51
|
Yu N, Dong M, Yang J, Li R. Age-dependent modulation of oleoresin production in the stem of Sindora glabra. TREE PHYSIOLOGY 2022; 42:2050-2067. [PMID: 35532079 DOI: 10.1093/treephys/tpac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Plants produce specialized metabolites in various organs which serve important functions in defense and development. However, the molecular regulatory mechanisms of oleoresin production in stems from broadleaved tree species are not fully understood. To determine whether endogenous developmental cues play a role in the regulation of oleoresin biosynthesis in tree stems, anatomy, multi-omics and molecular experiments were utilized to investigate the change of secretory structures, chemical profiles and gene expression in different ontogenetic stages of Sindora glabra tree, which accumulates copious amount of sesquiterpene-rich oleoresin in stems. The size of secretory canals and the concentration of five sesquiterpenes in Sindora stems exhibited obvious increase with plant age, from 0.5- to 20-year-old plants. Moreover, α-copaene and β-copaene were found to be stem-specific sesquiterpenes. Metabolomic analysis revealed that salicylic acid highly accumulated in mature stems, but the content of triterpenes was greatly decreased. The expression of three repressors AUX/IAA, DELLA and JAZ involved in hormone signaling transduction pathways was significantly downregulated in stems of 10- and 20-year-old plants. Two key genes SgTPS3 and SgTPS5 were identified, whose expression was highly correlated with the accumulation patterns of specific sesquiterpenes and their enzymatic products were consistent with the chemical profiles in the stem. The promoters of three SgTPSs exhibiting high activity were isolated. Furthermore, we demonstrated that SgSPL15 directly interacts with SgTPS3 and SgTPS5 promoters and activates SgTPS5 expression but SgSPL15 inhibits SgTPS3 expression. In addition, SgSPL15 enhanced sesquiterpene levels by upregulating AtTPSs expression in Arabidopsis. These results suggested that sesquiterpene biosynthesis in S. glabra stem was dependent on the regulation of endogenous hormones as well as plant age, and SgSPL15 might act as a buffering factor to regulate sesquiterpene biosynthesis by targeting SgTPS genes.
Collapse
Affiliation(s)
- Niu Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| | - Mingliang Dong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| | - Jinchang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| | - Rongsheng Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| |
Collapse
|
52
|
Chacon DS, Santos MDM, Bonilauri B, Vilasboa J, da Costa CT, da Silva IB, Torres TDM, de Araújo TF, Roque ADA, Pilon AC, Selegatto DM, Freire RT, Reginaldo FPS, Voigt EL, Zuanazzi JAS, Scortecci KC, Cavalheiro AJ, Lopes NP, Ferreira LDS, dos Santos LV, Fontes W, de Sousa MV, Carvalho PC, Fett-Neto AG, Giordani RB. Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. FRONTIERS IN PLANT SCIENCE 2022; 13:947558. [PMID: 36161018 PMCID: PMC9493460 DOI: 10.3389/fpls.2022.947558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.
Collapse
Affiliation(s)
- Daisy Sotero Chacon
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Bernardo Bonilauri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Taffarel de Melo Torres
- Bioinformatics, Biostatistics and Computer Biology Nucleus, Rural Federal University of the Semiarid, Mossoró, RN, Brazil
| | | | - Alan de Araújo Roque
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal, RN, Brazil
| | - Alan Cesar Pilon
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Denise Medeiros Selegatto
- Zimmermann Group, European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rafael Teixeira Freire
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Eduardo Luiz Voigt
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Kátia Castanho Scortecci
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Paulo Costa Carvalho
- Computational and Structural Proteomics Laboratory, Carlos Chagas Institute, Fiocruz, PR, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
53
|
Xiang L, He P, Shu G, Yuan M, Wen M, Lan X, Liao Z, Tang Y. AabHLH112, a bHLH transcription factor, positively regulates sesquiterpenes biosynthesis in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2022; 13:973591. [PMID: 36119570 PMCID: PMC9478121 DOI: 10.3389/fpls.2022.973591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The bHLH transcription factors play important roles in the regulation of plant growth, development, and secondary metabolism. β-Caryophyllene, epi-cedrol, and β-farnesene, three kinds of sesquiterpenes mainly found in plants, are widely used as spice in the food industry and biological pesticides in agricultural production. Furthermore, they also have a significant value in the pharmaceutical industry. However, there is currently a lack of knowledge on the function of bHLH family TFs in β-caryophyllene, epi-cedrol, and β-farnesene biosynthesis. Here, we found that AabHLH112 transcription factor had a novel function to positively regulate β-carophyllene, epi-cedrol, and β-farnesene biosynthesis in Artemisia annua. Exogenous MeJA enhanced the expression of AabHLH112 and genes of β-caryophyllene synthase (CPS), epi-cedrol synthase (ECS), and β-farnesene synthase (BFS), as well as sesquiterpenes content. Dual-LUC assay showed the activation of AaCPS, AaECS, and AaBFS promoters were enhanced by AabHLH112. Yeast one-hybrid assay showed AabHLH112 could bind to the G-box (CANNTG) cis-element in promoters of both AaCPS and AaECS. In addition, overexpression of AabHLH112 in A. annua significantly elevated the expression levels of AaCPS, AaECS, and AaBFS as well as the contents of β-caryophyllene, epi-cedrol, and β-farnesene, while suppressing AabHLH112 expression by RNAi reduced the expression of the three genes and the contents of the three sesquiterpenes. These results suggested that AabHLH112 is a positive regulator of β-caryophyllene, epi-cedrol, and β-farnesene biosynthesis in A. annua.
Collapse
Affiliation(s)
- Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Guoping Shu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Mingyuan Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengling Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
54
|
Qin W, Li Y, Peng B, Liu H, Chen T, Yan X, Zhang Y, Wang C, Yao X, Fu X, Li L, Tang K. A high-efficiency trichome collection system by laser capture microdissection. FRONTIERS IN PLANT SCIENCE 2022; 13:985969. [PMID: 36072328 PMCID: PMC9441851 DOI: 10.3389/fpls.2022.985969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Trichomes, which are classified as glandular or non-glandular, are hair-like epidermal structures that are present on aerial parts of most plant species. Glandular secretory trichomes (GSTs) have the capacity to secrete and store specialized metabolites, which are widely used as natural pesticides, food additives, fragrance ingredients or pharmaceuticals. Isolating individual trichomes is an essential way for identifying trichome-specific gene functions and discovering novel metabolites. However, the isolation of trichomes is difficult and time-consuming. Here, we report a method to isolate the GSTs from leaf epidermis dispense with fixation using laser capture microdissection (LCM). In this study, 150 GSTs were captured efficiently from Artemisia annua leaves and enriched for artemisinin measurement. UPLC analysis of microdissected samples indicated specific accumulation of secondary metabolites could be detected from a small number of GSTs. In addition, qRT-PCR revealed that the GST-specific structural genes involved in artemisinin biosynthesis pathway were highly expressed in GSTs. Taken together, we developed an efficient method to collect comparatively pure GSTs from unfixed leaved, so that the metabolites were relatively obtained intact. This method can be implemented in metabolomics research of purely specific plant cell populations and has the potential to discover novel secondary metabolites.
Collapse
|
55
|
Identification and Functional Analysis of SabHLHs in Santalum album L. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071017. [PMID: 35888105 PMCID: PMC9315531 DOI: 10.3390/life12071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Santalum album L., a semi-parasitic evergreen tree, contains economically important essential oil, rich in sesquiterpenoids, such as (Z) α- and (Z) β-santalol. However, their transcriptional regulations are not clear. Several studies of other plants have shown that basic-helix-loop-helix (bHLH) transcription factors (TFs) were involved in participating in the biosynthesis of sesquiterpene synthase genes. Herein, bHLH TF genes with similar expression patterns and high expression levels were screened by co-expression analysis, and their full-length ORFs were obtained. These bHLH TFs were named SaMYC1, SaMYC3, SaMYC4, SaMYC5, SabHLH1, SabHLH2, SabHLH3, and SabHLH4. All eight TFs had highly conserved bHLH domains and SaMYC1, SaMYC3, SaMYC4, and SaMYC5, also had highly conserved MYC domains. It was indicated that the eight genes belonged to six subfamilies of the bHLH TF family. Among them, SaMYC1 was found in both the nucleus and the cytoplasm, while SaMYC4 was only localized in the cytoplasm and the remaining six TFs were localized in nucleus. In a yeast one-hybrid experiment, we constructed decoy vectors pAbAi-SSy1G-box, pAbAi-CYP2G-box, pAbAi-CYP3G-box, and pAbAi-CYP4G-box, which had been transformed into yeast. We also constructed pGADT7-SaMYC1 and pGADT7-SabHLH1 capture vectors and transformed them into bait strains. Our results showed that SaMYC1 could bind to the G-box of SaSSy, and the SaCYP736A167 promoter, which SaSSy proved has acted as a key enzyme in the synthesis of santalol sesquiterpenes and SaCYP450 catalyzed the ligation of santalol sesquiterpenes into terpene. We have also constructed pGreenII 62-SK-SaMYC1, pGreenII 0800-LUC-SaSSy and pGreenII 0800-LUC-SaCYP736A167 via dual-luciferase fusion expression vectors and transformed them into Nicotiana benthamiana using an Agrobacterium-mediated method. The results showed that SaMYC1 was successfully combined with SaSSy or SaCYP736A167 promoter and the LUC/REN value was 1.85- or 1.55-fold higher, respectively, than that of the control group. Therefore, we inferred that SaMYC1 could activate both SaSSy and SaCYP736A167 promoters.
Collapse
|
56
|
Han J, Li T, Wang X, Zhang X, Bai X, Shao H, Wang S, Hu Z, Wu J, Leng P. AmMYB24 Regulates Floral Terpenoid Biosynthesis Induced by Blue Light in Snapdragon Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:885168. [PMID: 35845643 PMCID: PMC9284265 DOI: 10.3389/fpls.2022.885168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Floral terpenoid volatiles are impacted by light quality. In snapdragon, blue light can significantly enhance the emissions of ocimene and myrcene and the expression of ocimene synthase (AmOCS) and myrcene synthase (AmMYS). However, the mechanisms underlying the response to blue light are largely unknown. In this study, two transcription factors (TFs), AmMYB24 and AmMYB63 were screened which showed high expression level under blue light. AmMYB24 exhibited synchronous expression with AmOCS. Moreover, AmOCS transcript expression was up-regulated in response to AmMYB24 overexpression. This activation is direct and occurs through binding of AmMYB24 to MYBCORECYCATB1 sites in the AmOCS promoter. In addition, AmMYB24 interacts with the blue light signal key receptor AmCRY1 and the transcriptional activation activity of AmMYB24 was decreased in AmCRY1 silencing flowers. Taken together, our results revealed the regulatory pathway of biosynthesis of ocimene induced by blue light mediated by AmMYB24 and AmCRY1. When snapdragon flowers were exposed to blue light, AmCRY1 was first activated, the light signal is transduced to AmMYB24 through interaction with AmCRY1, and finally AmMYB24 activates AmOCS by binding to its MYBCOREATCYCB1 motif, resulting in abundant ocimene emission.
