51
|
Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:415-433. [PMID: 30412849 DOI: 10.1016/j.jplph.2018.10.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
With unfavourable climate changes and an increasing global population, there is a great need for more productive and stress-tolerant crops. As traditional methods of crop improvement have probably reached their limits, a further increase in the productivity of crops is expected to be possible using genetic engineering. The number of potential genes and metabolic pathways, which when genetically modified could result in improved photosynthesis and biomass production, is multiple. Photosynthesis, as the only source of carbon required for the growth and development of plants, attracts much attention is this respect, especially the question concerning how to improve CO2 fixation and limit photorespiration. The most promising direction for increasing CO2 assimilation is implementating carbon concentrating mechanisms found in cyanobacteria and algae into crop plants, while hitherto performed experiments on improving the CO2 fixation versus oxygenation reaction catalyzed by Rubisco are less encouraging. On the other hand, introducing the C4 pathway into C3 plants is a very difficult challenge. Among other points of interest for increased biomass production is engineering of metabolic regulation, certain proteins, nucleic acids or phytohormones. In this respect, enhanced sucrose synthesis, assimilate translocation to sink organs and starch synthesis is crucial, as is genetic engineering of the phytohormone metabolism. As abiotic stress tolerance is one of the key factors determining crop productivity, extensive studies are being undertaken to develop transgenic plants characterized by elevated stress resistance. This can be accomplished due to elevated synthesis of antioxidants, osmoprotectants and protective proteins. Among other promising targets for the genetic engineering of plants with elevated stress resistance are transcription factors that play a key role in abiotic stress responses of plants. In this review, most of the approaches to improving the productivity of plants that are potentially promising and have already been undertaken are described. In addition to this, the limitations faced, potential challenges and possibilities regarding future research are discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Joanna Ciura
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
52
|
South PF, Cavanagh AP, Lopez-Calcagno PE, Raines CA, Ort DR. Optimizing photorespiration for improved crop productivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1217-1230. [PMID: 30126060 DOI: 10.1111/jipb.12709] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 05/24/2023]
Abstract
In C3 plants, photorespiration is an energy-expensive process, including the oxygenation of ribulose-1,5-bisphosphate (RuBP) by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ensuing multi-organellar photorespiratory pathway required to recycle the toxic byproducts and recapture a portion of the fixed carbon. Photorespiration significantly impacts crop productivity through reducing yields in C3 crops by as much as 50% under severe conditions. Thus, reducing the flux through, or improving the efficiency of photorespiration has the potential of large improvements in C3 crop productivity. Here, we review an array of approaches intended to engineer photorespiration in a range of plant systems with the goal of increasing crop productivity. Approaches include optimizing flux through the native photorespiratory pathway, installing non-native alternative photorespiratory pathways, and lowering or even eliminating Rubisco-catalyzed oxygenation of RuBP to reduce substrate entrance into the photorespiratory cycle. Some proposed designs have been successful at the proof of concept level. A plant systems-engineering approach, based on new opportunities available from synthetic biology to implement in silico designs, holds promise for further progress toward delivering more productive crops to farmer's fields.
Collapse
Affiliation(s)
- Paul F South
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture/Agricultural Research Service, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | - Christine A Raines
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
53
|
Smith-Moore CM, Grunden AM. Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnol Adv 2018; 36:1900-1916. [DOI: 10.1016/j.biotechadv.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
54
|
Biotechnological Advances in Bacterial Microcompartment Technology. Trends Biotechnol 2018; 37:325-336. [PMID: 30236905 DOI: 10.1016/j.tibtech.2018.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Bacterial microcompartments (BMCs) represent proteinaceous macromolecular nanobioreactors that are found in a broad range of bacteria, and which are associated with either anabolic or catabolic processes. They consist of a semipermeable outer shell that packages a central metabolic enzyme or pathway, providing both enhanced flux and protection against toxic intermediates. Recombinant production of BMCs has led to their repurposing with the incorporation of altogether new pathways. Deconstructing BMCs into their component parts has shown that some individual shell proteins self-associate into filaments that can be further modified into a cytoplasmic scaffold, or cytoscaffold, to which enzymes/proteins can be targeted. BMCs therefore represent a modular system that is highly suited for engineering biological systems for useful purposes.
Collapse
|
55
|
Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S, Badger MR, Price GD. Carboxysome encapsulation of the CO 2-fixing enzyme Rubisco in tobacco chloroplasts. Nat Commun 2018; 9:3570. [PMID: 30177711 PMCID: PMC6120970 DOI: 10.1038/s41467-018-06044-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/12/2018] [Indexed: 12/30/2022] Open
Abstract
A long-term strategy to enhance global crop photosynthesis and yield involves the introduction of cyanobacterial CO2-concentrating mechanisms (CCMs) into plant chloroplasts. Cyanobacterial CCMs enable relatively rapid CO2 fixation by elevating intracellular inorganic carbon as bicarbonate, then concentrating it as CO2 around the enzyme Rubisco in specialized protein micro-compartments called carboxysomes. To date, chloroplastic expression of carboxysomes has been elusive, requiring coordinated expression of almost a dozen proteins. Here we successfully produce simplified carboxysomes, isometric with those of the source organism Cyanobium, within tobacco chloroplasts. We replace the endogenous Rubisco large subunit gene with cyanobacterial Form-1A Rubisco large and small subunit genes, along with genes for two key α-carboxysome structural proteins. This minimal gene set produces carboxysomes, which encapsulate the introduced Rubisco and enable autotrophic growth at elevated CO2. This result demonstrates the formation of α-carboxysomes from a reduced gene set, informing the step-wise construction of fully functional α-carboxysomes in chloroplasts.
