51
|
Rodrigues O, Shan L. Stomata in a state of emergency: H 2O 2 is the target locked. TRENDS IN PLANT SCIENCE 2022; 27:274-286. [PMID: 34756808 DOI: 10.1016/j.tplants.2021.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Stomatal movements are essential for plants to regulate photosynthesis rate, water status, and immunity. Upon stress stimulation, the production of hydrogen peroxide (H2O2) in the apoplasts and its accumulation within the guard cells are among key determinatives for stomatal closure. The regulatory mechanisms of H2O2 production and transport under plant-pathogen interaction and drought stress response in stomata are important fields of research. Specifically, the regulation of NADPH oxidases and aquaporins appears to be crucial in H2O2-controlled stomatal closure. In this review, we summarize how the calcium-dependent and calcium-independent mechanisms activate RESPIRATORY BURST OXIDASE HOMOLOG (RBOH)D/F NADPH oxidases and the aquaporin PIP2;1 to induce stomatal closure, and highlight how the H2O2 production is targeted by pathogen toxins and effectors to counteract plant immunity.
Collapse
Affiliation(s)
- Olivier Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université Fédérale Toulouse Midi-Pyrénées, INP-PURPAN, F-31076 Toulouse, France.
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
52
|
Wang Z, Zhang Y, Hu H, Chen L, Zhang H, Chen R. CabHLH79 Acts Upstream of CaNAC035 to Regulate Cold Stress in Pepper. Int J Mol Sci 2022; 23:ijms23052537. [PMID: 35269676 PMCID: PMC8910607 DOI: 10.3390/ijms23052537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Cold stress is one of the main restricting factors affecting plant growth and agricultural production. Complex cold signaling pathways induce the expression of hundreds of cold-sensitive genes. The NAC transcription factor CaNAC035 has previously been reported to significantly influence the response of pepper to cold stress. Here, using Yeast one-hybrid (Y1H) library screened to search for other relevant molecular factors, we identified that CabHLH79 directly binds to the CaNAC035 promoter. Different basic helix–loop–helix (bHLH) transcription factors (TFs) in plants significantly respond to multiple plant stresses, but the mechanism of bHLHs in the cold tolerance of pepper is still unclear. This study investigated the functional characterization of CabHLH79 in the regulation of cold resistance in pepper. Down-regulation of CabHLH79 in pepper by virus-induced gene silencing (VIGS) increased its sensitivity to low temperature, whereas overexpression of CabHLH79 in pepper or Arabidopsis enhanced cold resistance. Compared with control plants, VIGS mediated of CabHLH79 had lower enzyme activity and related gene expression levels, accompanied by higher reactive oxygen species (ROS) accumulation, relative electrolyte leakage (REL), and malondialdehyde accumulation (MDA) contents. Transient overexpression of CabHLH79 pepper positively regulated cold stress response genes and ROS genes, which reduced REL and MDA contents. Similarly, ectopic expression of CabHLH79 in Arabidopsis showed less ROS accumulation, and higher enzymes activities and expression levels. These results indicated that CabHLH79 enhanced cold tolerance by enhancing the expression of ROS-related and other cold stress tolerance-related genes. Taken together, our results showed a multifaceted module of bHLH79-NAC035 in the cold stress of pepper.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Yumeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huifang Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence: ; Tel./Fax: +86-29-8708-2613
| |
Collapse
|
53
|
Liu X, Wang X, Liu P, Bao X, Hou X, Yang M, Zhen W. Rehydration Compensation of Winter Wheat Is Mediated by Hormone Metabolism and De-Peroxidative Activities Under Field Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:823846. [PMID: 35283926 PMCID: PMC8908233 DOI: 10.3389/fpls.2022.823846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Water deficit and rehydration frequently occur during wheat cultivation. Previous investigations focused on the water deficit and many drought-responsive genes have been identified in winter wheat. However, the hormone-related metabolic responses and de-peroxidative activities associated with rehydration are largely unknown. In this study, leaves of two winter wheat cultivars, "Hengguan35" (HG, drought-tolerant cultivar) and "Shinong086" (SN, drought-sensitive cultivar), were used to investigate water deficit and the post-rehydration process. Rehydration significantly promoted wheat growth and postponed spike development. Quantifications of antioxidant enzymes, osmotic stress-related substances, and phytohormones revealed that rehydration alleviated the peroxidation and osmotic stress caused by water deficit in both cultivars. The wheat cultivar HG showed a better rehydration-compensation phenotype than SN. Phytohormones, including abscisic acid, gibberellin (GA), jasmonic acid (JA), and salicylic acid (SA), were detected using high-performance liquid chromatography and shown to be responsible for the rehydration process. A transcriptome analysis showed that differentially expressed genes related to rehydration were enriched in hormone metabolism- and de-peroxidative stress-related pathways. Suppression of genes associated with abscisic acid signaling transduction were much stronger in HG than in SN upon rehydration treatment. HG also kept a more balanced expression of genes involved in reactive oxygen species pathway than SN. In conclusion, we clarified the hormonal changes and transcriptional profiles of drought-resistant and -sensitive winter wheat cultivars in response to drought and rehydration, and we provided insights into the molecular processes involved in rehydration compensation.
Collapse
Affiliation(s)
- Xuejing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaodong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyuan Bao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
54
|
Hong Y, Wang Z, Li M, Su Y, Wang T. First Multi-Organ Full-Length Transcriptome of Tree Fern Alsophila spinulosa Highlights the Stress-Resistant and Light-Adapted Genes. Front Genet 2022; 12:784546. [PMID: 35186007 PMCID: PMC8854977 DOI: 10.3389/fgene.2021.784546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alsophila spinulosa, a relict tree fern, is a valuable plant for investigating environmental adaptations. Its genetic resources, however, are scarce. We used the PacBio and Illumina platforms to sequence the polyadenylated RNA of A. spinulosa root, rachis, and pinna, yielding 125,758, 89,107, and 89,332 unigenes, respectively. Combining the unigenes from three organs yielded a non-redundant reference transcriptome with 278,357 unigenes and N50 of 4141 bp, which were further reconstructed into 38,470 UniTransModels. According to functional annotation, pentatricopeptide repeat genes and retrotransposon-encoded polyprotein genes are the most abundant unigenes. Clean reads mapping to the full-length transcriptome is used to assess the expression of unigenes. The stress-induced ASR genes are highly expressed in all three organs, which is validated by qRT-PCR. The organ-specific upregulated genes are enriched for pathways involved in stress response, secondary metabolites, and photosynthesis. Genes for five types of photoreceptors, CRY signaling pathway, ABA biosynthesis and transduction pathway, and stomatal movement-related ion channel/transporter are profiled using the high-quality unigenes. The gene expression pattern coincides with the previously identified stomatal characteristics of fern. This study is the first multi-organ full-length transcriptome report of a tree fern species, the abundant genetic resources and comprehensive analysis of A. spinulosa, which provides the groundwork for future tree fern research.
Collapse
Affiliation(s)
- Yongfeng Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- *Correspondence: Yingjuan Su, ; Ting Wang,
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Yingjuan Su, ; Ting Wang,
| |
Collapse
|
55
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
56
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
57
|
Choudhary P, Pramitha L, Rana S, Verma S, Aggarwal PR, Muthamilarasan M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. PHYSIOLOGIA PLANTARUM 2021; 173:1587-1596. [PMID: 34537966 DOI: 10.1111/ppl.13558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major threats that pose challenges to global cereal productivity and food security. Cereals have evolved sophisticated mechanisms to circumvent stress at morpho-physiological, biochemical, and molecular levels. Salt stress cues are perceived by the roots, which trigger the underlying signaling pathways that involve phytohormones. Each phytohormone triggers a specific signaling pathway integrated in a complex manner to produce antagonistic, synergistic, and additive responses. Phytohormones induce salt-responsive signaling pathways to modulate various physiological and anatomical mechanisms, including cell wall repair, apoplastic pH regulation, ion homeostasis, root hair formation, chlorophyll content, and leaf morphology. Exogenous applications of phytohormones moderate the adverse effects of salinity and improve growth. Understanding the complex hormonal crosstalk in cereals under salt stress will advance the knowledge about cooperation or antagonistic mechanisms among hormones and their role in developing salt-tolerant cereals to enhance the productivity of saline agricultural land. In this context, the present review focuses on the mechanisms of hormonal crosstalk that mediate the salt stress response and adaptation in graminaceous crops.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
58
|
Zhang Q, Huang J, Ke W, Cai M, Chen G, Peng C. Responses of Sphagneticola trilobata, Sphagneticola calendulacea and Their Hybrid to Drought Stress. Int J Mol Sci 2021; 22:ijms222011288. [PMID: 34681947 PMCID: PMC8538449 DOI: 10.3390/ijms222011288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022] Open
Abstract
Sphagneticola trilobata is an invasive plant in South China. A hybrid between S. trilobata and Sphagneticola calendulacea (a native related species) has also been found in South China. The drought resistance of S. calendulacea, S. trilobata and their hybrid was studied in this paper. Under drought stress, the leaves of S. trilobata synthesized more abscisic acid (ABA) than those of the other species to reduce stomatal opening and water loss. The activities of antioxidant enzymes were the highest in S. trilobata and the lowest in S. calendulacea. The leaves of S. calendulacea suffered the most serious damage, and their maximum photochemical efficiency was the lowest. RNA-sequencing ware used to analyze the expression levels of genes in ABA, antioxidant enzyme, sugar and proline synthesis and photosynthesis pathways. Further real-time PCR detection verified the RNA-sequence results, and the results were in accordance with the physiological data. The results showed that S. trilobata was the most drought tolerant, and the drought tolerance of the hybrid did not show heterosis but was higher than S. calendulacea. Therefore, compared with S. trilobata and the hybrid, the population number and distribution of S. calendulacea may be less in arid areas.