Collapse
Affiliation(s)
- Jianing Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Tong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xuelian Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xiaoning Bai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Huihui Shao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Shaojie Wang
- Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Zenghui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Pingsheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
57
|
Li Y, Chen T, Liu H, Qin W, Yan X, Wu-Zhang K, Peng B, Zhang Y, Yao X, Fu X, Li L, Tang K. The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153712. [PMID: 35644103 DOI: 10.1016/j.jplph.2022.153712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Malaria is a devastating parasitic disease with high levels of morbidity and mortality worldwide. Artemisinin, the active substance against malaria, is a sesquiterpenoid produced by Artemisia annua. To improve artemisinin content in the native A. annua plants, considerable efforts have been attempted, with genetic transformation serving as an effective strategy. Although, the most frequently-used cauliflower mosaic virus (CaMV) 35S (CaMV35S) promoter has proved to be efficient in A. annua transgenic studies, it appears to show weak activity in peltate glandular secretory trichomes (GSTs) of A. annua plants. Here, we characterized the 1727 bp fragment upstream from the translation start codon (ATG) of AaActin1, however, found it was inactive in tobacco. After removal of the 5' intron, the truncated AaActin1 promoter (tpACT) showed 69% and 50% activity of CaMV35S promoter in transiently transformed tobacco and stably transformed A. annua, respectively. β-glucuronidase (GUS) staining analysis showed that the tpACT promoter was capable of directing the constant expression of a foreign gene in peltate GSTs of transgenic A. annua, representing higher activity than CaMV35S promoter. Collectively, our study provided a novel promoter available for metabolic engineering of artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuanyu Wu-Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
58
|
Shen Q, Huang H, Xie L, Hao X, Kayani SI, Liu H, Qin W, Chen T, Pan Q, Liu P, Tang K. Basic Helix-Loop-Helix Transcription Factors AabHLH2 and AabHLH3 Function Antagonistically With AaMYC2 and Are Negative Regulators in Artemisinin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:885622. [PMID: 35734250 PMCID: PMC9207477 DOI: 10.3389/fpls.2022.885622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved sophisticated systems for regulating the biosynthesis of specialized phytochemicals. Artemisinin, which is a sesquiterpene lactone widely used in anti-malaria treatment, is produced by the Artemisia annua L. plant. However, the artemisinin content in A. annua is low and difficult to meet market demands. Studies have shown that artemisinin biosynthesis in A. annua has complex temporal and spatial specificity and is under tightly transcriptional regulation. However, the mechanism of transcriptional regulation of artemisinin biosynthesis remains unclear. In this study, we identified two MYC-type bHLH transcription factors (AabHLH2 and AabHLH3) as novel regulators of artemisinin biosynthesis. These bHLH TFs act as transcription repressors and function redundantly to negatively regulate artemisinin biosynthesis. Furthermore, AabHLH2 and AabHLH3 are nuclear proteins that bind to DNA elements with similar specificity to that of AaMYC2, but lack the conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Together, our findings reveal a novel artemisinin biosynthesis regulatory network, provide new insight into how specialized metabolites are modulated in plants, and propose a model in which different bHLH TFs coordinated in regulating artemisinin production in the plant. Finally, this study provides some useful target genes for metabolic engineering of artemisinin production via CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Qian Shen
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huayi Huang
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lihui Xie
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Hao
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sadaf-Ilyas Kayani
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qifang Pan
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Liu
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
59
|
Apicella PV, Sands LB, Ma Y, Berkowitz GA. Delineating genetic regulation of cannabinoid biosynthesis during female flower development in Cannabis sativa. PLANT DIRECT 2022; 6:e412. [PMID: 35774623 PMCID: PMC9219008 DOI: 10.1002/pld3.412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2023]
Abstract
Cannabinoids are predominantly produced in the glandular trichomes on cannabis female flowers. There is little known on how cannabinoid biosynthesis is regulated during female flower development. We aim to understand the rate-limiting step(s) in the cannabinoid biosynthetic pathway. We investigated the transcript levels of cannabinoid biosynthetic genes together with cannabinoid contents during 7 weeks of female flower development. We demonstrated that the enzymatic steps for producing cannabigerol (CBG), which involve genes GPPS, PT, TKS, and OAC, could rate limit cannabinoid biosynthesis. Our findings further suggest that upregulation of cannabinoid synthases, CBDAS and THCAS in a commercial hemp and medical marijuana variety, respectively, is not critical for cannabinoid biosynthesis. The cannabinoid biosynthetic genes are generally upregulated during flower maturation; increased expression occurs coincident with glandular trichome development and cannabinoid production in the maturing flower. The results also suggest that different cannabis varieties may experience discrete transcriptional regulation of cannabinoid biosynthetic genes. In addition, we showed that methyl jasmonate (MeJA) can potentially increase cannabinoid production. We propose that biweekly applications of 100 μM MeJA starting from flower initiation would be efficacious for promoting cannabinoid biosynthesis. Our findings provide important genetic information for cannabis breeding to generate new varieties with favorable traits.
Collapse
Affiliation(s)
- Peter V. Apicella
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology LaboratoryUniversity of ConnecticutStorrsCTUSA
| | - Lauren B. Sands
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology LaboratoryUniversity of ConnecticutStorrsCTUSA
| | - Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology LaboratoryUniversity of ConnecticutStorrsCTUSA
| | - Gerald A. Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology LaboratoryUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
60
|
Xiang N, Zhao Y, Zhang B, Gu Q, Chen W, Guo X. Volatiles Accumulation during Young Pomelo ( Citrus maxima (Burm.) Merr.) Fruits Development. Int J Mol Sci 2022; 23:5665. [PMID: 35628476 PMCID: PMC9144960 DOI: 10.3390/ijms23105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
As widely planted fruits with high nutritional and medical values, pomelos are managed systematically to achieve the largest economic benefits. But the annual shedding of young pomelos, which could be applied as feedstocks for essential oil extraction with their abundant volatiles, leads to a waste of source. The present study selected two commonly planted pomelo (Citrus maxima (Burm.) Merr.) varieties in Southern China, to investigate the volatile profiles during young pomelo fruits development. Combing transcriptomic analysis, this study aimed at identifying the prominent volatile components in young pomelo fruits in order to preferably extract profitable volatiles, as well, increasing the knowledge concerning regulatory roles of transcription factors (TFs) on volatiles accumulation in young pomelos. Totally 29 volatiles were identified, including 14 monoterpenoids and 13 sesquiterpenoids. Diprene was the principal component with the highest amount. Volatiles were generally decreased during fruits development but preferable stages were figured out for volatile collections. 12 and 17 TFs were related to developing time while ERF003 and MYC2 were highly correlated to monoterpenoids. These findings put forward the comprehensive usages of young pomelos and enriched the regulatory roles of TFs on both fruit development and volatiles metabolism.
Collapse
Affiliation(s)
- Nan Xiang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| | - Yihan Zhao
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| | - Bing Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| | - Qiuming Gu
- Southern Golden Pomelo Research Institute of Meizhou, Meizhou 514743, China; (Q.G.); (W.C.)
| | - Weiling Chen
- Southern Golden Pomelo Research Institute of Meizhou, Meizhou 514743, China; (Q.G.); (W.C.)
| | - Xinbo Guo
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; (N.X.); (Y.Z.); (B.Z.)
| |
Collapse
|
61
|
Deng YA, Li L, Peng Q, Feng LF, Yang JF, Zhan RT, Ma DM. Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AaIPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. PLANTA 2022; 255:122. [PMID: 35554686 DOI: 10.1007/s00425-022-03892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
AaZFP1, a C2H2-type transcription factor, was found to bind the AGT-N1-10-AGT box of AaIPPI1pro and activate the expression of AaIPPI1 involved in artemisinin biosynthesis. Artemisinin, an endoperoxide sesquiterpene lactone, is a widely used antimalarial drug isolated from Artemisia annua L. Isopentenyl pyrophosphate isomerase (AaIPPI1) catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate and is the key gene involved in the biosynthesis of artemisinin. However, the AaIPPI1 gene regulation network remains largely unknown. Here, we isolated the AaIPPI1 promoter (AaIPPI1pro) and predicted that it contains cis-elements involved in stress responses, including the TGACG motif (a methyl jasmonate-responsive element), GARE motif (a gibberellin-responsive element), ABRE (an abscisic acid-responsive element), TC-rich repeats (a stress-responsive element), and the AGT-N1-10-AGT box, which is the binding site of Cys/His2 zinc finger protein (C2H2 ZFP). The C2H2 ZFP gene AaZFP1 was discovered by screening a cDNA library using AaIPPI1pro as bait in yeast. AaZFP1 contains two conserved C2H2 regions, a nuclear localization domain (B box), a Leu-rich domain (L box), and a conserved DLN sequence (DLN box) close to its C terminus. A subcellular localization assay indicated that AaZFP1 protein is localized in the nucleus and cytoplasm. An electrophoretic mobility shift assay demonstrated that AaZFP1 binds to the AGT-N1-10-AGT box of AaIPPI1pro. A dual-luciferase assay indicated that AaZFP1 enhanced the promoter activity of AaIPPI1 in vivo. Transient overexpression of AaZFP1 in A. annua increased the expression of AaIPPI1 and the content of artemisinin. Our data demonstrated that AaZFP1 functions as a transcriptional activator that regulates the expression of AaIPPI1 by directly binding to its promoter. The present study provides insights into the transcriptional regulation of genes involved in artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yin-Ai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Li Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| | - Dong-Ming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
62
|
He Y, Fu X, Li L, Sun X, Tang K, Zhao J. AaSPL9 affects glandular trichomes initiation by positively regulating expression of AaHD1 in Artemisia annua L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111172. [PMID: 35193735 DOI: 10.1016/j.plantsci.2021.111172] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Glandular trichomes can secrete and store a large number of secondary metabolites in plants, some of which are of high medicinal and commercial value. For example, artemisinin, isolated from Artemisia annua L. plants, and its derivatives have great high medicinal value. Previous research indicated that artemisinin was synthesized in the glandular trichomes on the leaves of A. annua. It is an important study direction to improve artemisinin yield by promoting the initiation and development of glandular trichome. In this study, SQUAMOSA promoter-binding protein-like 9 (AaSPL9) was identified. In AaSPL9 overexpression transgenic plants, the glandular trichomes density was increased by 45-60 %, and the content of artemisinin was increased by 33-60 %, indicating that AaSPL9 positively regulate the glandular trichomes initiation. Yeast one-hybrid(Y1H), Dual-luciferase (Dual-Luc), Electrophoretic Mobility Shift Assay (EMSA) demonstrated that AaSPL9 activated the expression of AaHD1 by combining directly the GTAC-box of the AaHD1 promoter. Taken together, we identified AaSPL9, a positive transcription factor, regulating the glandular trichome initiation in A. annua, and revealed a novel molecular mechanism by which a SPL protein to promote glandular trichome initiation.