Collapse
Affiliation(s)
- Benedict M Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia.
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Robert E Sharwood
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Sarah Kaines
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Yi-Leen Lim
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Baxter Massey
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Soumi Bala
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Susanne von Caemmerer
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Murray R Badger
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - G Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
56
|
Goold HD, Wright P, Hailstones D. Emerging Opportunities for Synthetic Biology in Agriculture. Genes (Basel) 2018; 9:E341. [PMID: 29986428 PMCID: PMC6071285 DOI: 10.3390/genes9070341] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Rapid expansion in the emerging field of synthetic biology has to date mainly focused on the microbial sciences and human health. However, the zeitgeist is that synthetic biology will also shortly deliver major outcomes for agriculture. The primary industries of agriculture, fisheries and forestry, face significant and global challenges; addressing them will be assisted by the sector’s strong history of early adoption of transformative innovation, such as the genetic technologies that underlie synthetic biology. The implementation of synthetic biology within agriculture may, however, be hampered given the industry is dominated by higher plants and mammals, where large and often polyploid genomes and the lack of adequate tools challenge the ability to deliver outcomes in the short term. However, synthetic biology is a rapidly growing field, new techniques in genome design and synthesis, and more efficient molecular tools such as CRISPR/Cas9 may harbor opportunities more broadly than the development of new cultivars and breeds. In particular, the ability to use synthetic biology to engineer biosensors, synthetic speciation, microbial metabolic engineering, mammalian multiplexed CRISPR, novel anti microbials, and projects such as Yeast 2.0 all have significant potential to deliver transformative changes to agriculture in the short, medium and longer term. Specifically, synthetic biology promises to deliver benefits that increase productivity and sustainability across primary industries, underpinning the industry’s prosperity in the face of global challenges.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| | - Philip Wright
- New South Wales Department of Primary Industries, Locked Bag 21, 161 Kite St, Orange, NSW 2800, Australia.
| | - Deborah Hailstones
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| |
Collapse
|
57
|
Plegaria JS, Kerfeld CA. Engineering nanoreactors using bacterial microcompartment architectures. Curr Opin Biotechnol 2018; 51:1-7. [PMID: 29035760 PMCID: PMC5899066 DOI: 10.1016/j.copbio.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Bacterial microcompartments (BMCs) are organelles that encapsulate enzymes involved in CO2 fixation or carbon catabolism in a selectively permeable protein shell. Here, we highlight recent advances in the bioengineering of these protein-based nanoreactors in heterologous systems, including transfer and expression of BMC gene clusters, the production of template empty shells, and the encapsulation of non-native enzymes.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Berkeley Synthetic Biology Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
58
|
Jakobson CM, Tullman-Ercek D, Mangan NM. Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory. Sci Rep 2018; 8:8196. [PMID: 29844460 PMCID: PMC5974357 DOI: 10.1038/s41598-018-26399-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Niall M Mangan
- Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
59
|
Abstract
Bacterial microcompartments (BMCs) are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. The potential to form BMCs is widespread and found across the kingdom Bacteria. BMCs have crucial roles in carbon dioxide fixation in autotrophs and the catabolism of organic substrates in heterotrophs. They contribute to the metabolic versatility of bacteria, providing a competitive advantage in specific environmental niches. Although BMCs were first visualized more than 60 years ago, it is mainly in the past decade that progress has been made in understanding their metabolic diversity and the structural basis of their assembly and function. This progress has not only heightened our understanding of their role in microbial metabolism but is also beginning to enable their use in a variety of applications in synthetic biology. In this Review, we focus on recent insights into the structure, assembly, diversity and function of BMCs.
Collapse
Affiliation(s)
- Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jan Zarzycki
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
60
|
Increasing metabolic potential: C-fixation. Essays Biochem 2018; 62:109-118. [PMID: 29653967 DOI: 10.1042/ebc20170014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 01/30/2023]
Abstract
Due to the growing world population, crop yields must increase to meet the rising demand. Crop plants also require adaptation to optimize performance in the changing environments caused by climate change. Improving photosynthetic carbon fixation is a promising, albeit technically challenging, strategy whose potential has only just begun to be considered in breeding programmes. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a fundamental enzyme of carbon fixation, is extremely inefficient and many strategies to improve photosynthesis focus on overcoming the limitations of this enzyme, either by improving Rubisco activity and regulation or by improving the supply of substrates. Although progress is being made, the need to tailor solutions for each crop and their respective environments has been highlighted. Even so, continuing research will be required to achieve these objectives and to grow crops more sustainably in the future.