Collapse
Affiliation(s)
- Qilei Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (J.H.); (W.K.); (M.C.); (G.C.)
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jundong Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (J.H.); (W.K.); (M.C.); (G.C.)
| | - Weiqian Ke
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (J.H.); (W.K.); (M.C.); (G.C.)
| | - Minling Cai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (J.H.); (W.K.); (M.C.); (G.C.)
| | - Guangxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (J.H.); (W.K.); (M.C.); (G.C.)
| | - Changlian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Q.Z.); (J.H.); (W.K.); (M.C.); (G.C.)
- Correspondence: ; Tel.: +86-138-2848-2295
| |
Collapse
|
59
|
Li T, Liu JX, Deng YJ, Xu ZS, Xiong AS. Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:475. [PMID: 34663216 PMCID: PMC8522057 DOI: 10.1186/s12870-021-03236-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Carrot (Daucus carota L.), an important root vegetable, is very popular among consumers as its taproot is rich in various nutrients. Abiotic stresses, such as drought, salt, and low temperature, are the main factors that restrict the growth and development of carrots. Non-heme carotene hydroxylase (BCH) is a key regulatory enzyme in the β-branch of the carotenoid biosynthesis pathway, upstream of the abscisic acid (ABA) synthesis pathway. RESULTS In this study, we characterized a carrot BCH encoding gene, DcBCH1. The expression of DcBCH1 was induced by drought treatment. The overexpression of DcBCH1 in Arabidopsis thaliana resulted in enhanced tolerance to drought, as demonstrated by higher antioxidant capacity and lower malondialdehyde content after drought treatment. Under drought stress, the endogenous ABA level in transgenic A. thaliana was higher than that in wild-type (WT) plants. Additionally, the contents of lutein and β-carotene in transgenic A. thaliana were lower than those in WT, whereas the expression levels of most endogenous carotenogenic genes were significantly increased after drought treatment. CONCLUSIONS DcBCH1 can increase the antioxidant capacity and promote endogenous ABA levels of plants by regulating the synthesis rate of carotenoids, thereby regulating the drought resistance of plants. These results will help to provide potential candidate genes for plant drought tolerance breeding.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
60
|
He F, Shi YJ, Zhao Q, Zhao KJ, Cui XL, Chen LH, Yang HB, Zhang F, Mi JX, Huang JL, Wan XQ. Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in Populus trichocarpa. BMC Genomics 2021; 22:731. [PMID: 34625025 PMCID: PMC8501708 DOI: 10.1186/s12864-021-08028-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Trees such as Populus are planted extensively for reforestation and afforestation. However, their successful establishment greatly depends upon ambient environmental conditions and their relative resistance to abiotic and biotic stresses. Polyphenol oxidase (PPO) is a ubiquitous metalloproteinase in plants, which plays crucial roles in mediating plant resistance against biotic and abiotic stresses. Although the whole genome sequence of Populus trichocarpa has long been published, little is known about the PPO genes in Populus, especially those related to drought stress, mechanical damage, and insect feeding. Additionally, there is a paucity of information regarding hormonal responses at the whole genome level. Results A genome-wide analysis of the poplar PPO family was performed in the present study, and 18 PtrPPO genes were identified. Bioinformatics and qRT-PCR were then used to analyze the gene structure, phylogeny, chromosomal localization, gene replication, cis-elements, and expression patterns of PtrPPOs. Sequence analysis revealed that two-thirds of the PtrPPO genes lacked intronic sequences. Phylogenetic analysis showed that all PPO genes were categorized into 11 groups, and woody plants harbored many PPO genes. Eighteen PtrPPO genes were disproportionally localized on 19 chromosomes, and 3 pairs of segmented replication genes and 4 tandem repeat genomes were detected in poplars. Cis-acting element analysis identified numerous growth and developmental elements, secondary metabolism processes, and stress-related elements in the promoters of different PPO members. Furthermore, PtrPPO genes were expressed preferentially in the tissues and fruits of young plants. In addition, the expression of some PtrPPOs could be significantly induced by polyethylene glycol, abscisic acid, and methyl jasmonate, thereby revealing their potential role in regulating the stress response. Currently, we identified potential upstream TFs of PtrPPOs using bioinformatics. Conclusions Comprehensive analysis is helpful for selecting candidate PPO genes for follow-up studies on biological function, and progress in understanding the molecular genetic basis of stress resistance in forest trees might lead to the development of genetic resources. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08028-9.
Collapse
Affiliation(s)
- Fang He
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yu-Jie Shi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Zhao
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuang-Ji Zhao
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xing-Lei Cui
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang-Hua Chen
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han-Bo Yang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fan Zhang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia-Xuan Mi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin-Liang Huang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
61
|
Si W, Liang Q, Chen L, Song F, Chen Y, Jiang H. Ectopic Overexpression of Maize Heat Stress Transcription Factor ZmHsf05 Confers Drought Tolerance in Transgenic Rice. Genes (Basel) 2021; 12:1568. [PMID: 34680963 PMCID: PMC8536174 DOI: 10.3390/genes12101568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Drought is a key factor affecting plant growth and development. Heat shock transcription factors (Hsfs) have been reported to respond to diverse abiotic stresses, including drought stress. In the present study, functional characterization of maize heat shock transcription factor 05 (ZmHsf05) gene was conducted. Homologous analysis showed that ZmHsf05 belongs to Class A2 Hsfs. The mRNA expression level of ZmHsf05 can be affected by drought, high temperature, salt, and abscisic acid (ABA) treatment. Ectopic overexpression of ZmHsf05 in rice (Oryza sativa) could significantly enhance the drought tolerance. Faced with drought stress, transgenic rice exhibited better phenotypic performance, higher survival rate, higher proline content, and lower leaf water loss rate, compared with wild-type plant Zhonghua11. Additionally, we assessed the agronomic traits of seven transgenic rice lines overexpressing ZmHsf05 and found that ZmHsf05 altered agronomical traits in the field trials. Moreover, rice overexpressing ZmHsf05 was more sensitive to ABA and had either a lower germination rate or shorter shoot length under ABA treatment. The transcription level of key genes in the ABA synthesis and drought-related pathway were significantly improved in transgenic rice after drought stress. Collectively, our results showed that ZmHsf05 could improve drought tolerance in rice, likely in an ABA-dependent manner.
Collapse
Affiliation(s)
- Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - Qizhi Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Li Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - Feiyang Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - You Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| |
Collapse
|
62
|
Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q, Zhang Y, Feng J, Sun F, Sun J, Yang G, He G. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1588-1601. [PMID: 33638922 PMCID: PMC8384601 DOI: 10.1111/pbi.13572] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 05/20/2023]
Abstract
Cultivating new crop cultivars with multiple abiotic stress tolerances is important for crop production. The abscisic acid-stress-ripening (ASR) protein has been shown to confer abiotic stress tolerance in plants. However, the mechanisms of ASR function under stress condition remain largely unclear. In this study, we characterized all ASR family members in common wheat and constitutively overexpressed TaASR1-D in a commercial hexaploid wheat cultivar Zhengmai 9023. The transgenic wheat plants exhibited increased tolerance to multiple abiotic stresses and increased grain yields under salt stress condition. Overexpression of TaASR1-D conferred enhanced antioxidant capacity and ABA sensitivity in transgenic wheat plants. Further, RNA in situ hybridization results showed that TaASR1-D had higher expression levels in the vascular tissues of leaves and the parenchyma cells around the vascular tissues of roots and stems. Yeast one-hybrid and electrophoretic mobility shift assays revealed that TaASR1-D could directly bind the specific cis-elements in the promoters of TaNCED1 and TaGPx1-D. In conclusion, our findings suggest that TaASR1-D can be used to breed new wheat cultivars with increased multiple abiotic stress tolerances, and TaASR1-D enhances abiotic stress tolerances by reinforcing antioxidant capacity and ABA signalling.
Collapse
Affiliation(s)
- Ding Qiu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Yu Zhou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Qiuhui Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Jiutong Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and TechnologyKey Laboratory of Molecular Biophysics of Chinese Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
| |
Collapse
|
63
|
Waititu JK, Zhang X, Chen T, Zhang C, Zhao Y, Wang H. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. Int J Mol Sci 2021; 22:6980. [PMID: 34209553 PMCID: PMC8268334 DOI: 10.3390/ijms22136980] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Maize (Zea mays L.) is the most essential food crop in the world. However, maize is highly susceptible to drought stress, especially at the seedling stage, and the molecular mechanisms underlying drought tolerance remain elusive. In this study, we conducted comparative transcriptome and physiological analyses of drought-tolerant (CML69) and susceptible (LX9801) inbred lines subjected to drought treatment at the seedling stage for three and five days. The tolerant line had significantly higher relative water content in the leaves, as well as lower electrolyte leakage and malondialdehyde levels, than the susceptible line. Using an RNA-seq-based approach, we identified 10,084 differentially expressed genes (DEGs) with 6906 and 3178 DEGs been annotated and unannotated, respectively. Two critical sets of drought-responsive DEGs, including 4687 genotype-specific and 2219 common drought-responsive genes, were mined out of the annotated DEGs. The tolerant-line DEGs were predominantly associated with the cytoskeleton, cell wall modification, glycolysis/gluconeogenesis, transport, osmotic regulation, drought avoidance, ROS scavengers, defense, and transcriptional factors. For the susceptible line, the DEGs were highly enriched in the photosynthesis, histone, and carbon fixation pathways. The unannotated DEGs were implicated in lncRNAs, including 428 previously reported and 22% putative TE-lncRNAs. There was consensus on both the physiological response and RNA-seq outcomes. Collectively, our findings will provide a comprehensive basis of the molecular networks mediating drought stress tolerance of maize at the seedling stage.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Tianci Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| |
Collapse
|
64
|
Sedaghat M, Emam Y, Mokhtassi-Bidgoli A, Hazrati S, Lovisolo C, Visentin I, Cardinale F, Tahmasebi-Sarvestani Z. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. PLANTS 2021; 10:plants10061223. [PMID: 34208497 PMCID: PMC8233996 DOI: 10.3390/plants10061223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Strigolactones (SLs) have been implicated in many plant biological and physiological processes, including the responses to abiotic stresses such as drought, in concert with other phytohormones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental condition, the best, most effective protocols for treatment have not been defined yet, and the mechanisms of action are far from being fully understood. In the set of experiments reported here, we contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of morphometric, physiological and biochemical parameters were measured following foliar application of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and drought stress conditions. Depending on the concentration and the method of GR24 application, differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential, antioxidant enzyme activities and yield in drought conditions were observed. We present evidence that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.
