51
|
Zhu N, Duan B, Zheng H, Mu R, Zhao Y, Ke L, Sun Y. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107648. [PMID: 37001303 DOI: 10.1016/j.plaphy.2023.107648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.
Collapse
Affiliation(s)
- Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bailin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
52
|
Sun X, Li H. Full-length transcriptome combined with RNA sequence analysis of Fraxinus chinensis. Genes Genomics 2023; 45:553-567. [PMID: 36905551 DOI: 10.1007/s13258-023-01374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND The dry root or stem bark of Fraxinus chinensis is a famous herb Qin Pi which is known for its anti-inflammatory, analgesic, anti-tumor, liver protective and diuretic pharmacological effects, the fundamental chemical components are coumarin, phenylethanol glycosides and flavonoids. However, it is difficult to clarify the secondary metabolite synthesis pathway and key genes involved in the pathway because of lack genome information of Fraxinus chinensis. OBJECTIVE To generate a complete transcriptome of Fraxinus chinensis and to clarify the differentially expressed genes (DEGs) in leaves and stem barks. METHODS In this study, full-length transcriptome analysis and RNA-Seq were combined to characterize Fraxinus chinensis transcriptome. RESULTS A total of 69,145 transcripts were acquired and regarded as reference transcriptome, 67,441 transcripts (97.47%) were annotated to NCBI non-redundant protein (Nr), SwissProt, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and eukaryotic orthologous groups (KOG) databases. A total of 18,917 isoforms were annotated to KEGG database and classified to 138 biological pathways. In total, 10,822 simple sequence repeat (SSRs) and 11,319 resistance (R) gene were classified to 18 types, and 3947 transcription factors (TFs) were identified in full-length transcriptome analysis. Additionally, 15,095 DEGs were detected by RNA-seq in leaves and barks, including 4696 significantly up-regulated and 10,399 significantly down-regulated genes. And 254 transcripts were annotated into phenylpropane metabolism pathway containing 86 DEGs and ten of these enzyme genes were verified by qRT-PCR. CONCLUSION It laid the foundation for further exploration of the biosynthetic pathway of phenylpropanoids and related key enzyme genes.
Collapse
Affiliation(s)
- Xiaochun Sun
- Co-construction Collaborative Innovation Center for Chineses Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | | |
Collapse
|
53
|
Tang Y, Lu L, Sheng Z, Zhao D, Tao J. An R2R3-MYB network modulates stem strength by regulating lignin biosynthesis and secondary cell wall thickening in herbaceous peony. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1237-1258. [PMID: 36633057 DOI: 10.1111/tpj.16107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhipeng Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
54
|
Li F, Zhang Y, Tian C, Wang X, Zhou L, Jiang J, Wang L, Chen F, Chen S. Molecular module of CmMYB15-like-Cm4CL2 regulating lignin biosynthesis of chrysanthemum (Chrysanthemum morifolium) in response to aphid (Macrosiphoniella sanborni) feeding. THE NEW PHYTOLOGIST 2023; 237:1776-1793. [PMID: 36444553 DOI: 10.1111/nph.18643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 05/22/2023]
Abstract
Lignin is a major component of plant cell walls and a conserved basic defense mechanism in higher plants deposited in response to aphid infection. However, the molecular mechanisms of lignin biosynthesis in response to aphid infection and the effect of lignin on aphid feeding behavior remain unclear. We report that 4-Coumarate:coenzyme A ligase 2 (Cm4CL2), a gene encoding a key enzyme in the lignin biosynthesis pathway, is induced by aphid feeding, resulting in lignin deposition and reduced aphid attack. Upstream regulator analysis showed that the expression of Cm4CL2 in response to aphid feeding was directly upregulated by CmMYB15-like, an SG2-type R2R3-MYB transcription factor. CmMYB15-like binds directly to the AC cis-element in the promoter region of Cm4CL2. Genetic validation demonstrated that CmMYB15-like was induced by aphid infection and contributed to lignin deposition and cell wall thickening, which consequently enhanced aphid resistance in a Cm4CL2-dependent manner. This study is the first to show that the CmMYB15-like-Cm4CL2 module regulates lignin biosynthesis in response to aphid feeding.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - LiKai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
55
|
Zeng Y, Song H, Xia L, Yang L, Zhang S. The responses of poplars to fungal pathogens: A review of the defensive pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1107583. [PMID: 36875570 PMCID: PMC9978395 DOI: 10.3389/fpls.2023.1107583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Long-lived tree species need to cope with changing environments and pathogens during their lifetime. Fungal diseases cause damage to trees growth and forest nurseries. As model system for woody plants, poplars are also hosts of a large variety of fungus. The defense strategies to fungus are generally associated with the type of fungus, therefore, the defense strategies of poplar against necrotrophic and biotrophic fungus are different. Poplars initiate constitutive defenses and induced defenses based on recognition of the fungus, hormone signaling network cascades, activation of defense-related genes and transcription factors and production of phytochemicals. The means of sensing fungus invasion in poplars are similar with herbs, both of which are mediated by receptor proteins and resistance (R) proteins, leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), but poplars have evolved some unique defense mechanisms compared with Arabidopsis due to their longevity. In this paper, current researches on poplar defensive responses to necrotrophic and biotrophic fungus, which mainly include the physiological and genetic aspects, and the role of noncoding RNA (ncRNA) in fungal resistance are reviewed. This review also provides strategies to enhance poplar disease resistance and some new insights into future research directions.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haifeng Song