Collapse
|
61
|
Kerfeld CA. A bioarchitectonic approach to the modular engineering of metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0387. [PMID: 28808103 DOI: 10.1098/rstb.2016.0387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA.,Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
62
|
Chaijarasphong T, Savage DF. Sequestered: Design and Construction of Synthetic Organelles. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thawatchai Chaijarasphong
- Mahidol University; Faculty of Science, Department of Biotechnology; Rama VI Rd. Bangkok 10400 Thailand
| | - David F. Savage
- University of California; Department of Molecular and Cell Biology; 2151 Berkeley Way, Berkeley CA 94720 USA
- University of California; Department of Chemistry; 2151 Berkeley Way, Berkeley CA 94720 USA
| |
Collapse
|
63
|
DiMario RJ, Machingura MC, Waldrop GL, Moroney JV. The many types of carbonic anhydrases in photosynthetic organisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:11-17. [PMID: 29362079 DOI: 10.1016/j.plantsci.2017.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 05/24/2023]
Abstract
Carbonic anhydrases (CAs) are enzymes that catalyze the interconversion of CO2 and HCO3-. In nature, there are multiple families of CA, designated with the Greek letters α through θ. CAs are ubiquitous in plants, algae and photosynthetic bacteria, often playing essential roles in the CO2 concentrating mechanisms (CCMs) which enhance the delivery of CO2 to Rubisco. As algal CCMs become better characterized, it is clear that different types of CAs are playing the same role in different algae. For example, an α-CA catalyzes the conversion of accumulated HCO3- to CO2 in the green alga Chlamydomonas reinhardtii, while a θ-CA performs the same function in the diatom Phaeodactylum tricornutum. In this review we argue that, in addition to its role of delivering CO2 for photosynthesis, other metabolic roles of CA have likely changed as the Earth's atmospheric CO2 level decreased. Since the algal and plant lineages diverged well before the decrease in atmospheric CO2, it is likely that plant, algae and photosynthetic bacteria all adapted independently to the drop in atmospheric CO2. In light of this, we will discuss how the roles of CAs may have changed over time, focusing on the role of CA in pH regulation, how CAs affect CO2 supply for photosynthesis and how CAs may help in the delivery of HCO3- for other metabolic reactions.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164, United States.
| | - Marylou C Machingura
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Grover L Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
64
|
Fuentes P, Armarego-Marriott T, Bock R. Plastid transformation and its application in metabolic engineering. Curr Opin Biotechnol 2018; 49:10-15. [DOI: 10.1016/j.copbio.2017.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022]
|
65
|
Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN. Engineering and Modulating Functional Cyanobacterial CO 2-Fixing Organelles. FRONTIERS IN PLANT SCIENCE 2018; 9:739. [PMID: 29922315 PMCID: PMC5996877 DOI: 10.3389/fpls.2018.00739] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 05/12/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla and provide a means for compartmentalizing specific metabolic pathways. They sequester catalytic enzymes from the cytoplasm, using an icosahedral proteinaceous shell with selective permeability to metabolic molecules and substrates, to enhance metabolic efficiency. Carboxysomes were the first BMCs discovered and their unprecedented capacity of CO2 fixation allows cyanobacteria to make a significant contribution to global carbon fixation. There is an increasing interest in utilizing synthetic biology to construct synthetic carboxysomes in new hosts, i.e., higher plants, to enhance carbon fixation and productivity. Here, we report the construction of a synthetic operon of the β-carboxysome from the cyanobacterium Synechococcus elongatus PCC7942 to generate functional β-carboxysome-like structures in Escherichia coli. The protein expression, structure, assembly, and activity of synthetic β-carboxysomes were characterized in depth using confocal, electron and atomic force microscopy, proteomics, immunoblot analysis, and enzymatic assays. Furthermore, we examined the in vivo interchangeability of β-carboxysome building blocks with other BMC components. To our knowledge, this is the first production of functional β-carboxysome-like structures in heterologous organisms. It provides important information for the engineering of fully functional carboxysomes and CO2-fixing modules in higher plants. The study strengthens our synthetic biology toolbox for generating BMC-based organelles with tunable activities and new scaffolding biomaterials for metabolic improvement and molecule delivery.
Collapse
|
66
|
Occhialini A. Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay. Methods Mol Biol 2018; 1789:177-194. [PMID: 29916080 DOI: 10.1007/978-1-4939-7856-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The bimolecular fluorescent complementation (BiFC) is a fluorescent complementation method largely used to investigate protein-protein interaction in living cells. This method is based on the ability of two nonfluorescent fragments to assemble forming a native fluorescent reporter with the same spectral properties of the native reporter. Such fragments are fused to putative protein partners that in case of interaction will bring the two halves in close proximity, allowing for the reconstitution of an active fluorescent reporter. The BiFC has been used to investigate protein-protein interaction in a number of different organisms, including plants. In plant cells, many essential pathways of protein trafficking and subcellular localization necessitate the intervention of several protein units organized in multisubunit complexes. It is well known that vacuolar sorting of many secretory soluble proteins require the intervention of specific transmembrane cargo receptors able to interact forming dimers. In this chapter we describe a BiFC method for the efficient visualization of RMR (Receptor Membrane RING-H2) type 2 dimerization in agro-infiltrated Nicotiana benthamiana leaves. Furthermore, this relatively simple method represents an optimal strategy to test protein-protein interaction using any other putative protein partners of interest in plant cells.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food Science, University of Tennessee, Food Safety and Processing Building, 2600 River Dr., Knoxville, Tennessee, TN, 37996, USA.
| |
Collapse
|
67
|
Occhialini A, Marc-Martin S, Gouzerh G, Hillmer S, Neuhaus JM. RMR (Receptor Membrane RING-H2) type 1 and 2 show different promoter activities and subcellular localizations in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:9-18. [PMID: 29241571 DOI: 10.1016/j.plantsci.2017.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/27/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
Soluble vacuolar proteins reach their compartments of final accumulation through the binding with specific transmembrane cargo receptors. In Arabidopsis thaliana two different families of receptors have been characterized. The AtVSRs (Vacuolar Sorting Receptor), which are known to be involved in the protein sorting to lytic vacuoles (LV), and the AtRMRs (Receptor Membrane RING-H2), for which there is less evidence for a role in the traffic to the protein storage vacuole (PSV). In this study we investigated the localization and tissue expression of two RMRs (AtRMR1 and 2) in their species of origin, A. thaliana. Our experiments using leaf protoplasts and transgenic plants supported previous results of subcellular localization in Nicotiana benthamiana that visualized AtRMR1 and 2 in the cisternae of endoplasmic reticulum (ER) and in the trans-Golgi network (TGN), respectively. The promoter activities of AtRMR1 and AtRMR2 detected in transgenic A. thaliana lines suggest that the expression of these two receptors only partially overlap in some organs and tissues. These results suggest that AtRMR1 and 2 are not functionally redundant, but could also interact and participate in the same cellular process in tissues with an overlapping expression.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food Science, University of Tennessee, Food Safety and Processing Building, 2600 River Dr., Knoxville, TN 37996, USA; Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland.