Collapse
Affiliation(s)
- Mojde Sedaghat
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Correspondence:
| | - Yahya Emam
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115111, Iran; (A.M.-B.); (Z.T.-S.)
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714161, Iran;
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Ivan Visentin
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Francesca Cardinale
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | | |
Collapse
|
65
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
66
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
67
|
Liu H, Shen J, Yuan C, Lu D, Acharya BR, Wang M, Chen D, Zhang W. The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:668792. [PMID: 34113366 PMCID: PMC8186832 DOI: 10.3389/fpls.2021.668792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/28/2021] [Indexed: 05/28/2023]
Abstract
Drought causes a major constraint on plant growth, development, and crop productivity. Drought stress enhances the synthesis and mobilization of the phytohormone abscisic acid (ABA). Enhanced cellular levels of ABA promote the production of reactive oxygen species (ROS), which in turn induce anion channel activity in guard cells that consequently leads to stomatal closure. Although Cyclophilins (CYPs) are known to participate in the biotic stress response, their involvement in guard cell ABA signaling and the drought response remains to be established. The Arabidopsis thaliana gene ROC3 encodes a CYP. Arabidopsis roc3 T-DNA mutants showed a reduced level of ABA-activated S-type anion currents, and stomatal closure than wild type (WT). Also, roc3 mutants exhibited rapid loss of water in leaf than wild type. Two complementation lines of roc3 mutants showed similar stomatal response to ABA as observed for WT. Both complementation lines also showed similar water loss as WT by leaf detached assay. Biochemical assay suggested that ROC3 positively regulates ROS accumulation by inhibiting catalase activity. In response to ABA treatment or drought stress, roc3 mutant show down regulation of a number of stress responsive genes. All findings indicate that ROC3 positively regulates ABA-induced stomatal closure and the drought response by regulating ROS homeostasis and the expression of various stress-activated genes.
Collapse
Affiliation(s)
- Huiping Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chao Yuan
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Dongxue Lu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Biswa R. Acharya
- College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, CA, United States
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
68
|
He F, Shi YJ, Mi JX, Zhao KJ, Cui XL, Chen LH, Yang HB, Zhang F, Zhao Q, Huang JL, Wan XQ. Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa Expression Profiles during Development and Stress. Int J Mol Sci 2021; 22:4664. [PMID: 33925110 PMCID: PMC8124260 DOI: 10.3390/ijms22094664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.
Collapse
Affiliation(s)
- Fang He
- Correspondence: (F.H.); (X.-Q.W.); Tel.: +86-176-8377-7884 (F.H.); +86-138-8163-4583 (X.-Q.W.)
| | | | | | | | | | | | | | | | | | | | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.-J.S.); (J.-X.M.); (K.-J.Z.); (X.-L.C.); (L.-H.C.); (H.-B.Y.); (F.Z.); (Q.Z.); (J.-L.H.)
| |
Collapse
|
69
|
Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance. Int J Mol Sci 2021; 22:ijms22094554. [PMID: 33925342 PMCID: PMC8123667 DOI: 10.3390/ijms22094554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022] Open
Abstract
Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments.
Collapse
|
70
|
Wang H, Leng X, Yang J, Zhang M, Zeng M, Xu X, Wang F, Li C. Comprehensive analysis of AHL gene family and their expression under drought stress and ABA treatment in Populus trichocarpa. PeerJ 2021; 9:e10932. [PMID: 33643717 PMCID: PMC7896510 DOI: 10.7717/peerj.10932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The AT-hook motif nuclear-localized (AHL) family is a plant transcription factor family, which plays an important role in growth and development and stress responses. We identified and analyzed 37 AHL genes in poplar (Populus trichocarpa). Phylogenetic analysis classified the PtrAHL members into three subfamilies based on their conserved domain. All PtrAHL paralogous pairs evolved under purifying selection. The promoter analysis revealed the presence of stress-related and phytohormone-related cis-elements of the PtrAHL genes. Our analysis of the tissue-specific expression pattern of PtrAHL genes indicated their significance in tissue and organ development. Network-based prediction suggested that PtrAHL genes may interact with histone deacetylases (HDAC) and participate in the development of organs, such as roots. Drought negatively impacts plant growth and development. ABA is produced under osmotic stress condition, and it takes an important part in the stress response and tolerance of plants. Real-time quantitative PCR (qRT-PCR) showed that PtrAHL genes were induced by drought stress and ABA treatment. These insights into the expression of PtrAHL genes under stress provide a basis for PtrAHL gene functional analysis. Our study will help develop new breeding strategies to improve drought tolerance in poplar.
Collapse
Affiliation(s)
- Hanzeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xue Leng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jia Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Mengqiu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Minzhen Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xuemei Xu
- Library of Northeast Forestry University, Harbin, China
| | - Fude Wang
- Institute of Forestry Science, Harbin, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
71
|
Saluja M, Zhu F, Yu H, Walia H, Sattler SE. Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. THE NEW PHYTOLOGIST 2021; 229:2780-2794. [PMID: 33124063 DOI: 10.1111/nph.17051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a key target for modifying lignocellulosic biomass for efficient biofuel production. Brown midrib 12 (bmr12) encodes the sorghum caffeic acid O-methyltransferase (COMT) and is one of the key enzymes in monolignol biosynthesis. Loss of function mutations in COMT reduces syringyl (S) lignin subunits and improves biofuel conversion rate. Although lignin plays an important role in maintaining cell wall integrity of xylem vessels, physiological and molecular consequences due to loss of COMT on root growth and adaptation to water deficit remain unexplored. We addressed this gap by evaluating the root morphology, anatomy and transcriptome of bmr12 mutant. The mutant had reduced lateral root density (LRD) and altered root anatomy and response to water limitation. The wild-type exhibits similar phenotypes under water stress, suggesting that bmr12 may be in a water deficit responsive state even in well-watered conditions. bmr12 had increased transcript abundance of genes involved in (a)biotic stress response, gibberellic acid (GA) biosynthesis and signaling. We show that bmr12 is more sensitive to exogenous GA application and present evidence for the role of GA in regulating reduced LRD in bmr12. These findings elucidate the phenotypic and molecular consequences of COMT deficiency under optimal and water stress environments in grasses.
Collapse
Affiliation(s)
- Manny Saluja
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Feiyu Zhu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hongfeng Yu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| |
Collapse
|
72
|
Yacoubi I, Hamdi K, Fourquet P, Bignon C, Longhi S. Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family. Int J Mol Sci 2021; 22:ijms22052314. [PMID: 33652546 PMCID: PMC7956565 DOI: 10.3390/ijms22052314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The ASR protein family has been discovered thirty years ago in many plant species and is involved in the tolerance of various abiotic stresses such as dehydration, salinity and heat. Despite its importance, nothing is known about the conserved ABA-Water Deficit Stress Domain (ABA-WDS) of the ASR gene family. In this study, we characterized two ABA-WDS domains, isolated from durum wheat (TtABA-WDS) and barley (HvABA-WDS). Bioinformatics analysis shows that they are both consistently predicted to be intrinsically disordered. Hydrodynamic and circular dichroism analysis indicate that both domains are largely disordered but belong to different structural classes, with HvABA-WDS and TtABA-WDS adopting a PreMolten Globule-like (PMG-like) and a Random Coil-like (RC-like) conformation, respectively. In the presence of the secondary structure stabilizer trifluoroethanol (TFE) or of increasing glycerol concentrations, which mimics dehydration, the two domains acquire an α-helical structure. Interestingly, both domains are able to prevent heat- and dehydration-induced inactivation of the enzyme lactate dehydrogenase (LDH). Furthermore, heterologous expression of TtABA-WDS and HvABA-WDS in the yeast Saccharomyces cerevisiae improves its tolerance to salt, heat and cold stresses. Taken together our results converge to show that the ABA-WDS domain is an intrinsically disordered functional domain whose conformational plasticity could be instrumental to support the versatile functions attributed to the ASR family, including its role in abiotic stress tolerance. Finally, and after validation in the plant system, this domain could be used to improve crop tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Ines Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Street Sidi Mansour Km 6, Sfax 3018, Tunisia;
- Correspondence: (I.Y.); (S.L.)
| | - Karama Hamdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Street Sidi Mansour Km 6, Sfax 3018, Tunisia;
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille CEDEX 09, France;
| | - Christophe Bignon
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille CEDEX 09, France;
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille CEDEX 09, France;
- Correspondence: (I.Y.); (S.L.)
| |
Collapse
|
73
|
Yoon JS, Kim JY, Kim DY, Seo YW. A novel wheat ASR gene, TaASR2D, enhances drought tolerance in Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:400-414. [PMID: 33229191 DOI: 10.1016/j.plaphy.2020.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in protecting plants against adverse environmental conditions. Here, we identified 24 ASR genes in the wheat genome and analyzed their characteristics. Among these, five ASR genes highly induced by abscisic acid (ABA) and polyethylene glycol were cloned and further characterized. The TaASR genes were expressed in response to different abiotic stresses and ABA and were found to be localized in the nucleus and plasma membrane of transformed tobacco cells. Brachypodium distachyon transgenic plants overexpressing TaASR2D showed enhanced drought tolerance by regulating leaf transpiration. The expression levels of stress-related and ABA-responsive genes were higher in transgenic plants than in wild-type plants under drought stress conditions. Moreover, overexpression of TaASR2D increased the levels of both endogenous ABA and hydrogen peroxide in response to drought stress, and these plants showed hypersensitivity to exogenous ABA at the germination stage. Furthermore, plants overexpressing TaASR2D showed increased stomatal closure. Further analysis revealed that TaASR2D interacts with ABA biosynthesis and stress-related proteins in yeast and tobacco plants. Collectively, these findings indicate that TaASR2D plays an important role in the response of plants to drought stress by regulating the ABA biosynthesis pathway and redox homeostasis system.