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
56
|
Yang J, Wu X, Aucapiña CB, Zhang D, Huang J, Hao Z, Zhang Y, Ren Y, Miao Y. NtMYB12 requires for competition between flavonol and (pro)anthocyanin biosynthesis in Narcissus tazetta tepals. MOLECULAR HORTICULTURE 2023; 3:2. [PMID: 37789446 PMCID: PMC10515073 DOI: 10.1186/s43897-023-00050-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 10/05/2023]
Abstract
The color of flowers is one of the main characteristics adopted for plants to attract pollinators to ensure the reproductive success of the plant, they are also important in their ornamental appeal in Narcissus plant. In this study, we identified a NtMYB12 locus encoding an R2R3-MYB transcription factor. Comparative transcriptome analysis of loss- and gain- of NtMYB12 tissue relative to wild-type narcissus showed NtMYB12 was mainly involved in flavonol and phenylpropanoid metabolic pathways. Biochemical evidences of dual-luciferase activity and chromatin immunoprecipitation assay supported that MYB12 directly bound to promoters of NtFLS, NtLAR, and NtDFR that were cloned by genome walking assay, and activated NtFLS and NtLAR expression but repressed NtDFR expression. More interestingly, NtMYB12 can interact with NtbHLH1 and NtWD40-1 proteins via R3 domain that were selected by transcriptome-based WGCNA and confirmed by yeast two hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assay. Interaction of NtMYB12 with NtbHLH1 and NtWD40-1 forming MYB-bHLH-WD40 triplex specially activated NtDFR and NtANS expression and promoted (pro)anthocyanin accumulation, while NtMYB12 alone activated NtFLS and NtLAR expression and accumulated flavonols, but repressed NtDFR expression. These results indicated that NtMYB12 alone or NtMYB12-bHLH1-WD40-1 triplex requires for competition of metabolism fluxes between flavonol and (pro)anthocyanin biosynthesis. NtMYB12 dually functions on flavonol and proanthocyanin biogenesis via physically binding to NtFLS and NtLAR promoter activating their expression and on (pro)anthocyanin biosynthesis via NtMYB12-NtWD40-NtbHLH (MBW) triplex activating NtDFR and NtANS expression. Requirement of NtMYB12 alone or MBW complex for the competition between flavonol and anthocyanin biosynthesis results in narcissus colorized petal traits.
Collapse
Affiliation(s)
- Jingwen Yang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xi Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Cristina belen Aucapiña
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Deyu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiazhi Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ziyuan Hao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
57
|
Integrated Transcriptomic and Metabolomics Analysis of the Root Responses of Orchardgrass to Submergence Stress. Int J Mol Sci 2023; 24:ijms24032089. [PMID: 36768412 PMCID: PMC9916531 DOI: 10.3390/ijms24032089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Submergence stress can severely affect plant growth. Orchardgrass (Dactylis glomerata L.) is an important forage grass, and the molecular mechanisms of orchardgrass to submergence stress are not well understood. The roots of the flood-tolerant cultivar "Dian Bei" were harvested at 0 h, 8 h and 24 h of submergence stress. The combined transcriptomic and metabolomic analyses showed that β-alanine metabolism, flavonoid biosynthesis, and biosynthesis of amino acid pathways were significantly enriched at 8 h and 24 h of submergence stress and were more pronounced at 24 h. Most of the flavonoid biosynthesis-related genes were down-regulated for the synthesis of metabolites such as naringenin, apigenin, naringin, neohesperidin, naringenin chalcone, and liquiritigenin in response to submergence stress. Metabolites such as phenylalanine, tyrosine, and tryptophan were up-regulated under stress. The predominant response of flavonoid and amino acids biosynthesis to submergence stress suggests an important role of these pathways in the submergence tolerance of orchardgrass.
Collapse
|
58
|
Yang X, Li Y, Yu R, Zhang L, Yang Y, Xiao D, Li A, Wang Y. Integrated transcriptomic and metabolomic profiles reveal adaptive responses of three poplar varieties against the bacterial pathogen Lonsdalea populi. PLANT, CELL & ENVIRONMENT 2023; 46:306-321. [PMID: 36217265 DOI: 10.1111/pce.14460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Different poplar varieties vary in their tolerance to certain pathogens. However, knowledge about molecular regulation and critical responses of resistant poplars during pathogen infection remains scarce. To investigate adaptive responses to canker disease caused by the bacterium Lonsdalea populi, we screened three poplar varieties with contrasting tolerance, including Populus deltoides. 'Zhonglin 2025' (2025), Populus × Euramericana. '74/76' (107) and Populus tomentosa cv 'henan' (P. tomentosa). Transcriptomic analysis revealed significant changes in the expression levels of defence-related genes in different poplar varieties in response to infection, which reshaped the PTI and ETI processes. Intriguingly, photosynthesis-related genes were found to be highly expressed in the resistant variety, whereas the opposite was observed in the susceptible variety. Susceptible poplars maintained the activation of defence-related genes during early period of onset, which restricted the expression of photosynthesis-related and auxin signal-related genes. Furthermore, combined with metabolomic analysis, differences in the content of antibacterial substances and key differentially expressed genes in phenylpropane and flavonoid biosynthesis pathways were identified. Delayed induction of catechin in the susceptible variety and it's in vitro antibacterial activity were considered to be one of the important reasons for the differences in resistance to L. populi compared with the resistant variety, which is of practical interest for tree breeding. Moreover, the trade-off between growth and defence observed among the three poplar varieties during infection provides new insights into the multilevel regulatory circuits in tree-pathogen interactions.
