higher neuroticism is a risk factor for Alzheimer's disease (AD), and is implicated in disordered stress responses. The locus coeruleus (LC)-catecholamine system is activated during perceived threat and is a centerpiece of developing models of the pathophysiology of AD, as it is the first brain region to develop abnormal tau. We examined relationships among the "Big 5" personality traits, LC catecholamine synthesis capacity measured with [18F]Fluoro-m-tyrosine PET, and tau burden measured with [18F]Flortaucipir PET in cognitively normal older adults (n = 47). β-amyloid (Aβ) status was determined using [11C]Pittsburgh compound B PET (n = 14 Aβ positive). Lower LC catecholamine synthesis capacity was associated with higher neuroticism, more depressive symptoms as measured by the Geriatric Depression Scale, and higher amygdala tau-PET binding. Exploratory analyses with other personality traits revealed that low trait conscientiousness was also related to both lower LC catecholamine synthesis capacity, and more depressive symptoms. A significant indirect path linked both high neuroticism and low conscientiousness to greater amygdala tau burden via their mutual association with low LC catecholamine synthesis capacity. Together, these findings reveal LC catecholamine synthesis capacity to be a promising marker of affective health and pathology burden in aging, and identifies candidate neurobiological mechanisms for the effect of personality on increased vulnerability to dementia.
Collapse
Affiliation(s)
- Jourdan H. Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Claire J. Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M. Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
| | - Joseph R. Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S. Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
57
|
Elman JA, Puckett OK, Hagler DJ, Pearce RC, Fennema-Notestine C, Hatton SN, Lyons MJ, McEvoy LK, Panizzon MS, Reas ET, Dale AM, Franz CE, Kremen WS. Associations between MRI-assessed locus coeruleus integrity and cortical gray matter microstructure. Cereb Cortex 2022; 32:4191-4203. [PMID: 34969072 PMCID: PMC9528780 DOI: 10.1093/cercor/bhab475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023] Open
Abstract
The locus coeruleus (LC) is one of the earliest sites of tau pathology, making it a key structure in early Alzheimer's disease (AD) progression. As the primary source of norepinephrine for the brain, reduced LC integrity may have negative consequences for brain health, yet macrostructural brain measures (e.g. cortical thickness) may not be sensitive to early stages of neurodegeneration. We therefore examined whether LC integrity was associated with differences in cortical gray matter microstructure among 435 men (mean age = 67.5; range = 62-71.7). LC structural integrity was indexed by contrast-to-noise ratio (LCCNR) from a neuromelanin-sensitive MRI scan. Restriction spectrum imaging (RSI), an advanced multi-shell diffusion technique, was used to characterize cortical microstructure, modeling total diffusion in restricted, hindered, and free water compartments. Higher LCCNR (greater integrity) was associated with higher hindered and lower free water diffusion in multiple cortical regions. In contrast, no associations between LCCNR and cortical thickness survived correction. Results suggest lower LC integrity is associated with patterns of cortical microstructure that may reflect a reduction in cytoarchitectural barriers due to broader neurodegenerative processes. These findings highlight the potential utility for LC imaging and advanced diffusion measures of cortical microstructure in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rahul C Pearce
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sean N Hatton
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Health Care System, La Jolla, CA 92161, USA
| |
Collapse
|
58
|
Wang Z, Cao X, LaBella A, Zeng X, Biegon A, Franceschi D, Petersen E, Clayton N, Ulaner GA, Zhao W, Goldan AH. High-resolution and high-sensitivity PET for quantitative molecular imaging of the monoaminergic nuclei: A GATE simulation study. Med Phys 2022; 49:4430-4444. [PMID: 35390182 PMCID: PMC11025683 DOI: 10.1002/mp.15653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Quantitative in vivo molecular imaging of fine brain structures requires high-spatial resolution and high-sensitivity. Positron emission tomography (PET) is an attractive candidate to introduce molecular imaging into standard clinical care due to its highly targeted and versatile imaging capabilities based on the radiotracer being used. However, PET suffers from relatively poor spatial resolution compared to other clinical imaging modalities, which limits its ability to accurately quantify radiotracer uptake in brain regions and nuclei smaller than 3 mm in diameter. Here we introduce a new practical and cost-effective high-resolution and high-sensitivity brain-dedicated PET scanner, using our depth-encoding Prism-PET detector modules arranged in a conformal decagon geometry, to substantially reduce the partial volume effect and enable accurate radiotracer uptake quantification in small subcortical nuclei. METHODS Two Prism-PET brain scanner setups were proposed based on our 4-to-1 and 9-to-1 coupling of scintillators to readout pixels using1.5 × 1.5 × 20 $1.5 \times 1.5 \times 20$ mm3 and0.987 × 0.987 × 20 $0.987 \times 0.987 \times 20$ mm3 crystal columns, respectively. Monte Carlo simulations of our Prism-PET scanners, Siemens Biograph Vision, and United Imaging EXPLORER were performed using Geant4 application for tomographic emission (GATE). National Electrical Manufacturers Association (NEMA) standard was followed for the evaluation of spatial resolution, sensitivity, and count-rate performance. An ultra-micro hot spot phantom was simulated for assessing image quality. A modified Zubal brain phantom was utilized for radiotracer imaging simulations of 5-HT1A receptors, which are abundant in the raphe nuclei (RN), and norepinephrine transporters, which are highly concentrated in the bilateral locus coeruleus (LC). RESULTS The Prism-PET brain scanner with 1.5 mm crystals is superior to that with 1 mm crystals as the former offers better depth-of-interaction (DOI) resolution, which is key to realizing compact and conformal PET scanner geometries. We achieved uniform 1.3 mm full-width-at-half-maximum (FWHM) spatial resolutions across the entire transaxial field-of-view (FOV), a NEMA sensitivity of 52.1 kcps/MBq, and a peak noise equivalent count rate (NECR) of 957.8 kcps at 25.2 kBq/mL using 450-650 keV energy window. Hot spot phantom results demonstrate that our scanner can resolve regions as small as 1.35 mm in diameter at both center and 10 cm away from the center of the transaixal FOV. Both 5-HT1A receptor and norepinephrine transporter brain simulations prove that our Prism-PET scanner enables accurate quantification of radiotracer uptake in small brain regions, with a 1.8-fold and 2.6-fold improvement in the dorsal RN as well as a 3.2-fold and 4.4-fold improvement in the bilateral LC compared to the Biograph Vision and EXPLORER, respectively. CONCLUSIONS Based on our simulation results, the proposed high-resolution and high-sensitivity Prism-PET brain scanner is a promising cost-effective candidate to achieve quantitative molecular neuroimaging of small but important brain regions with PET clinically viable.
Collapse
Affiliation(s)
- Zipai Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Andy LaBella
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xinjie Zeng
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Clayton
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gary A. Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
59
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
60
|
Nguyen MK, McAvoy K, Liao SC, Doric Z, Lo I, Li H, Manfredi G, Nakamura K. Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein CHCHD2. Hum Mol Genet 2022; 31:1500-1518. [PMID: 34791217 PMCID: PMC9071413 DOI: 10.1093/hmg/ddab329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Mutations in the mitochondrial protein CHCHD2 cause autosomal dominant Parkinson's disease characterized by the preferential loss of substantia nigra dopamine (DA) neurons. Therefore, understanding the function of CHCHD2 in neurons may provide vital insights into how mitochondrial dysfunction contributes to neurodegeneration in PD. To investigate the normal requirement and function of CHCHD2 in neurons, we first examined CHCHD2 levels and showed that DA neurons have higher CHCHD2 levels than other neuron types, both in vivo and in co-culture. We then generated mice with either a targeted deletion of CHCHD2 in DA neurons or a deletion in the brain or total body. All three models were viable, and loss of CHCHD2 in the brain did not cause degeneration of DA neurons. Mice lacking CHCHD2 in DA neurons did display sex-specific changes to locomotor activity, but we did not observe differences in assays of muscle strength, exercise endurance or motor coordination. Furthermore, mitochondria derived from mice lacking CHCHD2 did not display abnormalities in OXPHOS function. Lastly, resilience to CHCHD2 deletion could not be explained by functional complementation by its paralog CHCHD10, as deletion of both CHCHD10 and CHCHD2 did not cause degeneration of DA neurons in the midbrain. These findings support the hypothesis that pathogenic CHCHD2 mutations cause PD through a toxic gain-of-function, rather than loss-of-function mechanism.
