51
|
Glassmire AE, Carson WP, Smilanich AM, Richards LA, Jeffrey CS, Dodson CD, Philbin CS, Humberto GL, Dyer LA. Multiple and contrasting pressures determine intraspecific phytochemical variation in a tropical shrub. Oecologia 2023; 201:991-1003. [PMID: 37042994 DOI: 10.1007/s00442-023-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/12/2023] [Indexed: 04/13/2023]
Abstract
Intraspecific phytochemical variation across a landscape can cascade up trophic levels, potentially mediating the composition of entire insect communities. Surprisingly, we have little understanding of the processes that regulate and maintain phytochemical variation within species, likely because these processes are complex and operate simultaneously both temporally and spatially. To assess how phytochemistry varies within species, we tested the degree to which resource availability, contrasting soil type, and herbivory generate intraspecific chemical variation in growth and defense of the tropical shrub, Piper imperiale (Piperaceae). We quantified changes in both growth (e.g., nutritional protein, above- and below-ground biomass) and defense (e.g., imide chemicals) of individual plants using a well-replicated fully factorial shade-house experiment in Costa Rica. We found that plants grown in high light, nutrient- and richer old alluvial soil had increased biomass. High light was also important for increasing foliar protein. Thus, investment into growth was determined by resource availability and soil composition. Surprisingly, we found that chemical defenses decreased in response to herbivory. We also found that changes in plant protein were more plastic compared to plant defense, indicating that constitutive defenses may be relatively fixed, and thus an adaptation to chronic herbivory that is common in tropical forests. We demonstrate that intraspecific phytochemical variation of P. imperiale is shaped by resource availability from light and soil type. Because environmental heterogeneity occurs over small spatial scales (tens of meters), herbivores may be faced with a complex phytochemical landscape that may regulate how much damage any individual plant sustains.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Walter P Carson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lora A Richards
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
| | - Christopher S Jeffrey
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Craig D Dodson
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Casey S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Garcia L Humberto
- Organization for Tropical Studies, La Selva Research Station, Costa Rica, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
52
|
Liu C, Smit SJ, Dang J, Zhou P, Godden GT, Jiang Z, Liu W, Liu L, Lin W, Duan J, Wu Q, Lichman BR. A chromosome-level genome assembly reveals that a bipartite gene cluster formed via an inverted duplication controls monoterpenoid biosynthesis in Schizonepeta tenuifolia. MOLECULAR PLANT 2023; 16:533-548. [PMID: 36609143 DOI: 10.1016/j.molp.2023.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/09/2023]
Abstract
Biosynthetic gene clusters (BGCs) are regions of a genome where genes involved in a biosynthetic pathway are in proximity. The origin and evolution of plant BGCs as well as their role in specialized metabolism remain largely unclear. In this study, we have assembled a chromosome-scale genome of Japanese catnip (Schizonepeta tenuifolia) and discovered a BGC that contains multiple copies of genes involved in four adjacent steps in the biosynthesis of p-menthane monoterpenoids. This BGC has an unprecedented bipartite structure, with mirrored biosynthetic regions separated by 260 kilobases. This bipartite BGC includes identical copies of a gene encoding an old yellow enzyme, a type of flavin-dependent reductase. In vitro assays and virus-induced gene silencing revealed that this gene encodes the missing isopiperitenone reductase. This enzyme evolved from a completely different enzyme family to isopiperitenone reductase from closely related Mentha spp., indicating convergent evolution of this pathway step. Phylogenomic analysis revealed that this bipartite BGC has emerged uniquely in the S. tenuifolia lineage and through insertion of pathway genes into a region rich in monoterpene synthases. The cluster gained its bipartite structure via an inverted duplication. The discovered bipartite BGC for p-menthane biosynthesis in S. tenuifolia has similarities to the recently described duplicated p-menthane biosynthesis gene pairs in the Mentha longifolia genome, providing an example of the convergent evolution of gene order. This work expands our understanding of plant BGCs with respect to both form and evolution, and highlights the power of BGCs for gene discovery in plant biosynthetic pathways.
Collapse
Affiliation(s)
- Chanchan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peina Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Licheng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
53
|
Labokas J, Karpavičienė B. On the Prospects of In Situ Conservation of Medicinal- and Aromatic-Plant Genetic Resources at Ancient-Hillfort Sites: A Case Study from Lithuania. PLANTS (BASEL, SWITZERLAND) 2023; 12:861. [PMID: 36840209 PMCID: PMC9967452 DOI: 10.3390/plants12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Twenty-three ancient-hillfort sites were investigated to evaluate the potential for the in situ conservation of medicinal- and aromatic-plant populations. An evaluation of the site's suitability was carried out by employing three major groups of criteria: species-specific, site-specific, and threat assessment. The species-specific criteria included the total species number, target species number, the cover-abundance of the target species estimated by mean Braun-Blanquet score, and, as an additional criterion, the number and cover-abundance of crop wild relatives. The site-specific criteria included site evaluation with respect to climatic region, the area size of a site, the habitat type, and the site's protection status. The threat assessment was focused on anthropogenic activities, such as recreational, agricultural, and others. The total number of vascular plant species inventoried was 264, including 82 species of medicinal and aromatic plants (MAP). There was a strong and highly significant correlation between the total and the MAP species numbers (rs = 0.77, p < 0.001), and the two most species-rich sites, Žuklijai and Pamiškė, contained the highest total and MAP species numbers. The investigated hillfort sites covered the populations of 49 species, or about 33% of the priority species list, with 5 or more populations. The most frequent species, Hypericum perforatum, occurred at 21 sites. The twenty-three hillfort sites represent three of the four climatic regions and six of the ten climatic subregions of Lithuania. Although these hillfort sites are quite small (1.24 ± 0.75 ha on average, without buffer zone), they are scattered across the country and are state-protected as archaeological objects, which makes them suitable for the in situ conservation of MAP genetic resources. In addition, seven hillfort sites (30.4% of the investigated ones) belong to the European network of special areas of conservation of habitats (Natura 2000), thus increasing their international importance. The threat assessment showed that anthropogenic activities (recreational, agricultural, etc.) are among the major factors affecting target-species populations.
Collapse
|
54
|
Radušienė J, Karpavičienė B, Raudone L, Vilkickyte G, Çırak C, Seyis F, Yayla F, Marksa M, Rimkienė L, Ivanauskas L. Trends in Phenolic Profiles of Achillea millefolium from Different Geographical Gradients. PLANTS (BASEL, SWITZERLAND) 2023; 12:746. [PMID: 36840094 PMCID: PMC9964219 DOI: 10.3390/plants12040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The traditional widely used raw material of Achillea millefolium is currently mainly derived from wild populations, leading to diversification and uncertainty in its quality. The aim of the study was to determine the accumulation differences of phenolic compounds between geographically distant populations of Achillea millefolium from northern and southern gradients. Plant material was collected from Gaziantep and Nevşehir provinces in Turkey and from wild populations in Lithuania. A complex of nine hydroxycinnamic acids and eleven flavonoids was identified and quantified in the methanolic extracts of inflorescences, leaves, and stems using the HPLC-PDA method. Caffeoylquinic acids predominated in leaves, while inflorescences tended to prevail in flavonoids. The PCA score plot model represented the quantitative distribution pattern of phenolic compounds along a geographical gradient of populations. The content of phenolic compounds in plant materials from northern latitudes was more than twice that of plants from southern latitudes. A significant correlation of individual phenolic compounds with latitude/longitude corresponded to their differences between two countries. Differences in accumulation of caffeoylquinic acids and flavonoids revealed several intraspecific groups within A. millefolium. Our findings suggest that spatial geographical data on the distribution of phenolic compounds in A. millefolium populations could be used as a tool to find potential collection sites for high-quality raw materials.
Collapse
Affiliation(s)
- Jolita Radušienė
- Laboratory of Economic Botany, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | - Birutė Karpavičienė
- Laboratory of Economic Botany, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | - Lina Raudone
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Cüneyt Çırak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun 55200, Turkey
| | - Fatih Seyis
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Recep Tayyip Erdoğan University, Rize 53100, Turkey
| | - Fatih Yayla
- Department of Biology, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27310, Turkey
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Laura Rimkienė
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| |
Collapse
|
55
|
Benazzouz-Smail L, Achat S, Brahmi F, Bachir-Bey M, Arab R, Lorenzo JM, Benbouriche A, Boudiab K, Hauchard D, Boulekbache L, Madani K. Biological Properties, Phenolic Profile, and Botanical Aspect of Nigella sativa L. and Nigella damascena L. Seeds: A Comparative Study. Molecules 2023; 28:molecules28020571. [PMID: 36677629 PMCID: PMC9863492 DOI: 10.3390/molecules28020571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
The use of Nigella seeds in the food, pharmaceutical, and cosmetic fields is common, since the iniquity and the virtues of these plants are directly related to their characteristic phytochemical composition. This investigation focused on the comparative study of the botanical aspect, phenolic profile, and in vitro and in vivo biological activities of Nigella sativa L. (NS) and Nigella damascena L. (ND) seeds. The macro- and micro-morphological properties of these seeds were studied, and the key dissimilarities between them were clearly illustrated. The phytochemical contents and phenolic profiles were determined, and the in vitro antioxidant activity was assessed using four methods. The in vivo antioxidant and biochemical parameters of the blood of supplemented mice were determined. The results of the macro- and micro-structure analysis revealed differences between the two plants. Here, ND is characterized by higher phytochemical contents and the best antioxidant activities. The HPLC analysis indicated the presence of nine compounds, namely seven phenolic acids, particularly hydroxybenzoic and caffeic acids, and two flavonoids. The administration of ND extract to mice for 21 days at a concentration of 500 mg/kg allowed a substantial amelioration of plasma antioxidant properties. In addition, the extracts ameliorate blood parameters (cholesterol, triglycerides, glycemia, and urea). Furthermore, the antimicrobial activity of extracts demonstrated their effects on Staphylococcus and Aspergillus. Nigella seeds, in particular ND, expressed considerable in vitro antioxidant properties and demonstrated significant amelioration of mice blood properties. Consequently, these species can serve as a valuable source of compounds with various applications.