| | - Sophie Marc-Martin
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Guillaume Gouzerh
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Stefan Hillmer
- Electron Microscopy Core Facility, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
68
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
69
|
Garcia-Alles LF, Lesniewska E, Root K, Aubry N, Pocholle N, Mendoza CI, Bourillot E, Barylyuk K, Pompon D, Zenobi R, Reguera D, Truan G. Spontaneous non-canonical assembly of CcmK hexameric components from β-carboxysome shells of cyanobacteria. PLoS One 2017; 12:e0185109. [PMID: 28934279 PMCID: PMC5608322 DOI: 10.1371/journal.pone.0185109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
CcmK proteins are major constituents of icosahedral shells of β-carboxysomes, a bacterial microcompartment that plays a key role for CO2 fixation in nature. Supported by the characterization of bidimensional (2D) layers of packed CcmK hexamers in crystal and electron microscopy structures, CcmK are assumed to be the major components of icosahedral flat facets. Here, we reassessed the validity of this model by studying CcmK isoforms from Synechocystis sp. PCC6803. Native mass spectrometry studies confirmed that CcmK are hexamers in solution. Interestingly, potential pre-assembled intermediates were also detected with CcmK2. Atomic-force microscopy (AFM) imaging under quasi-physiological conditions confirmed the formation of canonical flat sheets with CcmK4. Conversely, CcmK2 formed both canonical and striped-patterned patches, while CcmK1 assembled into remarkable supra-hexameric curved honeycomb-like mosaics. Mutational studies ascribed the propensity of CcmK1 to form round assemblies to a combination of two features shared by at least one CcmK isoform in most β-cyanobacteria: a displacement of an α helical portion towards the hexamer edge, where a potential phosphate binding funnel forms between packed hexamers, and the presence of a short C-terminal extension in CcmK1. All-atom molecular dynamics supported a contribution of phosphate molecules sandwiched between hexamers to bend CcmK1 assemblies. Formation of supra-hexameric curved structures could be reproduced in coarse-grained simulations, provided that adhesion forces to the support were weak. Apart from uncovering unprecedented CcmK self-assembly features, our data suggest the possibility that transitions between curved and flat assemblies, following cargo maturation, could be important for the biogenesis of β-carboxysomes, possibly also of other BMC.
Collapse
Affiliation(s)
- Luis F. Garcia-Alles
- LISBP, CNRS, INRA, INSA, University of Toulouse, Toulouse, France
- * E-mail: (LFGA); (GT)
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Katharina Root
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nathalie Aubry
- LISBP, CNRS, INRA, INSA, University of Toulouse, Toulouse, France
| | - Nicolas Pocholle
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Carlos I. Mendoza
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd Mx, México
| | - Eric Bourillot
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Denis Pompon
- LISBP, CNRS, INRA, INSA, University of Toulouse, Toulouse, France
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - David Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
| | - Gilles Truan
- LISBP, CNRS, INRA, INSA, University of Toulouse, Toulouse, France
- * E-mail: (LFGA); (GT)
| |
Collapse
|
70
|
Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J. Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum. J Biotechnol 2017; 258:126-135. [DOI: 10.1016/j.jbiotec.2017.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022]
|
71
|
Turmo A, Gonzalez-Esquer CR, Kerfeld CA. Carboxysomes: metabolic modules for CO2 fixation. FEMS Microbiol Lett 2017; 364:4082729. [DOI: 10.1093/femsle/fnx176] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/12/2017] [Indexed: 11/13/2022] Open
|
72
|
Faulkner M, Rodriguez-Ramos J, Dykes GF, Owen SV, Casella S, Simpson DM, Beynon RJ, Liu LN. Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes. NANOSCALE 2017; 9:10662-10673. [PMID: 28616951 PMCID: PMC5708340 DOI: 10.1039/c7nr02524f] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering.
Collapse
Affiliation(s)
- Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | | | - Gregory F Dykes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Deborah M Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
73
|
Giessen TW, Silver PA. Engineering carbon fixation with artificial protein organelles. Curr Opin Biotechnol 2017; 46:42-50. [DOI: 10.1016/j.copbio.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
74
|
Young EJ, Burton R, Mahalik JP, Sumpter BG, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications. Front Microbiol 2017; 8:1441. [PMID: 28824573 PMCID: PMC5534457 DOI: 10.3389/fmicb.2017.01441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as "building blocks" for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.
Collapse
Affiliation(s)
- Eric J. Young
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Rodney Burton
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Jyoti P. Mahalik
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Bobby G. Sumpter
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Cheryl A. Kerfeld
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley National Laboratory, BerkeleyCA, United States
| | - Daniel C. Ducat
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| |
Collapse
|
75
|
Simkin AJ, Lopez‐Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO 2 assimilation, vegetative biomass and seed yield in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:805-816. [PMID: 27936496 PMCID: PMC5466442 DOI: 10.1111/pbi.12676] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 05/18/2023]
Abstract
In this article, we have altered the levels of three different enzymes involved in the Calvin-Benson cycle and photorespiratory pathway. We have generated transgenic Arabidopsis plants with altered combinations of sedoheptulose 1,7-bisphosphatase (SBPase), fructose 1,6-bisphophate aldolase (FBPA) and the glycine decarboxylase-H protein (GDC-H) gene identified as targets to improve photosynthesis based on previous studies. Here, we show that increasing the levels of the three corresponding proteins, either independently or in combination, significantly increases the quantum efficiency of PSII. Furthermore, photosynthetic measurements demonstrated an increase in the maximum efficiency of CO2 fixation in lines over-expressing SBPase and FBPA. Moreover, the co-expression of GDC-H with SBPase and FBPA resulted in a cumulative positive impact on leaf area and biomass. Finally, further analysis of transgenic lines revealed a cumulative increase of seed yield in SFH lines grown in high light. These results demonstrate the potential of multigene stacking for improving the productivity of food and energy crops.