Collapse
Affiliation(s)
- Mai K Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Szu-Chi Liao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zak Doric
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
61
|
Solders SK, Galinsky VL, Clark AL, Sorg SF, Weigand AJ, Bondi MW, Frank LR. Diffusion MRI tractography of the locus coeruleus-transentorhinal cortex connections using GO-ESP. Magn Reson Med 2022; 87:1816-1831. [PMID: 34792198 PMCID: PMC8810611 DOI: 10.1002/mrm.29088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE The locus coeruleus (LC) is implicated as an early site of protein pathogenesis in Alzheimer's disease (AD). Tau pathology is hypothesized to propagate in a prion-like manner along the LC-transentorhinal cortex (TEC) white matter (WM) pathway, leading to atrophy of the entorhinal cortex and adjacent cortical regions in a progressive and stereotypical manner. However, WM damage along the LC-TEC pathway may be an earlier observable change that can improve detection of preclinical AD. THEORY AND METHODS Diffusion-weighted MRI (dMRI) allows reconstruction of WM pathways in vivo, offering promising potential to examine this pathway and enhance our understanding of neural mechanisms underlying the preclinical phase of AD. However, standard dMRI analysis tools have generally been unable to reliably reconstruct this pathway. We apply a novel method, geometric-optics based entropy spectrum pathways (GO-ESP) and produce a new measure of connectivity: the equilibrium probability (EP). RESULTS We demonstrated reliable reconstruction of LC-TEC pathways in 50 cognitively normal older adults and showed a negative association between LC-TEC EP and cerebrospinal fluid tau. Using Human Connectome Project data, we demonstrated replicability of the method across acquisition schemes and scanners. Finally, we compared our findings with the only other existing LC-TEC tractography template, and replicated their pathway as well as investigated the source of these discrepant findings. CONCLUSIONS AD-related tau pathology may be detectable within GO-ESP-identified LC-TEC pathways. Furthermore, there may be multiple possible routes from LC to TEC, raising important questions for future research on the LC-TEC connectome and its role in AD pathogenesis.
Collapse
Affiliation(s)
- Seraphina K. Solders
- Neuroscience Graduate ProgramUniversity of California at San DiegoLa JollaCaliforniaUSA
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | - Vitaly L. Galinsky
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | | | - Scott F. Sorg
- Department of PsychiatrySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Research and Psychology ServicesVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Alexandra J. Weigand
- San Diego State University/University of California at San Diego Joint Doctoral Program in Clinical PsychologySan DiegoCaliforniaUSA
| | - Mark W. Bondi
- Department of PsychiatrySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Research and Psychology ServicesVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Lawrence R. Frank
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
62
|
Dahl MJ, Mather M, Werkle-Bergner M, Kennedy BL, Guzman S, Hurth K, Miller CA, Qiao Y, Shi Y, Chui HC, Ringman JM. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer's disease. Neurobiol Aging 2022; 112:39-54. [PMID: 35045380 PMCID: PMC8976827 DOI: 10.1016/j.neurobiolaging.2021.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Abnormally phosphorylated tau, an indicator of Alzheimer's disease, accumulates in the first decades of life in the locus coeruleus (LC), the brain's main noradrenaline supply. However, technical challenges in in-vivo assessments have impeded research into the role of the LC in Alzheimer's disease. We studied participants with or known to be at-risk for mutations in genes causing autosomal-dominant Alzheimer's disease (ADAD) with early onset, providing a unique window into the pathogenesis of Alzheimer's largely disentangled from age-related factors. Using high-resolution MRI and tau PET, we found lower rostral LC integrity in symptomatic participants. LC integrity was associated with individual differences in tau burden and memory decline. Post-mortem analyses in a separate set of carriers of the same mutation confirmed substantial neuronal loss in the LC. Our findings link LC degeneration to tau burden and memory in Alzheimer's, and highlight a role of the noradrenergic system in this neurodegenerative disease.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Briana L Kennedy
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; School of Psychological Science, University of Western Australia, Perth, Australia
| | - Samuel Guzman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuchuan Qiao
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
63
|
Pagen LHG, Poser BA, van Boxtel MPJ, Priovoulos N, van Hooren RWE, Verhey FRJ, Jacobs HIL. Worry Modifies the Relationship between Locus Coeruleus Activity and Emotional Mnemonic Discrimination. Brain Sci 2022; 12:brainsci12030381. [PMID: 35326337 PMCID: PMC8946181 DOI: 10.3390/brainsci12030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The locus coeruleus (LC) plays a critical role in modulating emotional memory performance via widespread connections to the medial temporal lobe (MTL). Interestingly, both the LC and MTL are affected during aging. Therefore, we aimed to investigate whether worry during cognitive aging changes the relationship between memory performance and the neural activity patterns during an emotional memory task. Methods: Twenty-eight participants aged 60–83 years from the Maastricht Aging study conducted an emotional mnemonic discrimination task during a 7T fMRI-scan. We performed a robust multiple linear regression to examine the association between worry and mnemonic memory performance under different levels of arousal. Subsequently, we examined if worry modifies the relationship between neuronal activity and mnemonic memory performance. Results: We observed that under low arousal, only participants with low compared to high levels of worry benefitted from additional LC activity. Under high arousal, additional LC activity was associated with lower mnemonic memory performance. Conclusion: Our results suggest there might be an optimal involvement of the NA-system for optimal memory discrimination performance, as we observed that under low levels of worry and with lower levels of arousal, higher LC activity might be needed to achieve similar levels of optimal memory performance as achieved under higher arousal when LC activity remained lower.
Collapse
Affiliation(s)
- Linda H. G. Pagen
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
- Centre for Integrative Neuroscience, School for Mental Health and Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Martin P. J. van Boxtel
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Nikos Priovoulos
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Roy W. E. van Hooren
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Frans R. J. Verhey
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Heidi I. L. Jacobs
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands;
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
64
|
Chen Y, Chen T, Hou R. Locus coeruleus in the pathogenesis of Alzheimer's disease: A systematic review. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12257. [PMID: 35282658 PMCID: PMC8900465 DOI: 10.1002/trc2.12257] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
The locus coeruleus (LC) is a nucleus in the brain stem producing noradrenaline. While cognitive decline in Alzheimer's disease (AD) has primarily been related to cholinergic depletion, evidence indicates extensive LC degeneration as its earliest pathological marker. The current study aimed to systematically evaluate current evidence investigating the role of the LC in the pathogenesis of AD. A systematic search of the literature was performed on electronic databases including PubMed and Web of Science. Twelve animal, human post mortem, and human imaging studies were included in this review. Screening, data extraction, and quality assessment were undertaken following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for preferred reporting of systematic reviews. Significant associations were identified between LC changes and cognitive decline. Significant reductions in fiber density, neuronal number, and LC volume were seen to correlate with other pathological degenerative markers. Current evidence indicates an important role of the LC in pathogenesis of AD and suggests its potential in both diagnosis and treatment of AD. This systematic review advances our understanding of the role of the LC in AD by synthesizing available evidence, identifying research gaps, highlighting methodological challenges, and making recommendations for future work.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Clinical MedicineAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | - Teng Chen
- Department of NeurosurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ruihua Hou
- Clinical and Experimental SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
65
|
Miletić S, Bazin PL, Isherwood SJS, Keuken MC, Alkemade A, Forstmann BU. Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI. Neuroimage 2022; 249:118872. [PMID: 34999202 DOI: 10.1016/j.neuroimage.2022.118872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human subcortical structures continue to be difficult to study in vivo. Here we provide a detailed account of 17 prominent subcortical structures and ventricles, describing their approximate iron and myelin contents, morphometry, and their age-related changes across the normal adult lifespan. The results provide compelling insights into the heterogeneity and intricate age-related alterations of these structures. They also show that the locations of many structures shift across the lifespan, which is of direct relevance for the use of standard magnetic resonance imaging atlases. The results further our understanding of subcortical morphometry and neuroimaging properties, and of normal aging processes which ultimately can improve our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Steven Miletić
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands.
| | - Pierre-Louis Bazin
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands; Max Planck Institute for Human Cognitive and Brain Sciences, Departments of Neurophysics and Neurology, Stephanstraße 1A, Leipzig, Germany
| | - Scott J S Isherwood
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands
| | - Max C Keuken
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands
| | - Anneke Alkemade
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands
| | - Birte U Forstmann
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands.