Collapse
Affiliation(s)
- Leila Benazzouz-Smail
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Sabiha Achat
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Fatiha Brahmi
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Radia Arab
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibraodas Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Aicha Benbouriche
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Kahina Boudiab
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Didier Hauchard
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 13 Allée de Beaulieu, CS 50837, CEDEX 7, 35708 Rennes, France
| | - Lila Boulekbache
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
- Centre de Recherche en Technologies Agro-Alimentaires, Route de Targa Ouzemour, Bejaia 06000, Algeria
| |
Collapse
|
56
|
Paguet AS, Siah A, Lefèvre G, Moureu S, Cadalen T, Samaillie J, Michels F, Deracinois B, Flahaut C, Alves Dos Santos H, Etienne-Debaecker A, Rambaud C, Chollet S, Molinié R, Fontaine JX, Waterlot C, Fauconnier ML, Sahpaz S, Rivière C. Multivariate analysis of chemical and genetic diversity of wild Humulus lupulus L. (hop) collected in situ in northern France. PHYTOCHEMISTRY 2023; 205:113508. [PMID: 36370882 DOI: 10.1016/j.phytochem.2022.113508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The hop plant (Humulus lupulus L.) has been exploited for a long time for both its brewing and medicinal uses, due in particular to its specific chemical composition. These last years, hop cultivation that was in decline has been experiencing a renewal for several reasons, such as a craze for strongly hopped aromatic beers. In this context, the present work aims at investigating the genetic and chemical diversity of fifty wild hops collected from different locations in Northern France. These wild hops were compared to ten commercial varieties and three heirloom varieties cultivated in the same sampled geographical area. Genetic analysis relying on genome fingerprinting using 11 microsatellite markers showed a high level of diversity. A total of 56 alleles were determined with an average of 10.9 alleles per locus and assessed a significant population structure (mean pairwise FST = 0.29). Phytochemical characterization of hops was based on volatile compound analysis by HS-SPME GC-MS, quantification of the main prenylated phenolic compounds by UHPLC-UV as well as untargeted metabolomics by UHPLC-HRMS and revealed a high level of chemical diversity among the assessed wild accessions. In particular, analysis of volatile compounds revealed the presence of some minor but original compounds, such as aromadendrene, allo-aromadendrene, isoledene, β-guaiene, α-ylangene and β-pinene in some wild accessions; while analysis of phenolic compounds showed high content of β-acids in these wild accessions, up to 2.37% of colupulone. Genetic diversity of wild hops previously observed was hence supported by their chemical diversity. Sample soil analysis was also performed to get a pedological classification of these different collection sites. Results of the multivariate statistical analysis suggest that wild hops constitute a huge pool of chemical and genetic diversity of this species.
Collapse
Affiliation(s)
- Anne-Sophie Paguet
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Ali Siah
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Gabriel Lefèvre
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Sophie Moureu
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Thierry Cadalen
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Jennifer Samaillie
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Franck Michels
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Barbara Deracinois
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Christophe Flahaut
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Harmony Alves Dos Santos
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Audrey Etienne-Debaecker
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Caroline Rambaud
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Sylvie Chollet
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Roland Molinié
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Jean-Xavier Fontaine
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Christophe Waterlot
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France
| | - Marie-Laure Fauconnier
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Sevser Sahpaz
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France
| | - Céline Rivière
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, JUNIA, UPJV, Univ. Liège, INRAE, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, F-59650 Villeneuve D'Ascq, France.
| |
Collapse
|
57
|
Forrister DL, Endara MJ, Soule AJ, Younkin GC, Mills AG, Lokvam J, Dexter KG, Pennington RT, Kidner CA, Nicholls JA, Loiseau O, Kursar TA, Coley PD. Diversity and divergence: evolution of secondary metabolism in the tropical tree genus Inga. THE NEW PHYTOLOGIST 2023; 237:631-642. [PMID: 36263711 DOI: 10.1111/nph.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.
Collapse
Affiliation(s)
- Dale L Forrister
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - María-José Endara
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS - Universidad de las Américas, 170513, Quito, Ecuador
| | - Abrianna J Soule
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Gordon C Younkin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Mills
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - John Lokvam
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Kyle G Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - R Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Catherine A Kidner
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JW, UK
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James A Nicholls
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Insect Collection (ANIC), Building 101, Clunies Ross Street, Black Mountain, ACT, 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - Thomas A Kursar
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Phyllis D Coley
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
58
|
Chen J, Ning S, Lu X, Xiang W, Zhou X, Bu Y, Li L, Huang R. Variation in flavonoid and antioxidant activities of Pyrrosia petiolosa (Christ) Ching from different geographic origins. FRONTIERS IN PLANT SCIENCE 2023; 14:1173489. [PMID: 37123848 PMCID: PMC10140315 DOI: 10.3389/fpls.2023.1173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Pyrrosia petiolosa (Christ) Ching has both medicinal and health benefits in China. The potential antioxidant activities of P. petiolosa, which are mainly attributed to its flavonoids, have attracted much attention in recent years. The present study aimed to determine the concentration of flavonoid components and evaluate the relative antioxidant activities of P. petiolosa from different geographic origins using a UPLC-MRM-MS-based metabolomics approach. In total, 97 flavonoid components were identified, and their concentrations in the samples from different geographic locations showed significant variation. Thirteen flavonoid components were identified as potential biomarkers for distinguishing between the two major regions, Guizhou (GZ) and Guangxi (GX). The GZ group showed higher total flavonoid content, free radical scavenging activities, and ferric reducing antioxidant power. The well positive correlations were found between the antioxidant capacities and some flavonoid markers. The ecogeographic factors, namely altitude and longitude, play a crucial role in the difference of antioxidant activities and flavonoids concentration. These results indicate that P. petiolosa is rich in flavonoid compounds and is a promising source of natural antioxidants, providing a basis for the quality control of P. petiolosa.
Collapse
Affiliation(s)
- Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
| | - Shan Ning
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Xuan Lu
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
| | - Wei Xiang
- College of Horticulture, Hunan Agricultural University, Hunan, China
| | - Xiao Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuanyuan Bu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
- *Correspondence: Liangbo Li, ; Rongshao Huang,
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
- *Correspondence: Liangbo Li, ; Rongshao Huang,
| |
Collapse
|
59
|
Ziaja D, Müller C. Intraspecific chemodiversity provides plant individual- and neighbourhood-mediated associational resistance towards aphids. FRONTIERS IN PLANT SCIENCE 2023; 14:1145918. [PMID: 37082343 PMCID: PMC10111025 DOI: 10.3389/fpls.2023.1145918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Some plant species express an extraordinarily high intraspecific diversity in phytochemicals (= chemodiversity). As discussed for biodiversity, higher chemodiversity may provide better protection against environmental stress, including herbivory. However, little is known about whether the resistance of a plant individual towards herbivores is mostly governed by its own chemodiversity or by associational resistance provided by conspecific neighbours. To investigate the role of chemodiversity in plant-aphid interactions, we used the Asteraceae Tanacetum vulgare, whose individuals differ pronouncedly in the composition of leaf terpenoids, forming distinct chemotypes. Plants were set up in a field consisting of plots containing five individuals of either the same or different chemotypes. Presence of winged aphids, indicating attraction, and abundance of winged and unwinged aphids, indicating fitness, were counted weekly on each plant. During the peak abundance of aphids, leaf samples were taken from all plants for re-analyses of the terpenoid composition and quantification of terpenoid chemodiversity, calculated on an individual plant (Shannon index, Hsind, also considered as α-chemodiversity) and plot level (Hsplot, = β-chemodiversity). Aphid attraction was neither influenced by chemotype nor plot-type. The real-time odour environment may be very complex in this setting, impeding clear preferences. In contrast, the abundance was affected by both chemotype and plot-type. On average, more Uroleucon tanaceti aphids were found on plants of two of the chemotypes growing in homogenous compared to heterogenous plots, supporting the associational resistance hypothesis. For Macrosiphoniella tanacetaria aphids, the probability of presence differed between plot-types on one chemotype. Terpenoid chemodiversity expressed as a gradient revealed negative Hsplot effects on U. tanaceti, but a positive correlation of Hsind with M. tanacetaria abundance. Aphids of M. fuscoviride were not affected by any level of chemodiversity. In conclusion, this study shows that not only the chemotype and chemodiversity of individual plants but also that of conspecific neighbours can influence certain plant-herbivore interactions. These effects are highly specific with regard to the plant chemotype and differ between aphid species and their morphs (winged vs. unwinged). Furthermore, our results highlight the importance of analysing chemodiversity at different levels.
