51
|
Ribeiro G, Camacho M, Santos O, Pontes C, Torres S, Oliveira-Maia AJ. Association between hedonic hunger and body-mass index versus obesity status. Sci Rep 2018; 8:5857. [PMID: 29643337 PMCID: PMC5895788 DOI: 10.1038/s41598-018-23988-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/23/2018] [Indexed: 01/25/2023] Open
Abstract
Obesity-associated differences in hedonic hunger, while consistently reported, have not been adequately quantified, with most studies failing to demonstrate strong correlations between Body Mass Index (BMI) and hedonic hunger indicators. Here, we quantified and assessed the nature of the relationship between hedonic hunger and BMI, in a cross-sectional study using the Portuguese version of the PFS (P-PFS) to measure hedonic hunger. Data were collected from 1266 participants belonging to non-clinical, clinical (candidates for weight-loss surgery) and population samples. Across samples, significant but weak positive associations were found between P-PFS scores and BMI, in adjusted linear regression models. However, in logistic regression models of data from the clinical and non-clinical samples, the P-PFS Food Available domain score was significantly and robustly associated with belonging to the clinical sample (OR = 1.8, 95%CI: 1.2–2.8; p = 0.008), while in the population sample it was associated to being obese (OR = 2.1, 95%CI: 1.6–2.7; p < 0.001). Thus, hedonic hunger levels are associated with obesity status with the odds of being obese approximately doubling for each unit increase in the P-PFS Food Available score.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal.,Lisbon Academic Medical Centre PhD Program, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marta Camacho
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal.,John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2, 0SP, UK
| | - Osvaldo Santos
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Instituto de Medicina Preventiva e Saúde Pública, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Cristina Pontes
- Psychiatry and Mental Health Clinic, Centro Hospitalar de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Torres
- Faculdade de Psicologia e de Ciências da Educação, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.,Centro de Psicologia da Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal. .,Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira, 126, 1340-019, Lisboa, Portugal. .,NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal. .,Champalimaud Research, Champalimaud Centre for the Unknown, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal.
| |
Collapse
|
52
|
Hankir MK, Seyfried F, Miras AD, Cowley MA. Brain Feeding Circuits after Roux-en-Y Gastric Bypass. Trends Endocrinol Metab 2018; 29:218-237. [PMID: 29475578 DOI: 10.1016/j.tem.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
Metabolic surgical procedures, such as Roux-en-Y gastric bypass (RYGB), uniquely reprogram feeding behavior and body weight in obese subjects. Clinical neuroimaging and animal studies are only now beginning to shed light on some of the underlying central mechanisms. We present here the roles of key brain neurotransmitter/neuromodulator systems in food choice, value, and intake at various stages after RYGB. In doing so, we elaborate on how known signals emanating from the reorganized gut, including peptide hormones and microbiota products, impinge on newly mapped homeostatic and hedonic brain feeding circuits. Continued progress in the rapidly evolving field of metabolic surgery will inform the design of more effective weight-loss compounds.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany; German Research Foundation Collaborative Research Center in Obesity Mechanisms, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Florian Seyfried
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Alexander D Miras
- Department of Investigative Science, Imperial College London Academic Healthcare Centre, London W12 0NN, UK
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
53
|
Predicting the ergogenic response to methylphenidate. Eur J Appl Physiol 2018; 118:777-784. [PMID: 29372315 DOI: 10.1007/s00421-018-3800-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Methylphenidate (MPH) and other stimulants have been shown to enhance physical performance. However, stimulant research has almost exclusively been conducted in young, active persons with a normal BMI, and may not generalize to other groups. The purpose of this study was to determine whether the ergogenic response to MPH could be predicted by individual level characteristics. METHODS We investigated whether weekly minutes of moderate-to-vigorous physical activity (MVPA), age, and BMI could predict the ergogenic response to MPH. In a double-blind, cross-over design 29 subjects (14M, 15F, 29.7 ± 9.68 years, BMI: 26.1 ± 6.82, MVPA: 568.8 ± 705.6 min) ingested MPH or placebo before performing a handgrip task. Percent change in mean force between placebo and MPH conditions was used to evaluate the extent of the ergogenic response. RESULTS Mean force was significantly higher in MPH conditions [6.39% increase, T(25) = 3.09, p = 0.005 118.8 ± 37.96 (± SD) vs. 111.8 ± 34.99 Ns] but variable (coefficient of variation:163%). Using linear regression, we observed that min MVPA (T(25) = -2.15, β = -0.400, p = 0.044) and age [T(25) = -3.29, β = -0.598, p = 0.003] but not BMI [T(25) = 1.67, β = 0.320 p = 0.109] significantly predicted percent change in mean force in MPH conditions. CONCLUSIONS We report that lower levels of physical activity and younger age predict an improved ergogenic response to MPH and that this may be explained by differences in dopaminergic function. This study illustrates that the ergogenic response to MPH is partly dependent on individual differences such as habitual levels of physical activity and age.