Collapse
Affiliation(s)
- Jin Seok Yoon
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jae Yoon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Department of Plant Resources, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
74
|
Zhang K, Sun Y, Li M, Long R. CrUGT87A1, a UDP-sugar glycosyltransferases (UGTs) gene from Carex rigescens, increases salt tolerance by accumulating flavonoids for antioxidation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:28-36. [PMID: 33321375 DOI: 10.1016/j.plaphy.2020.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 05/15/2023]
Abstract
Salt stress is a serious abiotic stressor impeding plant growth and crop production around the world. Plant glycosyltransferases are thought to serve important roles in dealing with stress conditions, however, the functional role of how UGTs cope with salt stress is not well understood. Carex rigescens (Franch.) V. Krecz, is a widely distributed species of turfgrass with strong salinity tolerance found in northern China. To investigate how the glycosyltransferase gene, CrUGT87A1, functions in C. rigescens, we performed analyses of cloning, transcriptional expression, subcellular localization, and overexpression. The full-length sequence of CrUGT87A1 is 1455 bp with a 1338 bp length ORF, which encodes 445 amino acids, while CrUGT87A1 was found to be a nuclear and plasmalemma-localized protein. We found that the transcriptional expression of CrUGT87A1 was up-regulated under ABA, heat, salt, and drought treatments in leaf tissues. CrUGT87A1 overexpression in Arabidopsis plants had a significantly higher germination rate, better growth and physiology, and a higher expression levels of transcripts related to salt stress-related genes under high-salinity conditions, suggesting that CrUGT87A1 is involved in salt tolerance. The transcriptional expression of genes related to flavonoid-synthesis related and the flavonoid content reflected higher accumulations of flavonoids in transgenic plants. Our study demonstrated that CrUGT87A1 could play an important role in resisting salt stress due to increased flavonoid accumulation, which can promote antioxidation when dealing with high-salinity conditions. This study advances our collective understanding of the functional role of UGTs and can be used to improve the salt tolerance and breeding of crops and plants.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, PR China; College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, PR China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
75
|
Pitaloka MK, Harrison EL, Hepworth C, Wanchana S, Toojinda T, Phetluan W, Brench RA, Narawatthana S, Vanavichit A, Gray JE, Caine RS, Arikit S. Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry. FRONTIERS IN PLANT SCIENCE 2021; 12:677839. [PMID: 34149777 PMCID: PMC8213340 DOI: 10.3389/fpls.2021.677839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Rice (Oryza sativa) is a water-intensive crop, and like other plants uses stomata to balance CO2 uptake with water-loss. To identify agronomic traits related to rice stomatal complexes, an anatomical screen of 64 Thai and 100 global rice cultivars was undertaken. Epidermal outgrowths called papillae were identified on the stomatal subsidiary cells of all cultivars. These were also detected on eight other species of the Oryza genus but not on the stomata of any other plant species we surveyed. Our rice screen identified two cultivars that had "mega-papillae" that were so large or abundant that their stomatal pores were partially occluded; Kalubala Vee had extra-large papillae, and Dharia had approximately twice the normal number of papillae. These were most accentuated on the flag leaves, but mega-papillae were also detectable on earlier forming leaves. Energy dispersive X-Ray spectrometry revealed that silicon is the major component of stomatal papillae. We studied the potential function(s) of mega-papillae by assessing gas exchange and pathogen infection rates. Under saturating light conditions, mega-papillae bearing cultivars had reduced stomatal conductance and their stomata were slower to close and re-open, but photosynthetic assimilation was not significantly affected. Assessment of an F3 hybrid population treated with Xanthomonas oryzae pv. oryzicola indicated that subsidiary cell mega-papillae may aid in preventing bacterial leaf streak infection. Our results highlight stomatal mega-papillae as a novel rice trait that influences gas exchange, stomatal dynamics, and defense against stomatal pathogens which we propose could benefit the performance of future rice crops.
Collapse
Affiliation(s)
- Mutiara K. Pitaloka
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Emily L. Harrison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Christopher Hepworth
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Robert A. Brench
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Supatthra Narawatthana
- Thailand Rice Science Institute, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Suphanburi, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Julie E. Gray,
| | - Robert S. Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Robert S. Caine,
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Siwaret Arikit,
| |
Collapse
|
76
|
Kim S, Park SI, Kwon H, Cho MH, Kim BG, Chung JH, Nam MH, Song JS, Kim KH, Yoon IS. The Rice Abscisic Acid-Responsive RING Finger E3 Ligase OsRF1 Targets OsPP2C09 for Degradation and Confers Drought and Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:797940. [PMID: 35095969 PMCID: PMC8792764 DOI: 10.3389/fpls.2021.797940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 05/18/2023]
Abstract
Drought and salinity are major important factors that restrain growth and productivity of rice. In plants, many really interesting new gene (RING) finger proteins have been reported to enhance drought and salt tolerance. However, their mode of action and interacting substrates are largely unknown. Here, we identified a new small RING-H2 type E3 ligase OsRF1, which is involved in the ABA and stress responses of rice. OsRF1 transcripts were highly induced by ABA, salt, or drought treatment. Upregulation of OsRF1 in transgenic rice conferred drought and salt tolerance and increased endogenous ABA levels. Consistent with this, faster transcriptional activation of key ABA biosynthetic genes, ZEP, NCED3, and ABA4, was observed in OsRF1-OE plants compared with wild type in response to drought stress. Yeast two-hybrid assay, BiFC, and co-immunoprecipitation analysis identified clade A PP2C proteins as direct interacting partners with OsRF1. In vitro ubiquitination assay indicated that OsRF1 exhibited E3 ligase activity, and that it targeted OsPP2C09 protein for ubiquitination and degradation. Cell-free degradation assay further showed that the OsPP2C09 protein is more rapidly degraded by ABA in the OsRF1-OE rice than in the wild type. The combined results suggested that OsRF1 is a positive player of stress responses by modulating protein stability of clade A PP2C proteins, negative regulators of ABA signaling.
Collapse
Affiliation(s)
- Suyeon Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Seong-Im Park
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Hyeokjin Kwon
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Mi Hyeon Cho
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Jeonju, South Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science (KBSI), Seoul, South Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science (KBSI), Seoul, South Korea
| | - Ji Sun Song
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - In Sun Yoon
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
- *Correspondence: In Sun Yoon,
| |
Collapse
|
77
|
Wang F, Niu H, Xin D, Long Y, Wang G, Liu Z, Li G, Zhang F, Qi M, Ye Y, Wang Z, Pei B, Hu L, Yuan C, Chen X. OsIAA18, an Aux/IAA Transcription Factor Gene, Is Involved in Salt and Drought Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:738660. [PMID: 34868122 PMCID: PMC8637529 DOI: 10.3389/fpls.2021.738660] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
Auxin/indoleacetic acid (Aux/IAA) proteins play an important regulatory role in the developmental process of plants and their responses to stresses. A previous study has shown that constitutive expression of OsIAA18, an Aux/IAA transcription factor gene of rice improved salt and osmotic tolerance in transgenic Arabidopsis plants. However, little work is known about the regulatory functions of the OsIAA18 gene in regulating the abiotic stress tolerance of rice. In this study, the OsIAA18 gene was introduced into the rice cultivar, Zhonghua 11 and the OsIAA18 overexpression in rice plants exhibited significantly enhanced salt and drought tolerance compared to the wild type (WT). Moreover, overexpression of OsIAA18 in rice increased endogenous levels of abscisic acid (ABA) and the overexpression of OsIAA18 in rice plants showed hypersensitivity to exogenous ABA treatment at both the germination and postgermination stages compared to WT. Overexpression of OsIAA18 upregulated the genes involved in ABA biosynthesis and signaling pathways, proline biosynthesis pathway, and reactive oxygen species (ROS)-scavenging system in the overexpression of OsIAA18 in rice plants under salt and drought stresses. Proline content, superoxide dismutase (SOD), and peroxidase (POD) activities were significantly increased, whereas malonaldehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radical (O2 -) content were significantly decreased in the transgenic plants under salt and drought stresses. Taken together, we suggest that OsIAA18 plays a positive role in drought and salt tolerance by regulating stress-induced ABA signaling. The OsIAA18 gene has a potential application in genetically modified crops with enhanced tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Feibing Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
- *Correspondence: Feibing Wang,
| | - Haofei Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Dongqing Xin
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yi Long
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Guangpeng Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zongmei Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Gang Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an, China
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mingyang Qi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yuxiu Ye
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zunxin Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Baolei Pei
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Laibao Hu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Caiyong Yuan
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an, China
| | - Xinhong Chen
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
78
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
79
|
Li S, Zhang J, Liu L, Wang Z, Li Y, Guo L, Li Y, Zhang X, Ren S, Zhao B, Zhang N, Guo YD. SlTLFP8 reduces water loss to improve water-use efficiency by modulating cell size and stomatal density via endoreduplication. PLANT, CELL & ENVIRONMENT 2020; 43:2666-2679. [PMID: 32799324 DOI: 10.1111/pce.13867] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/09/2020] [Indexed: 05/23/2023]
Abstract
Improving plant water-use efficiency (WUE) is important to plant survival and crop yield in the context of water limitation. In this study, SlTLFP8 (Tubby-like F-box protein 8) was identified as an osmotic-induced gene in tomato. Transgenic tomato with up-regulated expression of SlTLFP8 showed enhanced water-deficient resistance, whereas knockout mutants generated by CRISPR/Cas9 were more sensitive to water deficit. SlTLFP8 overexpression significantly enhanced WUE by suppressing transpiration under both water-sufficient and water-deficient conditions. Further study showed that overexpressing SlTLFP8 significantly increased leaf epidermal cell size and thereby decreased stomatal density 10-20%, conversely SlTLFP8 knockout resulted in decreased cell size and thereby increased stomatal density 20-50%. SlTLFP8 overexpression and knockout modulated ploidy levels in leaf cells. Changes in expression of cell cycle related genes also indicated that SlTLFP8 affected cell size and stomatal density through endocycle transition. Despite changes in stomata density and transpiration, altering the expression of SlTLFP8 did not change photosynthesis. Additionally, biomass was not altered and there was little difference in fruit yield for transgenic and wild type lines under water-sufficient and water-deficient conditions. Our results demonstrate the effect of SlTLFP8 on endoreduplication and the potential of SlTLFP8 for improvement of WUE. BRIEF SUMMERY: This work found a new mechanism of TLP (Tubby like protein) response to water-deficient stress. SlTLFP8, a member of TLP family, regulates water-deficient resistance by modulating water loss via affecting stomatal density. Expression of SlTLFP8 was induced by osmotic stress. Transgenic tomato lines with SlTLFP8 overexpression or SlTLFP8 knockout showed significantly differences in water-use efficiency (WUE) and water-deficient resistance. The difference of leaf water loss caused by transpiration is the main explanation of the difference in WUE and water-deficient resistance. Additionally, overexpressing SlTLFP8 significantly decreased stomatal density, while SlTLFP8 knockout resulted in increased stomatal density, and SlTLFP8 affected stomatal density through endoreduplication and altered epidermal cell size. Despite changes in stomata density, altering the expression of SlTLFP8 did not result in distinct changes in photosynthesis, biomass and yield of tomato.