Collapse
|
60
|
Tlili H, Arfa AB, Boubakri A, Hanen N, Neffati M, Doria E. Biochemical Composition and Biological Activities of Various Population of Brassica tournefortii Growing Wild in Tunisia. PLANTS (BASEL, SWITZERLAND) 2022; 11:3393. [PMID: 36501432 PMCID: PMC9739365 DOI: 10.3390/plants11233393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Brassica tournefortii Gouan, commonly known (Aslooz) in Tunisia, is an annual plant, native to the North Africa and Middle East. Brassica species are used as food, their young leaves can be cooked, providing nutrients and health-giving phytochemicals such as phenolic compounds, polyphenols and carotenoids. Phytochemical composition and bioactivity of Brassica tournefortii leaf extracts, collected from four different bioclimatic zones in Tunisia, are investigated in the present study. Results showed that location and climatic variations can alter the phytochemical composition of B. tournefortii. Interestingly, HPLC analysis enabled identifying lutein and beta-carotene at high concentrations, especially in extracts of B. tournefortii collected from Gabes (B2) (344 µg/g of lutein) and B. tournefortii collected from Zarzis (B3) (1364 µg/g of beta-carotene). In particular, the antioxidant activity measured by DPPH assay showed that the extract of the plants collected from the growing region of Zarzis exhibits the highest antioxidant activities (0.99 mg/mL). All the Brassica tournefortii extracts showed a relevant antiproliferative activity, especially toward the Caco-2 cell line. These preliminary data resulted in being useful to correlate growth environmental conditions with different accumulation of metabolites in Brassica species still being poorly studied.
Collapse
Affiliation(s)
- Hajer Tlili
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Abdelkarim Ben Arfa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Abdelbasset Boubakri
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Najjaa Hanen
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Mohamed Neffati
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Enrico Doria
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
61
|
Liu C, Zhu X, Zhang J, Shen M, Chen K, Fu X, Ma L, Liu X, Zhou C, Zhou D, Wang G. eQTLs play critical roles in regulating gene expression and identifying key regulators in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2357-2371. [PMID: 36087348 PMCID: PMC9674320 DOI: 10.1111/pbi.13912] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 05/28/2023]
Abstract
The regulation of gene expression plays an essential role in both the phenotype and adaptation of plants. Transcriptome sequencing enables simultaneous identification of exonic variants and quantification of gene expression. Here, we sequenced the leaf transcriptomes of 287 rice accessions from around the world and obtained a total of 177 853 high-quality single nucleotide polymorphisms after filtering. Genome-wide association study identified 44 354 expression quantitative trait loci (eQTLs), which regulate the expression of 13 201 genes, as well as 17 local eQTL hotspots and 96 distant eQTL hotspots. Furthermore, a transcriptome-wide association study screened 21 candidate genes for starch content in the flag leaves at the heading stage. HS002 was identified as a significant distant eQTL hotspot with five downstream genes enriched for diterpene antitoxin synthesis. Co-expression analysis, eQTL analysis, and linkage mapping together demonstrated that bHLH026 acts as a key regulator to activate the expression of downstream genes. The transgenic assay revealed that bHLH026 is an important regulator of diterpenoid antitoxin synthesis and enhances the disease resistance of rice. These findings improve our knowledge of the regulatory mechanisms of gene expression variation and complex regulatory networks of the rice genome and will facilitate genetic improvement of cultivated rice varieties.
Collapse
Affiliation(s)
- Chang Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Xiya Zhu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Jin Zhang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Meng Shen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Kai Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Xiangkui Fu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Lian Ma
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Xuelin Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Chang Zhou
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2)CNRS, INRAE, University Paris‐SaclayOrsayFrance
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
62
|
Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW, Mason CM. Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. AMERICAN JOURNAL OF BOTANY 2022; 109:2051-2067. [PMID: 36317693 DOI: 10.1002/ajb2.16093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
PREMISE As plant lineages diversify across environmental gradients, species are predicted to encounter divergent biotic pressures. This study investigated the evolution of volatile secondary metabolism across species of Helianthus. METHODS Leaves and petals of 40 species of wild Helianthus were analyzed via gas chromatography-mass spectrometry to determine volatile secondary metabolite profiles. RESULTS Across all species, 500 compounds were identified; 40% were sesquiterpenes, 18% monoterpenes, 3% diterpenes, 4% fatty acid derivatives, and 35% other compounds such as phenolics and small organic molecules. Qualitatively, annuals and species from more arid western climates had leaf compositions with a higher proportion of total monoterpenes, while erect perennials and species from more mesic eastern habitats contained a higher proportion of total sesquiterpenes. Among species, mass-based leaf monoterpene and sesquiterpene abundance were identified as largely orthogonal axes of variation by principal component analysis. Profiles for leaves were not strongly correlated with those of petals. CONCLUSIONS Volatile metabolites were highly diverse among wild Helianthus, indicating the value of this genus as a model system and rich genetic resource. The independence of leaf and petal volatile profiles indicates a low level of phenotypic integration between vegetative and reproductive structures, implying vegetative defense and reproductive defense or pollinator attraction functions mediated by terpene profiles in these two organs can evolve without major trade-offs. The major biosynthetic pathways for the major terpenes in wild Helianthus are already well described, providing a road map to deeper inquiry into the drivers of this diversity.
Collapse
Affiliation(s)
- Keivan Bahmani
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Sambadi Majumder
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Jordan A Dowell
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
63
|
Marceddu R, Carrubba A, Sarno M. Resilience of hop ( Humulus lupulus L.) to salinity, heat and drought stresses: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:1064922. [PMID: 36531342 PMCID: PMC9749550 DOI: 10.3389/fpls.2022.1064922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Over recent years, the cultivation of hops (Humulus lupulus L.) has spread widely in the Mediterranean, also affecting the southern regions of Spain and Italy with a typical semi-arid climate. Several and recent studies have investigated the responses of this species to the main abiotic stresses, which is an aspect of absolute relevance to the knowledge of the adaptive capacity of hops to the growing conditions of a new cultivation environment. Moreover, given the fact that hops' phytochemical composition is determined primarily by genetic and environmental factors, and that the species is perennial, the lack of knowledge on the effects of abiotic stress could be reflected in subsequent years, which means multi-year economic risks. This review work therefore aims to showcase, based on an in-depth investigation of the available literature, the response of hop to the main abiotic stresses, and the effect of these on productive and qualitative crop performances. The data presented will be useful to the understanding of constraints and to the identification of useful coping strategies to the cultivation of hops in semi-arid Mediterranean environments.
Collapse
|
64
|
Conneely LJ, Berkowitz O, Lewsey MG. Emerging trends in genomic and epigenomic regulation of plant specialised metabolism. PHYTOCHEMISTRY 2022; 203:113427. [PMID: 36087823 DOI: 10.1016/j.phytochem.2022.113427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Regulation of specialised metabolism genes is multilayered and complex, influenced by an array of genomic, epigenetic and epigenomic mechanisms. Here, we review the most recent knowledge in this field, drawing from discoveries in several plant species. Our aim is to improve understanding of how plant genome structure and function influence specialised metabolism. We also highlight key areas for future exploration. Gene regulatory mechanisms influencing specialised metabolism include gene duplication and neo-functionalization, conservation of operon-like clusters of specialised metabolism genes, local chromatin modifications, and the organisation of higher order chromatin structures within the nucleus. Genomic and epigenomic research to-date in the discipline have focused on a relatively small number of plant species, primarily at whole organ or tissue level. This is largely due to the technical demands of the experimental methods needed. However, a high degree of cell-type specificity of function exists in specialised metabolism, driven by similarly specific gene regulation. In this review we focus on the genomic characteristics of genes that are found in different types of clusters within the genome. We propose that acquisition of cell-resolution epigenomic datasets in emerging models, such as the glandular trichomes of Cannabis sativa, will yield important advances. Data such as chromatin accessibility and histone modification profiles can pinpoint which regulatory sequences are active in individual cell types and at specific times in development. These could provide fundamental biological insight as well as novel targets for genetic engineering and crop improvement.
Collapse
Affiliation(s)
- Lee J Conneely
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Mathew G Lewsey
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
65
|
Oduor AMO. Invasive plant species that experience lower herbivory pressure may evolve lower diversities of chemical defense compounds in the exotic range. AMERICAN JOURNAL OF BOTANY 2022; 109:1382-1393. [PMID: 36000500 DOI: 10.1002/ajb2.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Invasive plant species often escape from specialist herbivores and are more likely to be attacked by generalist herbivores in the exotic range. Consequently, the shifting defense hypothesis predicts that invasive plants will produce higher concentrations of qualitative defense compounds to deter dominant generalist herbivores in the exotic range. Here, I additionally propose a reduced chemical diversity hypothesis (RCDH), which predicts that reduced herbivory pressure will select for invasive plant genotypes that produce lower diversities of chemical defense compounds in the exotic range. METHODS I tested whether (1) invasive Brassica nigra populations express a lower diversity and an overall higher concentration of glucosinolate compounds than native-range B. nigra; (2) Brassica nigra individuals that express high diversities and concentrations of glucosinolate compounds are more attractive to specialist and deterrent to generalist herbivores; and (3) tissues of invasive B. nigra are less palatable than tissues of native-range B. nigra to the generalist herbivores Theba pisana and Helix aspersa. RESULTS Invasive B. nigra populations produced a significantly lower diversity of glucosinolate compounds, a marginally higher concentration of total glucosinolates, and a significantly higher concentration of sinigrin (the dominant glucosinolate). Leaf tissues of invasive B. nigra were significantly less palatable to T. pisana and marginally less so to H. aspersa. Brassica nigra individuals that expressed high concentrations of total glucosinolate compounds were visited by a low diversity of generalist herbivore species in the field. CONCLUSIONS In line with the RCDH, the lower diversity of glucosinolate compounds produced by invasive B. nigra populations likely resulted from selection imposed by reduced herbivory pressure in the exotic range.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
66
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
67
|
Drought Stress Stimulates the Terpenoid Backbone and Triterpenoid Biosynthesis Pathway to Promote the Synthesis of Saikosaponin in Bupleurum chinense DC. Roots. Molecules 2022; 27:molecules27175470. [PMID: 36080237 PMCID: PMC9457724 DOI: 10.3390/molecules27175470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bupleurum chinense is an important medicinal plant in China; however, little is known regarding how this plant transcribes and synthesizes saikosaponins under drought stress. Herein, we investigated how drought stress stimulates the transcriptional changes of B. chinense to synthesize saikosaponins. Short-term drought stress induced the accumulation of saikosaponins, especially from the first re-watering stage (RD_1 stage) to the second re-watering stage (RD_2 stage). Saikosaponin-a and saikosaponin-d increased by 84.60% and 75.13%, respectively, from the RD_1 stage to the RD_2 stage. Drought stress also stimulated a rapid increase in the levels of the hormones abscisic acid, salicylic acid, and jasmonic acid. We screened 49 Unigenes regarding the terpenoid backbone and triterpenoid biosynthesis, of which 33 differential genes were significantly up-regulated during drought stress. Moreover, one P450 and two UGTs are possibly involved in the synthesis of saikosaponins, while some transcription factors may be involved in regulating the expression of key enzyme genes. Our study provides a reference for the cultivation of B. chinense and a practical means to ensure the quality (safety and effectiveness) of B. chinense for medicinal use, as well as insights into the modernization of the China Agriculture Research System.