Collapse
|
54
|
Smith R, Alkozei A, Killgore WDS, Lane RD. Nested positive feedback loops in the maintenance of major depression: An integration and extension of previous models. Brain Behav Immun 2018; 67:374-397. [PMID: 28943294 DOI: 10.1016/j.bbi.2017.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Several theories of Major Depressive Disorder (MDD) have previously been proposed, focusing largely on either a psychological (i.e., cognitive/affective), biological, or neural/computational level of description. These theories appeal to somewhat distinct bodies of work that have each highlighted separate factors as being of considerable potential importance to the maintenance of MDD. Such factors include a range of cognitive/attentional information-processing biases, a range of structural and functional brain abnormalities, and also dysregulation within the autonomic, endocrine, and immune systems. However, to date there have been limited efforts to integrate these complimentary perspectives into a single multi-level framework. Here we review previous work in each of these MDD research domains and illustrate how they can be synthesized into a more comprehensive model of how a depressive episode is maintained. In particular, we emphasize how plausible (but insufficiently studied) interactions between the various MDD-related factors listed above can lead to a series of nested positive feedback loops, which are each capable of maintaining an individual in a depressive episode. We also describe how these different feedback loops could be active to different degrees in different individual cases, potentially accounting for heterogeneity in both depressive symptoms and treatment response. We conclude by discussing how this integrative model might extend understanding of current treatment mechanisms, and also potentially guide the search for markers to inform treatment selection in individual cases.
Collapse
Affiliation(s)
- Ryan Smith
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA.
| | - Anna Alkozei
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | | | - Richard D Lane
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
55
|
Dunn JP, Abumrad NN, Kessler RM, Patterson BW, Li R, Marks-Shulman P, Tamboli RA. Caloric Restriction-Induced Decreases in Dopamine Receptor Availability are Associated with Leptin Concentration. Obesity (Silver Spring) 2017; 25:1910-1915. [PMID: 28944597 PMCID: PMC5718041 DOI: 10.1002/oby.22023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE It has been previously reported that early after Roux-en-Y-gastric bypass, dopamine (DA) type 2 and 3 receptor (D2/3R) binding potential (BPND ) was decreased from preoperative levels. The current study aimed to determine whether calorie restriction without weight loss modifies D2/3R BPND and whether such changes are explained by neuroendocrine regulation. METHODS Fifteen females with obesity (BMI = 39 ± 6 kg/m2 ) were studied before and after ∼10 days of a very-low-calorie-diet (VLCD). Outcome measures included fasting insulin, leptin, acyl ghrelin, and glucose, and insulin sensitivity and disposition index were estimated using the oral-minimal model (OMM) method. Participants underwent positron emission tomography scanning with the displaceable radioligand [18 F]fallypride to estimate available regional D2/3R levels. Regions of interest included the caudate, putamen, ventral striatum, hypothalamus, and substantia nigra (SN). RESULTS With the VLCD, weight decreased slightly (-3 kg). Insulin, glucose, and leptin decreased significantly, but there was no change in acyl ghrelin or measures from OMM. SN D2/3R BPND decreased significantly, with trends toward decreased levels in the remaining regions. The decrease in leptin concentration strongly predicted the change in D2/3R BPND in all regions (all P ≤ 0.004). CONCLUSIONS In obesity, reductions in regional D2/3R availability after VLCD are suggestive of increased endogenous DA competing with the radioligand. Changes in regional D2/3R availability were associated with decreases in leptin concentrations that occurred before clinically significant weight loss.
Collapse
Affiliation(s)
- Julia P. Dunn
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
- Veterans Administration St. Louis Health Care System, St. Louis, Missouri, U.S.A
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Robert M. Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Rui Li
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Pamela Marks-Shulman
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Robyn A. Tamboli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| |
Collapse
|
56
|
Steenbergen L, Colzato LS. Overweight and Cognitive Performance: High Body Mass Index Is Associated with Impairment in Reactive Control during Task Switching. Front Nutr 2017; 4:51. [PMID: 29164126 PMCID: PMC5671535 DOI: 10.3389/fnut.2017.00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The prevalence of weight problems is increasing worldwide. There is growing evidence that high body mass index (BMI) is associated with frontal lobe dysfunction and deficits in cognitive control. The present study aims to clarify the association between weight status and the degree of impairment in cognitive flexibility, i.e., the ability to efficiently switch from one task to another, by disentangling the preparatory and residual domains of task switching. Twenty-six normal weight (BMI < 25, five males) and twenty-six overweight (BMI ≥ 25, seven males) university students performed a task-switching paradigm that provides a relatively well-established diagnostic measure of proactive vs. reactive control with regard to cognitive flexibility. Compared to individuals with a BMI lower than 25, overweight (i.e., ≥25) was associated with increased switching costs in the reactive switching condition (i.e., when preparation time is short), representing reduced cognitive flexibility in the preparatory domain. In addition, the overweight group reported significantly more depression and binge eating symptoms, although still indicating minimal depression. No between-group differences were found with regard to self-reported autism spectrum symptoms, impulsiveness, state- and trait anxiety, and cognitive reactivity to depression. The present findings are consistent with and extend previous literature showing that elevated BMI in young, otherwise healthy individuals is associated with significantly more switching costs due to inefficiency in the retrieval, implementation, and maintenance of task sets, indicating less efficient cognitive control functioning.