Collapse
Affiliation(s)
- Yilong He
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jingya Zhao
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
63
|
Genome-Wide Identification and Expression Analysis of MYC Transcription Factor Family Genes in Rubber Tree (Hevea brasiliensis Muell. Arg.). FORESTS 2022. [DOI: 10.3390/f13040531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myelocytomatosis (MYC) transcription factors play a core regulator in the jasmonic acid signaling pathway, which regulates the secondary laticifer differentiation and rubber biosynthesis in rubber tree (Hevea brasiliensis). However, there are currently no reports on the MYC gene family in rubber trees, an important industrial raw material crop worldwide. In the present study, 32 HblMYCs were isolated and identified. The diversity in gene structure and presence of various cis-regulatory elements in promotors suggest that HblMYCs participate in various biological processes. Based on the expression patterns in the cambium region and laticifer in, respectively, response to coronatine (COR) and tapping, and the phylogenetic relationship with the MYCs that have been functionally identified in other plants, the HblMYC24 and HblMYC30 may be related to laticifer differentiation while the HblMYC6, HblMYC11 and HblMYC15, as well as HblMYC16 and HblMYC21, may positively regulate rubber biosynthesis. The results provide a foundation for understanding the molecular mechanism of jasmonate signaling in regulating laticifer differentiation and rubber biosynthesis in rubber tree.
Collapse
|
64
|
Sankhuan D, Niramolyanun G, Kangwanrangsan N, Nakano M, Supaibulwatana K. Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against Plasmodium falciparum. BMC PLANT BIOLOGY 2022; 22:128. [PMID: 35313811 PMCID: PMC8935710 DOI: 10.1186/s12870-022-03528-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/14/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Productivities of bioactive compounds in high-value herbs and medicinal plants are often compromised by uncontrollable environmental parameters. Recent advances in the development of plant factories with artificial lighting (PFAL) have led to improved qualitative and/or quantitative production of bioactive compounds in several medicinal plants. However, information concerning the effect of light qualities on plant pharmaceutical properties is limited. The influence of three different light-emitting diode (LED) spectra on leaf fresh weight (FW), bioactive compound production and bioactivity of Artemisia annua L. against the malarial parasite Plasmodium falciparum NF54 was investigated. Correlation between the A. annua metabolites and antimalarial activity of light-treated plant extracts were also determined. RESULTS Artemisia annua plants grown under white and blue spectra that intersected at 445 nm exhibited higher leaf FW and increased amounts of artemisinin and artemisinic acid, with enhanced production of several terpenoids displaying a variety of pharmacological activities. Conversely, the red spectrum led to diminished production of bioactive compounds and a distinct metabolite profile compared with other wavelengths. Crude extracts obtained from white and blue spectral treatments exhibited 2 times higher anti-Plasmodium falciparum activity than those subjected to the red treatment. Highest bioactivity was 4 times greater than those obtained from greenhouse-grown plants. Hierarchical cluster analysis (HCA) revealed a strong correlation between levels of several terpenoids and antimalarial activity, suggesting that these compounds might be involved in increasing antimalarial activity. CONCLUSIONS Results demonstrated a strategy to overcome the limitation of A. annua cultivation in Bangkok, Thailand. A specific LED spectrum that operated in a PFAL system promoted the accumulation of some useful phytochemicals in A. annua, leading to increased antimalarial activity. Therefore, the application of PFAL with appropriate light spectra showed promise as an alternative method for industrial production of A. annua or other useful medicinal plants with minimal environmental influence.
Collapse
Affiliation(s)
- Darunmas Sankhuan
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Gamolthip Niramolyanun
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, 2-8050, Ikarashi, Niigata, 9502181, Japan
| | - Kanyaratt Supaibulwatana
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
| |
Collapse
|
65
|
Shu G, Tang Y, Yuan M, Wei N, Zhang F, Yang C, Lan X, Chen M, Tang K, Xiang L, Liao Z. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharm Sin B 2022; 12:1500-1513. [PMID: 35530156 PMCID: PMC9069397 DOI: 10.1016/j.apsb.2021.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
Artemisia annua is the main natural source of artemisinin production. In A. annua, extended drought stress severely reduces its biomass and artemisinin production while short-term water-withholding or abscisic acid (ABA) treatment can increase artemisinin biosynthesis. ABA-responsive transcription factor AabZIP1 and JA signaling AaMYC2 have been shown in separate studies to promote artemisinin production by targeting several artemisinin biosynthesis genes. Here, we found AabZIP1 promote the expression of multiple artemisinin biosynthesis genes including AaDBR2 and AaALDH1, which AabZIP1 does not directly activate. Subsequently, it was found that AabZIP1 up-regulates AaMYC2 expression through direct binding to its promoter, and that AaMYC2 binds to the promoter of AaALDH1 to activate its transcription. In addition, AabZIP1 directly transactivates wax biosynthesis genes AaCER1 and AaCYP86A1. The biosynthesis of artemisinin and cuticular wax and the tolerance of drought stress were significantly increased by AabZIP1 overexpression, whereas they were significantly decreased in RNAi-AabZIP1 plants. Collectively, we have uncovered the AabZIP1-AaMYC2 transcriptional module as a point of cross-talk between ABA and JA signaling in artemisinin biosynthesis, which may have general implications. We have also identified AabZIP1 as a promising candidate gene for the development of A. annua plants with high artemisinin content and drought tolerance in metabolic engineering breeding.
Collapse
|
66
|
Xu Y, Zhang H, Zhong Y, Jiang N, Zhong X, Zhang Q, Chai S, Li H, Zhang Z. Comparative genomics analysis of bHLH genes in cucurbits identifies a novel gene regulating cucurbitacin biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac038. [PMID: 35184192 PMCID: PMC9071377 DOI: 10.1093/hr/uhac038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 05/08/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors (TFs) participate in a variety of biological regulatory processes in plants, and have undergone significant expansion during land plant evolution by gene duplications. In cucurbit crops, several bHLH genes have been found to be responsible for the agronomic traits such as bitterness. However, the characterization of bHLH genes across the genomes of cucurbit species has not been reported, and how they have evolved and diverged remains largely unanswered. Here we identified 1160 bHLH genes in seven cucurbit crops and performed a comprehensive comparative genomics analysis. We determined orthologous and paralogous bHLH genes across cucurbit crops by syntenic analysis between or within species. Orthology and phylogenetic analysis of the tandem-duplicated bHLH genes in the Bt cluster which regulate the biosynthesis of cucurbitacins suggest that this cluster is derived from three ancestral genes after the cucurbit-common tetraploidization event. Interestingly, we identified a new conserved cluster paralogous to the Bt cluster that includes two tandem bHLH genes, and the evolutionary history and expression profiles of these two genes in the new cluster suggest the involvement of one gene (Brp) in the regulation of cucurbitacin biosynthesis in roots. Further biochemical and transgenic assays in melon hairy roots support the function of Brp. This study provides useful information for further investigating the functions of bHLH TFs and novel insights into the regulation of cucurbitacin biosynthesis in cucurbit crops and other plants.
Collapse
Affiliation(s)
- Yuanchao Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huimin Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Naiyu Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyun Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiqi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
67
|
Liu S, Wang Y, Shi M, Maoz I, Gao X, Sun M, Yuan T, Li K, Zhou W, Guo X, Kai G. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza. J Adv Res 2022; 42:205-219. [PMID: 36513414 PMCID: PMC9788942 DOI: 10.1016/j.jare.2022.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 02/12/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Salvia miltiorrhiza is a renowned traditional Chinese medicinal plant with extremely high medicinal value, especially for cardiovascular and cerebrovascular diseases. The jasmonic acid (JA) signaling pathway plays an important role in the improved biosynthesis of secondary metabolites, which is mediated by a major transcriptional regulator, MYC2. However, the JA regulatory mechanism of secondary metabolites biosynthesis in S. miltiorrhiza is still largely unknown. OBJECTIVES Our work focuses on the dissection of the molecular mechanism of transcriptional regulation in MeJA-mediated biosynthesis of medicinal components of S. miltiorrhiza. We examined the role of MeJA-responsive bHLH transcription factors (TFs) in improving bioactive secondary metabolites accumulation in S. miltiorrhiza. METHODS Hairy root transformation based on CRISPR/Cas9 technique was used to decipher gene function(s). Changes in the content of phenolic acids were evaluated by HPLC. Y1H, EMSA and dual-LUC assays were employed to analyze the molecular mechanism of SmbHLH60 in the regulation on the biosynthesis of phenolic acids and anthocyanins. Y2H, BiFC and pull-down affinity assays were used to corroborate the interaction between SmbHLH60 and SmMYC2. RESULTS Being one of the most significantly negatively regulated bHLH genes by MeJA, a new transcription factor SmbHLH60 was discovered and characterized. Over-expression of SmbHLH60 resulted in significant inhibition of phenolic acid and anthocyanin biosynthesis in S. miltiorrhiza by transcriptionally repressing of target genes such as SmTAT1 and SmDFR, whereas CRISPR/Cas9-generated knockout of SmbHLH60 resulted in the opposite effect. In addition, SmbHLH60 and SmMYC2 formed a heterodimer to antagonistically regulate phenolic acid and anthocyanin biosynthesis. CONCLUSION Our results clarified that SmbHLH60 is a negativeregulator on the biosynthesis of phenolic acids and anthocyanins. SmbHLH60 competed with SmMYC2 in an antagonistic manner, providing new insights for the molecular mechanism of MeJA-mediated regulation on the biosynthesis of secondary metabolites in S. miltiorrhiza.