Collapse
|
68
|
Anti-inflammatory properties of novel galloyl glucosides isolated from the Australian tropical plant Uromyrtus metrosideros. Chem Biol Interact 2022; 368:110124. [PMID: 36007634 DOI: 10.1016/j.cbi.2022.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Two new galloyl glucosides, galloyl-lawsoniaside A (4) and uromyrtoside (6), were isolated from the polar fraction of Uromyrtus metrosideros leaf extract along with another four previously identified phytochemicals (1, 2, 3, and 5). The structures of these six compounds were characterised using low and high-resolution mass spectrometry (L/HRMS) and 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. These compounds were not toxic to human peripheral blood mononuclear cells (PBMCs) at 10 μg/mL over 24 h, yet showed significant in vitro suppression of proinflammatory cytokines involved in the pathogenesis of inflammatory bowel disease (IBD). Specifically, the release of interferon γ (IFN-γ), interleukin (IL)-17A, and IL-8 from phorbol myristate acetate/ionomycin (P/I) and anti-CD3/anti-CD28-activated cells were significantly suppressed by compounds 4 and 5. Interestingly, no effect on tumour necrosis factor (TNF) release was observed. These results show that the newly characterised compound 4 has promising cytokine suppressive properties, which could be further investigated as a candidate for IBD treatment.
Collapse
|
69
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
70
|
Vilkickyte G, Motiekaityte V, Vainoriene R, Raudone L. Promising cultivars and intraspecific taxa of lingonberries (Vaccinium vitis-idaea L.): profiling of phenolics and triterpenoids. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
71
|
Kaur A, Kaur S, Singh HP, Batish DR. Alterations in phytotoxicity and allelochemistry in response to intraspecific variation in Parthenium hysterophorus. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
72
|
Badalamenti N, Modica A, Bazan G, Marino P, Bruno M. The ethnobotany, phytochemistry, and biological properties of Nigella damascena - A review. PHYTOCHEMISTRY 2022; 198:113165. [PMID: 35339516 DOI: 10.1016/j.phytochem.2022.113165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This review is a systematic scientific work on medicinal and traditional use, on the chemical composition of specialized metabolites, volatile and non-volatile, on aspects related to toxicology and phytotherapy of Nigella damascena L. The genus Nigella (Ranunculaceae) is distributed throughout the Mediterranean basin, extending to northern India, and has been divided into three sections. Nigella damanscena L. is traditionally used as an ingredient in food, for example, as flavouring agents in bread and cheese, but is also known in folk medicine, used to regulate menstruation; for catarrhal affections and amenorrhea; as a diuretic and sternutatory; as an analgesic, anti-oedematous, and antipyretic; and for vermifuge and its disinfectant effects. This paper reviews the most dated to the latest scientific research on this species, highlighting the single isolated metabolites and exploring their biological activity. Fifty-seven natural compounds have been isolated and characterised from the seeds, roots, and aerial parts of the plant. Among these constituents, alkaloids, flavonoids, diterpenes, triterpenes, and aromatic compounds are the main constituents. The isolated compounds and the various extracts obtained with solvents of different polarities presented a diverse spectrum of biological activities such as antibacterial, antifungal, antitumour, antioxidant, anti-inflammatory, antipyretic, anti-oedema, and antiviral activities. Various in vitro and in vivo tests have demonstrated the pharmacological potential of β-elemene and alkaloid damascenin. Unfortunately, the largest number of biological studies on this species and its metabolites have been conducted in vitro; therefore, further investigation is necessary to evaluate the toxicological aspects and real mechanisms of action of crude extracts to confirm the therapeutic potential of N. damascena.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Aurora Modica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giuseppe Bazan
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | | | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Centro Interdipartimentale di Ricerca 'Riutilizzo Bio-based degli scarti da matrici agroalimentari' (RIVIVE), University of Palermo, Italy
| |
Collapse
|
73
|
Massad TJ, Richards LA, Philbin C, Fumiko Yamaguchi L, Kato MJ, Jeffrey CS, Oliveira C, Ochsenrider K, M de Moraes M, Tepe EJ, Cebrian Torrejon G, Sandivo M, Dyer LA. The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology 2022; 103:e3762. [PMID: 35593436 DOI: 10.1002/ecy.3762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant-herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant-insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1 H-NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity among Piper plants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity of Piper leaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant-insect interactions and tropical plant species richness.
Collapse
Affiliation(s)
- Tara Joy Massad
- Department of Scientific Services, Gorongosa National Park, Sofala, Mozambique.,Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Lora A Richards
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.,Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA
| | - Casey Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA.,Department of Chemistry, University of Nevada, Reno, NV, USA
| | | | - Massuo J Kato
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Christopher S Jeffrey
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA.,Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Celso Oliveira
- Department of Chemistry, University of Nevada, Reno, NV, USA
| | | | - Marcílio M de Moraes
- Departamento de Química, Universidade Federal Rural de Pernambuco, Pernambuco, Pernambuco, Brasil
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Lee A Dyer
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.,Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA
| |
Collapse
|
74
|
Uddin N, Muhammad N, Nisar M, Aisha, Ali N, Ullah R, Ali EA, Khan AA, Rahman IU, Khan A, Zeb A. Distribution of polyphenolic compounds, antioxidant potential, and free amino acids in Ziziphus fruits extract; a study for determining the influence of wider geography. Food Sci Nutr 2022; 10:1414-1430. [PMID: 35592302 PMCID: PMC9094459 DOI: 10.1002/fsn3.2726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Ziziphus fruits have attracted much attention within the field of medicine due to their high potential against central nervous system disorders. Abundance of secondary metabolites and their composition is key to the pharmaceutical potential and commercial qualities of plants. The in vitro antioxidant activities of Ziziphus nummularia (Burm. f.) and Ziziphus oxyphylla Edgew fruit extract were analyzed using 2,2‐diphenil‐1‐pycrilhydrazyl (DPPH) and 2,2′‐azino‐bis (3‐ethylbenzothiazoline)‐6‐sulfonic acid (ABTS) free radical scavenging assay methods. Phenolic profiles were explored using high‐performance liquid chromatography‐diode array detector (HPLC‐DAD). The result revealed high concentration of polyphenols and their antioxidant potential. In Z. nummularia, the total phenolic content (TPC) (80.270 ± 0.422 μg/ml), DPPH (62.03 ± 0.98 μg/ml), ABTS (66.32 ± 0.73 μg/ml), and TFC (90.683 ± 0.274 μg/ml) were recorded. However, in Z. oxyphylla, DPPH and ABTS values were 60.66 ± 0.56 μg/ml and 61.55 ± 0.77 μg/ml, respectively, indicative of the impacts of climate and soil nutrients. The overall screening of phytochemicals revealed that both the Ziziphus species contain diverse bioactive compounds, including spinacetine‐3‐O‐(2 feruloyl glucopyranosyl)‐glucopyranoside, kaempferol‐3‐O‐glucoside‐7‐O‐glucoside, and caffeic acid; p‐hydroxybenzoyl hexose, p‐coumaric acid, salicylic acid, and ellagic acid pentoxide. Additionally, the highest concentrated amino acid noted was of Lue 0.19 g/100 g with 596.00 retention time (RT), followed by Thr>Ale>Isl>Phya>Val in Z. nummularia. Similarly, the highest concentration of Lue amino acid was recorded as 0.18/100 g with 564.52 RT followed by Pr>Thr>Ale>Lue>Isl>Phya>Val in all genotypes of Z. oxyphylla. Reporting of polyphenols rich and stable species along with identification of favorable regions of cultivation for amino acid, polyphenols, and higher antioxidant potential may lead the way for the identification of elite clones of the species as well as may result in new drug discovery.