Collapse
Affiliation(s)
- Laura Steenbergen
- Cognitive Psychology Unit, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Lorenza S Colzato
- Cognitive Psychology Unit, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.,Institute of Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
57
|
Kastner L, Kube J, Villringer A, Neumann J. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning. Front Neurosci 2017; 11:598. [PMID: 29163004 PMCID: PMC5670147 DOI: 10.3389/fnins.2017.00598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.
Collapse
Affiliation(s)
- Lucas Kastner
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jana Kube
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty 5-Business, Law and Social Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Arno Villringer
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany.,Mind and Brain Institute, Berlin School of Mind and Brain, Humboldt-University, Berlin, Germany
| | - Jane Neumann
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Medical Engineering and Biotechnology, University of Applied Sciences, Jena, Germany
| |
Collapse
|
58
|
Mathar D, Neumann J, Villringer A, Horstmann A. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism. Cortex 2017; 95:222-237. [DOI: 10.1016/j.cortex.2017.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/14/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
|
59
|
Versteeg RI, Schrantee A, Adriaanse SM, Unmehopa UA, Booij J, Reneman L, Fliers E, Fleur SE, Serlie MJ. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding. FASEB J 2017; 31:4545-4554. [DOI: 10.1096/fj.201601234r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 06/19/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Ruth I. Versteeg
- Department of Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anouk Schrantee
- Department of RadiologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sofie M. Adriaanse
- Department of Nuclear MedicineAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jan Booij
- Department of Nuclear MedicineAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Liesbeth Reneman
- Department of RadiologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Susanne E. Fleur
- Department of Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mireille J. Serlie
- Department of Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
60
|
Horstmann A. It wasn't me; it was my brain – Obesity-associated characteristics of brain circuits governing decision-making. Physiol Behav 2017; 176:125-133. [DOI: 10.1016/j.physbeh.2017.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 02/06/2023]
|
61
|
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry 2017; 7:e1167. [PMID: 28675387 PMCID: PMC5538116 DOI: 10.1038/tp.2017.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.
Collapse
|
62
|
Cameron JD, Chaput JP, Sjödin AM, Goldfield GS. Brain on Fire: Incentive Salience, Hedonic Hot Spots, Dopamine, Obesity, and Other Hunger Games. Annu Rev Nutr 2017; 37:183-205. [PMID: 28564556 DOI: 10.1146/annurev-nutr-071816-064855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.
Collapse
Affiliation(s)
- Jameason D Cameron
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Gary S Goldfield
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| |
Collapse
|
63
|
Mathar D, Wilkinson L, Holl AK, Neumann J, Deserno L, Villringer A, Jahanshahi M, Horstmann A. The role of dopamine in positive and negative prediction error utilization during incidental learning – Insights from Positron Emission Tomography, Parkinson's disease and Huntington's disease. Cortex 2017; 90:149-162. [DOI: 10.1016/j.cortex.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/09/2016] [Accepted: 09/07/2016] [Indexed: 12/28/2022]
|
64
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
65
|
Friend DM, Devarakonda K, O'Neal TJ, Skirzewski M, Papazoglou I, Kaplan AR, Liow JS, Guo J, Rane SG, Rubinstein M, Alvarez VA, Hall KD, Kravitz AV. Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity. Cell Metab 2017; 25:312-321. [PMID: 28041956 PMCID: PMC5299005 DOI: 10.1016/j.cmet.2016.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/22/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023]
Abstract
Obesity is associated with physical inactivity, which exacerbates the health consequences of weight gain. However, the mechanisms that mediate this association are unknown. We hypothesized that deficits in dopamine signaling contribute to physical inactivity in obesity. To investigate this, we quantified multiple aspects of dopamine signaling in lean and obese mice. We found that D2-type receptor (D2R) binding in the striatum, but not D1-type receptor binding or dopamine levels, was reduced in obese mice. Genetically removing D2Rs from striatal medium spiny neurons was sufficient to reduce motor activity in lean mice, whereas restoring Gi signaling in these neurons increased activity in obese mice. Surprisingly, although mice with low D2Rs were less active, they were not more vulnerable to diet-induced weight gain than control mice. We conclude that deficits in striatal D2R signaling contribute to physical inactivity in obesity, but inactivity is more a consequence than a cause of obesity.