Collapse
Affiliation(s)
- Shuangtao Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yu Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, Virginia, USA
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
80
|
Meena RP, Vishwakarma H, Ghosh G, Gaikwad K, Chellapilla TS, Singh MP, Padaria JC. Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:7-19. [PMID: 32891968 DOI: 10.1016/j.plaphy.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 05/09/2023]
Abstract
A genomic resource of drought stress responsive genes/ESTs was generated using Suppression Subtractive Hybridization (SSH) approach in a drought stress tolerant Pennisetum glaucum genotype 841B. Fifty five days old plants were subjected to drought stress after withholding water for different time intervals (10 days, 15 days, 20 days and 25 days). A forward subtractive cDNA library was prepared from isolated RNA of leaf tissue. Differential gene expression under drought stress was validated for selected nine contigs by RT-qPCR. A transcript homologous to Setaria italica ASR3 upregulated under drought stress was isolated from genotype 841B and characterized. Heterologous expression of PgASR3 was validated in Arabidopsis and confirmed under multiple abiotic stress conditions. A total of four independent transgenic lines overexpressing gene PgASR3 were analyzed by Southern blot at T1 stage. For drought stress tolerance, three independent lines (T2 stage) were analyzed by biochemical and physiological assays at seedling stage. The growth rate (shoot and root length) of transgenic seedlings improved as compared to WT seedling under differenct abiotic stress conditions. The three transgenic lines were also validated for drought stress tolerance and RT-qPCR analysis, at maturity stage. Under drought stress conditions, the mature transgenic lines showed higher levels of RWC, chlorophyll and proline but lower levels of MDA as compared to WT plants. PgASR3 gene isolated and validated in this study can be utilized for developing abiotic stress tolerant crops.
Collapse
Affiliation(s)
| | | | - Gourab Ghosh
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Tara Satyavathi Chellapilla
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India; Division of Genetics, IARI, Pusa Campus, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, IARI Pusa Campus, New Delhi, India
| | | |
Collapse
|
81
|
Zhuang W, Liu T, Shu X, Wang H, Wang Z, Wang T, Zhang F, Qu S. Overexpression of MzASMT 1, a Gene From Malus zumi Mats, Enhances Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:561903. [PMID: 33193488 PMCID: PMC7649149 DOI: 10.3389/fpls.2020.561903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/28/2020] [Indexed: 05/13/2023]
Abstract
Melatonin, widely found in various plants as a new antioxidant, could protect plants from various biotic and/or abiotic stresses, including salt stress. MzASMT 1 (KJ123721), a gene from Malus zumi Mats, is a key enzyme required for melatonin synthesis. However, whether the overexpression of MzASMT 1 could regulate the synthesis of melatonin and improve the salt tolerance in tobacco remains unknown. In this study, the overexpression of MzASMT 1 in tobacco increased the melatonin content, and the transgenic lines owned higher salt tolerance capacity. The transgenic lines overexpressing MzASMT 1 exhibited lower degree of leaf wilting; much more fresh weight; higher plant height; longer root; higher relative water content (RWC) of leaves, stem, and root; and higher chlorophyll content and Fv/Fm, which makes transgenic lines better adapt to salt stress. The transgenic lines also had higher accumulation of proline, lower accumulation of malondialdehyde (MDA), and improved antioxidant systems, which protected plants from cell damage and oxidative stress due to excess reactive oxygen species (ROS) accumulation under salt treatment. The transcription of salt response genes was much more highly activated in transgenic lines than in wild type under salt stress. The above results contributed to the understanding of functions for MzASMT 1 in tobacco under salt stress and provided a new choice for the application of MzASMT 1 in improving plant salt tolerance.
Collapse
Affiliation(s)
- Weibing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Tianyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Hongxue Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
82
|
Khan R, Ma X, Shah S, Wu X, Shaheen A, Xiao L, Wu Y, Wang S. Drought-hardening improves drought tolerance in Nicotiana tabacum at physiological, biochemical, and molecular levels. BMC PLANT BIOLOGY 2020; 20:486. [PMID: 33097005 PMCID: PMC7584104 DOI: 10.1186/s12870-020-02688-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought stress is the most harmful one among other abiotic stresses with negative impacts on crop growth and development. Drought-hardening is a feasible and widely used method in tobacco seedlings cultivation. It has gained extensive interests due to its role in improving drought tolerance. This research aimed to investigate the role of drought-hardening and to unravel the multiple mechanisms underlying tobacco drought tolerance and adaptation. RESULTS This study was designed in which various drought-hardening treatments (CK (no drought-hardening), T1 (drought-hardening for 24 h), T2 (drought-hardening for 48 h), and T3 (drought-hardening for 72 h)) were applied to two tobacco varieties namely HongHuaDaJinYuan (H) and Yun Yan-100 (Y). The findings presented a complete framework of drought-hardening effect at physiological, biochemical, and gene expression levels of the two tobacco varieties under drought stress. The results showed that T2 and T3 significantly reduced the growth of the two varieties under drought stress. Similarly, among the various drought-hardening treatments, T3 improved both the enzymatic (POD, CAT, APX) and non-enzymatic (AsA) defense systems along with the elevated levels of proline and soluble sugar to mitigate the negative effects of oxidative damage and bringing osmoregulation in tobacco plants. Finally, the various drought-hardening treatments (T1, T2, and T3) showed differential regulation of genes expressed in the two varieties, while, particularly T3 drought-hardening treatment-induced drought tolerance via the expression of various stress-responsive genes by triggering the biosynthesis pathways of proline (P5CS1), polyamines (ADC2), ABA-dependent (SnRK2, AREB1), and independent pathways (DREB2B), and antioxidant defense-related genes (CAT, APX1, GR2) in response to drought stress. CONCLUSIONS Drought-hardening made significant contributions to drought tolerance and adaptation in two tobacco variety seedlings by reducing its growth and, on the other hand, by activating various defense mechanisms at biochemical and molecular levels. The findings of the study pointed out that drought-hardening is a fruitful strategy for conferring drought tolerance and adaptations in tobacco. It will be served as a useful method in the future to understand the drought tolerance and adaptation mechanisms of other plant species. Drought-hardening improved drought tolerance and adaptation of the two tobacco varieties. T1 indicates drought-hardening for 24 h, T2 indicates drought-hardening for 48 h, T3 indicates drought-hardening for 72 h.
Collapse
Affiliation(s)
- Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinghua Ma
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Shahen Shah
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar, 25130 Pakistan
| | - Xiaoying Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Aaqib Shaheen
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lixia Xiao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Yuanhua Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Shusheng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| |
Collapse
|
83
|
Zhang Q, Chen G, Huang J, Peng C. Comparison of the Ability to Control Water Loss in the Detached Leaves of Wedelia trilobata, Wedelia chinensis, and Their Hybrid. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091227. [PMID: 32961869 PMCID: PMC7570294 DOI: 10.3390/plants9091227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 06/02/2023]
Abstract
In the process of biological invasion, hybridization between invasive species and native species is very common, which may lead to the formation of hybrids with a stronger adaptability. The hybrid of Wedelia trilobata (an alien invasive species) and Wedelia chinensis (an indigenous congener) has been found in South China. In our previous study, we found that the hybrid showed heterosis under cadmium stress. However, the results of this experiment demonstrated that the leaves of the hybrid had no heterosis in controlling water loss. The results showed that the water loss rate of W. trilobata was the slowest, that of W. chinensis was the fastest, and that of the hybrid was in the middle. Compared with W. chinensis and the hybrid, W. trilobata accumulated more abscisic acid (ABA) in leaves to control water loss. After the leaves were detached, W. chinensis leaves suffered the most serious damage, the lowest maximum photochemical efficiency, the most serious membrane lipid peroxidation, and the largest accumulation of malondialdehyde and reactive oxygen species. Compared with W. chinensis and its hybrid, the leaves of W. trilobata could accumulate more antioxidant enzymes and antioxidants, and the total antioxidant capacity was the strongest. The results demonstrate that the ability of the hybrid to reduce water loss was lower than that of W. trilobata, but higher than that of W. chinensis. They showed that the drought resistance of the hybrid may be higher than that of W. chinensis, and it might threaten the survival of W. chinensis.