| |
Collapse
|
66
|
Abstract
The key pathological hallmarks-extracellular plaques and intracellular neurofibrillary tangles (NFT)-described by Alois Alzheimer in his seminal 1907 article are still central to the postmortem diagnosis of Alzheimer's disease (AD), but major advances in our understanding of the underlying pathophysiology as well as significant progress in clinical diagnosis and therapy have changed the perspective and importance of neuropathologic evaluation of the brain. The notion that the pathological processes underlying AD already start decades before symptoms are apparent in patients has brought a major change reflected in the current neuropathological classification of AD neuropathological changes (ADNC). The predictable progression of beta-amyloid (Aβ) plaque pathology from neocortex, over limbic structures, diencephalon, and basal ganglia, to brainstem and cerebellum is captured in phases described by Thal and colleagues. The progression of NFT pathology from the transentorhinal region to the limbic system and ultimately the neocortex is described in stages proposed by Braak and colleagues. The density of neuritic plaque pathology is determined by criteria defined by the Consortium to establish a registry for Alzheimer's diseases (CERAD). While these changes neuropathologically define AD, it becomes more and more apparent that the majority of patients present with a multitude of additional pathological changes which are possible contributing factors to the clinical presentation and disease progression. The impact of co-existing Lewy body pathology has been well studied, but the importance of more recently described pathologies including limbic-predominant age-related TDP-43 encephalopathy (LATE), chronic traumatic encephalopathy (CTE), and aging-related tau astrogliopathy (ARTAG) still needs to be evaluated in large cohort studies. In addition, it is apparent that vascular pathology plays an important role in the AD patient population, but a lack of standardized reporting criteria has hampered progress in elucidating the importance of these changes for clinical presentation and disease progression. More recently a key role was ascribed to the immune response to pathological protein aggregates, and it will be important to analyze these changes systematically to better understand the temporal and spatial distribution of the immune response in AD and elucidate their importance for the disease process. Advances in digital pathology and technologies such as single cell sequencing and digital spatial profiling have opened novel avenues for improvement of neuropathological diagnosis and advancing our understanding of underlying molecular processes. Finally, major strides in biomarker-based diagnosis of AD and recent advances in targeted therapeutic approaches may have shifted the perspective but also highlight the continuous importance of postmortem analysis of the brain in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
67
|
Jacobs HIL, O'Donnell A, Satizabal CL, Lois C, Kojis D, Hanseeuw BJ, Thibault E, Sanchez JS, Buckley RF, Yang Q, DeCarli C, Killiany R, Sargurupremraj M, Sperling RA, Johnson KA, Beiser AS, Seshadri S. Associations Between Brainstem Volume and Alzheimer's Disease Pathology in Middle-Aged Individuals of the Framingham Heart Study. J Alzheimers Dis 2022; 86:1603-1609. [PMID: 35213372 PMCID: PMC9038711 DOI: 10.3233/jad-215372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The brainstem is among the first regions to accumulate Alzheimer's disease (AD)-related hyperphosphorylated tau pathology during aging. We aimed to examine associations between brainstem volume and neocortical amyloid-β or tau pathology in 271 middle-aged clinically normal individuals of the Framingham Heart Study who underwent MRI and PET imaging. Lower volume of the medulla, pons, or midbrain was associated with greater neocortical amyloid burden. No associations were detected between brainstem volumes and tau deposition. Our results support the hypothesis that lower brainstem volumes are associated with initial AD-related processes and may signal preclinical AD pathology.
Collapse
Affiliation(s)
- Heidi I L Jacobs
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
- Gordon Center for Medical Imaging, Boston, MA, USA
| | - Adrienne O'Donnell
- Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Claudia L Satizabal
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Cristina Lois
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
| | - Daniel Kojis
- Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Bernard J Hanseeuw
- Massachusetts General Hospital, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Emma Thibault
- Massachusetts General Hospital, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
| | - Justin S Sanchez
- Massachusetts General Hospital, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
| | - Rachel F Buckley
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
| | - Qiong Yang
- Boston University School of Public Health, Boston, MA, USA
| | | | - Ron Killiany
- Boston University School of Medicine, Boston, MA, USA
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Reisa A Sperling
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Alexa S Beiser
- Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
68
|
Gilvesy A, Husen E, Magloczky Z, Mihaly O, Hortobágyi T, Kanatani S, Heinsen H, Renier N, Hökfelt T, Mulder J, Uhlen M, Kovacs GG, Adori C. Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging. Acta Neuropathol 2022; 144:651-676. [PMID: 36040521 PMCID: PMC9468059 DOI: 10.1007/s00401-022-02477-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Abris Gilvesy
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- McGill University, Montreal, QC, H3A 0G4, Canada
| | - Evelina Husen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Zsofia Magloczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - Orsolya Mihaly
- Department of Pathology, St. Borbála Hospital, Tatabánya, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Helmut Heinsen
- Clinic of Psychiatry and Institute of Forensic Pathology, University of Würzburg, 97080, Würzburg, Germany
- LIM-44, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden.
| |
Collapse
|
69
|
Levey AI, Qiu D, Zhao L, Hu WT, Duong DM, Higginbotham L, Dammer EB, Seyfried NT, Wingo TS, Hales CM, Gámez Tansey M, Goldstein DS, Abrol A, Calhoun VD, Goldstein FC, Hajjar I, Fagan AM, Galasko D, Edland SD, Hanfelt J, Lah JJ, Weinshenker D. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 2021; 145:1924-1938. [PMID: 34919634 DOI: 10.1093/brain/awab452] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
The locus coeruleus (LC) is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. LC dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine (NE) transmission. To test NE augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved NE transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-center, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment (MCI) and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of NE and metabolites. Prespecified primary outcomes were CSF levels of IL1α and Thymus-Expressed Chemokine. Secondary/exploratory outcomes included clinical measures, CSF analyses of Aβ42, Tau, and pTau181, mass spectrometry proteomics, and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and FDG-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF NE levels. IL-1α and Thymus-Expressed Chemokine were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in Aβ42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism, and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK, and OPG proteins. Treatment was also associated with significantly increased BDNF and reduced triglycerides in plasma. Resting state fMRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. FDG-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus, and fusiform gyrus, with carry-over effects six months after treatment. In summary, atomoxetine treatment was safe, well tolerated, and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism, and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.
Collapse
Affiliation(s)
- Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Deqiang Qiu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, USA
| | - Liping Zhao
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - William T Hu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Lenora Higginbotham
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | - Chadwick M Hales
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Malú Gámez Tansey
- Department of Physiology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Felicia C Goldstein
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Ihab Hajjar
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Anne M Fagan
- Department of Neurology and Knight ADRC, Washington University, St. Louis, MO, 630130, USA
| | - Doug Galasko
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - Steven D Edland
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - John Hanfelt
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
70
|
Falgàs N, Allen IE, Spina S, Grant H, Piña Escudero SD, Merrilees J, Gearhart R, Rosen HJ, Kramer JH, Seeley WW, Neylan TC, Miller BL, Rabinovici GD, Grinberg LT, Walsh CM. The severity of neuropsychiatric symptoms is higher in early-onset than late-onset Alzheimer's disease. Eur J Neurol 2021; 29:957-967. [PMID: 34862834 DOI: 10.1111/ene.15203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE The faster rates of cognitive decline and predominance of atypical forms in early-onset Alzheimer's disease (EOAD) suggest that neuropsychiatric symptoms could be different in EOAD compared to late-onset AD (LOAD); however, prior studies based on non-biomarker-diagnosed cohorts show discordant results. Our goal was to determine the profile of neuropsychiatric symptoms in EOAD and LOAD, in a cohort with biomarker/postmortem-confirmed diagnoses. Additionally, the contribution of co-pathologies was explored. METHODS In all, 219 participants (135 EOAD, 84 LOAD) meeting National Institute on Aging and Alzheimer's Association criteria for AD (115 amyloid positron emission tomography/cerebrospinal fluid biomarkers, 104 postmortem diagnosis) at the University of California San Francisco were evaluated. The Neuropsychiatric Inventory-Questionnaire (NPI-Q) was assessed at baseline and during follow-up. The NPI-Q mean comparisons and regression models adjusted by cognitive (Mini-Mental State Examination) and functional status (Clinical Dementia Rating Sum of Boxes) were performed to determine the effect of EOAD/LOAD and amnestic/non-amnestic diagnosis on NPI-Q. Regression models assessing the effect of co-pathologies on NPI-Q were performed. RESULTS At baseline, the NPI-Q scores were higher in EOAD compared to LOAD (p < 0.05). Longitudinally, regression models showed a significant effect of diagnosis, where EOAD had higher NPI-Q total, anxiety, motor disturbances and night-time behavior scores (p < 0.05). No differences between amnestics/non-amnestics were found. Argyrophilic grain disease co-pathology predicted a higher severity of NPI-Q scores in LOAD. CONCLUSIONS Anxiety, night-time behaviors and motor disturbances are more severe in EOAD than LOAD across the disease course. The differential patterns of neuropsychiatric symptoms observed between EOAD/LOAD could suggest a pattern of selective vulnerability extending to the brain's subcortical structures. Further, co-pathologies such as argyrophilic grain disease in LOAD may also play a role in increasing neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Neus Falgàs
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Global Brain Health Institute, University of California, San Francisco, California, USA.,Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona. Barcelona, Catalonia, Spain
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Harli Grant
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Stefanie D Piña Escudero
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Global Brain Health Institute, University of California, San Francisco, California, USA
| | - Jennifer Merrilees
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Rosalie Gearhart
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Global Brain Health Institute, University of California, San Francisco, California, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Global Brain Health Institute, University of California, San Francisco, California, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Thomas C Neylan
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, California, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Global Brain Health Institute, University of California, San Francisco, California, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.,Global Brain Health Institute, University of California, San Francisco, California, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Pathology, University of California, San Francisco, California, USA
| | - Christine M Walsh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
71
|
Spreng RN, Turner GR. From exploration to exploitation: a shifting mental mode in late life development. Trends Cogn Sci 2021; 25:1058-1071. [PMID: 34593321 PMCID: PMC8844884 DOI: 10.1016/j.tics.2021.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
Changes in cognition, affect, and brain function combine to promote a shift in the nature of mentation in older adulthood, favoring exploitation of prior knowledge over exploratory search as the starting point for thought and action. Age-related exploitation biases result from the accumulation of prior knowledge, reduced cognitive control, and a shift toward affective goals. These are accompanied by changes in cortical networks, as well as attention and reward circuits. By incorporating these factors into a unified account, the exploration-to-exploitation shift offers an integrative model of cognitive, affective, and brain aging. Here, we review evidence for this model, identify determinants and consequences, and survey the challenges and opportunities posed by an exploitation-biased mental mode in later life.