Collapse
Affiliation(s)
- Danielle M Friend
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Kavya Devarakonda
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy J O'Neal
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Miguel Skirzewski
- Section of Molecular Neurobiology, Eunice Shriver Kennedy National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Ioannis Papazoglou
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Alanna R Kaplan
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda MD 20892, USA
| | - Jeih-San Liow
- National Institute of Mental Health, National Institutes of Health, Bethesda MD 20892, USA
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sushil G Rane
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, C1428ADN Buenos Aires, Argentina; Department of Physiology, Molecular and Cellular Biology, FCEN, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Veronica A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda MD 20892, USA
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda MD 20892, USA.
| |
Collapse
|
66
|
Dietrich A, de Wit S, Horstmann A. General Habit Propensity Relates to the Sensation Seeking Subdomain of Impulsivity But Not Obesity. Front Behav Neurosci 2016; 10:213. [PMID: 27877117 PMCID: PMC5099246 DOI: 10.3389/fnbeh.2016.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022] Open
Abstract
According to dual-system theory, instrumental learning and performance depend on the balance between goal-directed and habitual action control. Overreliance on habits has been argued to characterize clinical conditions such as drug addiction or obsessive-compulsive disorder as well as obesity and excessive impulsivity. A tendency toward habitual action control in obesity has already been indicated in the food domain. However, impairments might not be restricted to eating behavior. This has been suggested by domain-general obesity-associated disturbances in executive function as well as alterations in corticostriatal circuits underlying the goal-directed and habitual systems. In this study we examined the balance of goal-directed and habitual action control in a sample of normal-weight, overweight, and obese participants (n = 105) using the slips-of-action test in a non-food context. We tested for continuous or group-based associations between body weight status (BMI) and the devaluation sensitivity index (DSI), a parameter representing the balance of the goal-directed and habitual systems in action control. As personality differences in the domain of impulsivity might affect this relationship, we also examined whether the interaction between BMI and self-reported impulsivity, based on the UPPS Impulsive Behavior Scale, was related to the DSI. In addition to that, we tested for direct, i.e., weight status independent, relationships between UPPS subdomains of impulsivity and the DSI. We failed to find evidence for a relationship between weight status and sensitivity to devaluation as indexed by the DSI. However, independent of weight status, we observed lower sensitivity to devaluation in sensation seekers, a subtype of impulsivity. To conclude, behavioral flexibility in the sense of disturbances in the balance between the habitual and goal-directed systems seems to be unaffected by weight status in a non-food context. Consequently, stimuli and behavior might not be generally excessively linked in overweight or obesity. However, according to ceiling effects we cannot rule out subtle effects the paradigm was not able to disentangle. Further, future studies are needed to clarify the role of specific subtypes of obesity (e.g., food addiction). The indicated habit propensity in sensation seekers may account for previous reports of weak avoidance behavior and risky decision making.
Collapse
Affiliation(s)
- Anja Dietrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Sanne de Wit
- Department of Clinical Psychology, University of Amsterdam Amsterdam, Netherlands
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Collaborative Research Center A052A5, Leipzig University Medical CenterLeipzig, Germany
| |
Collapse
|
67
|
Kravitz AV, O'Neal TJ, Friend DM. Do Dopaminergic Impairments Underlie Physical Inactivity in People with Obesity? Front Hum Neurosci 2016; 10:514. [PMID: 27790107 PMCID: PMC5063846 DOI: 10.3389/fnhum.2016.00514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/28/2016] [Indexed: 01/15/2023] Open
Abstract
Obesity is associated with physical inactivity, which exacerbates the negative health consequences of obesity. Despite a wide consensus that people with obesity should exercise more, there are few effective methods for increasing physical activity in people with obesity. This lack is reflected in our limited understanding of the cellular and molecular causes of physical inactivity in obesity. We hypothesize that impairments in dopamine signaling contribute to physical inactivity in people with obesity, as in classic movement disorders such as Parkinson's disease. Here, we review two lines of evidence supporting this hypothesis: (1) chronic exposure to obesogenic diets has been linked to impairments in dopamine synthesis, release, and receptor function, particularly in the striatum, and (2) striatal dopamine is necessary for the proper control of movement. Identifying the biological determinants of physical inactivity may lead to more effective strategies for increasing physical activity in people with obesity, as well as improve our understanding of why it is difficult for people with obesity to alter their levels of physical activity.