Collapse
Affiliation(s)
- Shucan Liu
- College of Biology, Hunan University, Changsha, Hunan 410082, PR China,Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China,Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion 7528809, Israel
| | - Xiankui Gao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Tingpan Yuan
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, Hunan 410082, PR China,Corresponding authors.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China,Corresponding authors.
| |
Collapse
|
68
|
Hua B, Chang J, Han X, Xu Z, Hu S, Li S, Wang R, Yang L, Yang M, Wu S, Shen J, Yu X, Wu S. H and HL synergistically regulate jasmonate-triggered trichome formation in tomato. HORTICULTURE RESEARCH 2022; 9:uhab080. [PMID: 35048113 PMCID: PMC8973001 DOI: 10.1093/hr/uhab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The development of trichomes, which protect plants against herbivores, is affected by various stresses. In tomato, previous studies showed that stress triggered JA signaling influences trichome formation, but the underlying mechanism is not fully resolved. Here, we found two C2H2 zinc finger proteins synergistically regulate JA-induced trichome formation in tomato. The naturally occurring mutations in H and its close homolog H-like gene in a spontaneous mutant, LA3172 cause severely affected trcihome development. Compared with respective single mutant, h/hl double mutant displayed more severe trichome defects in all tissues. Despite the partially redundant function, H and HL genes regulate the trichome formation in the spatially distinct manner, with HL more involved in hypocotyls and leaves, while H more involved in stems and sepals. Furthermore,the activity of H/HL is essential for JA-triggered trichome formation. JA signaling inhibitor SlJAZ2 represses the activity of H and HL via physical interaction, resulting in the activation of THM1, a negative regulator of trichome formation. Our results provide novel insight into the mechanism of the trichome formation in response to stress induced JA signaling in tomato.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jiang Chang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqian Han
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijing Xu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shourong Hu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyin Wang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liling Yang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meina Yang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingyuan Shen
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Yu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
69
|
Yi X, Wang X, Wu L, Wang M, Yang L, Liu X, Chen S, Shi Y. Integrated Analysis of Basic Helix Loop Helix Transcription Factor Family and Targeted Terpenoids Reveals Candidate AarbHLH Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. FRONTIERS IN PLANT SCIENCE 2022; 12:811166. [PMID: 35111184 PMCID: PMC8801783 DOI: 10.3389/fpls.2021.811166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or β-caryophyllene. Protein-protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.
Collapse
Affiliation(s)
- Xiaozhe Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
70
|
Yu N, Sun H, Yang J, Li R. The Diesel Tree Sindora glabra Genome Provides Insights Into the Evolution of Oleoresin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:794830. [PMID: 35058955 PMCID: PMC8764381 DOI: 10.3389/fpls.2021.794830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Sindora glabra is an economically important tree that produces abundant oleoresin in the trunk. Here, we present a high-quality chromosome-scale assembly of S. glabra genome by combining Illumina HiSeq, Pacific Biosciences sequencing, and Hi-C technologies. The size of S. glabra genome was 1.11 Gb, with a contig N50 of 1.27 Mb and 31,944 predicted genes. This is the first sequenced genome of the subfamily Caesalpinioideae. As a sister taxon to Papilionoideae, S. glabra underwent an ancient genome triplication shared by core eudicots and further whole-genome duplication shared by early-legume in the last 73.3 million years. S. glabra harbors specific genes and expanded genes largely involved in stress responses and biosynthesis of secondary metabolites. Moreover, 59 terpene backbone biosynthesis genes and 64 terpene synthase genes were identified, which together with co-expressed transcription factors could contribute to the diversity and specificity of terpene compounds and high terpene content in S. glabra stem. In addition, 63 disease resistance NBS-LRR genes were found to be unique in S. glabra genome and their expression levels were correlated with the accumulation of terpene profiles, suggesting potential defense function of terpenes in S. glabra. These together provide new resources for understanding genome evolution and oleoresin production.
Collapse
Affiliation(s)
- Niu Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Haixi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinchang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Rongsheng Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
71
|
Zeng T, Li JW, Xu ZZ, Zhou L, Li JJ, Yu Q, Luo J, Chan ZL, Jongsma MA, Hu H, Wang CY. TcMYC2 regulates Pyrethrin biosynthesis in Tanacetum cinerariifolium. HORTICULTURE RESEARCH 2022; 9:uhac178. [PMID: 36338845 PMCID: PMC9627524 DOI: 10.1093/hr/uhac178] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 05/13/2023]
Abstract
Pyrethrins constitute a class of terpene derivatives with high insecticidal activity and are mainly synthesized in the capitula of the horticulturally important plant, Tanacetum cinerariifolium. Treatment of T. cinerariifolium with methyl jasmonate (MeJA) in the field induces pyrethrin biosynthesis, but the mechanism linking MeJA with pyrethrin biosynthesis remains unclear. In this study, we explored the transcription factors involved in regulating MeJA-induced pyrethrin biosynthesis. A single spray application of MeJA to T. cinerariifolium leaves rapidly upregulated the expression of most known pyrethrin biosynthesis genes and subsequently increased the total pyrethrin content in the leaf. A continuous 2-week MeJA treatment resulted in enhanced pyrethrin content and increased trichome density. TcMYC2, a key gene in jasmonate signaling, was screened at the transcriptome after MeJA treatment. TcMYC2 positively regulated expression of the pyrethrin biosynthesis genes TcCHS, TcAOC, and TcGLIP by directly binding to E-box/G-box motifs in the promoters. The stable overexpression of TcMYC2 in T. cinerariifolium hairy roots significantly increased the expression of TcAOC and TcGLIP. Further transient overexpression and viral-induced gene-silencing experiments demonstrated that TcMYC2 positively promoted pyrethrin biosynthesis. Collectively, the results reveal a novel molecular mechanism for MeJA-induced pyrethrin biosynthesis in T. cinerariifolium involving TcMYC2.
Collapse
Affiliation(s)
| | | | - Zhi-Zhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Jin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Yu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu-Long Chan
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
| | - Hao Hu
- Corresponding authors. E-mails: ;
| | | |
Collapse
|
72
|
Singh SK, Patra B, Singleton JJ, Liu Y, Paul P, Sui X, Suttipanta N, Pattanaik S, Yuan L. Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Methods Mol Biol 2022; 2505:203-221. [PMID: 35732947 DOI: 10.1007/978-1-0716-2349-7_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biosynthesis of the therapeutically valuable terpenoid indole alkaloids (TIAs), in the medicinal plant Catharanthus roseus, is one of the most elaborate and complex metabolic processes. Although genomic and transcriptomic resources have significantly accelerated gene discovery in the TIA pathway, relatively few genes of transcription factors (TFs) have been identified and characterized thus far. Systematic identification of TFs and elucidation of their functions are crucial for understanding TIA pathway regulation. The successful discovery of TFs in the TIA pathway has relied mostly on three different approaches, (1) identification of cis-regulatory motifs (CRMs) present in the pathway gene promoters as they often provide clues on potential TFs that bind to the promoters, (2) co-expression analysis, based on the assumption that TFs regulating a metabolic or developmental pathway exhibit similar spatiotemporal expression as the pathway genes, and (3) isolation of homologs of TFs known to regulate structurally similar or diverse specialized metabolites in different plant species. TFs regulating TIA pathway have been isolated using either an individual or a combination of the three approaches. Here we describe transcriptome-based coexpression analysis and cis-element determination to identify TFs in C. roseus. In addition, we describe the protocols for generation of transgenic hairy roots, Agrobacterium infiltration of flowers, and electrophoretic mobility shift assay (EMSA). The methods described here are useful for the identification and characterization of potential TFs involved in the regulation of special metabolism in other medicinal plants.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Joshua J Singleton
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Nitima Suttipanta
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubonratchathani, Thailand
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
73
|
Wang Z, Li Y, Zhang H, Yan X, Cui H. Methyl jasmonate treatment, aphid resistance assay, and transcriptomic analysis revealed different herbivore defensive roles between tobacco glandular and non-glandular trichomes. PLANT CELL REPORTS 2022; 41:195-208. [PMID: 34647139 DOI: 10.1007/s00299-021-02801-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Methyl jasmonate treatment and aphid resistance assays reveal different roles in herbivore defensive responses between tobacco glandular and non-glandular trichomes. These roles correlate with trichome gene expression patterns. In plants, trichomes greatly contribute to biotic stress resistance. To better understand the different defensive functions between glandular and non-glandular trichomes, we used Nicotiana tabacum as a model. This species bears three types of trichomes: long and short stalk glandular trichomes (LGT and SGT, respectively), and non-glandular trichomes (NGT). Tobacco accession T.I.1068 (lacking NGT) and T.I.1112 (lacking LGT) were used for the experiment. After methyl jasmonate (MeJA) treatment, LGT formation was promoted not only in T.I.1068, but also in T.I.1112, whereas NGT remained absent in T.I.1068, and was slightly reduced in T.I.1112. Diterpenoids, which play important roles in herbivore resistance, accumulated abundantly in T.I.1068 and were elevated by MeJA; however, they were not found in T.I.1112 but became detectable after MeJA treatment. The aphid resistance of T.I.1068 was higher than that of T.I.1112, and both were enhanced by MeJA, which was closely correlated with LGT density. Trichomes detached from T.I.1068 and T.I.1112 were used for RNA-Seq analysis, the results showed that pentose phosphate, photosynthesis, and diterpenoid biosynthesis genes were much more expressed in T.I.1068 than in T.I.1112, which was consistent with the vigorous diterpenoid biosynthesis in T.I.1068. In T.I.1112, citrate cycle, propanoate, and glyoxylate metabolism processes were enriched, and some defensive protein genes were expressed at higher levels than those in T.I.1068.These results suggested that LGT plays a predominant role in aphid resistance, whereas NGT could strengthen herbivore resistance by accumulating defensive proteins, and the roles of LGT and NGT are associated with their gene expression patterns.