Collapse
Affiliation(s)
| | | | - Philip A. Davey
- School of Biological SciencesUniversity of EssexColchesterUK
| | | | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Stefan Timm
- Plant Physiology DepartmentUniversity of RostockRostockGermany
| | - Hermann Bauwe
- Plant Physiology DepartmentUniversity of RostockRostockGermany
| | | |
Collapse
|
76
|
Sommer M, Cai F, Melnicki M, Kerfeld CA. β-Carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3841-3855. [PMID: 28419380 PMCID: PMC5853843 DOI: 10.1093/jxb/erx115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Carboxysomes are bacterial microcompartments (BMCs) that enhance CO2 fixation in all cyanobacteria. Structurally, carboxysome shell proteins are classified according to the type of oligomer formed: hexameric (BMC-H), trimeric (BMC-T) and pentameric (BMC-P) proteins. To understand the forces driving the evolution of the carboxysome shell, we conducted a bioinformatic study of genes encoding β-carboxysome shell proteins, taking advantage of the recent large increase in sequenced cyanobacterial genomes. In addition to the four well-established BMC-H (CcmK1-4) classes, our analysis reveals two new CcmK classes, which we name CcmK5 and CcmK6. CcmK5 is phylogenetically closest to CcmK3 and CcmK4, and the ccmK5 gene is found only in genomes lacking ccmK3 and ccmk4 genes. ccmK6 is found predominantly in heterocyst-forming cyanobacteria. The gene encoding the BMC-T homolog CcmO is associated with the main carboxysome locus (MCL) in only 60% of all species. We find five evolutionary origins of separation of ccmO from the MCL. Transcriptome analysis demonstrates that satellite ccmO genes, in contrast to MCL-associated ccmO genes, are never co-regulated with other MCL genes. The dispersal of carboxysome shell genes across the genome allows for distinct regulation of their expression, perhaps in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Manuel Sommer
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fei Cai
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Melnicki
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
77
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
78
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
79
|
Sharwood RE. A step forward to building an algal pyrenoid in higher plants. THE NEW PHYTOLOGIST 2017; 214:496-499. [PMID: 28318030 DOI: 10.1111/nph.14514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Building 134 Linnaeus Way, Canberra, ACT, 2602, Australia
| |
Collapse
|
80
|
Yin X, Struik PC. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2345-2360. [PMID: 28379522 PMCID: PMC5447886 DOI: 10.1093/jxb/erx085] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice in tropical, subtropical, and temperate environments, to evaluate the following routes: (1) improving mesophyll conductance (gm); (2) improving Rubisco specificity (Sc/o); (3) improving both gm and Sc/o; (4) introducing C4 biochemistry; (5) introducing C4 Kranz anatomy that effectively minimizes CO2 leakage; (6) engineering the complete C4 mechanism; (7) engineering cyanobacterial bicarbonate transporters; (8) engineering a more elaborate cyanobacterial CO2-concentrating mechanism (CCM) with the carboxysome in the chloroplast; and (9) a mechanism that combines the low ATP cost of the cyanobacterial CCM and the high photosynthetic capacity per unit leaf nitrogen. All routes improved crop mass production, but benefits from Routes 1, 2, and 7 were ≤10%. Benefits were higher in the presence than in the absence of drought, and under the present climate than for the climate predicted for 2050. Simulated crop mass differences resulted not only from the increased canopy photosynthesis competence but also from changes in traits such as light interception and crop senescence. The route combinations gave larger effects than the sum of the effects of the single routes, but only Route 9 could bring an advantage of ≥50% under any environmental conditions. To supercharge crop productivity, exploring a combination of routes in improving the CCM, photosynthetic capacity, and quantum efficiency is required.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
81
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
82
|
Orr DJ, Alcântara A, Kapralov MV, Andralojc PJ, Carmo-Silva E, Parry MAJ. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency. PLANT PHYSIOLOGY 2016; 172:707-717. [PMID: 27342312 PMCID: PMC5047088 DOI: 10.1104/pp.16.00750] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 05/18/2023]
Abstract
The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (D.J.O., A.A., E.C.-S., M.A.J.P.); Rothamsted Research, Plant Biology and Crop Science, Harpenden AL5 2JQ, United Kingdom (D.J.O., A.A., P.J.A., E.C.-S., M.A.J.P.); Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia (M.V.K.); and School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom (M.V.K.)
| | - André Alcântara
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (D.J.O., A.A., E.C.-S., M.A.J.P.); Rothamsted Research, Plant Biology and Crop Science, Harpenden AL5 2JQ, United Kingdom (D.J.O., A.A., P.J.A., E.C.-S., M.A.J.P.); Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia (M.V.K.); and School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom (M.V.K.)
| | - Maxim V Kapralov
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (D.J.O., A.A., E.C.-S., M.A.J.P.); Rothamsted Research, Plant Biology and Crop Science, Harpenden AL5 2JQ, United Kingdom (D.J.O., A.A., P.J.A., E.C.-S., M.A.J.P.); Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia (M.V.K.); and School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom (M.V.K.)
| | - P John Andralojc
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (D.J.O., A.A., E.C.-S., M.A.J.P.); Rothamsted Research, Plant Biology and Crop Science, Harpenden AL5 2JQ, United Kingdom (D.J.O., A.A., P.J.A., E.C.-S., M.A.J.P.); Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia (M.V.K.); and School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom (M.V.K.)