Collapse
Affiliation(s)
- Alexxai V Kravitz
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney DiseasesBethesda, MD, USA; National Institutes of Health, National Institute on Drug AbuseBaltimore, MD, USA
| | - Timothy J O'Neal
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Danielle M Friend
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| |
Collapse
|
68
|
Verdejo-Román J, Vilar-López R, Navas JF, Soriano-Mas C, Verdejo-García A. Brain reward system's alterations in response to food and monetary stimuli in overweight and obese individuals. Hum Brain Mapp 2016; 38:666-677. [PMID: 27659185 DOI: 10.1002/hbm.23407] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 02/01/2023] Open
Abstract
The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI < 25). Participants underwent a functional magnetic resonance imaging (fMRI) session while performing two tasks that involve the processing of food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food-evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U-shape association between BMI and monetary-evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food-evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary-evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666-677, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan Verdejo-Román
- Institute of Neuroscience F. Olóriz & Mind, Brain, and Behavior Research Center-CIMCYC, Universidad de Granada, Granada, Spain
| | - Raquel Vilar-López
- Institute of Neuroscience F. Olóriz & Mind, Brain, and Behavior Research Center-CIMCYC, Universidad de Granada, Granada, Spain.,Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain
| | - Juan F Navas
- Institute of Neuroscience F. Olóriz & Mind, Brain, and Behavior Research Center-CIMCYC, Universidad de Granada, Granada, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,CIBERSAM, Carlos III Health Institute, Madrid, Spain.,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Verdejo-García
- School of Psychological Sciences & Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| |
Collapse
|
69
|
Mole TB, Mak E, Chien Y, Voon V. Dissociated Accumbens and Hippocampal Structural Abnormalities across Obesity and Alcohol Dependence. Int J Neuropsychopharmacol 2016; 19:pyw039. [PMID: 27207916 PMCID: PMC5043646 DOI: 10.1093/ijnp/pyw039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Processing of food and drug rewards involves specific neurocircuitry, and emerging evidence implicates subcortical abnormalities, particularly the nucleus accumbens and hippocampus. We specifically hypothesized that these 2 established regions in addiction neurocircuitry are associated with distinctive in vivo structural abnormalities in obesity and alcohol dependence. METHODS To specifically investigate anatomically discrete volumetric changes associated with overconsumption of different rewards, we acquired T1 MRI data from 118 subjects in 3 groups comprising obesity (n=42), alcohol dependence (n=32), and healthy volunteer controls (n=44). To exploit novel methods of automated hippocampal subfield segmentation, we used Freesurfer software to generate volumetric data in subject groups for the hippocampal subiculum and its major striatal efferent target, the nucleus accumbens. Hypothesis-led, selective group difference comparisons were analyzed. RESULTS We found markedly greater accumbens volumes (P=.002) and relatively preserved hippocampal subfield volumes in obesity. Conversely, in alcohol dependence, we found preserved accumbens volumes but atrophy of specific ventral hippocampal subfields, the subiculum and presubiculum. Smaller global subcortical gray-matter volume was found in the alcohol dependence group only. CONCLUSIONS Reward neurocircuitry including the accumbens and ventral hippocampus may show key structural abnormalities in disorders involving processing of both food and drug rewards, although the foci of disruption may vary as a function of reward modality. Structural differences may subserve altered reward and motivational processes in obesity and alcohol dependence and represent a potential biomarker for therapeutic targeting in key public health disorders.
Collapse
Affiliation(s)
- Tom B Mole
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Dr Mole, Mr Mak, Ms Chien, and Dr Voon); Behavioural and Clinical Neurosciences Institute, University of Cambridge, UK (Dr Voon).
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Dr Mole, Mr Mak, Ms Chien, and Dr Voon); Behavioural and Clinical Neurosciences Institute, University of Cambridge, UK (Dr Voon)
| | - Yee Chien
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Dr Mole, Mr Mak, Ms Chien, and Dr Voon); Behavioural and Clinical Neurosciences Institute, University of Cambridge, UK (Dr Voon)
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Dr Mole, Mr Mak, Ms Chien, and Dr Voon); Behavioural and Clinical Neurosciences Institute, University of Cambridge, UK (Dr Voon)
| |
Collapse
|
70
|
Kroemer NB, Burrasch C, Hellrung L. To work or not to work: Neural representation of cost and benefit of instrumental action. PROGRESS IN BRAIN RESEARCH 2016; 229:125-157. [PMID: 27926436 DOI: 10.1016/bs.pbr.2016.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By definition, instrumental actions are performed in order to obtain certain goals. Nevertheless, the attainment of goals typically implies obstacles, and response vigor is known to reflect an integration of subjective benefit and cost. Whereas several brain regions have been associated with cost/benefit ratio decision-making, trial-by-trial fluctuations in motivation are not well understood. We review recent evidence supporting the motivational implications of signal fluctuations in the mesocorticolimbic system. As an extension of "set-point" theories of instrumental action, we propose that response vigor is determined by a rapid integration of brain signals that reflect value and cost on a trial-by-trial basis giving rise to an online estimate of utility. Critically, we posit that fluctuations in key nodes of the network can predict deviations in response vigor and that variability in instrumental behavior can be accounted for by models devised from optimal control theory, which incorporate the effortful control of noise. Notwithstanding, the post hoc analysis of signaling dynamics has caveats that can effectively be addressed in future research with the help of two novel fMRI imaging techniques. First, adaptive fMRI paradigms can be used to establish a time-order relationship, which is a prerequisite for causality, by using observed signal fluctuations as triggers for stimulus presentation. Second, real-time fMRI neurofeedback can be employed to induce predefined brain states that may facilitate benefit or cost aspects of instrumental actions. Ultimately, understanding temporal dynamics in brain networks subserving response vigor holds the promise for targeted interventions that could help to readjust the motivational balance of behavior.