Collapse
Affiliation(s)
- R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
72
|
Christopher Kwon YI, Xie W, Zhu H, Xie J, Shinn K, Juckel N, Vince R, More SS, Lee MK. γ-Glutamyl-Transpeptidase-Resistant Glutathione Analog Attenuates Progression of Alzheimer's Disease-like Pathology and Neurodegeneration in a Mouse Model. Antioxidants (Basel) 2021; 10:antiox10111796. [PMID: 34829667 PMCID: PMC8614797 DOI: 10.3390/antiox10111796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress in Alzheimer’s disease (AD) is mediated, in part, by the loss of glutathione (GSH). Previous studies show that γ-glutamyl transpeptidase (GGT)-resistant GSH analog, Ψ-GSH, improves brain GSH levels, reduces oxidative stress markers in brains of APP/PS1 transgenic mice, a mouse model of AD, and attenuates early memory deficits in the APP/PS1 model. Herein, we examined whether Ψ-GSH can attenuate the disease progression when administered following the onset of AD-like pathology in vivo. Cohorts of APP/PS1 mice were administered Ψ-GSH for 2 months starting at 8 month or 12 months of age. We show that Ψ-GSH treatment reduces indices of oxidative stress in older mice by restoration of enzyme glyoxalase-1 (Glo-1) activity and reduces levels of insoluble Aβ. Quantitative neuropathological analyses show that Ψ-GSH treatment significantly reduces Aβ deposition and brain inflammation in APP/PS1 mice compared to vehicle-treated mice. More importantly, Ψ-GSH treatment attenuated the progressive loss of cortical TH+ afferents and the loss of TH+ neurons in the locus coeruleus (LC). Collectively, the results show that Ψ-GSH exhibits significant antioxidant activity in aged APP/PS1 mice and chronic Ψ-GSH treatment administered after the onset of AD pathology can reverse/slow further progression of AD-like pathology and neurodegeneration in vivo.
Collapse
Affiliation(s)
- Ye In Christopher Kwon
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (Y.I.C.K.); (K.S.); (N.J.)
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (W.X.); (H.Z.); (J.X.); (R.V.)
| | - Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (W.X.); (H.Z.); (J.X.); (R.V.)
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (W.X.); (H.Z.); (J.X.); (R.V.)
| | - Keaton Shinn
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (Y.I.C.K.); (K.S.); (N.J.)
| | - Nicholas Juckel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (Y.I.C.K.); (K.S.); (N.J.)
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (W.X.); (H.Z.); (J.X.); (R.V.)
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (W.X.); (H.Z.); (J.X.); (R.V.)
- Correspondence: (S.S.M.); (M.K.L.)
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (Y.I.C.K.); (K.S.); (N.J.)
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (S.S.M.); (M.K.L.)
| |
Collapse
|
73
|
Niu L, Zhang F, Xu X, Yang Y, Li S, Liu H, Le W. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer's disease neuropathology. Brain Pathol 2021; 32:e13028. [PMID: 34668266 PMCID: PMC9048513 DOI: 10.1111/bpa.13028] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian disruption is prevalent in Alzheimer's disease (AD) and may contribute to cognitive impairment, psychological symptoms, and neurodegeneration. This study aimed to evaluate the effects of environmental and genetic factors on the molecular clock and to establish a link between circadian rhythm disturbance and AD. We investigated the pathological effects of chronic sleep deprivation (CSD) in the APPswe/PS1ΔE9 transgenic mice and their wild‐type (WT) littermates for 2 months and evaluated the expression levels of clock genes in the circadian rhythm‐related nuclei. Our results showed that CSD impaired learning and memory, and further exaggerated disease progression in the AD mice. Furthermore, CSD caused abnormal expression of Bmal1, Clock, and Cry1 in the circadian rhythm‐related nuclei of experimental mice, and these changes are more significant in AD mice. Abnormal expression of clock genes in AD mice suggested that the expression of clock genes is affected by APP/PS1 mutations. In addition, abnormal tau phosphorylation was found in the retrosplenial cortex, which was co‐located with the alteration of BMAL1 protein level. Moreover, the level of tyrosine hydroxylase in the locus coeruleus of AD and WT mice was significantly increased after CSD. There may be a potential link between the molecular clock, Aβ pathology, tauopathy, and the noradrenergic system. The results of this study provided new insights into the potential link between the disruption of circadian rhythm and the development of AD.
Collapse
Affiliation(s)
- Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaojiao Xu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuting Yang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hui Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of Neurology and Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
74
|
Llano DA, Kwok SS, Devanarayan V. Reported Hearing Loss in Alzheimer's Disease Is Associated With Loss of Brainstem and Cerebellar Volume. Front Hum Neurosci 2021; 15:739754. [PMID: 34630060 PMCID: PMC8498578 DOI: 10.3389/fnhum.2021.739754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple epidemiological studies have revealed an association between presbycusis and Alzheimer’s Disease (AD). Unfortunately, the neurobiological underpinnings of this relationship are not clear. It is possible that the two disorders share a common, as yet unidentified, risk factor, or that hearing loss may independently accelerate AD pathology. Here, we examined the relationship between reported hearing loss and brain volumes in normal, mild cognitive impairment (MCI) and AD subjects using a publicly available database. We found that among subjects with AD, individuals that reported hearing loss had smaller brainstem and cerebellar volumes in both hemispheres than individuals without hearing loss. In addition, we found that these brain volumes diminish in size more rapidly among normal subjects with reported hearing loss and that there was a significant interaction between cognitive diagnosis and the relationship between reported hearing loss and these brain volumes. These data suggest that hearing loss is linked to brainstem and cerebellar pathology, but only in the context of the pathological state of AD. We hypothesize that the presence of AD-related pathology in both the brainstem and cerebellum creates vulnerabilities in these brain regions to auditory deafferentation-related atrophy. These data have implications for our understanding of the potential neural substrates for interactions between hearing loss and AD.