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (D.J.O., A.A., E.C.-S., M.A.J.P.); Rothamsted Research, Plant Biology and Crop Science, Harpenden AL5 2JQ, United Kingdom (D.J.O., A.A., P.J.A., E.C.-S., M.A.J.P.); Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia (M.V.K.); and School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom (M.V.K.)
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (D.J.O., A.A., E.C.-S., M.A.J.P.); Rothamsted Research, Plant Biology and Crop Science, Harpenden AL5 2JQ, United Kingdom (D.J.O., A.A., P.J.A., E.C.-S., M.A.J.P.); Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia (M.V.K.); and School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom (M.V.K.)
| |
Collapse
|
83
|
Occhialini A, Gouzerh G, Di Sansebastiano GP, Neuhaus JM. Dimerization of the Vacuolar Receptors AtRMR1 and -2 from Arabidopsis thaliana Contributes to Their Localization in the trans-Golgi Network. Int J Mol Sci 2016; 17:E1661. [PMID: 27706038 PMCID: PMC5085694 DOI: 10.3390/ijms17101661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
In Arabidopsis thaliana, different types of vacuolar receptors were discovered. The AtVSR (Vacuolar Sorting Receptor) receptors are well known to be involved in the traffic to lytic vacuole (LV), while few evidences demonstrate the involvement of the receptors from AtRMR family (Receptor Membrane RING-H2) in the traffic to the protein storage vacuole (PSV). In this study we focused on the localization of two members of AtRMR family, AtRMR1 and -2, and on the possible interaction between these two receptors in the plant secretory pathway. Our experiments with agroinfiltrated Nicotiana benthamiana leaves demonstrated that AtRMR1 was localized in the endoplasmic reticulum (ER), while AtRMR2 was targeted to the trans-Golgi network (TGN) due to the presence of a cytosolic 23-amino acid sequence linker. The fusion of this linker to an equivalent position in AtRMR1 targeted this receptor to the TGN, instead of the ER. By using a Bimolecular Fluorescent Complementation (BiFC) technique and experiments of co-localization, we demonstrated that AtRMR2 can make homodimers, and can also interact with AtRMR1 forming heterodimers that locate to the TGN. Such interaction studies strongly suggest that the transmembrane domain and the few amino acids surrounding it, including the sequence linker, are essential for dimerization. These results suggest a new model of AtRMR trafficking and dimerization in the plant secretory pathway.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ Herts, UK.
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| | - Guillaume Gouzerh
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| | - Gian-Pietro Di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Campus Ecotekne, 73100 Lecce, Italy.
| | - Jean-Marc Neuhaus
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| |
Collapse
|
84
|
Polka JK, Hays SG, Silver PA. Building Spatial Synthetic Biology with Compartments, Scaffolds, and Communities. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a024018. [PMID: 27270297 DOI: 10.1101/cshperspect.a024018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional views of synthetic biology often treat the cell as an unstructured container in which biological reactions proceed uniformly. In reality, the organization of biological molecules has profound effects on cellular function: not only metabolic, but also physical and mechanical. Here, we discuss a variety of perturbations available to biologists in controlling protein, nucleotide, and membrane localization. These range from simple tags, fusions, and scaffolds to heterologous expression of compartments and other structures that confer unique physical properties to cells. Next, we relate these principles to those guiding the spatial environments outside of cells such as the extracellular matrix. Finally, we discuss new directions in building intercellular organizations to create novel symbioses.
Collapse
Affiliation(s)
- Jessica K Polka
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Stephanie G Hays
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| |
Collapse
|
85
|
Erb TJ, Zarzycki J. Biochemical and synthetic biology approaches to improve photosynthetic CO 2-fixation. Curr Opin Chem Biol 2016; 34:72-79. [PMID: 27400232 DOI: 10.1016/j.cbpa.2016.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is an urgent need to improve agricultural productivity to secure future food and biofuel supply. Here, we summarize current approaches that aim at improving photosynthetic CO2-fixation. We critically review, compare and comment on the four major lines of research towards this aim, which focus on (i) improving RubisCO, the CO2-fixing enzyme in photosynthesis, (ii) implementing CO2-concentrating mechanisms, (iii) establishing synthetic photorespiration bypasses, and (iv) engineering synthetic CO2-fixation pathways.
Collapse
Affiliation(s)
- Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Biochemistry & Synthetic Biology of Microbial Metabolism Group, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Biochemistry & Synthetic Biology of Microbial Metabolism Group, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| |
Collapse
|
86
|
Hanson MR, Lin MT, Carmo-Silva AE, Parry MA. Towards engineering carboxysomes into C3 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:38-50. [PMID: 26867858 PMCID: PMC4970904 DOI: 10.1111/tpj.13139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can react with O2 instead of CO2 , leading to photorespiration. In cyanobacteria, bacterial microcompartments, known as carboxysomes, improve the efficiency of photosynthesis by concentrating CO2 near the enzyme Rubisco. Cyanobacterial Rubisco enzymes are faster than those of C3 plants, though they have lower specificity toward CO2 than the land plant enzyme. Replacement of land plant Rubisco by faster bacterial variants with lower CO2 specificity will improve photosynthesis only if a microcompartment capable of concentrating CO2 can also be installed into the chloroplast. We review current information about cyanobacterial microcompartments and carbon-concentrating mechanisms, plant transformation strategies, replacement of Rubisco in a model C3 plant with cyanobacterial Rubisco and progress toward synthesizing a carboxysome in chloroplasts.