Collapse
Affiliation(s)
- N B Kroemer
- Technische Universität Dresden, Dresden, Germany.
| | - C Burrasch
- Technische Universität Dresden, Dresden, Germany; University of Lübeck, Lübeck, Germany
| | - L Hellrung
- Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
71
|
Schlögl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol 2016; 4:695-705. [PMID: 26838265 DOI: 10.1016/s2213-8587(15)00475-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Recently, exciting progress has been made in understanding the role of the CNS in controlling eating behaviour and in the development of overeating. Regions and networks of the human brain involved in eating behaviour and appetite control have been identified with neuroimaging techniques such as functional MRI, PET, electroencephalography, and magnetoencephalography. Hormones that regulate our drive to eat (eg, leptin, insulin, and glucagon-like peptide-1) can affect brain function. Defects in central hunger signalling are present in many pathologies. On the basis of an understanding of brain mechanisms that lead to overeating, powerful neuroimaging protocols could be a future clinical approach to allow individually tailored treatment options for patients with obesity. The aim of our Review is to provide an overview of neuroimaging approaches for obesity (ie, neuroimaging study design, questions which can be answered by neuroimaging, and limitations of neuroimaging techniques), examine current models of central nervous processes regulating eating behaviour, summarise and review important neuroimaging studies investigating therapeutic approaches to treat obesity or to control eating behaviour, and to provide a perspective on how neuroimaging might lead to new therapeutic approaches to obesity.
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany; IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Annette Horstmann
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany; IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
72
|
van der Zwaal EM, de Weijer BA, van de Giessen EM, Janssen I, Berends FJ, van de Laar A, Ackermans MT, Fliers E, la Fleur SE, Booij J, Serlie MJ. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol 2016; 26:1190-200. [PMID: 27184782 DOI: 10.1016/j.euroneuro.2016.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
In several studies reduced striatal dopamine D2/3 receptor (D2/3R) availability was reported in obese subjects compared to lean controls. Whether this is a reversible phenomenon remained uncertain. We previously determined the short-term effect of Roux-en-Y gastric bypass surgery (RYGB) on striatal D2/3R availability (using [(123)I]IBZM SPECT) in 20 morbidly obese women. Striatal D2/3R availability was lower compared to controls at baseline, and remained unaltered after 6 weeks, despite significant weight loss. To determine whether long-term bariatric surgery-induced weight loss normalizes striatal D2/3R binding, we repeated striatal D2/3R binding measurements at least 2 years after RYGB in 14 subjects of the original cohort. In addition, we assessed long-term changes in body composition, eating behavior and fasting plasma levels of leptin, ghrelin, insulin and glucose. Mean body mass index declined from 46±7kg/m(2) to 32±6kg/m(2), which was accompanied by a significant increase in striatal D2/3R availability (p=0.031). Striatal D2/3R availability remained significantly reduced compared to the age-matched controls (BMI 22±2kg/m(2); p=0.01). Changes in striatal D2/3R availability did not correlate with changes in body weight/fat, insulin sensitivity, ghrelin or leptin levels. Scores on eating behavior questionnaires improved and changes in the General Food Craving Questionnaire-State showed a borderline significant correlation with changes in striatal D2/3R availability. These findings show that striatal D2/3R availability increases after long-term bariatric-surgery induced weight loss, suggesting that reduced D2/3R availability in obesity is a reversible phenomenon.
Collapse
Affiliation(s)
| | - Barbara A de Weijer
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Ignace Janssen
- Department of Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Mariette T Ackermans
- Department of Clinical Chemistry, laboratory of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
73
|
Hankir MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther-Conrad W, Bronisch F, Steinhoff K, Luthardt J, Klöting N, Hesse S, Seibyl JP, Sabri O, Heiker JT, Blüher M, Pfeifer A, Brust P, Fenske WK. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med 2016; 8:796-812. [PMID: 27247380 PMCID: PMC4931292 DOI: 10.15252/emmm.201506085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterase type 10A (PDE10A) is highly enriched in striatum and is under evaluation as a drug target for several psychiatric/neurodegenerative diseases. Preclinical studies implicate PDE10A in the regulation of energy homeostasis, but the mechanisms remain unclear. By utilizing small-animal PET/MRI and the novel radioligand [(18)F]-AQ28A, we found marked levels of PDE10A in interscapular brown adipose tissue (BAT) of mice. Pharmacological inactivation of PDE10A with the highly selective inhibitor MP-10 recruited BAT and potentiated thermogenesis in vivo In diet-induced obese mice, chronic administration of MP-10 caused weight loss associated with increased energy expenditure, browning of white adipose tissue, and improved insulin sensitivity. Analysis of human PET data further revealed marked levels of PDE10A in the supraclavicular region where brown/beige adipocytes are clustered in adults. Finally, the inhibition of PDE10A with MP-10 stimulated thermogenic gene expression in human brown adipocytes and induced browning of human white adipocytes. Collectively, our findings highlight a novel thermoregulatory role for PDE10A in mouse and human adipocytes and promote PDE10A inhibitors as promising candidates for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Mathias Kranz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital University of Bonn, Bonn, Germany
| | - Juliane Weiner
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Sally Wagner
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Felix Bronisch
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Swen Hesse
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | | | - Osama Sabri
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - John T Heiker
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital University of Bonn, Bonn, Germany
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| |
Collapse
|
74
|
Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiol Behav 2016; 162:37-45. [PMID: 27085908 DOI: 10.1016/j.physbeh.2016.04.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward.