Collapse
|
84
|
Wu M, Liu R, Gao Y, Xiong R, Shi Y, Xiang Y. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:184-194. [PMID: 32563042 DOI: 10.1016/j.plaphy.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid, stress and ripening (ASR) transcription factors comprise a small family of proteins that play a key role in stress responses in plants. ASR genes involved in drought tolerance in moso bamboo (Phyllostachys edulis) are largely unknown. In our study, an ASR gene, PheASR2, was isolated and characterized. The expression of PheASR2 was up-regulated under various abiotic stresses, including drought, salt and abscisic acid (ABA). PheASR2 was localized in the nucleus in tobacco cells, and displayed transactivation activity in yeast. Ectopic expression of PheASR2 in rice conferred enhanced tolerance to drought stress, as determined through physiological analyses of germination rate, plant height, water loss and survival rate. The PheASR2-overexpressing transgenic plants showed an increase in reactive oxygen species (ROS), electrolyte leakage and malondialdehyde levels, reduced enzyme (CAT and SOD) activities, and higher expression of genes encoding ROS-scavenging enzymes. Consequently, the transgenic plants exhibited increased tolerance to oxidative stress compared with wild-type plants. Moreover, following ABA treatment, the seed germination rate and plant height of the PheASR2-overexpressing lines were inhibited, and stomatal closure was reduced. The expression of marker genes, including, OsAREB, OsP5CS1, OsLEA, and OsNCED2, was up-regulated in the PheASR2-overexpressing lines when subjected to drought treatment. Together, these results indicate that PheASR2 functions in drought stress tolerance through ABA signaling.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
85
|
Feng X, Liu W, Qiu C, Zeng F, Wang Y, Zhang G, Chen Z, Wu F. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H + homoeostasis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1683-1696. [PMID: 31917885 PMCID: PMC7336388 DOI: 10.1111/pbi.13332] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 05/18/2023]
Abstract
Plant K+ uptake typically consists low-affinity mechanisms mediated by Shaker K+ channels (AKT/KAT/KC) and high-affinity mechanisms regulated by HAK/KUP/KT transporters, which are extensively studied. However, the evolutionary and genetic roles of both K+ uptake mechanisms for drought tolerance are not fully explored in crops adapted to dryland agriculture. Here, we employed evolutionary bioinformatics, biotechnological and electrophysiological approaches to determine the role of two important K+ transporters HvAKT2 and HvHAK1 in drought tolerance in barley. HvAKT2 and HvHAK1 were cloned and functionally characterized using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in drought-tolerant wild barley XZ5 and agrobacterium-mediated gene transfer in the barley cultivar Golden Promise. The hallmarks of the K+ selective filters of AKT2 and HAK1 are both found in homologues from strepotophyte algae, and they are evolutionarily conserved in strepotophyte algae and land plants. HvAKT2 and HvHAK1 are both localized to the plasma membrane and have high selectivity to K+ and Rb+ over other tested cations. Overexpression of HvAKT2 and HvHAK1 enhanced K+ uptake and H+ homoeostasis leading to drought tolerance in these transgenic lines. Moreover, HvAKT2- and HvHAK1-overexpressing lines showed distinct response of K+ , H+ and Ca2+ fluxes across plasma membrane and production of nitric oxide and hydrogen peroxide in leaves as compared to the wild type and silenced lines. High- and low-affinity K+ uptake mechanisms and their coordination with H+ homoeostasis play essential roles in drought adaptation of wild barley. These findings can potentially facilitate future breeding programs for resilient cereal crops in a changing global climate.
Collapse
Affiliation(s)
- Xue Feng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Wenxing Liu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Cheng‐Wei Qiu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Fanrong Zeng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yizhou Wang
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Guoping Zhang
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zhong‐Hua Chen
- School of ScienceHawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
- Collaborative Innovation Center for Grain IndustryCollege of AgricultureYangtze UniversityJingzhouChina
| | - Feibo Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| |
Collapse
|
86
|
Lin F, Li S, Wang K, Tian H, Gao J, Zhao Q, Du C. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110465. [PMID: 32540023 DOI: 10.1016/j.plantsci.2020.110465] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 05/23/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been widely associated with plant abiotic stress responses. However, the functions of the majority of LRR-RLKs has not been well defined. Here, we identified a novel rice LRR-RLK member involved in salt tolerance and designated as OsSTLK (Oryza sativa L. Salt-Tolerance LRR-RLK). Transcript analysis showed that OsSTLK was significantly induced in response to salt stress in rice shoot and root in a time and dosage-dependent fashion. Phenotypic observations indicated that OsSTLK overexpression exhibited reduced salt sensitivity, and improved salt stress tolerance. Further physiological analysis showed that OsSTLK overexpression remarkably reduced electrolyte leakage, malondialdehyde (MDA) content, reactive oxygen species (ROS) accumulation under salt stress conditions by up-regulating ROS-scavenging activities and modifying stomatal patterning. Moreover, Na+/K+ ratio and MAPK phosphorylation level were also reduced in OsSTLK-overexpression transgenic rice plants compared with WT control. Taken together, our findings suggested that OsSTLK as an important positive regulator of salt stress tolerance perhaps through regulating ROS scavenging system, Na+/K+ ratio and MAPK signal pathway.
Collapse
Affiliation(s)
- Faming Lin
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shen Li
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haoran Tian
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junfeng Gao
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Changqing Du
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
87
|
Xiong C, Xie Q, Yang Q, Sun P, Gao S, Li H, Zhang J, Wang T, Ye Z, Yang C. WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:323-337. [PMID: 32129912 DOI: 10.1111/tpj.14733] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 05/24/2023]
Abstract
Cuticular waxes play a crucial role not only in plant defense against biotic and abiotic stresses, but also in the quality and storability of fruits, such as the tomato (Solanum lycopersicum). Although the biosynthetic pathways of waxes have been extensively characterized, the regulatory mechanisms underlying wax biosynthesis in tomato remain largely unclear. Here, we show that Woolly (Wo), a multicellular trichome regulator, is involved in modulating wax biosynthesis in tomato. Wo enhances the expression of the wax biosynthetic genes SlCER6, SlKCR1, and SlPAS2, and the wax transporter gene SlLTP, and thereby promotes wax accumulation. Furthermore, Wo directly binds to the L1-box in the promoter of SlCER6, an essential element of the very-long-chain fatty acid elongase complex. Intriguingly, overexpression (OE) or knock-down of SlMYB31, an MYB transcription factor that physically interacts with Wo in vivo and in vitro, produces marked changes in wax composition, and whereas Wo knock-down inhibits wax accumulation in SlMYB31-OE lines, SlMYB31 knock-down inhibits wax accumulation in Wo-OE lines, implying that these two genes function in the same pathway. Lastly, SlCER6 expression is induced by abscisic acid in a manner that is partially dependent on Wo. These results demonstrate that Wo and SlMYB31 cooperatively control tomato cuticular wax biosynthesis by regulating the expression of SlCER6.
Collapse
Affiliation(s)
- Cheng Xiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
88
|
He Q, Cai H, Bai M, Zhang M, Chen F, Huang Y, Priyadarshani SVGN, Chai M, Liu L, Liu Y, Chen H, Qin Y. A Soybean bZIP Transcription Factor GmbZIP19 Confers Multiple Biotic and Abiotic Stress Responses in Plant. Int J Mol Sci 2020; 21:E4701. [PMID: 32630201 PMCID: PMC7369738 DOI: 10.3390/ijms21134701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/29/2023] Open
Abstract
The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes' expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.
Collapse
Affiliation(s)
- Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Mengyan Bai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - S. V. G. N. Priyadarshani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Liping Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Yanhui Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Huihuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
89
|
Xu P, Yang J, Ma Z, Yu D, Zhou J, Tao D, Li Z. Identification and Validation of Aerobic Adaptation QTLs in Upland Rice. Life (Basel) 2020; 10:life10050065. [PMID: 32423169 PMCID: PMC7281610 DOI: 10.3390/life10050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC1-BC3 introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC4F5 under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as qAER1, qAER3, and qAER9 (QTL of aerobic adaptation). The qAER1 and qAER9 were fine-mapped. We found that qAER1 and qAER9 controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (J.Y.); (Z.M.); (D.Y.)
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Jun Yang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (J.Y.); (Z.M.); (D.Y.)
| | - Zhenbing Ma
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (J.Y.); (Z.M.); (D.Y.)
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (J.Y.); (Z.M.); (D.Y.)
| | - Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
- Correspondence: (D.T.); (Z.L.); Tel.: +86-871-6589-3754 (D.T.); +86-10-6273-1414 (Z.L.)