Collapse
Affiliation(s)
- Nisar Uddin
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Noor Muhammad
- Department of Pomology College of Horticulture Hebei Agricultural University Baoding China
| | - Mohammad Nisar
- Department of Botany University of Malakand Checkdara Pakistan
| | - Aisha
- Department of Chemistry University of Gujrat Gujrat Pakistan
| | - Niaz Ali
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Azhar Abbas Khan
- Department of Biochemistry Hazara University Mansehra Mansehra Pakistan
| | - Inayat Ur Rahman
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Anwar Khan
- Institute of Molecular Plant Science University of Edinburgh Edinburgh UK.,Department of Microbiology BUITEMS Quetta Pakistan
| | - Alam Zeb
- Department of Biochemistry University of Malakand KP Pakistan
| |
Collapse
|
75
|
Yang Y, He Z, Bing Q, Duan X, Chen S, Zeng M, Liu X. Two Dof transcription factors promote flavonoid synthesis in kumquat fruit by activating C-glucosyltransferase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111234. [PMID: 35351306 DOI: 10.1016/j.plantsci.2022.111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Although DNA binding with one finger (Dof) constitutes a crucial plant-specific family of transcription factors (TFs) that plays important roles in a wide range of biological processes, the molecular mechanisms underlying Dof regulation of flavonoid biosynthesis in plants remain largely unknown. Here, we characterized 28 Dof genes (FhDof1-FhDof28) from the 'Hongkong' kumquat (Fortunella hindsii) cultivar genome. Promoter analysis and transcriptome profiling revealed that four FhDofs - FhDof4, FhDof9, FhDof15, and FhDof16 - may be involved in flavonoid biosynthesis through binding to the flavonoid C-glycosyltransferase (FhCGT) promoter. We cloned homologous genes of four FhDofs, designated as FcDof4, FcDof9, FcDof15, FcDof16, and a homologous gene of FhCGT, designated as FcCGT, from the widely cultivated 'HuaPi' kumquat (F. crassifolia). Quantitative reverse transcription-polymerase chain reaction analysis revealed that FcDof4 and FcDof16 were significantly correlated with FcCGT expression during development stages in the 'HuaPi' fruit (Pearson's correlation coefficient > 0.7) and were localized to the nucleus. Results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays indicated that the two FcDofs trigger FcCGT expression by specifically binding to its promoters. Moreover, transient overexpression of FcDof4 and FcDof16 enhances the transcription of structural genes in the flavonoid biosynthetic pathway and increases C-glycosylflavonoid content. Our results provide strong evidence that the TFs FcDof4 and FcDof16 promote flavonoid synthesis in kumquat fruit by activating FcCGT expression.
Collapse
Affiliation(s)
- Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhilin He
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qihao Bing
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xinyuan Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Suoying Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
76
|
Sesin V, Freeland JR, Gilbert JM, Stevens KJ, Davy CM. Legacies of invasive plant management: effects of leaching from glyphosate-treated and untreated plants on germination and early growth of native macrophytes. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Chen X, Wang H, Jiang J, Jiang Y, Zhang W, Chen F. Biogeographic and metabolic studies support a glacial radiation hypothesis during Chrysanthemum evolution. HORTICULTURE RESEARCH 2022; 9:uhac153. [PMID: 36196071 PMCID: PMC9527600 DOI: 10.1093/hr/uhac153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is an economically important plant species growing worldwide. However, its origin, especially as revealed by biogeographic and metabolomics research, remains unclear. To understand the geographic distribution of species diversity and metabolomics in three genera (Chrysanthemum, Ajania, and Phaeostigma), geographic information systems and gas chromatography-mass spectrometry were used in 19, 15, and 4 species respectively. China and Japan were two potential panbiogeographic nodes and diverse hotspots of Chrysanthemum, with species richness ratios of 58.97 and 33.33%. We studied different species from two hotspots which in similar geographical environments had closer chemotaxonomic relationships under the same cultivation conditions based on a cluster of 30 secondary metabolites. The average distribution altitude (ADA) differed significantly among Chrysanthemum, Ajania, and Phaeostigma in which it was 1227.49, 2400.12, and 3760.53 m.a.s.l. respectively, and the presence/absence of ray florets (RF) was significantly correlated with ADA (-0.62). Mountain landform was an important contributor to global Chrysanthemum diversity, playing a key role in the divergence and distribution pattern of Chrysanthemum and its allies. The Hengduan Mountains-Qinling Mountains (HDQ) in China was a potential secondary radiation and evolution center of Chrysanthemum and its related genera in the world. During the Quaternary glacial-interglacial cycles, this region became their refuge, and they radiated and evolved from this center.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- College of Agriculture and Biological Sciences, Dali University, 671003 Dali, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yifan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Wanbo Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | | |
Collapse
|
78
|
Wan Q, Bai T, Liu M, Liu Y, Xie Y, Zhang T, Huang M, Zhang J. Comparative Analysis of the Chalcone-Flavanone Isomerase Genes in Six Citrus Species and Their Expression Analysis in Sweet Orange (Citrus sinensis). Front Genet 2022; 13:848141. [PMID: 35495138 PMCID: PMC9039136 DOI: 10.3389/fgene.2022.848141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Citrus fruit contains rich nutrients which is edible and of officinal value. Citrus flavanones are widely used in the treatment of cardiovascular and other diseases, and they are a foundational material of Chinese medicine. The chalcone-flavanone isomerase (CHI) plays a key role in flavanone synthesis. Therefore, we comprehensively analyzed CHI genes in Citrus species. Here, thirty CHI genes were identified for the first time in six Citrus species, which were divided into CHI and FAP groups. Evolutionary analysis showed that CHI gene members were highly conserved and were an ancient family. All CsCHI genes showed the highest expression level after the second physiological fruit-falling period in C. sinensis. CsCHI1 and CsCHI3 were highly expressed at 50 days after the flowering (DAF) stage in albedo. The expression of CsFAP2 and CsCHI3 genes at the 50 DAF stage was 16.5 and 24.3 times higher than that at the 220 DAF stage, respectively. The expression of CsCHI1, CsCHI3, and CsFAP2 genes in the peel was higher than that in the pulp, especially in common sweet orange. The CsCHI3 gene maintained a high expression level in the epicarp and juice sac at all periods. The members of CHIs interacted with chalcone synthase (CHS), flavonol synthase/flavanone 3-hydroxylase (FLS) and naringenin, and 2-oxoglutarate 3-dioxygenase (F3H) to form heterodimers, which might together play a regulatory role and participate in the flavonoid pathway. This study will provide the basis for the selection of flavonoids in plant tissues and periods and fundamental information for further functional studies.
Collapse
Affiliation(s)
- Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Affiliated Hospital of Inner Mongolia Minzu University, Inner Mongolia Minzu University, Tongliao, China
- *Correspondence: Quan Wan, ; Jinlian Zhang,
| | - Tingting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Minmin Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yating Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Quan Wan, ; Jinlian Zhang,
| |
Collapse
|
79
|
Fitch G, Figueroa LL, Koch H, Stevenson PC, Adler LS. Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. Int J Parasitol Parasites Wildl 2022; 17:244-256. [PMID: 35299588 PMCID: PMC8920997 DOI: 10.1016/j.ijppaw.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
Abstract
Floral nectar and pollen commonly contain diverse secondary metabolites. While these compounds are classically thought to play a role in plant defense, recent research indicates that they may also reduce disease in pollinators. Given that parasites have been implicated in ongoing bee declines, this discovery has spurred interest in the potential for 'medicinal' floral products to aid in pollinator conservation efforts. We review the evidence for antiparasitic effects of floral products on bee diseases, emphasizing the importance of investigating the mechanism underlying antiparasitic effects, including direct or host-mediated effects. We discuss the high specificity of antiparasitic effects of even very similar compounds, and highlight the need to consider how nonadditive effects of multiple compounds, and the post-ingestion transformation of metabolites, mediate the disease-reducing capacity of floral products. While the bulk of research on antiparasitic effects of floral products on bee parasites has been conducted in the lab, we review evidence for the impact of such effects in the field, and highlight areas for future research at the floral product-bee disease interface. Such research has great potential both to enhance our understanding of the role of parasites in shaping plant-bee interactions, and the role of plants in determining bee-parasite dynamics. This understanding may in turn reveal new avenues for pollinator conservation.
Collapse
Affiliation(s)
- Gordon Fitch
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura L. Figueroa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Philip C. Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
80
|
López-Goldar X, Hastings A, Züst T, Agrawal A. Evidence for tissue-specific defense-offense interactions between milkweed and its community of specialized herbivores. Mol Ecol 2022; 31:3254-3265. [PMID: 35363921 DOI: 10.1111/mec.16450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Coevolution between plants and herbivores often involves escalation of defense-offense strategies, but attack by multiple herbivores may obscure the match of plant defense to any one attacker. As herbivores often specialize on distinct plant parts, we hypothesized that defense-offense interactions in coevolved systems may become physiologically and evolutionarily compartmentalized between plant tissues. We report that roots, leaves, flower buds and seeds of the tropical milkweed (Asclepias curassavica) show increasing concentrations of cardenolide toxins acropetally, with latex showing the highest concentration. In vitro assays of the physiological target of cardenolides, the Na+ /K+ -ATPase (hereafter 'sodium pump'), of three specialized milkweed herbivores (root-feeding Tetraopes tetrophthalmus, leaf-feeding Danaus plexippus, and seed-feeding Oncopeltus fasciatus) show that they are proportionally tolerant to the cardenolide concentrations of the tissues they eat. Indeed, molecular substitutions in the insects' sodium pumps predicted their tolerance to toxins from their target tissues. Nonetheless, the relative inhibition of the sodium pumps of these specialists by the concentration vs. composition (inhibition controlled for concentration, what we term 'potency') of cardenolides from their target vs. non-target plant tissues revealed different degrees of insect adaptation to tissue-specific toxins. In addition, a trade-off between toxin concentration and potency emerged across plant tissues, potentially reflecting coevolutionary history or plant physiological constraints. Our findings suggest that tissue-specific coevolutionary dynamics may be proceeding between the plant and its specialized community of herbivores. This novel finding may be common in nature, contributing to ways in which coevolution proceeds in multi-species communities.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Amy Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Switzerland
| | - Anurag Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
81
|
Who Cares More about Chemical Defenses - the Macroalgal Producer or Its Main Grazer? J Chem Ecol 2022; 48:416-430. [PMID: 35353298 DOI: 10.1007/s10886-022-01358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
The consequences of defensive secondary metabolite concentrations and interspecific metabolite diversity on grazers have been extensively investigated. Grazers which prefer certain food sources are often found in high abundance on their host and as a result, understanding the interaction between the two is important to understand community structure. The effects of intraspecific diversity, however, on the grazer are not well understood. Within a single, localized geographic area, the Antarctic red seaweed Plocamium sp. produces 15 quantitatively and qualitatively distinct mixtures of halogenated monoterpenes ("chemogroups"). Plocamium sp. is strongly chemically defended which makes it unpalatable to most grazers, except for the amphipod Paradexamine fissicauda. We investigated differences in the feeding and growth rates of both Plocamium sp. and P. fissicauda, in addition to grazer reproductive output, in relation to different chemogroups. Some chemogroups significantly reduced the grazer's feeding rate compared to other chemogroups and a non-chemically defended control. The growth rate of Plocamium sp. did not differ between chemogroups and the growth rates of P. fissicauda also did not show clear patterns between the feeding treatments. Reproductive output, however, was significantly reduced for amphipods on a diet of algae possessing one of the chemogroups when compared to a non-chemically defended control. Hence, intraspecific chemodiversity benefits the producer since certain chemogroups are consumed at a slower rate and the grazer's reproductive output is reduced. Nevertheless, the benefits outweigh the costs to the grazer as it can still feed on its host and closely associates with the alga for protection from predation.