Collapse
|
75
|
Burke MV, Small DM. Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior. Curr Opin Behav Sci 2016; 9:97-105. [PMID: 29619405 DOI: 10.1016/j.cobeha.2016.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence from human and animal studies suggest that consumption of palatable foods rich in fat and/or carbohydrates may produce deleterious influences on brain function independently of body weight or metabolic disease. Here we consider two mechanisms by which diet can impact striatal circuits to amplify food cue reactivity and impair inhibitory control. First, we review findings demonstrating that the energetic properties of foods regulate nucleus accumbens food cue reactivity, a demonstrated predictor of weight gain susceptibility, which is then sensitized by chronic consumption of an energy dense diet. Second, we consider evidence for diet-induced adaptations in dorsal striatal dopamine signaling that is associated with impaired inhibitory control and negative outcome learning.
Collapse
Affiliation(s)
- Mary V Burke
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, U.S.,John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, U.S.,Modern Diet and Physiology Research Center, 290 Congress Avenue, New Haven, CT, U.S
| | - Dana M Small
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, U.S.,John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, U.S.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, U.S.,Department of Psychology, Yale University, New Haven, CT, U.S.,Modern Diet and Physiology Research Center, 290 Congress Avenue, New Haven, CT, U.S
| |
Collapse
|
76
|
Dietrich A, Hollmann M, Mathar D, Villringer A, Horstmann A. Brain regulation of food craving: relationships with weight status and eating behavior. Int J Obes (Lond) 2016; 40:982-9. [PMID: 26883294 DOI: 10.1038/ijo.2016.28] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Food craving is a driving force for overeating and obesity. However, the relationship between brain mechanisms involved in its regulation and weight status is still an open issue. Gaps in the studied body mass index (BMI) distributions and focusing on linear analyses might have contributed to this lack of knowledge. Here, we investigated brain mechanisms of craving regulation using functional magnetic resonance imaging in a balanced sample including normal-weight, overweight and obese participants. We investigated associations between characteristics of obesity, eating behavior and regulatory brain function focusing on nonlinear relationships. SUBJECTS/METHODS Forty-three hungry female volunteers (BMI: 19.4-38.8 kg m(-2), mean: 27.5±5.3 s.d.) were presented with visual food stimuli individually pre-rated according to tastiness and healthiness. The participants were instructed to either admit to the upcoming craving or regulate it. We analyzed the relationships between regulatory brain activity as well as functional connectivity and BMI or eating behavior (Three-Factor Eating Questionnaire, scales: Cognitive Restraint, Disinhibition). RESULTS During regulation, BMI correlated with brain activity in the left putamen, amygdala and insula in an inverted U-shaped manner. Functional connectivity between the putamen and the dorsolateral prefrontal cortex (dlPFC) correlated positively with BMI, whereas that of amygdala with pallidum and lingual gyrus was nonlinearly (U-shaped) associated with BMI. Disinhibition correlated negatively with the strength of functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex as well as caudate. CONCLUSIONS This study is the first to reveal quadratic relationships of food-related brain processes and BMI. Reported nonlinear associations indicate inverse relationships between regulation-related motivational processing in the range of normal weight/overweight compared with the obese range. Connectivity analyses suggest that the need for top-down (dlPFC) adjustment of striatal value representations increases with BMI, whereas the interplay of self-monitoring (dmPFC) or eating-related strategic action planning (caudate) and salience processing (amygdala) might be hampered with high Disinhibition.
Collapse
Affiliation(s)
- A Dietrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Hollmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - D Mathar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany.,Mind and Brain Institute, Berlin School of Mind and Brain, Humboldt-University and Charité, Berlin, Germany.,Leipzig University Medical Center, SFB 1052A1, Leipzig, Germany
| | - A Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Leipzig University Medical Center, SFB 1052A5, Leipzig, Germany
| |
Collapse
|
77
|
Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev 2016; 63:223-38. [PMID: 26850211 DOI: 10.1016/j.neubiorev.2016.01.013] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 02/07/2023]
Abstract
Relatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms.