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
- Correspondence: (D.T.); (Z.L.); Tel.: +86-871-6589-3754 (D.T.); +86-10-6273-1414 (Z.L.)
| |
Collapse
|
90
|
Fei X, Li J, Kong L, Hu H, Tian J, Liu Y, Wei A. miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:196-203. [PMID: 32155447 DOI: 10.1016/j.plaphy.2020.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Plants can accumulate a large amount of reactive oxygen species under adverse conditions such as drought and high temperature, which seriously affect the normal growth and development of plants. The antioxidant system can scavenge the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. However, the regulation patterns of many miRNAs under drought stress are still unclear. The content of antioxidant enzymes and the expression patterns of miRNAs and their target genes related to antioxidant systems were studied under drought stress in Zanthoxylum bungeanum. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is indicated that in the antioxidant process of Z. bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, GUS histochemical and RT-qPCR experimental results show that the expression levels of miRNAs and their target genes are basically negatively correlated, indicating that miRNAs can inhibit the expression of related genes and are also important regulators in the antioxidant system of Z. bungeanum. According to the expression patterns of antioxidant enzymes, miRNA and its target genes under drought stress, combined with previous research results, a model of plant antioxidant mechanism was constructed to provide a reference for further understanding of plant antioxidant mechanism.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Jingmiao Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Lijuan Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Jieyun Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
91
|
Rangani J, Panda A, Parida AK. Metabolomic study reveals key metabolic adjustments in the xerohalophyte Salvadora persica L. during adaptation to water deficit and subsequent recovery conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:180-195. [PMID: 32146282 DOI: 10.1016/j.plaphy.2020.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Water deficit severely limits productivity of plants, and pose a major threat to modern agriculture system. Therefore, understanding drought adaptive mechanisms in drought-tolerant plants is imperative to formulate strategies for development of desiccation tolerance in crop plants. In present investigation, metabolic profiling employing GC-QTOF-MS/MS and HPLC-DAD was carried out to evaluate metabolic adjustments under drought stress in the xero-halophyte Salvadora persica. The metabolite profiling identified a total of 68 metabolites in S. persica leaf, including organic acids, amino acids, sugars, sugar alcohols, hormones, and polyphenols. The results showed that higher cellular osmolality under drought stress was accompanied by accumulations of several osmoprotectants like sugars and polyols (sucrose, glucose, mannose, galactose, erythrose, sorbose, glycerol, and myoinositol), organic acids (galactaric acid, tartaric acid, malic acid, oxalic acid, and citric acid), and amino acids (alanine, phenylalanine, tyrosine). Upregulation of ABA and JA support to achieve early drought tolerance in S. persica. Moreover, accumulation of coumarin, gallic acid, and chlorogenic acid provide antioxidative defense to S. persica. KEGG pathway enrichment analysis showed that altered metabolites were associated with starch and sucrose metabolism, galactose metabolism, inositol phosphate metabolism, and phenylalanine metabolism. While during recovery, metabolites associated with lysine biosynthesis and alanine, aspartate and glutamate metabolism were significantly altered. The results of the present study imply that coordinated regulations between various metabolites, metabolic processes, and pathways empower the xerohalophyte S. persica to adapt under drought environment. The knowledge from this study will enable the development of drought tolerance in crops using genetic engineering and breeding approaches.
Collapse
Affiliation(s)
- Jaykumar Rangani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, (Gujarat), India
| | - Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, (Gujarat), India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, (Gujarat), India.
| |
Collapse
|
92
|
Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea ( Cicer arietinum L.). Int J Mol Sci 2020; 21:E1781. [PMID: 32150870 PMCID: PMC7084756 DOI: 10.3390/ijms21051781] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Drought adversely affects crop production across the globe. The root system immensely contributes to water management and the adaptability of plants to drought stress. In this study, drought-induced phenotypic and transcriptomic responses of two contrasting chickpea (Cicer arietinum L.) genotypes were compared at the vegetative, reproductive transition, and reproductive stages. At the vegetative stage, drought-tolerant genotype maintained higher root biomass, length, and surface area under drought stress as compared to sensitive genotype. However, at the reproductive stage, root length and surface area of tolerant genotype was lower but displayed higher root diameter than sensitive genotype. The shoot biomass of tolerant genotype was overall higher than the sensitive genotype under drought stress. RNA-seq analysis identified genotype- and developmental-stage specific differentially expressed genes (DEGs) in response to drought stress. At the vegetative stage, a total of 2161 and 1873 DEGs, and at reproductive stage 4109 and 3772 DEGs, were identified in the tolerant and sensitive genotypes, respectively. Gene ontology (GO) analysis revealed enrichment of biological categories related to cellular process, metabolic process, response to stimulus, response to abiotic stress, and response to hormones. Interestingly, the expression of stress-responsive transcription factors, kinases, ROS signaling and scavenging, transporters, root nodulation, and oxylipin biosynthesis genes were robustly upregulated in the tolerant genotype, possibly contributing to drought adaptation. Furthermore, activation/repression of hormone signaling and biosynthesis genes was observed. Overall, this study sheds new insights on drought tolerance mechanisms operating in roots with broader implications for chickpea improvement.
Collapse
Affiliation(s)
- Vijay Bhaskarla
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| |
Collapse
|
93
|
Li W, Dang C, Ye Y, Wang Z, Hu L, Zhang F, Zhang Y, Qian X, Shi J, Guo Y, Zhou Q, Wang T, Chen X, Wang F. Overexpression of Grapevine VvIAA18 Gene Enhanced Salt Tolerance in Tobacco. Int J Mol Sci 2020; 21:E1323. [PMID: 32075333 PMCID: PMC7072961 DOI: 10.3390/ijms21041323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
In plants, auxin/indoleacetic acid (Aux/IAA) proteins are transcriptional regulators that regulate developmental process and responses to phytohormones and stress treatments. However, the regulatory functions of the Vitis vinifera L. (grapevine) Aux/IAA transcription factor gene VvIAA18 have not been reported. In this study, the VvIAA18 gene was successfully cloned from grapevine. Subcellular localization analysis in onion epidermal cells indicated that VvIAA18 was localized to the nucleus. Expression analysis in yeast showed that the full length of VvIAA18 exhibited transcriptional activation. Salt tolerance in transgenic tobacco plants and Escherichia. coli was significantly enhanced by VvIAA18 overexpression. Real-time quantitative PCR analysis showed that overexpression of VvIAA18 up-regulated the salt stress-responsive genes, including pyrroline-5-carboxylate synthase (NtP5CS), late embryogenesis abundant protein (NtLEA5), superoxide dismutase (NtSOD), and peroxidase (NtPOD) genes, under salt stress. Enzymatic analyses found that the transgenic plants had higher SOD and POD activities under salt stress. Meanwhile, component analysis showed that the content of proline in transgenic plants increased significantly, while the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased significantly. Based on the above results, the VvIAA18 gene is related to improving the salt tolerance of transgenic tobacco plants. The VvIAA18 gene has the potential to be applied to enhance plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Wei Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Changxi Dang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Yuxiu Ye
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Zunxin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Laibao Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yang Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Xingzhi Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Jiabin Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Yanyun Guo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Qing Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Tailin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| | - Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; (W.L.); (C.D.); (Y.Y.); (Z.W.); (L.H.); (Y.Z.); (X.Q.); (J.S.); (Y.G.); (Q.Z.); (T.W.)
| |
Collapse
|
94
|
Park SI, Kim JJ, Shin SY, Kim YS, Yoon HS. ASR Enhances Environmental Stress Tolerance and Improves Grain Yield by Modulating Stomatal Closure in Rice. FRONTIERS IN PLANT SCIENCE 2020; 10:1752. [PMID: 32117337 PMCID: PMC7033646 DOI: 10.3389/fpls.2019.01752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) genes are involved in responding to abiotic stresses, but their precise roles in enhancing grain yield under stress conditions remain to be determined. We cloned a rice (Oryza sativa) ASR gene, OsASR1, and characterized its function in rice plants. OsASR1 expression was induced by abscisic acid (ABA), salt, and drought treatments. Transgenic rice plants overexpressing OsASR1 displayed improved water regulation under salt and drought stresses, which was associated with osmolyte accumulation, improved modulation of stomatal closure, and reduced transpiration rates. OsASR1-overexpressing plants were hypersensitive to exogenous ABA and accumulated higher endogenous ABA levels under salt and drought stresses, indicating that OsASR1 is a positive regulator of the ABA signaling pathway. The growth of OsASR1-overexpressing plants was superior to that of wild-type (WT) plants under paddy field conditions when irrigation was withheld, likely due to improved modulation of stomatal closure via modified ABA signaling. The transgenic plants had higher grain yields than WT plants for four consecutive generations. We conclude that OsASR1 has a crucial role in ABA-mediated regulation of stomatal closure to conserve water under salt- and drought-stress conditions, and OsASR1 overexpression can enhance salinity and drought tolerance, resulting in improved crop yields.
Collapse
Affiliation(s)
- Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Sun-Young Shin
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Young-Saeng Kim
- Research Institute for Dok-do and Ulleung-do, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
95
|
Feng BH, Li GY, Islam M, Fu WM, Zhou YQ, Chen TT, Tao LX, Fu GF. Strengthened antioxidant capacity improves photosynthesis by regulating stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110245. [PMID: 31779890 DOI: 10.1016/j.plantsci.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 05/10/2023]
Abstract
ABA is important for plant growth and development; however, it also inhibits photosynthesis by regulating the stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Noteworthy, this negative effect can be alleviated by antioxidants including ascorbic acid (AsA) and catalase (CAT), but the underlying mechanism remains unclear. Two rice cultivars, Zhefu802 (recurrent parent) and its near-isogenic line, fgl were selected and planted in a greenhouse with 30/24 °C (day/night) under natural sunlight conditions. Compared to fgl, Zhefu802 had significantly lower net photosynthetic rate (PN) and stomatal conductance (Cond) as well as significantly higher ABA and H2O2 contents. However, AsA and CAT increased PN, Cond, and stomatal aperture, which decreased H2O2 and malondialdehyde (MDA) levels. In this process, AsA and CAT significantly increased the ribulose-1,5-bisphosphate carboxylase activity, while they strongly decreased the ribulose-1,5-bisphosphate oxygenase activity, and finally caused an obvious decrease in the ratio of photorespiration (Pr) to PN. Additionally, AsA and CAT significantly increased the expression levels of RbcS and RbcL genes of leaves, while H2O2 significantly decreased them, especially the RbcS gene. In summary, the removal of H2O2 by AsA and CAT can improve the leaf photosynthesis by alleviating the inhibition on the stomatal conductance and ribulose-1,5-bisphosphate carboxylase capacity caused by ABA.