Collapse
Affiliation(s)
- Xiaoqian Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yiwen Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Ruen Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Lichun Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yuzhang Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Dandan Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Aining Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
59
|
Guo P, Zhang B, Hu Z, Zhou S, Wang Y, Xie Q, Chen G. Anthocyanin accumulation and transcriptional regulation in purple flowering stalk (Brassica campestris L. var. purpurea Bailey). PLANT MOLECULAR BIOLOGY 2023; 111:57-72. [PMID: 36207656 DOI: 10.1007/s11103-022-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.
Collapse
Affiliation(s)
- Pengyu Guo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Bin Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- School of Agricultural Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuang Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
60
|
Zhao H, He Y, Zhang K, Li S, Chen Y, He M, He F, Gao B, Yang D, Fan Y, Zhu X, Yan M, Giglioli‐Guivarc'h N, Hano C, Fernie AR, Georgiev MI, Janovská D, Meglič V, Zhou M. Rewiring of the seed metabolome during Tartary buckwheat domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:150-164. [PMID: 36148785 PMCID: PMC9829391 DOI: 10.1111/pbi.13932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- College of Plant PathologyGansu Agricultural UniversityLanzhouChina
| | - Yong Chen
- Wuhan Metware Biotechnology Co., Ltd.WuhanChina
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Di Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuemei Zhu
- College of Environmental SciencesSichuan Agricultural UniversityChengduChina
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans TeamUniversité d'OrléansOrléans Cédex 2France
| | - Alisdair R. Fernie
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Laboratory of MetabolomicsInstitute of Microbiology, Bulgarian Academy of SciencesPlovdivBulgaria
| | - Dagmar Janovská
- Department of Gene BankCrop Research Institute (CRI)Praha 6Czech Republic
| | | | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
61
|
Yu S, Li J, Peng T, Ni S, Feng Y, Wang Q, Wang M, Chu X, Fan Z, Li X, Yin H, Ge W, Liu W. Identification of Chalcone Isomerase Family Genes and Roles of CnCHI4 in Flavonoid Metabolism in Camellia nitidissima. Biomolecules 2022; 13:biom13010041. [PMID: 36671426 PMCID: PMC9855375 DOI: 10.3390/biom13010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Camellia nitidissima is a woody plant with high ornamental value, and its golden-yellow flowers are rich in a variety of bioactive substances, especially flavonoids, that are beneficial to human health. Chalcone isomerases (CHIs) are key enzymes in the flavonoid biosynthesis pathway; however, there is a scarcity of information regarding the CHI family genes of C. nitidissima. In this study, seven CHI genes of C. nitidissima were identified and divided into three subfamilies by phylogenetic analysis. The results of multiple sequence alignment revealed that, unlike CnCHI1/5/6/7, CnCHI2/3/4 are bona fide CHIs that contain all the active site and critical catalytic residues. Analysis of the expression patterns of CnCHIs and the total flavonoid content of the flowers at different developmental stages revealed that CnCHI4 might play an essential role in the flavonoid biosynthesis pathway of C. nitidissima. CnCHI4 overexpression significantly increased flavonoid production in Nicotiana tabacum and C. nitidissima. The results of the dual-luciferase reporter assay and yeast one-hybrid system revealed that CnMYB7 was the key transcription factor that governed the transcription of CnCHI4. The study provides a comprehensive understanding of the CHI family genes of C. nitidissima and performed a preliminary analysis of their functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Suhang Yu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- School of Marine Sciences, Ningbo University, Ningbo 315800, China
- Jinhua Moxian Horticultural Engineering Co., Ltd., Jinhua 321000, China
| | - Jiyuan Li
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Jinhua Moxian Horticultural Engineering Co., Ltd., Jinhua 321000, China
| | - Ting Peng
- College of Agriculture, Guizhou University, Guiyang 550525, China
| | - Sui Ni
- School of Marine Sciences, Ningbo University, Ningbo 315800, China
| | - Yi Feng
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiushi Wang
- Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun 130103, China
| | - Minyan Wang
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xian Chu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Jinhua Moxian Horticultural Engineering Co., Ltd., Jinhua 321000, China
| | - Xinlei Li
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wanchuan Ge
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Weixin Liu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence:
| |
Collapse
|
62
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
63
|
Nicolas P, Shinozaki Y, Powell A, Philippe G, Snyder SI, Bao K, Zheng Y, Xu Y, Courtney L, Vrebalov J, Casteel CL, Mueller LA, Fei Z, Giovannoni JJ, Rose JKC, Catalá C. Spatiotemporal dynamics of the tomato fruit transcriptome under prolonged water stress. PLANT PHYSIOLOGY 2022; 190:2557-2578. [PMID: 36135793 PMCID: PMC9706477 DOI: 10.1093/plphys/kiac445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 05/04/2023]
Abstract
Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.