Collapse
Affiliation(s)
- Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yanhua Li
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
74
|
Kayani SI, Shen Q, Rahman SU, Fu X, Li Y, Wang C, Hassani D, Tang K. Transcriptional regulation of flavonoid biosynthesis in Artemisia annua by AaYABBY5. HORTICULTURE RESEARCH 2021; 8:257. [PMID: 34848710 PMCID: PMC8632904 DOI: 10.1038/s41438-021-00693-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 05/07/2023]
Abstract
Artemisia annua is a medicinal plant rich in terpenes and flavonoids with useful biological activities such as antioxidant, anticancer, and antimalarial activities. The transcriptional regulation of flavonoid biosynthesis in A. annua has not been well-studied. In this study, we identified a YABBY family transcription factor, AaYABBY5, as a positive regulator of anthocyanin and total flavonoid contents in A. annua. AaYABBY5 was selected based on its similar expression pattern to the phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) genes. A transient dual-luciferase assay in Nicotiana bethamiana with the AaYABBY5 effector showed a significant increase in the activity of the downstream LUC gene, with reporters AaPAL, AaCHS, AaCHI, and AaUFGT. The yeast one-hybrid system further confirmed the direct activation of these promoters by AaYABBY5. Gene expression analysis of stably transformed AaYABBY5 overexpression, AaYABBY5 antisense, and control plants revealed a significant increase in the expression of AaPAL, AaCHS, AaCHI, AaFLS, AaFSII, AaLDOX, and AaUFGT in AaYABBY5 overexpression plants. Moreover, their total flavonoid content and anthocyanin content were also found to increase. AaYABBY5 antisense plants showed a significant decrease in the expression of flavonoid biosynthetic genes, as well as a decrease in anthocyanin and total flavonoid contents. In addition, phenotypic analysis revealed deep purple-pigmented stems, an increase in the leaf lamina size, and higher trichome densities in AaYABBY5 overexpression plants. Together, these data proved that AaYABBY5 is a positive regulator of flavonoid biosynthesis in A. annua. Our study provides candidate transcription factors for the improvement of flavonoid concentrations in A. annua and can be further extended to elucidate its mechanism of regulating trichome development.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Saeed-Ur Rahman
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yongpeng Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
75
|
Yamada Y, Sato F. Transcription Factors in Alkaloid Engineering. Biomolecules 2021; 11:1719. [PMID: 34827717 PMCID: PMC8615522 DOI: 10.3390/biom11111719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix-loop-helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
76
|
Khan M, Hu J, Dahro B, Ming R, Zhang Y, Wang Y, Alhag A, Li C, Liu JH. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:705-724. [PMID: 34398993 DOI: 10.1111/tpj.15465] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 05/21/2023]
Abstract
Ethylene-responsive factors (ERFs) are plant-specific transcription factors involved in cold stress response, and raffinose is known to accumulate in plants exposed to cold. However, it remains elusive whether ERFs function in cold tolerance by modulating raffinose synthesis. Here, we identified a cold-responsive PtrERF108 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-tolerant plant closely related to citrus. PtrERF108 is localized in the nucleus and has transcriptional activation activity. Overexpression of PtrERF108 conferred enhanced cold tolerance of transgenic lemon, whereas virus-induced gene silencing (VIGS)-mediated knockdown of PtrERF108 in trifoliate orange greatly elevated cold sensitivity. Transcriptome profiling showed that PtrERF108 overexpression caused extensive reprogramming of genes associated with signaling transduction, physiological processes and metabolic pathways. Among them, a raffinose synthase (RafS)-encoding gene, PtrRafS, was confirmed as a direct target of PtrERF108. RafS activity and raffinose content were significantly increased in PtrERF108-overexpressing transgenic plants, but prominently decreased in the VIGS plants under cold conditions. Meanwhile, exogenous replenishment of raffinose could recover the cold tolerance of PtrERF108-silenced plants, whereas VIGS-mediated knockdown of PtrRafS resulted in cold-sensitive phenotype. Taken together, the current results demonstrate that PtrERF108 plays a positive role in cold tolerance by modulation of raffinose synthesis via regulating PtrRafS. Our findings reveal a new transcriptional module composed of ERF108-RafS underlying cold-induced raffinose accumulation in plants.
Collapse
Affiliation(s)
- Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Hu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
77
|
Li Y, Chen T, Wang W, Liu H, Yan X, Wu-Zhang K, Qin W, Xie L, Zhang Y, Peng B, Yao X, Wang C, Kayani SI, Fu X, Li L, Tang K. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. PLANT METHODS 2021; 17:106. [PMID: 34654448 PMCID: PMC8520255 DOI: 10.1186/s13007-021-00807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Agrobacterium-mediated transient transformation, which proved effective in diverse plant species, has been widely applied for high-throughput gene function studies due to its simplicity, rapidity, and high efficiency. Despite the efforts have made on Artemisia annua transient expression, achieving high-throughput gene functional characterization basing on a fast and easy-manipulated transient transformation system in A. annua remains challenging. RESULTS The first pair of true leaves of A. annua is an ideal candidate for Agrobacterium injection. EHA105 was the optimal strain that can be used for the development of the transient expression system. The supplementation of Triton X-100 at a concentration of 0.005% greatly improved the transient expression frequency. According to the histochemical β-Glucuronidase (GUS) staining assay, high transient expression level of the reporter gene (GUS) maintained at least a week. Dual-luciferase (Dual-LUC) transient assays showed that the activity of cauliflower mosaic virus 35S (CaMV35S) promoter and its derivates varied between A. annua and tobacco. In A. annua, the CaMV35S promoter had comparable activity with double CaMV35S promoter, while in tobacco, CaMV35S exhibited approximately 50% activity of double CaMV35S promoter. Otherwise, despite the CaMV35S promoter and double CaMV35S promoter from GoldenBraid Kit 2.0 displayed high activity strength in tobacco, they demonstrated a very low activity in transiently expressed A. annua. The activity of UBQ10 promoter and endogenous UBQb promoter was investigated as well. Additionally, using our transient expression system, the transactivation of AaGSW1 and AaORA on AaCYP71AV1 promoter was confirmed. Dual-LUC assays demonstrated that AaHD8 activated the expression of two glandular secreting trichomes-specific lipid transfer protein genes AaLTP1 and AaLTP2, indicating that AaLTP1 and AaLTP2 might serve as downstream components of AaHD8-involved glandular trichome initiation and cuticle formation, as well as artemisinin secretion in A. annua. CONCLUSIONS A simple, rapid, good-reproducibility, high-efficiency and low-cost transient transformation system in A. annua was developed. Our method offered a new way for gene functional characterization studies such as gene subcellular localization, promoter activity and transcription activation assays in A. annua, avoiding the aberrant phenotypes resulting from gene expression in a heterologous system.
Collapse
Affiliation(s)
- Yongpeng Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuanyu Wu-Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghao Yao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
78
|
Chen T, Li Y, Xie L, Hao X, Liu H, Qin W, Wang C, Yan X, Wu-Zhang K, Yao X, Peng B, Zhang Y, Fu X, Li L, Tang K. AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to Pseudomonas syringae in Artemisia annua. HORTICULTURE RESEARCH 2021; 8:217. [PMID: 34593786 PMCID: PMC8484609 DOI: 10.1038/s41438-021-00652-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 05/27/2023]
Abstract
Artemisia annua, a traditional Chinese medicinal plant, remains the only plant source for artemisinin production, yet few genes have been identified to be involved in both the response to biotic stresses, such as pathogens, and artemisinin biosynthesis. Here, we isolated and identified the WRKY transcription factor (TF) AaWRKY17, which could significantly increase the artemisinin content and resistance to Pseudomonas syringae in A. annua. Yeast one-hybrid (Y1H), dual-luciferase (dual-LUC), and electrophoretic mobility shift assay (EMSA) results showed that AaWRKY17 directly bound to the W-box motifs in the promoter region of the artemisinin biosynthetic pathway gene amorpha-4,11-diene synthase (ADS) and promoted its expression. Real-time quantitative PCR (RT-qPCR) analysis revealed that the transcript levels of two defense marker genes, Pathogenesis-Related 5 (PR5) and NDR1/HIN1-LIKE 10 (NHL10), were greatly increased in AaWRKY17-overexpressing transgenic A. annua plants. Additionally, overexpression of AaWRKY17 in A. annua resulted in decreased susceptibility to P. syringae. These results indicated that AaWRKY17 acted as a positive regulator in response to P. syringae infection. Together, our findings demonstrated that the novel WRKY transcription factor AaWRKY17 could potentially be used in transgenic breeding to improve the content of artemisinin and pathogen tolerance in A. annua.
Collapse
Affiliation(s)
- Tiantian Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuanyu Wu-Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghao Yao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
79
|
Ma T, Gao H, Zhang D, Sun W, Yin Q, Wu L, Zhang T, Xu Z, Wei J, Su Y, Shi Y, Ding D, Yuan L, Dong G, Leng L, Xiang L, Chen S. Genome-Wide Analysis of Light-Regulated Alternative Splicing in Artemisia annua L. FRONTIERS IN PLANT SCIENCE 2021; 12:733505. [PMID: 34659300 PMCID: PMC8511310 DOI: 10.3389/fpls.2021.733505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Artemisinin is currently the most effective ingredient in the treatment of malaria, which is thus of great significance to study the genetic regulation of Artemisia annua. Alternative splicing (AS) is a regulatory process that increases the complexity of transcriptome and proteome. The most common mechanism of alternative splicing (AS) in plant is intron retention (IR). However, little is known about whether the IR isoforms produced by light play roles in regulating biosynthetic pathways. In this work we would explore how the level of AS in A. annua responds to light regulation. We obtained a new dataset of AS by analyzing full-length transcripts using both Illumina- and single molecule real-time (SMRT)-based RNA-seq as well as analyzing AS on various tissues. A total of 5,854 IR isoforms were identified, with IR accounting for the highest proportion (48.48%), affirming that IR is the most common mechanism of AS. We found that the number of up-regulated IR isoforms (1534/1378, blue and red light, respectively) was more than twice that of down-regulated (636/682) after treatment of blue or red light. In the artemisinin biosynthetic pathway, 10 genes produced 16 differentially expressed IR isoforms. This work demonstrated that the differential expression of IR isoforms induced by light has the potential to regulate sesquiterpenoid biosynthesis. This study also provides high accuracy full-length transcripts, which can be a valuable genetic resource for further research of A. annua, including areas of development, breeding, and biosynthesis of active compounds.