Collapse
Affiliation(s)
- Daniel A Llano
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carle Neuroscience Institute, Urbana, IL, United States.,Carle Illinois College of Medicine, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, Urbana, IL, United States
| | - Viswanath Devanarayan
- Eisai Inc., Woodcliff Lake, NJ, United States.,Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
75
|
Van Egroo M, van Hooren RWE, Jacobs HIL. Associations between locus coeruleus integrity and nocturnal awakenings in the context of Alzheimer's disease plasma biomarkers: a 7T MRI study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:159. [PMID: 34560904 PMCID: PMC8464124 DOI: 10.1186/s13195-021-00902-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Background The brainstem locus coeruleus (LC) constitutes the intersection of the initial pathophysiological processes of Alzheimer’s disease (AD) and sleep-wake dysregulation in the preclinical stages of the disease. However, the interplay between in vivo assessment of LC degeneration and AD-related sleep alterations remains unknown. Here, we sought to investigate whether MRI-assessed LC structural integrity relates to subjective sleep-wake measures in the context of AD plasma biomarkers, in cognitively unimpaired older individuals. Methods Seventy-two cognitively unimpaired older individuals aged 50–85 years (mean age = 65.2 ± 8.2 years, 37 women, 21 APOE ε4 carriers) underwent high-resolution imaging of the LC at 7 Tesla, and LC structural integrity was quantified using a data-driven approach. Reports on habitual sleep quality and nocturnal awakenings were collected using sleep questionnaires. Plasma levels of total tau, p-tau181, Aβ40, and Aβ42 were measured using single-molecule array technology. Results Intensity-based cluster analyses indicated two distinct LC segments, with one covering the middle-to-caudal LC and displaying lower intensity compared to the middle-to-rostral cluster (t70 = −5.12, p < 0.0001). After correction for age, sex, depression, and APOE status, lower MRI signal intensity within the middle-to-caudal LC was associated with a higher number of self-reported nocturnal awakenings (F1,63 = 6.73, pFDR = 0.03). Furthermore, this association was mostly evident in individuals with elevated levels of total tau in the plasma (F1,61 = 4.26, p = 0.04). Conclusion Our findings provide in vivo evidence that worse LC structural integrity is associated with more frequent nocturnal awakenings in the context of neurodegeneration, in cognitively unimpaired older individuals. These results support the critical role of the LC for sleep-wake regulation in the preclinical stages of AD and hold promises for the identification of at-risk populations for preventive interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00902-8.
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, UNS40 box 34, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Roy W E van Hooren
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, UNS40 box 34, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, UNS40 box 34, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. .,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands. .,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
76
|
Jacobs HI, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, Papp KV, Properzi M, Hampton OL, Uquillas FD, Sanchez JS, Rentz DM, Fakhri GE, Normandin MD, Price JC, Bennett DA, Sperling RA, Johnson KA. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer's disease pathology and cognitive decline. Sci Transl Med 2021; 13:eabj2511. [PMID: 34550726 PMCID: PMC8641759 DOI: 10.1126/scitranslmed.abj2511] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several autopsy studies recognize the locus coeruleus (LC) as the initial site of hyperphosphorylated TAU aggregation, and as the number of LC neurons harboring TAU increases, TAU pathology emerges throughout the cortex. By conjointly using dedicated MRI measures of LC integrity and TAU and amyloid PET imaging, we aimed to address the question whether in vivo LC measures relate to initial cortical patterns of Alzheimer’s disease (AD) fibrillar proteinopathies or cognitive dysfunction in 174 cognitively unimpaired and impaired older individuals with longitudinal cognitive measures. To guide our interpretations, we verified these associations in autopsy data from 1524 Religious Orders Study and Rush Memory and Aging Project and 2145 National Alzheimer’s Coordinating Center cases providing three different LC measures (pigmentation, tangle density, and neuronal density), Braak staging, β-amyloid, and longitudinal cognitive measures. Lower LC integrity was associated with elevated TAU deposition in the entorhinal cortex among unimpaired individuals consistent with postmortem correlations between LC tangle density and successive Braak staging. LC pigmentation ratings correlated with LC neuronal density but not with LC tangle density and were particularly worse at advanced Braak stages. In the context of elevated β-amyloid, lower LC integrity and greater cortical tangle density were associated with greater TAU burden beyond the medial temporal lobe and retrospective memory decline. These findings support neuropathologic data in which early LC TAU accumulation relates to disease progression and identify LC integrity as a promising indicator of initial AD-related processes and subtle changes in cognitive trajectories of preclinical AD.
Collapse
Affiliation(s)
- Heidi I.L. Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University; 6200MD Maastricht, The Netherlands
| | - John A. Becker
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Kenneth Kwong
- Harvard Medical School; Boston, MA, 02115, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02129, USA
| | - Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University; 6200MD Maastricht, The Netherlands
| | - Prokopis C. Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Kathryn V. Papp
- Harvard Medical School; Boston, MA, 02115, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital; Boston, MA,02115, USA
| | - Michael Properzi
- Harvard Medical School; Boston, MA, 02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Olivia L. Hampton
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | | | - Justin S. Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Dorene M. Rentz
- Harvard Medical School; Boston, MA, 02115, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital; Boston, MA,02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Julie C. Price
- Harvard Medical School; Boston, MA, 02115, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02129, USA
| | - David A. Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, Illinois, 60612, USA
| | - Reisa A. Sperling
- Harvard Medical School; Boston, MA, 02115, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital; Boston, MA,02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Keith A. Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| |
Collapse
|
77
|
Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021; 60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Disturbances of the sleep/wake cycle in Alzheimer's disease (AD) are common, frequently precede cognitive decline, and tend to worsen with disease progression. Sleep is critical to the maintenance of homeostatic and circadian function, and chronic sleep disturbances have significant cognitive and physical health consequences that likely exacerbate disease severity. Sleep-wake cycles are regulated by neuromodulatory centers located in the brainstem, the hypothalamus, and the basal forebrain, many of which are vulnerable to the accumulation of abnormal protein deposits associated with neurodegenerative conditions. In AD, while sleep disturbances are commonly attributed to the accumulation of amyloid beta, patients often first experience sleep issues prior to the appearance of amyloid beta plaques, on a timeline that more closely corresponds to the first appearance of abnormal tau neurofibrillary tangles in sleep/wake regulating areas of the brainstem. Sleep disturbances also occur in pure tauopathies, providing further support that tau is a major contributor. Here, we provide an overview of the neuroanatomy of sleep/wake centers discovered in animal models, and review the evidence that tau-driven neuropathology is a primary driver of sleep disturbance in AD.
Collapse
|
78
|
Lourenco MV, Ribeiro FC, Santos LE, Beckman D, Melo HM, Sudo FK, Drummond C, Assunção N, Vanderborght B, Tovar-Moll F, De Felice FG, Mattos P, Ferreira ST. Cerebrospinal Fluid Neurotransmitters, Cytokines, and Chemokines in Alzheimer's and Lewy Body Diseases. J Alzheimers Dis 2021; 82:1067-1074. [PMID: 34151795 DOI: 10.3233/jad-210147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and Lewy body disease (LBD) are complex neurodegenerative disorders that have been associated with brain inflammation and impaired neurotransmission. OBJECTIVE We aimed to determine concentrations of multiple cytokines, chemokines, and neurotransmitters previously associated with brain inflammation and synapse function in cerebrospinal fluid (CSF) from AD and LBD patients. METHODS We examined a panel of 50 analytes comprising neurotransmitters, cytokines, chemokines, and hormones in CSF in a cohort of patients diagnosed with mild cognitive impairment (MCI), AD, LBD, or non-demented controls (NDC). RESULTS Among neurotransmitters, noradrenaline (NA) was increased in AD CSF, while homovanillic acid (HVA), a dopamine metabolite, was reduced in both AD and LBD CSF relative to NDC. Six cytokines/chemokines out of 30 investigated were reliably detected in CSF. CSF vascular endothelial growth factor (VEGF) was significantly reduced in LBD patients relative to NDC. CONCLUSIONS CSF alterations in NA, HVA, and VEGF in AD and LBD may reflect pathogenic features of these disorders and provide tools for improved diagnosis. Future studies are warranted to replicate current findings in larger, multicenter cohorts.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen M Melo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe K Sudo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Cláudia Drummond
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naima Assunção
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bart Vanderborght
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Department of Psychiatry, Queen's University, Kingston, Canada
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
79
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
80
|
Plini ERG, O’Hanlon E, Boyle R, Sibilia F, Rikhye G, Kenney J, Whelan R, Melnychuk MC, Robertson IH, Dockree PM. Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer's Disease Neuroimaging Initiative. Cells 2021; 10:1829. [PMID: 34359997 PMCID: PMC8306442 DOI: 10.3390/cells10071829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
Collapse
Affiliation(s)
- Emanuele R. G. Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Erik O’Hanlon
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychiatry, Royal College of Surgeons in Ireland, Hospital Rd, Beaumont, 9QRH+4F Dublin, Ireland
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Rory Boyle
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Francesca Sibilia
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Gaia Rikhye
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Joanne Kenney
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Robert Whelan
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Michael C. Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Ian H. Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Paul M. Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| |
Collapse
|
81
|
Kang SS, Ahn EH, Liu X, Bryson M, Miller GW, Weinshenker D, Ye K. ApoE4 inhibition of VMAT2 in the locus coeruleus exacerbates Tau pathology in Alzheimer's disease. Acta Neuropathol 2021; 142:139-158. [PMID: 33895869 DOI: 10.1007/s00401-021-02315-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/20/2023]
Abstract
ApoE4 enhances Tau neurotoxicity and promotes the early onset of AD. Pretangle Tau in the noradrenergic locus coeruleus (LC) is the earliest detectable AD-like pathology in the human brain. However, a direct relationship between ApoE4 and Tau in the LC has not been identified. Here we show that ApoE4 selectively binds to the vesicular monoamine transporter 2 (VMAT2) and inhibits neurotransmitter uptake. The exclusion of norepinephrine (NE) from synaptic vesicles leads to its oxidation into the toxic metabolite 3,4-dihydroxyphenyl glycolaldehyde (DOPEGAL), which subsequently activates cleavage of Tau at N368 by asparagine endopeptidase (AEP) and triggers LC neurodegeneration. Our data reveal that ApoE4 boosts Tau neurotoxicity via VMAT2 inhibition, reduces hippocampal volume, and induces cognitive dysfunction in an AEP- and Tau N368-dependent manner, while conversely ApoE3 binds Tau and protects it from cleavage. Thus, ApoE4 exacerbates Tau neurotoxicity by increasing VMAT2 vesicle leakage and facilitating AEP-mediated Tau proteolytic cleavage in the LC via DOPEGAL.