Collapse
Affiliation(s)
- Robert M Kessler
- Department of Radiology, University of Alabama at Birmingham School of Medicine, 619 19th St. South, Birmingham, AL 35249, United States.
| | - Peter H Hutson
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Barry K Herman
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Marc N Potenza
- Department of Psychiatry, Department of Neurobiology, Child Study Center, CASAColumbia and Connecticut Mental Health Center, Yale University School of Medicine, 34 Park St., New Haven, CT 06519, United States.
| |
Collapse
|
78
|
Mathar D, Horstmann A, Pleger B, Villringer A, Neumann J. Is it Worth the Effort? Novel Insights into Obesity-Associated Alterations in Cost-Benefit Decision-Making. Front Behav Neurosci 2016; 9:360. [PMID: 26793079 PMCID: PMC4709417 DOI: 10.3389/fnbeh.2015.00360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
Cost-benefit decision-making entails the process of evaluating potential actions according to the trade-off between the expected reward (benefit) and the anticipated effort (costs). Recent research revealed that dopaminergic transmission within the fronto-striatal circuitry strongly modulates cost-benefit decision-making. Alterations within the dopaminergic fronto-striatal system have been associated with obesity, but little is known about cost-benefit decision-making differences in obese compared with lean individuals. With a newly developed experimental task we investigate obesity-associated alterations in cost-benefit decision-making, utilizing physical effort by handgrip-force exertion and both food and non-food rewards. We relate our behavioral findings to alterations in local gray matter volume assessed by structural MRI. Obese compared with lean subjects were less willing to engage in physical effort in particular for high-caloric sweet snack food. Further, self-reported body dissatisfaction negatively correlated with the willingness to invest effort for sweet snacks in obese men. On a structural level, obesity was associated with reductions in gray matter volume in bilateral prefrontal cortex. Nucleus accumbens volume positively correlated with task induced implicit food craving. Our results challenge the common notion that obese individuals are willing to work harder to obtain high-caloric food and emphasize the need for further exploration of the underlying neural mechanisms regarding cost-benefit decision-making differences in obesity.
Collapse
Affiliation(s)
- David Mathar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany
| | - Burkhard Pleger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Clinic of Cognitive Neurology, University Hospital LeipzigLeipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Clinic of Cognitive Neurology, University Hospital LeipzigLeipzig, Germany; Berlin School of Mind and Brain, Mind and Brain Institute, Humboldt-UniversityBerlin, Germany
| | - Jane Neumann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany
| |
Collapse
|
79
|
Simmank J, Murawski C, Bode S, Horstmann A. Incidental rewarding cues influence economic decisions in people with obesity. Front Behav Neurosci 2015; 9:278. [PMID: 26528158 PMCID: PMC4606016 DOI: 10.3389/fnbeh.2015.00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
Recent research suggests that obesity is linked to prominent alterations in learning and decision-making. This general difference may also underlie the preference for immediately consumable, highly palatable but unhealthy and high-calorie foods. Such poor food-related inter-temporal decision-making can explain weight gain; however, it is not yet clear whether this deficit can be generalized to other domains of inter-temporal decision-making, for example financial decisions. Further, little is known about the stability of decision-making behavior in obesity, especially in the presence of rewarding cues. To answer these questions, obese and lean participants (n = 52) completed two sessions of a novel priming paradigm including a computerized monetary delay discounting task. In the first session, general differences between groups in financial delay discounting were measured. In the second session, we tested the general stability of discount rates. Additionally, participants were primed by affective visual cues of different contextual categories before making financial decisions. We found that the obese group showed stronger discounting of future monetary rewards than the lean group, but groups did not differ in their general stability between sessions nor in their sensitivity toward changes in reward magnitude. In the obese group, a fast decrease of subjective value over time was directly related to a higher tendency for opportunistic eating. Obese in contrast to lean people were primed by the affective cues, showing a sex-specific pattern of priming direction. Our findings demonstrate that environments rich of cues, aiming at inducing unhealthy consumer decisions, can be highly detrimental for obese people. It also underscores that obesity is not merely a medical condition but has a strong cognitive component, meaning that current dietary and medical treatment strategies may fall too short.
Collapse
Affiliation(s)
- Jakob Simmank
- Junior Research Group 'Decision-making in obesity', IFB Adiposity Diseases, Leipzig University Medical Center Leipzig, Germany ; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Carsten Murawski
- Department of Finance, The University of Melbourne Melbourne, Victoria, Australia
| | - Stefan Bode
- Decision Neuroscience Laboratory, Melbourne School of Psychological Sciences, The University of Melbourne Victoria, Australia
| | - Annette Horstmann
- Junior Research Group 'Decision-making in obesity', IFB Adiposity Diseases, Leipzig University Medical Center Leipzig, Germany ; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Collaborative Research Centre, Leipzig University Medical Center Leipzig, Germany
| |
Collapse
|