Collapse
Affiliation(s)
- Tingyu Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yanyan Su
- Amway (China) Botanical R&D Center, Wuxi, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Ding
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | | | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
80
|
Yan W, Ye Z, Cao S, Yao G, Yu J, Yang D, Chen P, Zhang J, Wu Y. Transcriptome analysis of two Pogostemon cablin chemotypes reveals genes related to patchouli alcohol biosynthesis. PeerJ 2021; 9:e12025. [PMID: 34527441 PMCID: PMC8403477 DOI: 10.7717/peerj.12025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/25/2023] Open
Abstract
Pogostemon cablin, a medicinally and economically important perennial herb, is cultivated around the world due to its medicinal and aromatic properties. Different P. cablin cultivars exhibit different morphological traits and patchouli oil components and contents (especially patchouli alcohol (PA) and pogostone (PO)). According to the signature constituent of the leaf, P. cablin was classified into two different chemotypes, including PA-type and PO-type. To better understand the molecular mechanisms of PA biosynthesis, the transcriptomes of Chinese-cultivated P. cablin cv. PA-type “Nanxiang” (NX) and PO-type “Paixiang” (PX) were analyzed and compared with ribonucleic acid sequencing (RNA-Seq) technology. We obtained a total of 36.83 G clean bases from the two chemotypes, compared them with seven databases and revealed 45,394 annotated unigenes. Thirty-six candidate unigenes participating in the biosynthesis of PA were found in the P. cablin transcriptomes. Overall, 8,390 differentially expressed unigenes were identified between the chemotypes, including 2,467 upregulated and 5,923 downregulated unigenes. Furthermore, six and nine differentially expressed genes (DEGs) were mapped to the terpenoid backbone biosynthetic and sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. One key sesquiterpene synthase gene involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, encoding patchoulol synthase variant 1, was significantly upregulated in NX. Additionally, GC-MS analysis of the two chemotypes in this study showed that the content of PA in NX was significantly higher than that of PX, while the content of PO showed the opposite phenotype. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the DEG expression tendency was consistent with the transcriptome sequencing results. Overall, 23 AP2/ERF, 13 bHLH, 11 MYB, 11 NAC, three Trihelix, 10 WRKY and three bZIP genes that were differentially expressed may act as regulators of terpenoid biosynthesis. Altogether, 8,314 SSRs were recognized within 6,825 unigenes, with a distribution frequency of 18.32%, among which 1,202 unigenes contained more than one SSR. The transcriptomic characteristics of the two P. cablin chemotypes are comprehensively reported in this study, and these results will contribute to a better understanding of the molecular mechanism of PA biosynthesis. Our transcriptome data also provide a valuable genetic resource for further studies on P. cablin.
Collapse
Affiliation(s)
- Wuping Yan
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Shijia Cao
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Ping Chen
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
81
|
Zhu X, Liu X, Liu T, Wang Y, Ahmed N, Li Z, Jiang H. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. PLANT COMMUNICATIONS 2021; 2:100229. [PMID: 34746761 PMCID: PMC8553972 DOI: 10.1016/j.xplc.2021.100229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/11/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Plant natural products (PNPs) are the main sources of drugs, food additives, and new biofuels and have become a hotspot in synthetic biology. In the past two decades, the engineered biosynthesis of many PNPs has been achieved through the construction of microbial cell factories. Alongside the rapid development of plant physiology, genetics, and plant genetic modification techniques, hosts have now expanded from single-celled microbes to complex plant systems. Plant synthetic biology is an emerging field that combines engineering principles with plant biology. In this review, we introduce recent advances in the biosynthetic pathway elucidation of PNPs and summarize the progress of engineered PNP biosynthesis in plant cells. Furthermore, a future vision of plant synthetic biology is proposed. Although we are still a long way from overcoming all the bottlenecks in plant synthetic biology, the ascent of this field is expected to provide a huge opportunity for future agriculture and industry.
Collapse
Affiliation(s)
- Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Tian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi 530004, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yina Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Nida Ahmed
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
82
|
Fu X, Peng B, Hassani D, Xie L, Liu H, Li Y, Chen T, Liu P, Tang Y, Li L, Zhao J, Sun X, Tang K. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. THE NEW PHYTOLOGIST 2021; 231:1858-1874. [PMID: 33973259 DOI: 10.1111/nph.17453] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 05/04/2023]
Abstract
Artemisinin, isolated from Artemisia annua, is recommended as the preferred drug to fight malaria. Previous research showed that jasmonate (JA)-mediated promotion of artemisinin accumulation depended on light. However, the mechanism underlying the interaction of light and JA in regulating artemisinin accumulation is still unknown. We identified a WRKY transcription factor, AaWRKY9, using transcriptome analysis. The glandular trichome-specific AaWRKY9 positively regulates artemisinin biosynthesis by directly binding to the promoters of AaDBR2 and AaGSW1. The key regulator in the light pathway AaHY5 activates the expression of AaWRKY9 by binding to its promoter. In addition, AaWRKY9 interacts with AaJAZ9, a repressor in the JA signalling pathway. AaJAZ9 represses the transcriptional activation activity of AaWRKY9 in the absence of methyl jasmonate. Notably, in the presence of methyl jasmonate, the transcriptional activation activity of AaWRKY9 is increased. Taken together, our results reveal a novel molecular mechanism underlying AaWRKY9 contributes to light-mediated and jasmonate-mediated to regulate the biosynthesis of artemisinin in A. annua. Our study provides new insights into integrating the two signalling pathways to regulate terpene biosynthesis in plants.
Collapse
Affiliation(s)
- Xueqing Fu
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pin Liu
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueli Tang
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingya Zhao
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules; Joint International Research Laboratory of Metabolic & Developmental Sciences; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
83
|
Liu Q, Li L, Cheng H, Yao L, Wu J, Huang H, Ning W, Kai G. The basic helix-loop-helix transcription factor TabHLH1 increases chlorogenic acid and luteolin biosynthesis in Taraxacum antungense Kitag. HORTICULTURE RESEARCH 2021; 8:195. [PMID: 34465735 PMCID: PMC8408231 DOI: 10.1038/s41438-021-00630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
Polyphenols are the main active components of the anti-inflammatory compounds in dandelion, and chlorogenic acid (CGA) is one of the primary polyphenols. However, the molecular mechanism underlying the transcriptional regulation of CGA biosynthesis remains unclear. Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT2) is the last rate-limiting enzyme in chlorogenic acid biosynthesis in Taraxacum antungense. Therefore, using the TaHQT2 gene promoter as a probe, a yeast one-hybrid library was performed, and a basic helix-loop-helix (bHLH) transcription factor, TabHLH1, was identified that shared substantial homology with Gynura bicolor DC bHLH1. The TabHLH1 transcript was highly induced by salt stress, and the TabHLH1 protein was localized in the nucleus. CGA and luteolin concentrations in TabHLH1-overexpression transgenic lines were significantly higher than those in the wild type, while CGA and luteolin concentrations in TabHLH1-RNA interference (RNAi) transgenic lines were significantly lower. Quantitative real-time polymerase chain reaction demonstrated that overexpression and RNAi of TabHLH1 in T. antungense significantly affected CGA and luteolin concentrations by upregulating or downregulating CGA and luteolin biosynthesis pathway genes, especially TaHQT2, 4-coumarate-CoA ligase (Ta4CL), chalcone isomerase (TaCHI), and flavonoid-3'-hydroxylase (TaF3'H). Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays indicated that TabHLH1 directly bound to the bHLH-binding motifs of proTaHQT2 and proTa4CL. This study suggests that TabHLH1 participates in the regulatory network of CGA and luteolin biosynthesis in T. antungense and might be useful for metabolic engineering to promote plant polyphenol biosynthesis.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem.Sun Yat-Sen), Nanjing, 210014, China
| | - Li Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haitao Cheng
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lixiang Yao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, PR China
| | - Jie Wu
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110044, PR China
| | - Hui Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Wei Ning
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
84
|
Xie L, Yan T, Li L, Chen M, Hassani D, Li Y, Qin W, Liu H, Chen T, Fu X, Shen Q, Rose JKC, Tang K. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. THE NEW PHYTOLOGIST 2021; 231:2050-2064. [PMID: 34043829 DOI: 10.1111/nph.17514] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
Plant glandular secretory trichomes (GSTs) produce various specialized metabolites. Increasing GST density represents a strategy to enhance the yield of these chemicals; however, the gene regulatory network that controls GST initiation remains unclear. In a previous study of Artemisia annua L., we found that a HD-ZIP IV transcription factor, AaHD1, promotes GST initiation by directly regulating AaGSW2. Here, we identified two AaHD1-interacting transcription factors, namely AaMIXTA-like 2 (AaMYB16) and AaMYB5. Through the generation and characterization of transgenic plants, we found that AaMYB16 is a positive regulator of GST initiation, whereas AaMYB5 has the opposite effect. Notably, neither of them regulates GST formation independently. Rather, they act competitively, by interacting and modulating AaHD1 promoter binding activity. Additionally, the phytohormone jasmonic acid (JA) was shown to be associated with the AaHD1-AaMYB16/AaMYB5 regulatory network through transcriptional regulation via a JASMONATE-ZIM DOMAIN (JAZ) protein repressor. These results bring new insights into the mechanism of GST initiation through regulatory complexes, which appear to have similar functions in a range of vascular plant taxa.
Collapse
Affiliation(s)
- Lihui Xie
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingxiang Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minghui Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Shen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
85
|
Yang C, Marillonnet S, Tissier A. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1102-1118. [PMID: 34143914 DOI: 10.1111/tpj.15371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) type VI glandular trichomes that occur on the surface of leaves, stems, young fruits and flowers produce and store a blend of volatile monoterpenes and sesquiterpenes. These compounds play important roles in the interaction with pathogens and herbivorous insects. Although the function of terpene synthases in the biosynthesis of volatile terpenes in tomato has been comprehensively investigated, the deciphering of their transcriptional regulation is only just emerging. We selected transcription factors that are over-expressed in trichomes based on existing transcriptome data and silenced them individually by virus-induced gene silencing. Of these, SlSCL3, a scarecrow-like (SCL) subfamily transcription factor, led to a significant decrease in volatile terpene content and expression of the corresponding terpene synthase genes when its transcription level was downregulated. Overexpression of SlSCL3 dramatically increased both the volatile terpene content and glandular trichome size, whereas its homozygous mutants showed reduced terpene biosynthesis. However, its heterozygous mutants also showed a significantly elevated volatile terpene content and enlarged glandular trichomes, similar to the overexpression plants. SlSCL3 modulates the expression of terpene biosynthetic pathway genes by transcriptional activation, but neither direct protein-DNA binding nor interaction with known regulators was observed. Moreover, transcript levels of the endogenous copy of SlSCL3 were decreased in the overexpression plants but increased in the heterozygous and homozygous mutants, suggesting feedback repression of its own promoter. Taken together, our results provide new insights into the role of SlSCL3 in the complex regulation of volatile terpene biosynthesis and glandular trichome development in tomato.
Collapse
Affiliation(s)
- Changqing Yang
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266100, China
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| |
Collapse
|
86
|
The Genetic Regulation of Secondary Metabolic Pathways in Response to Salinity and Drought as Abiotic Stresses. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Global development has generated a plethora of unfavorable and adverse environmental factors for the living organisms in the ecosystem. Plants are sessile organisms, and they are crucial to sustain life on earth. Since plants are sessile, they face a great number of environmental challenges related to abiotic stresses, such as temperature fluctuation, drought, salinity, flood and metal contamination. Salinity and drought are considered major abiotic stresses that negatively affect the plants’ growth and production of useful content. However, plants have evolved various molecular mechanisms to increase their tolerance to these environmental stresses. There is a whole complex system of communication (cross-talk) through massive signaling cascades that are activated and modulated in response to salinity and drought. Secondary metabolites are believed to play significant roles in the plant’s response and resistance to salinity and drought stress. Until recently, attempts to unravel the biosynthetic pathways were limited mainly due to the inadequate plant genomics resources. However, recent advancements in generating high-throughput “omics” datasets, computational tools and functional genomics approach integration have aided in the elucidation of biosynthetic pathways of many plant bioactive metabolites. This review gathers comprehensive knowledge of plants’ complex system that is involved in the response and resistance to salinity and water deficit stresses as abiotic stress. Additionally, it offers clues in determining the genes involved in this complex and measures its activity. It covers basic information regarding the signaling molecules involved in salinity and drought resistance and how plant hormones regulate the cross-talking mechanism with emphasis on transcriptional activity. Moreover, it discusses many studies that illustrate the relationship between salinity and drought and secondary metabolite production. Furthermore, several transcriptome analysis research papers of medicinal plants are illustrated. The aim of this review is to be a key for any researcher that is aspiring to study the relationship between salinity and drought stresses and secondary metabolite production at the transcriptome and transcription level.