Collapse
Affiliation(s)
- Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | | | - Martin A.J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
87
|
Gonzalez-Esquer CR, Newnham SE, Kerfeld CA. Bacterial microcompartments as metabolic modules for plant synthetic biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:66-75. [PMID: 26991644 DOI: 10.1111/tpj.13166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 05/28/2023]
Abstract
Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology.
Collapse
Affiliation(s)
| | - Sarah E Newnham
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Berkeley Synthetic Biology Institute, UC Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
88
|
Meyer MT, McCormick AJ, Griffiths H. Will an algal CO2-concentrating mechanism work in higher plants? CURRENT OPINION IN PLANT BIOLOGY 2016; 31:181-8. [PMID: 27194106 DOI: 10.1016/j.pbi.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/19/2023]
Abstract
Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK.
| |
Collapse
|
89
|
Kerfeld CA, Melnicki MR. Assembly, function and evolution of cyanobacterial carboxysomes. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:66-75. [PMID: 27060669 DOI: 10.1016/j.pbi.2016.03.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 05/19/2023]
Abstract
All cyanobacteria contain carboxysomes, RuBisCO-encapsulating bacterial microcompartments that function as prokaryotic organelles. The two carboxysome types, alpha and beta, differ fundamentally in components, assembly, and species distribution. Alpha carboxysomes share a highly-conserved gene organization, with evidence of horizontal gene transfer from chemoautotrophic proteobacteria to the picocyanobacteria, and seem to co-assemble shells concomitantly with aggregation of cargo enzymes. In contrast, beta carboxysomes assemble an enzymatic core first, with an encapsulation peptide playing a critical role in formation of the surrounding shell. Based on similarities in assembly, and phylogenetic analysis of the pentameric shell protein conserved across all bacterial microcompartments, beta carboxysomes appear to be more closely related to the microcompartments of heterotrophic bacteria (metabolosomes) than to alpha carboxysomes, which appear deeply divergent. Beta carboxysomes can be found in the basal cyanobacterial clades that diverged before the ancestor of the chloroplast and have recently been shown to be able to encapsulate functional RuBisCO enzymes resurrected from ancestrally-reconstructed sequences, consistent with an ancient origin. Alpha and beta carboxysomes are not only distinct units of evolution, but are now emerging as genetic/metabolic modules for synthetic biology; heterologous expression and redesign of both the shell and the enzymatic core have recently been achieved.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Matthew R Melnicki
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
90
|
Long BM, Rae BD, Rolland V, Förster B, Price GD. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:1-8. [PMID: 26999306 DOI: 10.1016/j.pbi.2016.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 05/21/2023]
Abstract
Global population growth is projected to outpace plant-breeding improvements in major crop yields within decades. To ensure future food security, multiple creative efforts seek to overcome limitations to crop yield. Perhaps the greatest limitation to increased crop yield is photosynthetic inefficiency, particularly in C3 crop plants. Recently, great strides have been made toward crop improvement by researchers seeking to introduce the cyanobacterial CO2-concentrating mechanism (CCM) into plant chloroplasts. This strategy recognises the C3 chloroplast as lacking a CCM, and being a primordial cyanobacterium at its essence. Hence the collection of solute transporters, enzymes, and physical structures that make cyanobacterial CO2-fixation so efficient are viewed as a natural source of genetic material for C3 chloroplast improvement. Also we highlight recent outstanding research aimed toward the goal of introducing a cyanobacterial CCM into C3 chloroplasts and consider future research directions.
Collapse
Affiliation(s)
- Benedict M Long
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Benjamin D Rae
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Vivien Rolland
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
91
|
Sun Y, Casella S, Fang Y, Huang F, Faulkner M, Barrett S, Liu LN. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow. PLANT PHYSIOLOGY 2016; 171:530-41. [PMID: 26956667 PMCID: PMC4854705 DOI: 10.1104/pp.16.00107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 05/08/2023]
Abstract
Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Yi Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Steve Barrett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| |
Collapse
|
92
|
Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M, Ort DR, Parry MAJ, Sage R, Timm S, Walker B, Weber APM. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2977-88. [PMID: 26951371 DOI: 10.1093/jxb/erw076] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production.
Collapse
Affiliation(s)
- Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, 41012 Sevilla, Spain
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Florian A Busch
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Myles Levey
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Donald R Ort
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture/Agricultural Research Service, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Berkley Walker
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture/Agricultural Research Service, Urbana, IL 61801, USA Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
93
|
Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1302-15. [PMID: 26538195 PMCID: PMC5102585 DOI: 10.1111/pbi.12497] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 05/13/2023]
Abstract
Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Doreen Feike
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
94
|
Hanson DT, Stutz SS, Boyer JS. Why small fluxes matter: the case and approaches for improving measurements of photosynthesis and (photo)respiration. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3027-39. [PMID: 27099373 PMCID: PMC4867897 DOI: 10.1093/jxb/erw139] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Since its inception, the Farquhar et al. (1980) model of photosynthesis has been a mainstay for relating biochemistry to environmental conditions from chloroplast to global levels in terrestrial plants. Many variables could be assigned from basic enzyme kinetics, but the model also required measurements of maximum rates of photosynthetic electron transport (J max ), carbon assimilation (Vcmax ), conductance of CO2 into (g s ) and through (g m ) the leaf, and the rate of respiration during the day (R d ). This review focuses on improving the accuracy of these measurements, especially fluxes from photorespiratory CO2, CO2 in the transpiration stream, and through the leaf epidermis and cuticle. These fluxes, though small, affect the accuracy of all methods of estimating mesophyll conductance and several other photosynthetic parameters because they all require knowledge of CO2 concentrations in the intercellular spaces. This review highlights modified methods that may help to reduce some of the uncertainties. The approaches are increasingly important when leaves are stressed or when fluxes are inferred at scales larger than the leaf.