Collapse
Affiliation(s)
- B H Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - G Y Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Md Islam
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - W M Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Y Q Zhou
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - T T Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - L X Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| | - G F Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| |
Collapse
|
96
|
Liu XS, Liang CC, Hou SG, Wang X, Chen DH, Shen JL, Zhang W, Wang M. The LRR-RLK Protein HSL3 Regulates Stomatal Closure and the Drought Stress Response by Modulating Hydrogen Peroxide Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:548034. [PMID: 33329622 PMCID: PMC7728693 DOI: 10.3389/fpls.2020.548034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/26/2020] [Indexed: 05/14/2023]
Abstract
Guard cells shrink in response to drought stress and abscisic acid (ABA) signaling, thereby reducing stomatal aperture. Hydrogen peroxide (H2O2) is an important signaling molecule acting to induce stomatal closure. As yet, the molecular basis of control over the level of H2O2 in the guard cells remains largely unknown. Here, the leucine-rich repeat (LRR)-receptor-like kinase (RLK) protein HSL3 has been shown to have the ability to negatively regulate stomatal closure by modulating the level of H2O2 in the guard cells. HSL3 was markedly up-regulated by treating plants with either ABA or H2O2, as well as by dehydration. In the loss-of-function hsl3 mutant, both stomatal closure and the activation of anion currents proved to be hypersensitive to ABA treatment, and the mutant was more tolerant than the wild type to moisture deficit; the overexpression of HSL3 had the opposite effect. In the hsl3 mutant, the transcription of NADPH oxidase gene RbohF involved in H2O2 production showed marked up-regulation, as well as the level of catalase activity was weakly inducible by ABA, allowing H2O2 to accumulate in the guard cells. HSL3 was concluded to participate in the regulation of the response to moisture deficit through ABA-induced stomatal closure triggered by the accumulation of H2O2 in the guard cells.
Collapse
Affiliation(s)
- Xuan-shan Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chao-chao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shu-guo Hou
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xin Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dong-hua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jian-lin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Mei Wang,
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Wei Zhang,
| |
Collapse
|
97
|
Zhang K, Cui H, Cao S, Yan L, Li M, Sun Y. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:1501-1514. [PMID: 31473792 DOI: 10.1007/s00299-019-02461-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 05/27/2023]
Abstract
CrCOMT, a COMT gene in Carex rigescens, was verified to enhance salt stress tolerance in transgenic Arabidopsis. High salinity severely restricts plant growth and development while melatonin can alleviate salt damage. Caffeic acid O-methyltransferase (COMT) plays an important role in regulating plant growth, development, and stress responses. COMT could also participate in melatonin biosynthesis. The objective of this study was to identify CrCOMT from Carex rigescens (Franch.) V. Krecz, a stress-tolerant grass species with a widespread distribution in north China, and to determine its physiological functions and regulatory mechanisms that impart tolerance to salt stress. The results showed that the transcription of CrCOMT exhibited different expression patterns under salt, drought, and ABA treatments. Transgenic Arabidopsis with the overexpression of CrCOMT exhibited improved growth and physiological performance under salt stress, such as higher lateral root numbers, proline level, and chlorophyll content, than in the wild type (WT). Overexpression of CrCOMT also increased dehydration tolerance in Arabidopsis. The transcription of salt response genes was more highly activated in transgenic plants than in the WT under salt stress conditions. In addition, the melatonin content in transgenic plants was higher than that in the WT after stress treatment. Taken together, our results indicated that CrCOMT may positively regulate stress responses and melatonin synthesis under salt stress.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shihao Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Li Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mingna Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
98
|
Niu M, Sun S, Nawaz MA, Sun J, Cao H, Lu J, Huang Y, Bie Z. Grafting Cucumber Onto Pumpkin Induced Early Stomatal Closure by Increasing ABA Sensitivity Under Salinity Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:1290. [PMID: 31781131 PMCID: PMC6859870 DOI: 10.3389/fpls.2019.01290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/17/2019] [Indexed: 06/02/2023]
Abstract
During early periods of salt stress, reduced stomatal opening can prevent water loss and wilting. Abscisic acid (ABA) signal plays an important role in this process. Here, we show that cucumber grafted onto pumpkin exhibits rapid stomatal closure, which helps plants to adapt to osmotic stress caused by salinity. Increased ABA contents in the roots, xylem sap, and leaves were evaluated in two grafting combinations (self-grafted cucumber and cucumber grafted onto pumpkin rootstock). The expression levels of ABA biosynthetic or signaling related genes NCED2 (9-cis-epoxycarotenoid dioxygenase gene 2), ABCG22 (ATP-binding cassette transporter genes 22), PP2C (type-2C protein phosphatases), and SnRK2.1 (sucrose non-fermenting 1-related protein kinases 2) were investigated. Results showed that a root-sourced ABA signal led to decreased stomatal opening and transpiration in the plants grafted onto pumpkin. Furthermore, plants grafted onto pumpkin had increased sensitivity to ABA, compared with self-grafted cucumbers. The inhibition of ABA biosynthesis with fluridon in roots increased the transpiration rate (Tr) and stomatal conductance (Gs) in the leaves. Our study demonstrated that the roots of pumpkin increases the sensitivity of the scion to ABA delivered from the roots to the shoots, and enhances osmotic tolerance under NaCl stress. Such a mechanism can be greatly exploited to benefit vegetable production particularly in semiarid saline regions.
Collapse
Affiliation(s)
- Mengliang Niu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shitao Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Azher Nawaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Jingyu Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Junyang Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
99
|
Gori A, Tattini M, Centritto M, Ferrini F, Marino G, Mori J, Guidi L, Brunetti C. Seasonal and daily variations in primary and secondary metabolism of three maquis shrubs unveil different adaptive responses to Mediterranean climate. CONSERVATION PHYSIOLOGY 2019; 7:coz070. [PMID: 32467757 PMCID: PMC7245392 DOI: 10.1093/conphys/coz070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 05/20/2023]
Abstract
Maquis species play a central role in the maintenance of coastal ecosystems thanks to anatomical, physiological and biochemical features evolved to cope with severe stress conditions. Because the seasonal and daily dynamics of physiological and biochemical traits of maquis species are not fully addressed, we performed a field study on three coexisting Mediterranean shrubs (Pistacia lentiscus L. and Phillyrea latifolia L., evergreen schlerophylls, and Cistus incanus L., semi-deciduous) aiming at detecting the main adaptive differences, on a seasonal and daily basis, in primary and secondary metabolism along with the principal climatic determinants. These species differed in their physiological and biochemical responses especially on a seasonal level. In P. latifolia, a great investment in antioxidant phenylpropanoids contributed to maintain high photosynthetic rates throughout the whole growing season. In C. incanus, high carotenoid content associated with chlorophyll (Chl) regulation alleviated oxidative damage during the hot and dry summers and help recover photosynthesis in autumn. In P. lentiscus, high abscisic acid levels allowed a strict control of stomata, while fine Chla/Chlb regulation concurred to avoid photoinhibition in summer. Temperature resulted the most important climatic factor controlling the physiological and biochemical status of these coexisting shrubs and, thus, in determining plant performances in this Mediterranean coastal habitat.
Collapse
Affiliation(s)
- Antonella Gori
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019, Sesto Fiorentino, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019, Sesto Fiorentino, Florence, Italy
| | - Giovanni Marino
- Institute for Sustainable Plant Protection, National Research Council of Italy, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Jacopo Mori
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019, Sesto Fiorentino, Florence, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
100
|
Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2123-2142. [PMID: 30972883 PMCID: PMC6790364 DOI: 10.1111/pbi.13127] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 05/10/2023]
Abstract
Drought is an abiotic stress that affects plant growth, and lipids are the main economic factor in the agricultural production of oil crops. However, the molecular mechanisms of drought response function in lipid metabolism remain little known. In this study, overexpression (OE) of different copies of the drought response genes LEA3 and VOC enhanced both drought tolerance and oil content in Brassica napus and Arabidopsis. Meanwhile, seed size, membrane stability and seed weight were also improved in OE lines. In contrast, oil content and drought tolerance were decreased in the AtLEA3 mutant (atlea3) and AtVOC-RNAi of Arabidopsis and in both BnLEA-RNAi and BnVOC-RNAi B. napus RNAi lines. Hybrids between two lines with increased or reduced expression (LEA3-OE with VOC-OE, atlea3 with AtVOC-RNAi) showed corresponding stronger trends in drought tolerance and lipid metabolism. Comparative transcriptomic analysis revealed the mechanisms of drought response gene function in lipid accumulation and drought tolerance. Gene networks involved in fatty acid (FA) synthesis and FA degradation were up- and down-regulated in OE lines, respectively. Key genes in the photosynthetic system and reactive oxygen species (ROS) metabolism were up-regulated in OE lines and down-regulated in atlea3 and AtVOC-RNAi lines, including LACS9, LIPASE1, PSAN, LOX2 and SOD1. Further analysis of photosynthetic and ROS enzymatic activities confirmed that the drought response genes LEA3 and VOC altered lipid accumulation mainly via enhancing photosynthetic efficiency and reducing ROS. The present study provides a novel way to improve lipid accumulation in plants, especially in oil production crops.
Collapse
Affiliation(s)
- Yu Liang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Kai Kang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska LincolnLincolnNEUSA
| | - Shaobo Ning
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jinye Xiong
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shuyao Song
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lingzhi Xi
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Senying Lai
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongtai Yin
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jianwei Gu
- Hubei Research Institute of New Socialist Countryside DevelopmentHubei Engineering UniversityXiaoganChina
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Shisheng Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Baoshan Wang
- College of Life ScienceShandong Normal UniversityJinanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| |
Collapse
|