Collapse
|
82
|
Bolin LG, Lau JA. Linking genetic diversity and species diversity through plant–soil feedback. Ecology 2022; 103:e3692. [DOI: 10.1002/ecy.3692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Lana G. Bolin
- Department of Biology Indiana University Jordan Hall, 1001 E. 3rd St Bloomington IN USA
| | - Jennifer A. Lau
- Department of Biology Indiana University Jordan Hall, 1001 E. 3rd St Bloomington IN USA
- Environmental Resilience Institute Indiana University Bloomington IN USA
| |
Collapse
|
83
|
Xu L, Cao M, Wang Q, Xu J, Liu C, Ullah N, Li J, Hou Z, Liang Z, Zhou W, Liu A. Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. J Adv Res 2022; 42:221-235. [PMID: 36089521 PMCID: PMC9788944 DOI: 10.1016/j.jare.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Salvia castanea, a wild plant species is adapted to extreme Qinghai-Tibetan plateau (QTP) environments. It is also used for medicinal purposes due to high ingredient of tanshinone IIA (T-IIA). Despite its importance to Chinese medicinal industry, the mechanisms associated with secondary metabolites accumulation (i.e. T-IIA and rosmarinic acid (RA)) in this species have not been characterized. Also, the role of special underground tissues in QTP adaptation of S. castanea is still unknown. OBJECTIVES We explored the phenomenon of periderm-like structure in underground stem center of S. castanea with an aim to unravel the molecular evolutionary mechanisms of QTP adaptation in this species. METHODS Morphologic observation and full-length transcriptome of S. castanea plants were conducted. Comparative genomic analyses of S. castanea with other 14 representative species were used to reveal its phylogenetic position and molecular evolutionary mechanisms. RNA-seq and WGCNA analyses were applied to understand the mechanisms of high accumulations of T-IIA and RA in S. castanea tissues. RESULTS Based on anatomical observations, we proposed a "trunk-branches" developmental model to explain periderm-like structure in the center of underground stem of S. castanea. Our study suggested that S. castanea branched off from cultivated Danshen around 16 million years ago. During the evolutionary process, significantly expanded orthologous gene groups, 24 species-specific and 64 positively selected genes contributed to morphogenesis and QTP adaptation in S. castanea. RNA-seq and WGCNA analyses unraveled underlying mechanisms of high accumulations of T-IIA and RA in S. castanea and identified NAC29 and TGA22 as key transcription factors. CONCLUSION We proposed a "trunk-branches" developmental model for the underground stem in S. castanea. Adaptations to extreme QTP environment in S. castanea are associated with accumulations of high secondary metabolites in this species.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengting Cao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qichao Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiahao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenglin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Najeeb Ullah
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, the University of Queensland, Toowoomba, QLD 4350, Australia,Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link Gadong BE1410, Brunei Darussalam
| | - Juanjuan Li
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zhuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China,Corresponding authors.
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China,Corresponding authors.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China,Corresponding authors.
| |
Collapse
|
84
|
Raudone L, Radušiene J, Seyis F, Yayla F, Vilkickyte G, Marksa M, Ivanauskas L, Cırak C. Distribution of Phenolic Compounds and Antioxidant Activity in Plant Parts and Populations of Seven Underutilized Wild Achillea Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030447. [PMID: 35161428 PMCID: PMC8839896 DOI: 10.3390/plants11030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 06/01/2023]
Abstract
Evaluation of phytochemical composition of underutilized Achillea species provides the primary selection of germplasms with the desired quality of raw material for their further applications. The aim of the study was to evaluate the comprehensive distribution patterns of phenolic compounds in seven wild Achillea spp. and their plant parts, and to assess their antioxidant activity. Plant material was collected from different sites in Turkey. A complex of hydroxycinnamic acids, flavonols and flavones was identified and quantified in methanolic extracts using HPLC-PDA method. Antioxidant activity was assessed by radical scavenging assay. The results showed that qualitative and qualitative profiles of caffeoylquinic acids and flavonoids were species-specific, explaining the characteristic patterns of their variation in the corresponding species and plant parts. The highest total amount of caffeoylquinic acids was detected in A. setacea. A. arabica exposed the highest accumulation of mono-caffeoylquinic acids and flavonoids with the greatest levels of quercetin and luteolin derivatives and the flavonol santin. Santin was detected in all plant parts of A. cappadocica, A. setacea, A. santolinoides subsp. wilhelmsii, and A. arabica. A notable antiradical capacity was confirmed in A. arabica, A. setacea and A. cappadocica plant extracts. The leaves of all studied species were found to have priority over inflorescences and stems in terms of radical scavenging activity. The new data complemented the information that may be relevant for the continuation of chemophenetic studies in the heterogeneous genus Achillea.
Collapse
Affiliation(s)
- Lina Raudone
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Jolita Radušiene
- Institute of Botany, Nature Research Center, Akademijos Str. 2, 08412 Vilnius, Lithuania;
| | - Fatih Seyis
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Turkey;
| | - Fatih Yayla
- Department of Biology, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey;
| | - Gabrielė Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Cüneyt Cırak
- Bafra Vocational School, Ondokuz Mayis University, Atacum, 55200 Samsun, Turkey;
| |
Collapse
|
85
|
Davidovich-Rikanati R, Bar E, Hivert G, Huang XQ, Hoppen-Tonial C, Khankin V, Rand K, Abofreih A, Muhlemann JK, Marchese JA, Shotland Y, Dudareva N, Inbar M, Lewinsohn E. Transcriptional up-regulation of host-specific terpene metabolism in aphid-induced galls of Pistacia palaestina. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:555-570. [PMID: 34129033 DOI: 10.1093/jxb/erab289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Galling insects gain food and shelter by inducing specialized anatomical structures in their plant hosts. Such galls often accumulate plant defensive metabolites protecting the inhabiting insects from predation. We previously found that, despite a marked natural chemopolymorphism in natural populations of Pistacia palaestina, the monoterpene content in Baizongia pistaciae-induced galls is substantially higher than in leaves of their hosts. Here we show a general up-regulation of key structural genes in both the plastidial and cytosolic terpene biosynthetic pathways in galls as compared with non-colonized leaves. Novel prenyltransferases and terpene synthases were functionally expressed in Escherichia coli to reveal their biochemical function. Individual Pistacia trees exhibiting chemopolymorphism in terpene compositions displayed differential up-regulation of selected terpene synthase genes, and the metabolites generated by their gene products in vitro corresponded to the monoterpenes accumulated by each tree. Our results delineate molecular mechanisms responsible for the formation of enhanced monoterpene in galls and the observed intraspecific monoterpene chemodiversity displayed in P. palaestina. We demonstrate that gall-inhabiting aphids transcriptionally reprogram their host terpene pathways by up-regulating tree-specific genes, boosting the accumulation of plant defensive compounds for the protection of colonizing insects.