Collapse
Affiliation(s)
- Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael St. Whitehead BLDG Room #141, Atlanta, GA, 30322, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael St. Whitehead BLDG Room #141, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael St. Whitehead BLDG Room #141, Atlanta, GA, 30322, USA
| | - Matthew Bryson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael St. Whitehead BLDG Room #141, Atlanta, GA, 30322, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael St. Whitehead BLDG Room #141, Atlanta, GA, 30322, USA.
| |
Collapse
|
82
|
Ahnaou A, Drinkenburg WHIM. Sleep, neuronal hyperexcitability, inflammation and neurodegeneration: Does early chronic short sleep trigger and is it the key to overcoming Alzheimer's disease? Neurosci Biobehav Rev 2021; 129:157-179. [PMID: 34214513 DOI: 10.1016/j.neubiorev.2021.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
Evidence links neuroinflammation to Alzheimer's disease (AD); however, its exact contribution to the onset and progression of the disease is poorly understood. Symptoms of AD can be seen as the tip of an iceberg, consisting of a neuropathological build-up in the brain of extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated aggregates of Tau (pTau), which are thought to stem from an imbalance between its production and clearance resulting in loss of synaptic health and dysfunctional cortical connectivity. The glymphatic drainage system, which is particularly active during sleep, plays a key role in the clearance of proteinopathies. Poor sleep can cause hyperexcitability and promote Aβ and tau pathology leading to systemic inflammation. The early neuronal hyperexcitability of γ-aminobutyric acid (GABA)-ergic inhibitory interneurons and impaired inhibitory control of cortical pyramidal neurons lie at the crossroads of excitatory/inhibitory imbalance and inflammation. We outline, with a prospective framework, a possible vicious spiral linking early chronic short sleep, neuronal hyperexcitability, inflammation and neurodegeneration. Understanding the early predictors of AD, through an integrative approach, may hold promise for reducing attrition in the late stages of neuroprotective drug development.
Collapse
Affiliation(s)
- A Ahnaou
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium.
| | - W H I M Drinkenburg
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium
| |
Collapse
|
83
|
Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: Monoamines and their derivatives in biological fluids. Exp Gerontol 2021; 152:111452. [PMID: 34182050 DOI: 10.1016/j.exger.2021.111452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage. Accumulating evidence support the hypothesis that initial degeneration of profound monoaminergic nuclei may trigger a transneuronal spread of AD pathology towards hippocampus and cortex. These studies aroused great interest on monoamines, i.e. noradrenaline (NA), dopamine (D) ad serotonin (5-HT), as early hallmarks of AD pathology. The present work reviews current literature on the potential role of monoamines and related metabolites as biomarkers of AD. First, morphological changes in the monoaminergic systems during AD are briefly described. Second, we focus on concentration changes of these molecules and their derivatives in biological fluids, including cerebrospinal fluid, obtained by lumbar puncture, and blood or urine, sampled via less invasive procedures. Starting from initial observations, we then discuss recent insights on metabolomics-based analysis, highlighting the promising clinical utility of monoamines for the identification of a molecular AD signature, aimed at improving early diagnosis and discrimination from other dementia.
Collapse
|
84
|
Owen JE, Benediktsdottir B, Cook E, Olafsson I, Gislason T, Robinson SR. Alzheimer's disease neuropathology in the hippocampus and brainstem of people with obstructive sleep apnea. Sleep 2021; 44:5909379. [PMID: 32954401 DOI: 10.1093/sleep/zsaa195] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Obstructive sleep apnea (OSA) involves intermittent cessations of breathing during sleep. People with OSA can experience memory deficits and have reduced hippocampal volume; these features are also characteristic of Alzheimer's disease (AD), where they are accompanied by neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques in the hippocampus and brainstem. We have recently shown reduced hippocampal volume to be related to OSA severity, and although OSA may be a risk factor for AD, the hippocampus and brainstems of clinically verified OSA cases have not yet been examined for NFTs and Aβ plaques. The present study used quantitative immunohistochemistry to investigate postmortem hippocampi of 34 people with OSA (18 females, 16 males; mean age 67 years) and brainstems of 24 people with OSA for the presence of NFTs and Aβ plaques. OSA severity was a significant predictor of Aβ plaque burden in the hippocampus after controlling for age, sex, body mass index (BMI), and continuous positive airway pressure (CPAP) use. OSA severity also predicted NFT burden in the hippocampus, but not after controlling for age. Although 71% of brainstems contained NFTs and 21% contained Aβ plaques, their burdens were not correlated with OSA severity. These results indicate that OSA accounts for some of the "cognitively normal" individuals who have been found to have substantial Aβ burdens, and are currently considered to be at a prodromal stage of AD.
Collapse
Affiliation(s)
- Jessica E Owen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Bryndis Benediktsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Sleep Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Elizabeth Cook
- Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorarinn Gislason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Sleep Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.,Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
85
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
86
|
Riphagen JM, van Egroo M, Jacobs HIL. Elevated Norepinephrine Metabolism Gauges Alzheimer's Disease-Related Pathology and Memory Decline. J Alzheimers Dis 2021; 80:521-526. [PMID: 33554915 PMCID: PMC8075385 DOI: 10.3233/jad-201411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The noradrenergic (NE) locus coeruleus (LC) is vulnerable to hyperphosphorylated tau, and dysregulated NE-metabolism is linked to greater tau and disease progression. We investigated whether elevated NE-metabolism alone predicts memory decline or whether concomitant presence of tau and amyloid-β is required. Among 114 memory clinic participants, time trends (max. six years) showed dose-response declines in learning across groups with elevated NE-metabolite 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) with no, one, or two Alzheimer’s disease biomarkers; and no decline in the low MHPG group. Elevated MHPG is required and sufficient to detect learning declines, supporting a pathophysiologic model including the LC-NE system contributing to initial Alzheimer’s disease-related processes.
Collapse
Affiliation(s)
- Joost M Riphagen
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Maxime van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
87
|
The 'a, b, c's of pretangle tau and their relation to aging and the risk of Alzheimer's Disease. Semin Cell Dev Biol 2021; 116:125-134. [PMID: 33674223 DOI: 10.1016/j.semcdb.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Braak has described the beginnings of Alzheimer's Disease as occurring in the locus coeruleus. Here we review these pretangle stages and relate their expression to recently described normal features of tau biology. We suggest pretangle tau depends on characteristics of locus coeruleus operation that promote tau condensates. We examine the timeline of pretangle and tangle appearance in locus coeruleus. We find catastrophic loss of locus coeruleus neurons is a late event. The strong relationship between locus coeruleus neuron number and human cognition underscores the utility of a focus on locus coeruleus. Promoting locus coeruleus health will benefit normal aging as well as aid in the prevention of dementia. Two animal models offering experimental approaches to understanding the functional change initiated by pretangles in locus coeruleus neurons are discussed.