Collapse
|
87
|
Wani KI, Choudhary S, Zehra A, Naeem M, Weathers P, Aftab T. Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches. PLANTA 2021; 254:29. [PMID: 34263417 PMCID: PMC8279915 DOI: 10.1007/s00425-021-03676-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
This review analyses the most recent scientific research conducted for the purpose of enhancing artemisinin production. It may help to devise better artemisinin enhancement strategies, so that its production becomes cost effective and becomes available to masses. Malaria is a major threat to world population, particularly in South-East Asia and Africa, due to dearth of effective anti-malarial compounds, emergence of quinine resistant malarial strains, and lack of advanced healthcare facilities. Artemisinin, a sesquiterpene lactone obtained from Artemisia annua L., is the most potent drug against malaria and used in the formulation of artemisinin combination therapies (ACTs). Artemisinin is also effective against various types of cancers, many other microbes including viruses, parasites and bacteria. However, this specialty metabolite and its derivatives generally occur in low amounts in the source plant leading to its production scarcity. Considering the importance of this drug, researchers have been working worldwide to develop novel strategies to augment its production both in vivo and in vitro. Due to complex chemical structure, its chemical synthesis is quite expensive, so researchers need to devise synthetic protocols that are economically viable and also work on increasing the in-planta production of artemisinin by using various strategies like use of phytohormones, stress signals, bioinoculants, breeding and transgenic approaches. The focus of this review is to discuss these artemisinin enhancement strategies, understand mechanisms modulating its biosynthesis, and evaluate if roots play any role in artemisinin production. Furthermore, we also have a critical analysis of various assays used for artemisinin measurement. This may help to develop better artemisinin enhancement strategies which lead to decreased price of ACTs and increased profit to farmers.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Sadaf Choudhary
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Andleeb Zehra
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Pamela Weathers
- Department of Biology/Biotechnology, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
88
|
Ma Y, Xu D, Yan X, Wu Z, Kayani SI, Shen Q, Fu X, Xie L, Hao X, Hassani D, Li L, Liu H, Pan Q, Lv Z, Liu P, Sun X, Tang K. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1412-1428. [PMID: 33539631 PMCID: PMC8313134 DOI: 10.1111/pbi.13561] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 05/12/2023]
Abstract
Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual-responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA-induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA-AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA-responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1-AaTCP15/AaORA regulatory module to integrate JA and ABA-mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1-AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.
Collapse
Affiliation(s)
- Ya‐Nan Ma
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dong‐Bei Xu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Institute of Ecological AgricultureSichuan Agricultural UniversityChengduChina
| | - Xin Yan
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhang‐Kuanyu Wu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Sadaf Ilyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xue‐Qing Fu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li‐Hui Xie
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao‐Long Hao
- Laboratory of Medicinal Plant BiotechnologyCollege of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qi‐Fang Pan
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zong‐You Lv
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Pin Liu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao‐Fen Sun
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ke‐Xuan Tang
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
89
|
Wu Z, Li L, Liu H, Yan X, Ma Y, Li Y, Chen T, Wang C, Xie L, Hao X, Kayani SL, Tang K. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110920. [PMID: 34034870 PMCID: PMC8174473 DOI: 10.1016/j.plantsci.2021.110920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 05/21/2023]
Abstract
Artemisinin is a secondary metabolite extracted from Artemisia annua. As an effective antimalarial component certified by WHO, artemisinin has extensive economical values. Numerous studies about transcription factors positively regulating artemisinin biosynthesis have been published while negative regulators are rarely reported. In the present study, we identified AaMYB15 as the first R2R3-MYB that negatively regulates artemisinin biosynthesis in A. annua. Experimental evidences showed that AaMYB15 is a transcription factor within nucleus and predominantly expressed in glandular secretory trichomes (GSTs) in A. annua where artemisinin is synthesized and accumulated. The expression of AaMYB15 was induced by dark and JA treatment. Overexpression of AaMYB15 led to a significant decline in the expression levels of key enzyme genes ADS, CYP, DBR2, and ALDH1 and a significant decrease in the artemisinin contents of transgenic A. annua. AaMYB15 directly bound to the promoter of AaORA, a reported positive regulator of artemisinin biosynthesis in JA signaling pathway, to repress its transcriptional activity, thus downregulating the expression levels of downstream key enzyme genes and negatively regulating the artemisinin biosynthesis. Our study provides candidate gene for improvement of A. annua germplasm and new insights into the artemisinin biosynthesis regulation network mediated by light and JA.
Collapse
Affiliation(s)
- Zhangkuanyu Wu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanan Ma
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Llyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
90
|
Zhou P, Yin M, Dai S, Bao K, Song C, Liu C, Wu Q. Multi-omics analysis of the bioactive constituents biosynthesis of glandular trichome in Perilla frutescens. BMC PLANT BIOLOGY 2021; 21:277. [PMID: 34144672 PMCID: PMC8214284 DOI: 10.1186/s12870-021-03069-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/13/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. RESULTS Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC-MS and GC-MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. CONCLUSIONS The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.
Collapse
Affiliation(s)
- Peina Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengjiao Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shilin Dai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Bao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenglin Song
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chanchan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| |
Collapse
|
91
|
Li Y, Qin W, Fu X, Zhang Y, Hassani D, Kayani SI, Xie L, Liu H, Chen T, Yan X, Peng B, Wu-Zhang K, Wang C, Sun X, Li L, Tang K. Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:189-200. [PMID: 33857913 DOI: 10.1016/j.plaphy.2021.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 05/09/2023]
Abstract
UV-B radiation is a pivotal photomorphogenic signal and positively regulates plant growth and metabolite biosynthesis. In order to elucidate the transcriptional regulation mechanism underlying UV-B-induced artemisinin and flavonoid biosynthesis in Artemisia annua, the transcriptional responses of A. annua L. leaves to UV-B radiation were analyzed using the Illumina transcriptome sequencing. A total of 10705 differentially expressed genes (DEGs) including 533 transcription factors (TFs), were identified. Based on the expression trends of the differentially expressed TFs as well as artemisinin and flavonoid biosynthesis genes, we speculated that TFs belonging to 6 clusters were most likely to be involved in the regulation of artemisinin and/or flavonoid biosynthesis. The regulatory relationship between TFs and artemisinin/flavonoid biosynthetic genes was further studied. Dual-LUC assays results showed that AaMYB6 is a positive regulator of AaLDOX which belongs to flavonoid biosynthesis pathway. In addition, we identified an R2R3 MYB TF, AaMYB4 which potentially mediated both artemisinin and flavonoid biosynthesis pathways by activating the expression of AaADS and AaDBR2 in artemisinin biosynthesis pathway and AaUFGT in flavonoid biosynthesis pathway. Overall, our findings would provide an insight into the elucidation of the parallel transcriptional regulation of artemisinin and flavonoid biosynthesis in A. annua L. under UV-B radiation.
Collapse
Affiliation(s)
- Yongpeng Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuanyu Wu-Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
92
|
Li J, Chu XH, Wang XY, Feng BM, Yu ZX. Aging affects artemisinin synthesis in Artemisia annua. Sci Rep 2021; 11:11297. [PMID: 34050229 PMCID: PMC8163859 DOI: 10.1038/s41598-021-90807-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
Artemisinin (ART) is the most effective component in malaria treatment, however, the extremely low content restricts its clinical application. Therefore, it is urgent to increase the yield of ART. ART gradually accumulates with aging, small RNA (sRNA) and transcriptome analysis were applied on the leaves of 2-week-old (2 w) and 3-month-old (3 m) A. annua respectively. Among all the annotated sRNAs, 125 were upregulated and 128 downregulated in the 3 m sample compared to the 2 w one. Whereas 2183 genes were upregulated and 2156 downregulated. Notably, the level of miR156 and several annotated miRNAs gradually decreased while SPLs increased. In addition, the genes on ART biosynthesis pathway were significantly upregulated including ADS, CYP71AV1, ADH1, DBR2 and ALDH1, and so were the positive transcription factors like AaERF1, AaORA and AaWRKY1 indicating that age influences the ART biosynthesis by activating the expression of the synthesizing genes as well as positive transcription factors. This study contributes to reveal the regulatory effects of age on ART biosynthesis both in sRNA and transcription levels.
Collapse
Affiliation(s)
- Jiao Li
- College of Life Sciences and Biotechnology, Dalian University, 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China
| | - Xiao-Hui Chu
- College of Life Sciences and Biotechnology, Dalian University, 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China
| | - Xiao-Yu Wang
- College of Life Sciences and Biotechnology, Dalian University, 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China
| | - Bao-Min Feng
- College of Life Sciences and Biotechnology, Dalian University, 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China
| | - Zong-Xia Yu
- College of Life Sciences and Biotechnology, Dalian University, 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China.
| |
Collapse
|
93
|
Su X, Liu Y, Han L, Wang Z, Cao M, Wu L, Jiang W, Meng F, Guo X, Yu N, Gui S, Xing S, Peng D. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Sci Rep 2021; 11:9810. [PMID: 33963244 PMCID: PMC8105318 DOI: 10.1038/s41598-021-89294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lu Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
94
|
Zhang Y, Yan H, Li Y, Xiong Y, Niu M, Zhang X, Teixeira da Silva JA, Ma G. Molecular Cloning and Functional Analysis of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase from Santalum album. Genes (Basel) 2021; 12:genes12050626. [PMID: 33922119 PMCID: PMC8143465 DOI: 10.3390/genes12050626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
Sandalwood (Santalum album L.) heartwood-derived essential oil contains a high content of sesquiterpenoids that are economically highly valued and widely used in the fragrance industry. Sesquiterpenoids are biosynthesized via the mevalonate acid and methylerythritol phosphate (MEP) pathways, which are also the sources of precursors for photosynthetic pigments. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a secondary rate-limiting enzyme in the MEP pathway. In this paper, the 1416-bp open reading frame of SaDXR and its 897-bp promoter region, which contains putative conserved cis-elements involved in stress responsiveness (HSE and TC-rich repeats), hormone signaling (abscisic acid, gibberellin and salicylic acid) and light responsiveness, were cloned from 7-year-old S. album trees. A bioinformatics analysis suggested that SaDXR encodes a functional and conserved DXR protein. SaDXR was widely expressed in multiple tissues, including roots, twigs, stem sapwood, leaves, flowers, fruit and stem heartwood, displaying significantly higher levels in tissues with photosynthetic pigments, like twigs, leaves and flowers. SaDXR mRNA expression increased in etiolated seedlings exposed to light, and the content of chlorophylls and carotenoids was enhanced in all 35S::SaDXR transgenic Arabidopsis thaliana lines, consistent with the SaDXR expression level. SaDXR was also stimulated by MeJA and H2O2 in seedling roots. α-Santalol content decreased in response to fosmidomycin, a DXR inhibitor. These results suggest that SaDXR plays an important role in the biosynthesis of photosynthetic pigments, shifting the flux to sandalwood-specific sesquiterpenoids.