Collapse
Affiliation(s)
| | - Yoshihito Shinozaki
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Adrian Powell
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Stephen I Snyder
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Kan Bao
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | | | | | - Clare L Casteel
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - James J Giovannoni
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Carmen Catalá
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
64
|
Fan C, Zhang W, Guo Y, Sun K, Wang L, Luo K. Overexpression of PtoMYB115 improves lignocellulose recalcitrance to enhance biomass digestibility and bioethanol yield by specifically regulating lignin biosynthesis in transgenic poplar. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:119. [PMCID: PMC9636778 DOI: 10.1186/s13068-022-02218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Woody plants provide the most abundant biomass resource that is convertible for biofuels. Since lignin is a crucial recalcitrant factor against lignocellulose hydrolysis, genetic engineering of lignin biosynthesis is considered as a promising solution. Many MYB transcription factors have been identified to involve in the regulation of cell wall formation or phenylpropanoid pathway. In a previous study, we identified that PtoMYB115 contributes to the regulation of proanthocyanidin pathway, however, little is known about its role in lignocellulose biosynthesis and biomass saccharification in poplar.
Results
Here, we detected the changes of cell wall features and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments in PtoMYB115 transgenic plants. We reported that PtoMYB115 might specifically regulate lignin biosynthesis to affect xylem development. Overexpression of PtoMYB115 altered lignin biosynthetic gene expression, resulting in reduced lignin deposition, raised S/G and beta-O-4 linkage, resulting in a significant reduction in cellulase adsorption with lignin and an increment in cellulose accessibility. These alterations consequently improved lignocellulose recalcitrance for significantly enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE transgenic lines. In contrast, the knockout of PtoMYB115 by CRISPR/Cas9 showed reduced woody utilization under various chemical pretreatments.
Conclusions
This study shows that PtoMYB115 plays an important role in specifically regulating lignin biosynthesis and improving lignocellulose features. The enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE lines suggests that PtoMYB115 is a candidate gene for genetic modification to facilitate the utilization of biomass.
Collapse
|
65
|
Rajput R, Naik J, Stracke R, Pandey A. Interplay between R2R3 MYB-type activators and repressors regulates proanthocyanidin biosynthesis in banana (Musa acuminata). THE NEW PHYTOLOGIST 2022; 236:1108-1127. [PMID: 35842782 DOI: 10.1111/nph.18382] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Proanthocyanidins are oligomeric flavonoids that promote plant disease resistance and benefit human health. Banana is one of the world's most extensively farmed crops and its fruit pulp contain proanthocyanidins. However, the transcriptional regulatory network that fine tunes proanthocyanidin biosynthesis in banana remains poorly understood. We characterised two proanthocyanidin-specific R2R3 MYB activators (MaMYBPA1-MaMYBPA2) and four repressors (MaMYBPR1-MaMYBPR4) to elucidate the mechanisms underlying the transcriptional regulation of proanthocyanidin biosynthesis in banana. Heterologous expression of MaMYBPA1 and MaMYBPA2 partially complemented the Arabidopsis thaliana proanthocyanidin-deficient transparent testa2 mutant. MaMYBPA1 and MaMYBPA2 interacted physically with MaMYCs to transactivate anthocyanin synthase, leucoanthocyanidin reductase, and anthocyanidin reductase genes in vitro and form functional MYB-bHLH-WD Repeat (MBW) complexes with MaTTG1 to transactivate these promoters in vivo. Overexpression of MaMYBPAs alone or with MaMYC in banana fruits induced proanthocyanidin accumulation and transcription of proanthocyanidin biosynthesis-related genes. MaMYBPR repressors are also shown to interact with MaMYCs forming repressing MBW complexes, and diminished proanthocyanidin accumulation. Interestingly overexpression of MaMYBPA induces the expression of MaMYBPR, indicating an agile regulation of proanthocyanidin biosynthesis through the formation of competitive MBW complexes. Our results reveal regulatory modules of R2R3 MYB- that fine tune proanthocyanidin biosynthesis and offer possible targets for genetic manipulation for nutritional improvement of banana.
Collapse
Affiliation(s)
- Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ralf Stracke
- Chair of Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
66
|
Guo H, Sun X, Wang B, Wu D, Sun H, Wang Y. The upstream regulatory mechanism of BplMYB46 and the function of upstream regulatory factors that mediate resistance to stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1030459. [PMID: 36388548 PMCID: PMC9640943 DOI: 10.3389/fpls.2022.1030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Previously, we have shown that the transcription factor BplMYB46 in Betula platyphylla can enhance tolerance to salt and osmotic stress and promote secondary cell wall deposition, and we characterized its downstream regulatory mechanism. However, its upstream regulatory mechanism remains unclear. Here, the promoter activity and upstream regulatory factors of BplMYB46 were studied. Analyses of β-glucuronidase (GUS) staining and activity indicated that BplMYB46 promoter was specific temporal and spatial expression, and its expression can be induced by salt and osmotic stress. We identified three upstream regulatory factors of BplMYB46: BpDof1, BpWRKY3, and BpbZIP3. Yeast-one hybrid assays, GUS activity, chromatin immunoprecipitation, and quantitative real-time polymerase chain reaction revealed that BpDof1, BpWRKY3, and BpbZIP3 can directly regulate the expression of BplMYB46 by specifically binding to Dof, W-box, and ABRE elements in the BplMYB46 promoter, respectively. BpDof1, BpWRKY3, and BpbZIP3 were all localized to the nucleus, and their expressions can be induced by stress. Overexpression of BpDof1, BpWRKY3, and BpbZIP3 conferred the resistance of transgenic birch plants to salt and osmotic stress. Our findings provide new insights into the upstream regulatory mechanism of BplMYB46 and reveal new upstream regulatory genes that mediate resistance to adverse environments. The genes identified in our study provide novel targets for the breeding of forest tree species.