Collapse
Affiliation(s)
- Rachel Davidovich-Rikanati
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Einat Bar
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Gal Hivert
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
- Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Carolina Hoppen-Tonial
- Department of Agronomy, Federal University of Technology - Paraná, Pato Branco, 85503-390, Brazil
- Department of Agronomy, Federal Institute of Paraná, Palmas, 85555-000, Brazil
| | - Vered Khankin
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Karin Rand
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
- Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 3498838, Israel
| | - Amal Abofreih
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Joelle K Muhlemann
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
- The James Hutton Institute, UK
| | - José Abramo Marchese
- Department of Agronomy, Federal University of Technology - Paraná, Pato Branco, 85503-390, Brazil
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Moshe Inbar
- Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 3498838, Israel
| | - Efraim Lewinsohn
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
- Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
86
|
Chen J, Li N, Chang J, Ren K, Zhou J, Yang G. Taxonomic Structure of Rhizosphere Bacterial Communities and Its Association With the Accumulation of Alkaloidal Metabolites in Sophora flavescens. Front Microbiol 2022; 12:781316. [PMID: 34970241 PMCID: PMC8712762 DOI: 10.3389/fmicb.2021.781316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Plant secondary metabolites (SMs) play a crucial role in plant defense against pathogens and adaptation to environmental stresses, some of which are produced from medicinal plants and are the material basis of clinical efficacy and vital indicators for quality evaluation of corresponding medicinal materials. The influence of plant microbiota on plant nutrient uptake, production, and stress tolerance has been revealed, but the associations between plant microbiota and the accumulation of SMs in medicinal plants remain largely unknown. Plant SMs can vary among individuals, which could be partly ascribed to the shift in microbial community associated with the plant host. In the present study, we sampled fine roots and rhizosphere soils of Sophora flavescens grown in four well-separated cities/counties in China and determined the taxonomic composition of rhizosphere bacterial communities using Illumina 16S amplicon sequencing. In addition, the association of the rhizosphere bacterial microbiota with the accumulation of alkaloids in the roots of S. flavescens was analyzed. The results showed that S. flavescens hosted distinct bacterial communities in the rhizosphere across geographic locations and plant ages, also indicating that geographic location was a larger source of variation than plant age. Moreover, redundancy analysis revealed that spatial, climatic (mean annual temperature and precipitation), and edaphic factors (pH and available N and P) were the key drivers that shape the rhizosphere bacterial communities. Furthermore, the results of the Mantel test demonstrated that the rhizosphere bacterial microbiota was remarkably correlated with the contents of oxymatrine, sophoridine, and matrine + oxymatrine in roots. Specific taxa belonging to Actinobacteria and Chloroflexi were identified as potential beneficial bacteria associated with the total accumulation of matrine and oxymatrine by a random forest machine learning algorithm. Finally, the structural equation modeling indicated that the Actinobacteria phylum had a direct effect on the total accumulation of matrine and oxymatrine. The present study addresses the association between the rhizosphere bacterial communities and the accumulation of alkaloids in the medicinal plant S. flavescens. Our findings may provide a basis for the quality improvement and sustainable utilization of this medicinal plant thorough rhizosphere microbiota manipulation.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Na Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Jiayu Chang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Kaida Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Jiangtao Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Guan'e Yang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
87
|
de Beer D, du Preez B, Joubert E. Development of HPLC method for quantification of phenolic compounds in Cyclopia intermedia (honeybush) herbal tea infusions. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
88
|
Ishihara A. Defense mechanisms involving secondary metabolism in the grass family. JOURNAL OF PESTICIDE SCIENCE 2021; 46:382-392. [PMID: 34908899 PMCID: PMC8640679 DOI: 10.1584/jpestics.j21-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 05/13/2023]
Abstract
Plants synthesize and accumulate a wide variety of compounds called secondary metabolites. Secondary metabolites serve as chemical barriers to protect plants from pathogens and herbivores. Antimicrobial secondary metabolites are accumulated to prevent pathogen infection. These metabolites are classified into phytoalexins (induced in response to pathogen attack) and phytoanticipins (present prior to pathogen infection). The antimicrobial compounds in the grass family (Poaceae) were studied from the viewpoint of evolution. The studies were performed at three hierarchies, families, genera, and species and include the following: 1) the distribution of benzoxazinoids (Bxs) in the grass family, 2) evolutionary replacement of phytoanticipins from Bxs to hydroxycinnamic acid amide dimers in the genus Hordeum, and 3) chemodiversity of flavonoid and diterpenoid phytoalexins in rice. These studies demonstrated dynamic changes in secondary metabolism during evolution, indicating the adaptation of plants to their environment by repeating scrap-and-build cycles.
Collapse
Affiliation(s)
- Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680–8553, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
89
|
Monzote L, García J, González R, Scotti MT, Setzer WN. Bioactive Essential Oils from Cuban Plants: An Inspiration to Drug Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112515. [PMID: 34834878 PMCID: PMC8620706 DOI: 10.3390/plants10112515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
Aromatic plants and essential oils are important agents as complementary and alternative medicines in many cultures and geographical locations. In this review, a literature search on essential oils from Cuba, their chemical compositions, and their pharmacological properties was carried out. Out of 171 published scientific articles on essential oils of Cuban plants, a total of 31 documents, focused on both chemical composition and pharmacological properties, were considered for this review. In general, an increase in articles published in the last decade was noted, particularly in recognized international journals in English. Myrtaceae and Piperaceae were the most representative families collected in the occidental area of the country. Leaves and aerial parts were predominantly used, while a wide and variable number of components were identified, including terpenes, aliphatic derivatives, sulfur-containing compounds, phenylpropanoids, alkaloids and amine-type compounds. Finally, different biological activities were reported such as antiprotozoal, antibacterial, antifungal, cytotoxic, anthelmintic, larvicidal and insecticidal. In conclusion, we encourage further studies that would promote the use of essential oils from Cuban plants in new pharmaceutical products.
Collapse
Affiliation(s)
- Lianet Monzote
- Department of Parasitology, Center of Research, Diagnostic and Reference, Institute of Tropical Medicine “Pedro Kouri”, Havana 11400, Cuba
- Research Network Natural Products against Neglected Diseases (ResNetNPND), University of Münster, 48149 Münster, Germany;
- Correspondence: (L.M.); (W.N.S.)
| | - Jesús García
- Department of Pharmacy, Faculty of Natural and Exact Sciences, University of Oriente, Santiago de Cuba 90500, Cuba;
| | - Rosalia González
- Toxicology and Biomedicine Centre (TOXIMED), University of Medical Science, Santiago de Cuba 90400, Cuba;
| | - Marcus Tullius Scotti
- Research Network Natural Products against Neglected Diseases (ResNetNPND), University of Münster, 48149 Münster, Germany;
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - William N. Setzer
- Research Network Natural Products against Neglected Diseases (ResNetNPND), University of Münster, 48149 Münster, Germany;
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Correspondence: (L.M.); (W.N.S.)
| |
Collapse
|
90
|
Hao Y, Kang J, Yang R, Li H, Cui H, Bai H, Tsitsilin A, Li J, Shi L. Multidimensional exploration of essential oils generated via eight oregano cultivars: Compositions, chemodiversities, and antibacterial capacities. Food Chem 2021; 374:131629. [PMID: 34865929 DOI: 10.1016/j.foodchem.2021.131629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022]
Abstract
Numerous species of Origanum (Lamiaceae) have been widely used as spices to extend the shelf life of foods. Essential oils extracted from this genus have attracted much attention owing to their potential applications as bactericides. Here, we evaluated the chemical compositions of eight oregano essential oils (OEOs) using gas chromatography-mass spectrometry and assessed their antibacterial activities. The chemical compositions of OEOs were affected by the cultivar factor, and seven common compounds, including carvacrol, were identified among eight OEOs. Partial least squares discriminant analysis enabled the distinction of three groups among these OEOs, as characterized by the proportions of carvacrol, thymol, and sesquiterpenes. OEOs effectively inhibited Escherichia coli and Staphylococcus aureus with varying antibacterial activities. Spearman correlation network highlighted core antibacterial contributors in the chemical profiles of OEOs. Our results revealed that the bacteriostatic effects of OEOs could be explained by core compounds and their synergistic effects.
Collapse
Affiliation(s)
- Yuanpeng Hao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiamu Kang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Rui Yang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Hongxia Cui
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Andrey Tsitsilin
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow 117216, Russia
| | - Jingyi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
91
|
Seasonal Variation in Host Plant Chemistry Drives Sequestration in a Specialist Caterpillar. J Chem Ecol 2021; 48:79-88. [PMID: 34738204 DOI: 10.1007/s10886-021-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 10/19/2022]
Abstract
Sequestration of plant secondary metabolites by herbivores can vary across both host plant phenology and herbivore ontogeny, but few studies have explored how they concurrently change in the field. We explored variation in iridoid glycoside concentration and composition in white turtlehead, Chelone glabra, as well as sequestration of iridoid glycosides by its specialist herbivore, the Baltimore checkerspot, Euphydryas phaeton, across the development of both herbivore and host plant. In 2012 we sampled plants to describe seasonal variation in the concentrations of two iridoid glycosides, aucubin and catalpol. In 2017, we sampled both host plants and caterpillars over an entire growing season and explored the relationship between plant chemistry and herbivore sequestration. We also compared iridoid glycoside concentrations of plants with and without herbivory to gain insight into whether levels of secondary compounds were impacted by herbivory. We found that total plant iridoid glycosides varied across the season and that total sequestered iridoid glycosides in caterpillars closely mirrored concentration patterns in plants. However, the magnitude of sequestration by caterpillars ranged from 2 to 20 times the concentrations in host plants, with different proportions of aucubin and catalpol. In addition, plants with herbivory had lower iridoid glycoside concentrations than plants without herbivory, although this difference changed over time. These results suggest that while variation in host plant secondary metabolites may be a dominant factor driving sequestration, other ecological factors may mitigate the relationship between host plant chemistry and herbivore sequestration.
Collapse
|
92
|
Prospect and Challenges for Sustainable Management of Climate Change-Associated Stresses to Soil and Plant Health by Beneficial Rhizobacteria. STRESSES 2021. [DOI: 10.3390/stresses1040015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change imposes biotic and abiotic stresses on soil and plant health all across the planet. Beneficial rhizobacterial genera, such as Bacillus, Pseudomonas, Paraburkholderia, Rhizobium, Serratia, and others, are gaining popularity due to their ability to provide simultaneous nutrition and protection of plants in adverse climatic conditions. Plant growth-promoting rhizobacteria are known to boost soil and plant health through a variety of direct and indirect mechanisms. However, various issues limit the wider commercialization of bacterial biostimulants, such as variable performance in different environmental conditions, poor shelf-life, application challenges, and our poor understanding on complex mechanisms of their interactions with plants and environment. This study focused on detecting the most recent findings on the improvement of plant and soil health under a stressful environment by the application of beneficial rhizobacteria. For a critical and systematic review story, we conducted a non-exhaustive but rigorous literature survey to assemble the most relevant literature (sorting of a total of 236 out of 300 articles produced from the search). In addition, a critical discussion deciphering the major challenges for the commercialization of these bioagents as biofertilizer, biostimulants, and biopesticides was undertaken to unlock the prospective research avenues and wider application of these natural resources. The advancement of biotechnological tools may help to enhance the sustainable use of bacterial biostimulants in agriculture. The perspective of biostimulants is also systematically evaluated for a better understanding of the molecular crosstalk between plants and beneficial bacteria in the changing climate towards sustainable soil and plant health.