Collapse
|
88
|
Hayashi T, Shimonaka S, Elahi M, Matsumoto SE, Ishiguro K, Takanashi M, Hattori N, Motoi Y. Learning Deficits Accompanied by Microglial Proliferation After the Long-Term Post-Injection of Alzheimer's Disease Brain Extract in Mouse Brains. J Alzheimers Dis 2021; 79:1701-1711. [PMID: 33459716 DOI: 10.3233/jad-201002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human tauopathy brain injections into the mouse brain induce the development of tau aggregates, which spread to functionally connected brain regions; however, the features of this neurotoxicity remain unclear. One reason may be short observational periods because previous studies mostly used mutated-tau transgenic mice and needed to complete the study before these mice developed neurofibrillary tangles. OBJECTIVE To examine whether long-term incubation of Alzheimer's disease (AD) brain in the mouse brain cause functional decline. METHODS We herein used Tg601 mice, which overexpress wild-type human tau, and non-transgenic littermates (NTg) and injected an insoluble fraction of the AD brain into the unilateral hippocampus. RESULTS After a long-term (17-19 months) post-injection, mice exhibited learning deficits detected by the Barnes maze test. Aggregated tau pathology in the bilateral hippocampus was more prominent in Tg601 mice than in NTg mice. No significant changes were observed in the number of Neu-N positive cells or astrocytes in the hippocampus, whereas that of Iba-I-positive microglia increased after the AD brain injection. CONCLUSION These results potentially implicate tau propagation in functional decline and indicate that long-term changes in non-mutated tau mice may reflect human pathological conditions.
Collapse
Affiliation(s)
- Tetsuo Hayashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shotaro Shimonaka
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Montasir Elahi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University School of Medicine, Tokyo, Japan
| | - Shin-Ei Matsumoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
89
|
Van Egroo M, Chylinski D, Narbutas J, Besson G, Muto V, Schmidt C, Marzoli D, Cardone P, Vandeleene N, Grignard M, Luxen A, Salmon E, Lambert C, Bastin C, Collette F, Phillips C, Maquet P, Bahri MA, Balteau E, Vandewalle G. Early brainstem [18F]THK5351 uptake is linked to cortical hyperexcitability in healthy aging. JCI Insight 2021; 6:142514. [PMID: 33290274 PMCID: PMC7934880 DOI: 10.1172/jci.insight.142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neuronal hyperexcitability characterizes the early stages of Alzheimer’s disease (AD). In animals, early misfolded tau and amyloid-β (Aβ) protein accumulation — both central to AD neuropathology — promote cortical excitability and neuronal network dysfunction. In healthy humans, misfolded tau and Aβ aggregates are first detected, respectively, in the brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD cognitive symptoms. Whether cortical excitability is related to early brainstem tau — and its associated neuroinflammation — and cortical Aβ aggregations remains unknown. METHODS We probed frontal cortex excitability, using transcranial magnetic stimulation combined with electroencephalography, in a sample of 64 healthy late-middle–aged individuals (50–69 years; 45 women and 19 men). We assessed whole-brain [18F]THK5351 PET uptake as a proxy measure of tau/neuroinflammation, and we assessed whole-brain Aβ burden with [18F]Flutemetamol or [18F]Florbetapir radiotracers. RESULTS We found that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment was associated with increased cortical excitability (r = 0.29, P = 0.02). By contrast, [18F]THK5351 PET signal in the hippocampal formation, although strongly correlated with brainstem signal in whole-brain voxel-based quantification analyses (P value corrected for family-wise error [PFWE-corrected] < 0.001), was not significantly associated with cortical excitability (r = 0.14, P = 0.25). Importantly, no significant association was found between early Aβ cortical deposits and cortical excitability (r = –0.20, P = 0.11). CONCLUSION These findings reveal potential brain substrates for increased cortical excitability in preclinical AD and may constitute functional in vivo correlates of early brainstem tau accumulation and neuroinflammation in humans. TRIAL REGISTRATION EudraCT 2016-001436-35. FUNDING F.R.S.-FNRS Belgium, Wallonie-Bruxelles International, ULiège, Fondation Simone et Pierre Clerdent, European Regional Development Fund.
Collapse
Affiliation(s)
| | | | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | | | - Vincenzo Muto
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | - Christina Schmidt
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | | | | | | | | | - André Luxen
- GIGA-Cyclotron Research Centre-In Vivo Imaging and
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, University College London Institute of Neurology, London, United Kingdom
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Psychology and Cognitive Neuroscience Research Unit, University of Liège (ULiège), Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,GIGA-In Silico Medicine, ULiège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging and.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
90
|
Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer's disease-related tau R3-R4 Protofilament by norepinephrine. Biophys Chem 2021; 271:106541. [PMID: 33515860 DOI: 10.1016/j.bpc.2021.106541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Aggregation of Tau protein into neurofibrillary tangles is associated with the pathogenesis of Alzheimer's disease (AD) which has no cure yet. Clearing neurofibrillary tangles is one of major therapeutic strategies. Experimental studies reported that norepinephrine (NE) has the ability to disrupt Tau filament and cause Tau degradation. However, the underlying mechanism remains elusive. Herein, we performed molecular dynamic simulations to investigate the influence of NE on the C-shaped Tau R3-R4 protofilament. Our simulations show that NE compound destabilizes Tau protofilament by mostly disrupting β6/β8 and altering the β2-β3 and β6-β7 angles. NE binds mainly with aromatic residues Y310/P312/H374/F378 through ππ stacking and charged residues E338/E342/D348/D358/E372 via hydrogen-bonding interactions. Our results, together with the findings that exercise can markedly increase NE level, suggest that exercise might be a potent therapy against AD. This study reveals the disruptive mechanism of Tau protofilament by NE molecules, which may provide new clues for AD drug candidate design.
Collapse
|
91
|
Matchett BJ, Grinberg LT, Theofilas P, Murray ME. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2021; 141:631-650. [PMID: 33427939 PMCID: PMC8043919 DOI: 10.1007/s00401-020-02248-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau and the extracellular deposition of amyloid-β plaques, which affect certain brain regions in a progressive manner. The locus coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the LC-NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. We summarize how preservation of the LC-NE system could be used in the treatment of AD and other neurodegenerative diseases affected by LC degeneration.
Collapse
Affiliation(s)
- Billie J. Matchett
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
| | - Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| | - Melissa E. Murray
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
92
|
Mendez MF. Degenerative dementias: Alterations of emotions and mood disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:261-281. [PMID: 34389121 DOI: 10.1016/b978-0-12-822290-4.00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Degenerative dementias such as Alzheimer's disease and frontotemporal dementia result in distinct alterations in emotional processing, emotional experiences, and mood. The neuropathology of these dementias extends to structures involved in emotional processing, including the basolateral limbic network (orbitofrontal cortex, anterior temporal lobe, amygdala, and thalamus), the insula, and ventromedial frontal lobe. Depression is the most common emotion and mood disorder affecting patients with Alzheimer's disease. The onset of depression can be a prodromal sign of this dementia. Anxiety can also be present early in the course of Alzheimer's disease and especially among patients with early-onset forms of the disease. In contrast, patients with behavioral variant frontotemporal dementia demonstrate hypoemotionality, deficits in the recognition of emotion, and decreased psychophysiological reactivity to emotional stimuli. They typically have a disproportionate impairment in emotional and cognitive empathy. One other unique feature of behavioral variant frontotemporal dementia is the frequent occurrence of bipolar disorder. The management strategies for these alterations of emotion and mood in degenerative dementias primarily involve the judicious use of the psychiatric armamentarium of medications.
Collapse
Affiliation(s)
- Mario F Mendez
- Behavioral Neurology Program, Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States; Neurology Service, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States.
| |
Collapse
|
93
|
Weigand AJ, Thomas KR, Bangen KJ, Eglit GML, Delano-Wood L, Gilbert PE, Brickman AM, Bondi MW. APOE interacts with tau PET to influence memory independently of amyloid PET in older adults without dementia. Alzheimers Dement 2021; 17:61-69. [PMID: 32886451 DOI: 10.1002/alz.12173] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Apolipoprotein E (APOE) interacts with Alzheimer's disease pathology to promote disease progression. We investigated the moderating effect of APOE on independent associations of amyloid and tau positron emission tomography (PET) with cognition. METHODS For 297 nondemented older adults from the Alzheimer's Disease Neuroimaging Initiative, regression equations modeled associations between cognition and (1) cortical amyloid beta (Aβ) PET levels adjusting for tau and (2) medial temporal lobe (MTL) tau PET levels adjusting for Aβ, including interactions with APOE ε4-carrier status. RESULTS Adjusting for tau PET, Aβ was not associated with cognition and did not interact with APOE. In contrast, adjusting for Aβ PET, MTL tau was associated with all cognitive domains. Further, there was a stronger moderating effect of APOE on MTL tau and memory associations in ε4-carriers, even among Aβ-negative individuals. DISCUSSION Findings suggest that APOE may interact with tau independently of Aβ and that elevated MTL tau confers negative cognitive consequences in Aβ-negative ε4 carriers.