Collapse
Affiliation(s)
- Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaomeng Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Di Wu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hu Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
67
|
Qian J, Jiang L, Qing H, Chen J, Wan Z, Xu M, Fu J, Zhang C. ZeMYB9 regulates cyanidin synthesis by activating the expression of flavonoid 3'-hydroxylase gene in Zinnia elegans. FRONTIERS IN PLANT SCIENCE 2022; 13:981086. [PMID: 36330274 PMCID: PMC9623174 DOI: 10.3389/fpls.2022.981086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.
Collapse
Affiliation(s)
- Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jiahong Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ziyun Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Menghan Xu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
68
|
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. Int J Mol Sci 2022; 23:ijms231911701. [PMID: 36233003 PMCID: PMC9570290 DOI: 10.3390/ijms231911701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
Collapse
|
69
|
Cesarino I. With a little help from MYB friends: Transcriptional network controlling root suberization and lignification. PLANT PHYSIOLOGY 2022; 190:1077-1079. [PMID: 35781733 PMCID: PMC9516726 DOI: 10.1093/plphys/kiac318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
|
70
|
Wang Y, Li S, Zhu Z, Xu Z, Qi S, Xing S, Yu Y, Wu Q. Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2022; 13:1021521. [PMID: 36212326 PMCID: PMC9539313 DOI: 10.3389/fpls.2022.1021521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rosa rugosa is a famous Chinese traditional flower with high ornamental value and well environmental adapt ability. The cultivation of new colorful germplasms to improve monotonous flower color could promote its landscape application. However, the mechanism of flower color formation in R. rugosa remains unclear. In this study, combined analyses of the chemical and transcriptome were performed in the R. rugosa germplasms with representative flower colors. Among the identified anthocyanins, cyanidin 3,5-O-diglucoside (Cy3G5G) and peonidin 3,5-O-diglucoside (Pn3G5G) were the two dominant anthocyanins in the petals of R. rugosa. The sum content of Cy3G5G and Pn3G5G was responsible for the petal color intensity, such as pink or purple, light- or dark- red. The ratio of Cy3G5G to Pn3G5G was contributed to the petal color hue, that is, red or pink/purple. Maintaining both high relative and high absolute content of Cy3G5G may be the precondition for forming red-colored petals in R. rugosa. Cyanidin biosynthesis shunt was the dominant pathway for anthocyanin accumulation in R. rugosa, which may be the key reason for the presence of monotonous petal color in R. rugosa, mainly pink/purple. In the upstream pathway of cyanidin biosynthesis, 35 differentially expressed structural genes encoding 12 enzymes co-expressed to regulate the sum contents of Cy3G5G and Pn3G5G, and then determined the color intensity of petals. RrAOMT, involved in the downstream pathway of cyanidin biosynthesis, regulated the ratio of Cy3G5G to Pn3G5G via methylation and then determined the color hue of petals. It was worth mentioning that significantly higher delphinidin-3,5-O-diglucoside content and RrF3'5'H expression were detected from deep purple-red-flowered 8-16 germplasm with somewhat unique and visible blue hue. Three candidate key transcription factors identified by correlation analysis, RrMYB108, RrC1, and RrMYB114, might play critical roles in the control of petal color by regulating the expression of both RrAOMT and other multiple structural genes. These results provided novel insights into anthocyanin accumulation and flower coloration mechanism in R. rugosa, and the candidate key genes involved in anthocyanin biosynthesis could be valuable resources for the breeding of ornamental plants in future.