Collapse
Affiliation(s)
- Yueya Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Computer Science Department, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
| | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Computer Science Department, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyun Niu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Computer Science Department, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Correspondence:
| |
Collapse
|
95
|
Chen S, Kong Y, Zhang X, Liao Z, He Y, Li L, Liang Z, Sheng Q, Hong G. Structural and functional organization of the MYC transcriptional factors in Camellia sinensis. PLANTA 2021; 253:93. [PMID: 33826012 DOI: 10.1007/s00425-021-03607-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Genome-wide identification, expression analysis of the MYC family in Camellia sinensis, and potential functional characterization of CsMYC2.1 have laid a solid foundation for further research on CsMYC2.1 in jasmonate (JA)-mediated response. Myelocytomatosis (MYC) of basic helix-loop-helix (bHLH) plays a major role in JA-mediated plant growth and developmental processes through specifically binding to the G-box in the promoters of their target genes. In Camellia sinensis, studies on the MYC gene family are limited. Here, we identified 14 C. sinensis MYC (CsMYC) genes, and further analyzed the evolutionary relationship, gene structure, and motif pattern among them. The expression patterns of these CsMYC genes in different tissues suggested their important roles in diverse function in tea plant. Four MYC transcription factors with the highest homology to MYC2 in Arabidopsis were localized in the nucleus. Two of them, named CsMYC2.1 and CsMYC2.2, exhibited transcriptional self-activating activity, and, therefore, could significantly activate the promoter containing G-box motif, whereas CsJAM1.1 and CsJAM1.2 lack the transcriptional self-activating activity, indirectly mediating the JA pathway through interacting with CsMYC2.1 and CsMYC2.2. Furthermore, Yeast Two-Hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays showed that CsMYC2.1 could interact with CsJAZ3/7/8 proteins. Genetically, the complementation of CsMYC2.1 in myc2 mutants conferred the ability to restore the sensitivity to JA signals. The results provide a comprehensive characterization of the 14 CsMYCs in C. sinensis, establishing a solid foundation for further research on CsMYCs in JA-mediated response.
Collapse
Affiliation(s)
- Sangtian Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaze Kong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Zhenfeng Liao
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Zongsuo Liang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China.
| |
Collapse
|
96
|
MYC2 Transcription Factors TwMYC2a and TwMYC2b Negatively Regulate Triptolide Biosynthesis in Tripterygium wilfordii Hairy Roots. PLANTS 2021; 10:plants10040679. [PMID: 33916111 PMCID: PMC8067133 DOI: 10.3390/plants10040679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Triptolide, an important bioactive diterpenoid extracted from the plant Tripterygium wilfordii, exhibits many pharmacological activities. MYC2 transcription factor (TF) plays an important role in the regulation of various secondary metabolites in plants. However, whether MYC2 TF could regulate the biosynthesis of triptolide in T. wilfordii is still unknown. In this study, two homologous MYC2 TF genes, TwMYC2a and TwMYC2b, were isolated from T. wilfordii hairy roots and functionally characterized. The analyses of the phylogenetic tree and subcellular localization showed that they were grouped into the IIIe clade of the bHLH superfamily with other functional MYC2 proteins and localized in the nucleus. Furthermore, yeast one-hybrid and GUS transactivation assays suggested that TwMYC2a and TwMYC2b inhibited the promoter activity of the miltiradiene synthase genes, TwTPS27a and TwTPS27b, by binding to the E-box (CACATG) and T/G-box (CACGTT) motifs in their promoters. Transgenic results revealed that RNA interference of TwMYC2a/b significantly enhanced the triptolide accumulation in hairy roots and liquid medium by upregulating the expression of several key biosynthetic genes, including TwMS (TwTPS27a/b), TwCPS (TwTPS7/9), TwDXR, and TwHMGR1. In summary, our findings show that TwMYC2a and TwMYC2b act as two negative regulators of triptolide biosynthesis in T. wilfordii hairy roots and also provide new insights on metabolic engineering of triptolide in the future.
Collapse
|
97
|
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. THE NEW PHYTOLOGIST 2021; 229:2730-2750. [PMID: 33131086 DOI: 10.1111/nph.17063] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.
Collapse
Affiliation(s)
- Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
98
|
Xie L, Yan T, Li L, Chen M, Ma Y, Hao X, Fu X, Shen Q, Huang Y, Qin W, Liu H, Chen T, Hassani D, Kayani SL, Rose JKC, Tang K. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1691-1701. [PMID: 33165526 DOI: 10.1093/jxb/eraa523] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
Glandular secreting trichomes (GSTs) synthesize and secrete large quantities of secondary metabolites, some of which have well-established commercial value. An example is the anti-malarial compound artemisinin, which is synthesized in the GSTs of Artemisia annua. Accordingly, there is considerable interest in understanding the processes that regulate GST density as a strategy to increase artemisinin production. In this study, we identified a GST-specific WRKY transcription factor from A. annua, AaGSW2, which is positively regulated by the direct binding of the homeodomain proteins AaHD1 and AaHD8 to the L1-box of the AaGSW2 promoter. Overexpression of AaGSW2 in A. annua significantly increased GST density, while AaGSW2 knockdown lines showed impaired GST initiation. Ectopic expression of AaGSW2 homologs from two mint cultivars, Mentha spicata and Mentha haplocalyx, in A. annua also induced GST formation. These results reveal a molecular mechanism involving homeodomain and WRKY proteins that controls glandular trichome initiation, at least part of which is shared by A. annua and mint.
Collapse
Affiliation(s)
- Lihui Xie
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tingxiang Yan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Ma
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Hao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sadaf-Llyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fuan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
99
|
Qu D, Show PL, Miao X. Transcription Factor ChbZIP1 from Alkaliphilic Microalgae Chlorella sp. BLD Enhancing Alkaline Tolerance in Transgenic Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22052387. [PMID: 33673599 PMCID: PMC7957498 DOI: 10.3390/ijms22052387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Saline-alkali soil has become an important environmental problem for crop productivity. One of the most effective approaches is to cultivate new stress-tolerant plants through genetic engineering. Through RNA-seq analysis and RT-PCR validation, a novel bZIP transcription factor ChbZIP1, which is significantly upregulated at alkali conditions, was obtained from alkaliphilic microalgae Chlorella sp. BLD. Overexpression of ChbZIP1 in Saccharomyces cerevisiae and Arabidopsis increased their alkali resistance, indicating ChbZIP1 may play important roles in alkali stress response. Through subcellular localization and transcriptional activation activity analyses, we found that ChbZIP1 is a nuclear-localized bZIP TF with transactivation activity to bind with the motif of G-box 2 (TGACGT). Functional analysis found that genes such as GPX1, DOX1, CAT2, and EMB, which contained G-box 2 and were associated with oxidative stress, were significantly upregulated in Arabidopsis with ChbZIP1 overexpression. The antioxidant ability was also enhanced in transgenic Arabidopsis. These results indicate that ChbZIP1 might mediate plant adaptation to alkali stress through the active oxygen detoxification pathway. Thus, ChbZIP1 may contribute to genetically improving plants’ tolerance to alkali stress.
Collapse
Affiliation(s)
- Dehui Qu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia;
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34207028; Fax: +86-21-34207028
| |
Collapse
|
100
|
Huo Y, Zhang B, Chen L, Zhang J, Zhang X, Zhu C. Isolation and Functional Characterization of the Promoters of Miltiradiene Synthase Genes, TwTPS27a and TwTPS27b, and Interaction Analysis with the Transcription Factor TwTGA1 from Tripterygium wilfordii. PLANTS 2021; 10:plants10020418. [PMID: 33672407 PMCID: PMC7926782 DOI: 10.3390/plants10020418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
Miltiradiene synthase (MS) genes, TwTPS27a and TwTPS27b, are the key diterpene synthase genes in the biosynthesis of triptolide, which is an important medicinally active diterpenoid in Tripterygium wilfordii. However, the mechanism underlying the regulation of key genes TwTPS27a/b in triptolide biosynthesis remains unclear. In this study, the promoters of TwTPS27a (1496 bp) and TwTPS27b (1862 bp) were isolated and analyzed. Some hormone-/stress-responsive elements and transcription factor (TF) binding sites were predicted in both promoters, which might be responsible for the regulation mechanism of TwTPS27a/b. The β-glucuronidase (GUS) activity analysis in promoter deletion assays under normal and methyl jasmonate (MeJA) conditions showed that the sequence of −921 to −391 bp is the potential core region of the TwTPS27b promoter. And the TGACG-motif, a MeJA-responsive element found in this core region, might be responsible for MeJA-mediated stress induction of GUS activity. Moreover, the TGACG-motif is also known as the TGA TF-binding site. Yeast one-hybrid and GUS transactivation assays confirmed the interaction between the TwTPS27a/b promoters and the TwTGA1 TF (a MeJA-inducible TGA TF upregulating triptolide biosynthesis in T. wilfordii), indicating that TwTPS27a/b are two target genes regulated by TwTGA1. In conclusion, our results provide important information for elucidating the regulatory mechanism of MS genes, TwTPS27a and TwTPS27b, as two target genes of TwTGA1, in jasmonic acid (JA)-inducible triptolide biosynthesis.
Collapse
Affiliation(s)
- Yanbo Huo
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Bin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Ling Chen
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Jing Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
| | - Xing Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
- Correspondence: (X.Z.); (C.Z.)
| | - Chuanshu Zhu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
- Correspondence: (X.Z.); (C.Z.)
| |
Collapse
|