Collapse
Affiliation(s)
- Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program, San Diego
| | - Kelsey R Thomas
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Katherine J Bangen
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Graham M L Eglit
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, California, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mark W Bondi
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| |
Collapse
|
94
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
95
|
Galgani A, Lombardo F, Della Latta D, Martini N, Bonuccelli U, Fornai F, Giorgi FS. Locus Coeruleus Magnetic Resonance Imaging in Neurological Diseases. Curr Neurol Neurosci Rep 2020; 21:2. [PMID: 33313963 PMCID: PMC7732795 DOI: 10.1007/s11910-020-01087-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. RECENT FINDINGS LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.
Collapse
Affiliation(s)
| | - Francesco Lombardo
- U.O.C. "Risonanza Magnetica Specialistica e Neuroradiologia", Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - Daniele Della Latta
- Deep Health Unit, Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - Nicola Martini
- Deep Health Unit, Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Pisa University Hospital, Pisa, Italy.
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|
96
|
Ohm DT, Peterson C, Lobrovich R, Cousins KAQ, Gibbons GS, McMillan CT, Wolk DA, Van Deerlin V, Elman L, Spindler M, Deik A, Siderowf A, Trojanowski JQ, Lee EB, Grossman M, Irwin DJ. Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathol 2020; 140:675-693. [PMID: 32804255 DOI: 10.1007/s00401-020-02210-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Neurodegeneration of the locus coeruleus (LC) in age-related neurodegenerative diseases such as Alzheimer's disease (AD) is well documented. However, detailed studies of LC neurodegeneration in the full spectrum of frontotemporal lobar degeneration (FTLD) proteinopathies comparing tauopathies (FTLD-tau) to TDP-43 proteinopathies (FTLD-TDP) are lacking. Here, we tested the hypothesis that there is greater LC neuropathology and neurodegeneration in FTLD-tau compared to FTLD-TDP. We examined 280 patients including FTLD-tau (n = 94), FTLD-TDP (n = 135), and two reference groups: clinical/pathological AD (n = 32) and healthy controls (HC, n = 19). Adjacent sections of pons tissue containing the LC were immunostained for phosphorylated TDP-43 (1D3-p409/410), hyperphosphorylated tau (PHF-1), and tyrosine hydroxylase (TH) to examine neuromelanin-containing noradrenergic neurons. Blinded to clinical and pathologic diagnoses, we semi-quantitatively scored inclusions of tau and TDP-43 both inside LC neuronal somas and in surrounding neuropil. We also digitally measured the percent area occupied of neuromelanin inside of TH-positive LC neurons and in surrounding neuropil to calculate a ratio of extracellular-to-intracellular neuromelanin as an objective composite measure of neurodegeneration. We found that LC tau burden in FTLD-tau was greater than LC TDP-43 burden in FTLD-TDP (z = - 11.38, p < 0.0001). Digital measures of LC neurodegeneration in FTLD-tau were comparable to AD (z = - 1.84, p > 0.05) but greater than FTLD-TDP (z = - 3.85, p < 0.0001) and HC (z = - 4.12, p < 0.0001). Both tau burden and neurodegeneration were consistently elevated in the LC across pathologic and clinical subgroups of FTLD-tau compared to FTLD-TDP subgroups. Moreover, LC tau burden positively correlated with neurodegeneration in the total FTLD group (rho = 0.24, p = 0.001), while TDP-43 burden did not correlate with LC neurodegeneration in FTLD-TDP (rho = - 0.01, p = 0.90). These findings suggest that patterns of disease propagation across all tauopathies include prominent LC tau and neurodegeneration that are relatively distinct from the minimal degenerative changes to the LC in FTLD-TDP and HC. Antemortem detection of LC neurodegeneration and/or function could potentially improve antemortem differentiation of underlying FTLD tauopathies from clinically similar FTLD-TDP proteinopathies.
Collapse
Affiliation(s)
- Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katheryn A Q Cousins
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Garrett S Gibbons
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Memory Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Elman
- Comprehensive Amyotrophic Lateral Sclerosis Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Meredith Spindler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andres Deik
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Siderowf
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
97
|
Lamerand S, Shahidehpour R, Ayala I, Gefen T, Mesulam MM, Bigio E, Geula C. Calbindin-D 28K, parvalbumin, and calretinin in young and aged human locus coeruleus. Neurobiol Aging 2020; 94:243-249. [PMID: 32663717 PMCID: PMC7483964 DOI: 10.1016/j.neurobiolaging.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
Certain neuronal populations, including basal forebrain cholinergic neurons (BFCN) and noradrenergic neurons of the locus coeruleus (LC), are selectively vulnerable to pathology and loss early in the course of aging and Alzheimer's disease (AD). Human BFCN show substantial loss of the calcium-binding protein (CBP), calbindin-D28K (CB), during normal aging, which is associated with formation of neurofibrillary tangles and BFCN loss in AD. Here we determined if, similar to the BFCN, LC neurons contain CB or the other 2 ubiquitous CBPs parvalbumin and calretinin, and whether these proteins display an age-related loss from LC neurons. Immunostaining for CBP and tyrosine hydroxylase, a marker of catecholaminergic neurons, was used in sections from the LC of young and aged human brains. Parvalbumin and calretinin immunoreactivities were completely absent from human LC neurons. A subpopulation of LC neurons (~10%) contained CB immunoreactivity. Quantitative analysis revealed no age-related loss of CB from LC neurons. Thus, unlike the BFCN, age-related loss of CB does not figure prominently in the selective vulnerability of LC neurons to degeneration in AD.
Collapse
Affiliation(s)
- Sydney Lamerand
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Shahidehpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eileen Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
98
|
Mander BA. Local Sleep and Alzheimer's Disease Pathophysiology. Front Neurosci 2020; 14:525970. [PMID: 33071726 PMCID: PMC7538792 DOI: 10.3389/fnins.2020.525970] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with β-amyloid (Aβ) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.
Collapse
Affiliation(s)
- Bryce A. Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
99
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
100
|
Delta-secretase cleavage of Tau mediates its pathology and propagation in Alzheimer's disease. Exp Mol Med 2020; 52:1275-1287. [PMID: 32859953 PMCID: PMC8080617 DOI: 10.1038/s12276-020-00494-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with age as a major risk factor. AD is the most common dementia with abnormal structures, including extracellular senile plaques and intraneuronal neurofibrillary tangles, as key neuropathologic hallmarks. The early feature of AD pathology is degeneration of the locus coeruleus (LC), which is the main source of norepinephrine (NE) supplying various cortical and subcortical areas that are affected in AD. The spread of Tau deposits is first initiated in the LC and is transported in a stepwise manner from the entorhinal cortex to the hippocampus and then to associative regions of the neocortex as the disease progresses. Most recently, we reported that the NE metabolite DOPEGAL activates delta-secretase (AEP, asparagine endopeptidase) and triggers pathological Tau aggregation in the LC, providing molecular insight into why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in the disease and how δ-secretase mediates the spread of Tau pathology to the rest of the brain. This review summarizes our current understanding of the crucial role of δ-secretase in driving and spreading AD pathologies by cleaving multiple critical players, including APP and Tau, supporting that blockade of δ-secretase may provide an innovative disease-modifying therapeutic strategy for treating AD. The identification of an enzyme that plays a critical role in the progression of Alzheimer’s disease (AD) could lead to novel therapeutic interventions. In the earliest stage of AD, the build-up of Tau protein aggregates causes degeneration of a site in the brainstem. These abnormal Tau accumulations then spread to other parts of the brain. Recent research suggests that an enzyme called delta-secretase cleaves Tau and other key molecules, making Tau more prone to forming aggregates and thus facilitating disease progression. Keqiang Ye and co-workers at Emory University School of Medicine in Atlanta, USA, reviewed current understanding of the role of delta-secretase in AD pathology. Studies show that delta-secretase expression levels are high in aged mice and AD brains. Inhibiting delta-secretase could therefore limit neurodegeneration and alleviate cognitive deficits in patients.
Collapse
|