Collapse
Affiliation(s)
- Yiting Wang
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shaopeng Li
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ziqi Zhu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Zongda Xu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shuai Qi
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shutang Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Yunyan Yu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Qikui Wu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| |
Collapse
|
71
|
Zhang B, Yang H, Qu D, Zhu Z, Yang Y, Zhao Z. The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1683-1700. [PMID: 35527510 PMCID: PMC9398380 DOI: 10.1111/pbi.13839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Hui‐Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Dong Qu
- Shaanxi Key Laboratory Bio‐resourcesCollege of Bioscience and EngineeringShaanxi University of TechnologyHanzhongShaanxiChina
| | - Zhen‐Zhen Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Ya‐Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Zheng‐Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| |
Collapse
|
72
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
73
|
Genome-Wide Identification of R2R3-MYB Transcription Factor and Expression Analysis under Abiotic Stress in Rice. PLANTS 2022; 11:plants11151928. [PMID: 35893632 PMCID: PMC9330779 DOI: 10.3390/plants11151928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The myeloblastosis (MYB) family comprises a large group of transcription factors (TFs) that has a variety of functions. Among them, the R2R3-MYB type of proteins are the largest group in plants, which are involved in controlling various biological processes such as plant growth and development, physiological metabolism, defense, and responses to abiotic and biotic stresses. In this study, bioinformatics was adopted to conduct genome-wide identification of the R2R3-MYB TFs in rice. We identified 190 MYB TFs (99 R2R3-MYBs), which are unevenly distributed on the 12 chromosomes of rice. Based on the phylogenetic clustering and protein sequence characteristics, OsMYBs were classified into five subgroups, and 59.6% of the Os2R_MYB genes contained two introns. Analysis of cis-acting elements in the 2000 bp upstream region of Os2R_MYB genes showed that all Os2R_MYB genes contained plant hormones-related or stress-responsive elements since 91.9%, 79.8%, 79.8%, and 58.6% of Os2R_MYB genes contain ABRE, TGACG, CGTCA, and MBS motifs, respectively. Protein–protein network analysis showed that the Os2R_MYBs were involved in metabolic process, biosynthetic process, and tissue development. In addition, some genes showed a tissue-specific or developmental-stage-specific expression pattern. Moreover, the transcription levels of 20 Os2R_MYB genes under polyethylene glycol (PEG) and cadmium chloride (CdCl2) stress inducers were dissected by qRT-PCR. The results indicated genes with an altered expression upon PEG or CdCl2 stress induction. These results potentially supply a basis for further research on the role that Os2R_MYB genes play in plant development and stress responses.
Collapse
|
74
|
Jin Z, Jiang W, Luo Y, Huang H, Yi D, Pang Y. Analyses on Flavonoids and Transcriptome Reveals Key MYB Gene for Proanthocyanidins Regulation in Onobrychis Viciifolia. FRONTIERS IN PLANT SCIENCE 2022; 13:941918. [PMID: 35812930 PMCID: PMC9263696 DOI: 10.3389/fpls.2022.941918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 05/31/2023]
Abstract
Onobrychis viciifolia (sainfoin) is one of the most high-quality legume forages, which is rich in proanthocyanidins that is beneficial for the health and production of animals. In this study, proanthocyanidins and total flavonoids in leaves of 46 different sainfoin germplasm resources were evaluated, and it showed that soluble proanthocyanidin contents varied greatly in these sainfoin germplasm resources, but total flavonoids did not show significant difference. Transcriptome sequencing with high and low proanthocyanidins sainfoin resulted in the identification of totally 52,926 unigenes in sainfoin, and they were classed into different GOC categories. Among them, 1,608 unigenes were differentially expressed in high and low proanthocyanidins sainfoin samples, including 1,160 genes that were upregulated and 448 genes that were downregulated. Analysis on gene enrichment via KEGG annotation revealed that the differentially expressed genes were mainly enriched in the phenylpropanoid biosynthetic pathway and the secondary metabolism pathway. We also analyzed the expression levels of structural genes of the proanthocyanidin/flavonoid pathway in roots, stems, and leaves in the high proanthocyanidin sainfoin via RT-qPCR and found that these genes were differentially expressed in these tissues. Among them, the expression levels of F3'5'H and ANR were higher in leaves than in roots or stems, which is consistent with proanthocyanidins content in these tissues. Among MYB genes that were differentially expressed, the expression of OvMYBPA2 was relatively high in high proanthocyanidin sainfoin. Over-expression level of OvMYBPA2 in alfalfa hairy roots resulted in decreased anthocyanin content but increased proanthocyanidin content. Our study provided transcriptome information for further functional characterization of proanthocyanidin biosynthesis-related genes in sainfoin and candidate key MYB genes for bioengineering of proanthocyanidins in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongzhen Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
75
|
Transcriptome and Metabolome Profiling to Explore the Causes of Purple Leaves Formation in Non-Heading Chinese Cabbage ( Brassica rapa L. ssp. chinensis Makino var. mutliceps Hort.). Foods 2022; 11:foods11121787. [PMID: 35741985 PMCID: PMC9222747 DOI: 10.3390/foods11121787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Purple non-heading Chinese cabbage is one of the most popular vegetables, and is rich in various health-beneficial anthocyanins. Research related to genes associated with anthocyanin biosynthesis in non-heading Chinese cabbage is important. This study performed integrative transcriptome and metabolome analysis in the purple non-heading Chinese cabbage wild type (WT) and its green mutant to elucidate the formation of purple leaves. The anthocyanin level was higher in purple than in green plants, while the contents of chlorophyll and carotenoid were higher in the green mutant than in the purple WT. Twenty-five anthocyanins were identified in purple and green cultivars; eleven anthocyanin metabolites were identified specifically in the purple plants. RNA-seq analysis indicated that 27 anthocyanin biosynthetic genes and 83 transcription factors were significantly differentially expressed between the WT and its mutant, most of them with higher expression in the purple than green non-heading Chinese cabbage. Transcriptome and metabolome analyses showed that UGT75C1 catalyzing the formation of pelargonidin-3,5-O-diglucoside and cyanidin-3,5-O-diglucoside may play a critical role in purple leaf formation in non-heading Chinese cabbage. Therefore, these results provide crucial information for elucidating the formation of purple leaves in non-heading Chinese cabbage.