Collapse
|
93
|
Depside and Depsidone Synthesis in Lichenized Fungi Comes into Focus through a Genome-Wide Comparison of the Olivetoric Acid and Physodic Acid Chemotypes of Pseudevernia furfuracea. Biomolecules 2021; 11:biom11101445. [PMID: 34680078 PMCID: PMC8533459 DOI: 10.3390/biom11101445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Primary biosynthetic enzymes involved in the synthesis of lichen polyphenolic compounds depsides and depsidones are non-reducing polyketide synthases (NR-PKSs), and cytochrome P450s. However, for most depsides and depsidones the corresponding PKSs are unknown. Additionally, in non-lichenized fungi specific fatty acid synthases (FASs) provide starters to the PKSs. Yet, the presence of such FASs in lichenized fungi remains to be investigated. Here we implement comparative genomics and metatranscriptomics to identify the most likely PKS and FASs for olivetoric acid and physodic acid biosynthesis, the primary depside and depsidone defining the two chemotypes of the lichen Pseudevernia furfuracea. We propose that the gene cluster PF33-1_006185, found in both chemotypes, is the most likely candidate for the olivetoric acid and physodic acid biosynthesis. This is the first study to identify the gene cluster and the FAS likely responsible for olivetoric acid and physodic acid biosynthesis in a lichenized fungus. Our findings suggest that gene regulation and other epigenetic factors determine whether the mycobiont produces the depside or the depsidone, providing the first direct indication that chemotype diversity in lichens can arise through regulatory and not only through genetic diversity. Combining these results and existing literature, we propose a detailed scheme for depside/depsidone synthesis.
Collapse
|
94
|
Vilkickyte G, Raudone L. Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds. Foods 2021; 10:foods10102243. [PMID: 34681292 PMCID: PMC8535033 DOI: 10.3390/foods10102243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccinium vitis-idaea L. (lingonberry) fruits are promising sources of bioactive components with high potential in biomedical applications. Selection in plant breeding, determination of perspective wild clones with optimal growing conditions, and appropriate harvesting time leading to standardized extracts are key factors for achieving phytochemical quality to meet consumer’s needs. In the present study, lingonberry fruits collected along different phenological stages and from different geographical locations were analyzed for the composition of 56 constituents using validated chromatographic techniques. Early stages of lingonberries vegetation were determined as the best stages for obtaining high levels of most phenolics and triterpenoids, while the end of berry vegetation could be chosen as the optimal harvesting time in terms of anthocyanins. Furthermore, intensified continuous biosynthesis of triterpenoids and phenolic acids precursors after vegetation season in the winter sample was observed. Chemodiversity of lingonberries was affected by geographical factors as well as climatic and edaphic conditions, indicating different favorable growing conditions for the accumulation of particular compounds. Present findings could serve for breeders to obtain the highest yields of desirable lingonberry constituents, relevant in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
95
|
Wright SJ, Goad DM, Gross BL, Muñoz PR, Olsen KM. Genetic trade-offs underlie divergent life history strategies for local adaptation in white clover. Mol Ecol 2021; 31:3742-3760. [PMID: 34532899 DOI: 10.1111/mec.16180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately-outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well-studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate-associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade-offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade-offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade-offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.
Collapse
Affiliation(s)
- Sara J Wright
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - David M Goad
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Briana L Gross
- Biology Department, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Patricio R Muñoz
- Horticultural Science Department, University of Florida, Gainesville, Florida, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
96
|
Rao MJ, Wang L. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. PLANTA 2021; 254:68. [PMID: 34498163 DOI: 10.1007/s00425-021-03716-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this review, we have focused on the CRISPR/Cas9 technology for improving the agronomic traits in plants through point mutations, knockout, and single base editing, and we highlighted the recent progress in plant metabolic engineering. CRISPR/Cas9 technology has immense power to reproduce plants with desired characters and revolutionizing the field of genome engineering by erasing the barriers in targeted genome editing. Agriculture fields are using this advance genome editing tool to get the desired traits in the crops plants such as increase yield, improve product quality attributes, and enhance resistance against biotic and abiotic stresses by identifying and editing genes of interest. This review focuses on CRISPR/Cas-based gene knockout for trait improvement and single base editing to boost yield, quality, stress tolerance, and disease resistance traits in crops. Use of CRISPR/Cas9 system to facilitate crop domestication and hybrid breeding are also touched. We summarize recent developments and up-gradation of delivery mechanism (nanotechnology and virus particle-based delivery system) and progress in multiplex gene editing. We also shed lights in advances and challenges of engineering the important metabolic pathways that contain a variety of dietary metabolites and phytochemicals. In addition, we endorsed substantial technical hurdles and possible ways to overcome the unpredictability of CRISPR/Cas technology for broader application across various crop species. We speculated that by making a strong interconnection among all genomic fields will give a gigantic bunt of knowledge to develop crop expressing desired traits.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, 530004, People's Republic of China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, 530004, People's Republic of China.
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
97
|
Sculfort O, Gérard M, Gekière A, Nonclercq D, Gerbaux P, Duez P, Vanderplanck M. Specialized Metabolites in Floral Resources: Effects and Detection in Buff-Tailed Bumblebees. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.669352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selection of appropriate food resources by bees is a critical aspect for the maintenance of their populations, especially in the current context of global change and pollinator decline. Wild bees have a sophisticated ability to forage selectively on specific resources, and can assess the quality of pollen using contact chemosensory perception (taste). While numerous studies have investigated the detection of pollen macronutrients in bees and their impact on bee health and reproductive success, only a few studies have described the gustatory responses of bees toward specialized metabolites. In addition, these studies mostly focused on the response to nectar and neglected pollen, which is the main food resource for both bee imagines and larvae. Whether bees have the ability to detect specialized toxic metabolites in pollen and then rapidly adapt their foraging behavior to avoid them is very little studied. In this study, we tested whether pollen specialized metabolites affect bumblebees at both the micro-colony and individual levels (i.e., bioassays using supplemented pollen), and whether foragers detect these specialized metabolites and potentially display an avoidance behavior (i.e., preference tests using supplemented syrup). Bumblebees were fed with either amygdalin-, scopolamine- or sinigrin-supplemented pollen diets in ratios that mimic 50%, 100%, and 200% of naturally occurring concentrations. We found no effect of these specialized metabolites on resource collection, reproductive success and stress response at the micro-colony level. At the individual level, bumblebees fed on 50%-amygdalin or 50%-scopolamine diets displayed the highest scores for damage to their digestive systems. Interestingly, during the preference tests, the solution with 50%-scopolamine displayed a phagostimulatory activity, whereas solution with 50%-amygdalin had a deterrent effect and could trigger an active avoidance behavior in bumblebees, with a faster proboscis retraction. Our results suggest that regulation of toxin intake is not as well-established and effective as the regulation of nutrient intake in bees. Bees are therefore not equally adapted to all specialized pollen metabolites that they can come into contact with.
Collapse
|
98
|
Evolution-aided engineering of plant specialized metabolism. ABIOTECH 2021; 2:240-263. [PMID: 36303885 PMCID: PMC9590541 DOI: 10.1007/s42994-021-00052-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host. We discuss the general principles of these strategies, describe the technologies involved and the molecular traits they influence, provide examples of their use, and discuss the roadblocks that need to be addressed for their wider adoption. A better understanding of these strategies can provide an impetus to research on gene function discovery and biochemical evolution, which is foundational for improved metabolic engineering. These evolution-aided approaches thus have a substantial potential for improving our understanding of plant metabolism in general, for enhancing the production of plant metabolites, and in sustainable agriculture.
Collapse
|
99
|
Ullah A, Klutsch JG, Erbilgin N. Production of complementary defense metabolites reflects a co-evolutionary arms race between a host plant and a mutualistic bark beetle-fungal complex. PLANT, CELL & ENVIRONMENT 2021; 44:3064-3077. [PMID: 34008191 DOI: 10.1111/pce.14100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Intra-specific variation in conifers has been extensively studied with respect to defense against herbivores and pathogens. While studies have shown the ability of individual or specific mixtures of compounds to influence insects and microbes, research testing biologically relevant mixtures of defense compounds reflecting intra-specific variation amongst tree populations to enemy complexes is needed. We characterized the variations in lodgepole pine monoterpenes from a progeny trial in western Canada and grouped trees in four clusters using their monoterpene profiles. We then selected 11 representative families across four clusters and amended their entire monoterpene profiles (with the exception of β-phellandrene) in media to determine how representative families affect the performance of the mountain pine beetle or its fungal symbiont. We placed adult beetles or inoculated fungus on the amended media and measured beetle performance and fungal growth as a proxy to host suitability. We found that different clusters or families differentially influenced beetle or fungal responses. However, monoterpene profiles of trees suitable to the beetle or the fungus were dissimilar. These outcomes reflect a co-evolutionary arms-race between the host and the bark beetle-fungus complex, which has resulted in the production of complementary defense metabolites among different pine populations to enhance tree survival.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
100
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|