Collapse
Affiliation(s)
- David T Hanson
- Department of Biology, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Samantha S Stutz
- Department of Biology, MSC03-2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - John S Boyer
- Interdisciplinary Plant Group, 1-31 Agriculture Building, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
95
|
Mullineaux CW. Photosynthesis: Rewiring an angiosperm. NATURE PLANTS 2016; 2:16018. [PMID: 27249352 DOI: 10.1038/nplants.2016.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
96
|
Cai F, Bernstein SL, Wilson SC, Kerfeld CA. Production and Characterization of Synthetic Carboxysome Shells with Incorporated Luminal Proteins. PLANT PHYSIOLOGY 2016; 170:1868-77. [PMID: 26792123 PMCID: PMC4775138 DOI: 10.1104/pp.15.01822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/16/2016] [Indexed: 05/19/2023]
Abstract
Spatial segregation of metabolism, such as cellular-localized CO2 fixation in C4 plants or in the cyanobacterial carboxysome, enhances the activity of inefficient enzymes by selectively concentrating them with their substrates. The carboxysome and other bacterial microcompartments (BMCs) have drawn particular attention for bioengineering of nanoreactors because they are self-assembling proteinaceous organelles. All BMCs share an architecturally similar, selectively permeable shell that encapsulates enzymes. Fundamental to engineering carboxysomes and other BMCs for applications in plant synthetic biology and metabolic engineering is understanding the structural determinants of cargo packaging and shell permeability. Here we describe the expression of a synthetic operon in Escherichia coli that produces carboxysome shells. Protein domains native to the carboxysome core were used to encapsulate foreign cargo into the synthetic shells. These synthetic shells can be purified to homogeneity with or without luminal proteins. Our results not only further the understanding of protein-protein interactions governing carboxysome assembly, but also establish a platform to study shell permeability and the structural basis of the function of intact BMC shells both in vivo and in vitro. This system will be especially useful for developing synthetic carboxysomes for plant engineering.
Collapse
Affiliation(s)
- Fei Cai
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); and MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (C.A.K.)
| | - Susan L Bernstein
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); and MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (C.A.K.)
| | - Steven C Wilson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); and MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (C.A.K.)
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (F.C., S.L.B., S.C.W., C.A.K.); and MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (C.A.K.)
| |
Collapse
|
97
|
Uehara S, Adachi F, Ito-Inaba Y, Inaba T. Specific and Efficient Targeting of Cyanobacterial Bicarbonate Transporters to the Inner Envelope Membrane of Chloroplasts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:16. [PMID: 26870048 PMCID: PMC4735556 DOI: 10.3389/fpls.2016.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM) of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.
Collapse
Affiliation(s)
- Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| | - Fumi Adachi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazaki, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| |
Collapse
|
98
|
Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:148-60. [PMID: 26662726 PMCID: PMC4718753 DOI: 10.1111/tpj.13098] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.
Collapse
Affiliation(s)
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - P. John Andralojc
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Martin A. J. Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| |
Collapse
|
99
|
Shi X, Germain A, Hanson MR, Bentolila S. RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering. PLANT PHYSIOLOGY 2016; 170:294-309. [PMID: 26578708 PMCID: PMC4704580 DOI: 10.1104/pp.15.01280] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/13/2015] [Indexed: 05/02/2023]
Abstract
Plant RNA editosomes modify cytidines (C) to uridines (U) at specific sites in plastid and mitochondrial transcripts. Members of the RNA-editing factor interacting protein (RIP) family and Organelle RNA Recognition Motif-containing (ORRM) family are essential components of the Arabidopsis (Arabidopsis thaliana) editosome. ORRM2 and ORRM3 have been recently identified as minor mitochondrial editing factors whose silencing reduces editing efficiency at ∼6% of the mitochondrial C targets. Here we report the identification of ORRM4 (for organelle RRM protein 4) as a novel, major mitochondrial editing factor that controls ∼44% of the mitochondrial editing sites. C-to-U conversion is reduced, but not eliminated completely, at the affected sites. The orrm4 mutant exhibits slower growth and delayed flowering time. ORRM4 affects editing in a site-specific way, though orrm4 mutation affects editing of the entire transcript of certain genes. ORRM4 contains an RRM domain at the N terminus and a Gly-rich domain at the C terminus. The RRM domain provides the editing activity of ORRM4, whereas the Gly-rich domain is required for its interaction with ORRM3 and with itself. The presence of ORRM4 in the editosome is further supported by its interaction with RIP1 in a bimolecular fluorescence complementation assay. The identification of ORRM4 as a major mitochondrial editing factor further expands our knowledge of the composition of the RNA editosome and reveals that adequate mitochondrial editing is necessary for normal plant development.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| |
Collapse
|
100
|
Alissandratos A, Easton CJ. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 2015; 11:2370-87. [PMID: 26734087 PMCID: PMC4685893 DOI: 10.3762/bjoc.11.259] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/20/2015] [Indexed: 11/23/2022] Open
Abstract
Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.
Collapse
Affiliation(s)
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|