Collapse
|
76
|
Yan H, Zhang X, Li X, Wang X, Li H, Zhao Q, Yin P, Guo R, Pei X, Hu X, Han R, Zhao X. Integrated Transcriptome and Metabolome Analyses Reveal the Anthocyanin Biosynthesis Pathway in AmRosea1 Overexpression 84K Poplar. Front Bioeng Biotechnol 2022; 10:911701. [PMID: 35733524 PMCID: PMC9207281 DOI: 10.3389/fbioe.2022.911701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Populus alba × Populus glandulosa (84K poplar) is model material with excellent genetic engineering resource and ornamental value. In our study, AmRosea1 (Antirrhinum majus) was overexpressed in 84K poplar, and the transgenic 84K (AM) poplar with high content of anthocyanin exhibited red pigmentation leaves. The transcriptome analysis between wild type (WT) and AM showed that 170 differentially expressed genes (DEGs) (86 up-regulated and 84 down-regulated) were found, and some DEGs were involved in flavone and flavonol biosynthesis, flavonoid biosynthesis and anthocyanin biosynthesis. The metabolome analysis showed that 13 anthocyanins-related differentially accumulated metabolites (DAMs) were detected in AM. The correlation analysis between DEGs and DAMs were performed, and the results revealed that 18 DEGs, including 11 MYB genes, two BZ1 genes, one FG2 gene, one ANS gene, and three IF7MAT genes, were negatively or positively correlated with 13 DAMs. The phylogenetic analysis demonstrated that there was high homology between AmRosea1 and PagMYB113, and MYB113 co-expressed with BZ1, ANS and DFR directly. Our results elucidated the molecular mechanism of plant color change mediated by anthocyanin biosynthesis pathway, which laid the foundation for the development and utilization of colorful woody plant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rui Han
- *Correspondence: Rui Han, ; Xiyang Zhao,
| | | |
Collapse
|
77
|
Zhang Y, Yin Q, Qin W, Gao H, Du J, Chen J, Li H, Zhou G, Wu H, Wu AM. The Class II KNOX family members KNAT3 and KNAT7 redundantly participate in Arabidopsis seed coat mucilage biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3477-3495. [PMID: 35188965 DOI: 10.1093/jxb/erac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Han Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- College of life sciences, South China Agricultural University. Guangzhou, 510642, China
| | - Jinge Du
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Jiajun Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Gongke Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
- College of life sciences, South China Agricultural University. Guangzhou, 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
78
|
Xu X, Li M, Zou JX, Zheng YS, Li DD. EgMYB108 regulates very long-chain fatty acid (VLCFA) anabolism in the mesocarp of oil palm. PLANT CELL REPORTS 2022; 41:1449-1460. [PMID: 35362736 DOI: 10.1007/s00299-022-02868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
EgMYB108 regulates VLCFA anabolism in oil palm. Very long-chain fatty acids (VLCFAs), which are fatty acids with more than 18 C, can not only be used as a form of triglyceride (TAG) but also provide precursors for the biosynthesis of cuticle wax, and they exist in plant epidermal cells in the form of wax in higher plants. However, which and how transcriptional factors (TFs) regulate this process is largely unknown in oil palm. In this study, a MYB transcription factor (EgMYB108) with high expression in the mesocarp of oil palm fruit was characterized. Overexpression of EgMYB108 promoted not only total lipid content but also VLCFA accumulation in oil palm embryoids. Subsequently, transient transformation in protoplasts and qRT-PCR analysis indicated that the EgKCS5 and EgLACS4 genes were significantly increased with the overexpression of EgMYB108. Furthermore, yeast one‑hybrid assays, dual-luciferase assays and EMSAs demonstrated that EgMYB108 binds to the promoters of EgKCS5 and EgLACS4 and regulates their transcription. Finally, EgMYB108 interacts with the promoters of EgLACS and EgKCS simultaneously and finally improves the VLCFA and total lipid contents; a pathway summarizing this interaction was depicted.. The results provide new insight into the mechanism by which EgMYB108 regulates lipid and VLCFA accumulation in oil palm.
Collapse
Affiliation(s)
- Xin Xu
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
| | - Menghan Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
| | - Ji-Xin Zou
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
- Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Yu-Sheng Zheng
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
| | - Dong-Dong Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China.
| |
Collapse
|
79
|
Yang YY, Shan W, Yang TW, Wu CJ, Liu XC, Chen JY, Lu WJ, Li ZG, Deng W, Kuang JF. MaMYB4 is a negative regulator and a substrate of RING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1651-1669. [PMID: 35395128 DOI: 10.1111/tpj.15762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Fruit ripening is a complex developmental process, which is modulated by both transcriptional and post-translational events. Control of fruit ripening is important in maintaining moderate quality traits and minimizing postharvest deterioration. In this study, we discovered that the transcription factor MaMYB4 acts as a negative regulator of fruit ripening in banana. The protein levels of MaMYB4 decreased gradually with banana fruit ripening, paralleling ethylene production, and decline in firmness. DNA affinity purification sequencing combined with RNA-sequencing analyses showed that MaMYB4 preferentially binds to the promoters of various ripening-associated genes including ethylene biosynthetic and cell wall modifying genes. Furthermore, ectopic expression of MaMYB4 in tomato delayed tomato fruit ripening, which was accompanied by downregulation of ethylene biosynthetic and cell wall modifying genes. Importantly, two RING finger E3 ligases MaBRG2/3, whose protein accumulation increased progressively with fruit ripening, were found to interact with and ubiquitinate MaMYB4, contributing to decreased accumulation of MaMYB4 during fruit ripening. Transient overexpression of MaMYB4 and MaBRG2/3 in banana fruit ripening delayed or promoted fruit ripening by inhibiting or stimulating ethylene biosynthesis, respectively. Taken together, we demonstrate that MaMYB4 negatively modulates banana fruit ripening, and that MaMYB4 abundance could be regulated by protein ubiquitination, thus providing insights into the role of MaMYB4 in controlling fruit ripening at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tian-Wei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xun-Cheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zheng-Guo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
80
|
Jiao P, Chaoyang L, Wenhan Z, Jingyi D, Yunlin Z, Zhenggang X. Integrative Metabolome and Transcriptome Analysis of Flavonoid Biosynthesis Genes in Broussonetia papyrifera Leaves From the Perspective of Sex Differentiation. FRONTIERS IN PLANT SCIENCE 2022; 13:900030. [PMID: 35668799 PMCID: PMC9163962 DOI: 10.3389/fpls.2022.900030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are important secondary metabolites involved in plant development and environmental responses. Sex differences in flavonoids are common in plants. Broussonetia papyrifera is a dioecious plant that is rich in flavonoids. However, few studies have been done on its molecular mechanism, especially sex differences. In the present study, we performed an integrated transcriptomics and metabolomics analysis of the sex differences in the accumulation of flavonoids in B. papyrifera leaves at different developmental stages. In general, flavonoids accumulated gradually with developmental time, and the content in female plants was higher than that in male plants. The composition of flavonoids in female and male plants was similar, and 16 kinds of flavonoids accumulated after flowering. Correspondingly, a significant enrichment of differentially expressed genes and metabolites was observed in the flavonoid biosynthesis pathway. WGCNA and qRT-PCR analyses identified several key genes regulating the accumulation of flavonoids, such as those encoding CHS, CHI and DFR. In addition, 8 TFs were found to regulate flavonoid biosynthesis by promoting the expression of multiple structural genes. These findings provide insight into flavonoid biosynthesis in B. papyrifera associated molecular regulation.
Collapse
Affiliation(s)
- Peng Jiao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Li Chaoyang
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, China
| | - Zhai Wenhan
- College of Forestry, Northwest A&F University, Yangling, China
| | - Dai Jingyi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
81
|
Ding LN, Liu R, Li T, Li M, Liu XY, Wang WJ, Yu YK, Cao J, Tan XL. Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:55. [PMID: 35596185 PMCID: PMC9123723 DOI: 10.1186/s13068-022-02155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rapeseed (Brassica napus) is the second largest oil crop worldwide. It is widely used in food, energy production and the chemical industry, as well as being an ornamental. Consequently, it has a large economic value and developmental potential. Waterlogging is an important abiotic stress that restricts plant growth and development. However, little is known about the molecular mechanisms underlying waterlogging tolerance in B. napus. RESULTS In the present study, the physiological changes and transcriptomes of germination-stage rapeseed in response to waterlogging stress were investigated in the B. napus cultivar 'Zhongshuang 11' (ZS11) and its anthocyanin-more (am) mutant, which was identified in our previous study. The mutant showed stronger waterlogging tolerance compared with ZS11, and waterlogging stress significantly increased anthocyanin, soluble sugar and malondialdehyde contents and decreased chlorophyll contents in the mutant after 12 days of waterlogging. An RNA-seq analysis identified 1370 and 2336 differently expressed genes (DEGs) responding to waterlogging stress in ZS11 and am, respectively. An enrichment analysis revealed that the DEGs in ZS11 were predominately involved in carbohydrate metabolism, whereas those in the am mutant were particularly enriched in plant hormone signal transduction and response to endogenous stimulation. In total, 299 DEGs were identified as anthocyanin biosynthesis-related structural genes (24) and regulatory genes encoding transcription factors (275), which may explain the increased anthocyanin content in the am mutant. A total of 110 genes clustered in the plant hormone signal transduction pathway were also identified as DEGs, including 70 involved in auxin and ethylene signal transduction that were significantly changed in the mutant. Furthermore, the expression levels of 16 DEGs with putative roles in anthocyanin accumulation and biotic/abiotic stress responses were validated by quantitative real-time PCR as being consistent with the transcriptome profiles. CONCLUSION This study provides new insights into the molecular mechanisms of increased anthocyanin contents in rapeseed in response to waterlogging stress, which should be useful for reducing the damage caused by waterlogging stress and for further breeding new rapeseed varieties with high waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Na Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rui Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Teng Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wei-Jie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yan-Kun Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
82
|
Behr M, Speeckaert N, Kurze E, Morel O, Prévost M, Mol A, Mahamadou Adamou N, Baragé M, Renaut J, Schwab W, El Jaziri M, Baucher M. Leaf necrosis resulting from downregulation of poplar glycosyltransferase UGT72A2. TREE PHYSIOLOGY 2022; 42:1084-1099. [PMID: 34865151 DOI: 10.1093/treephys/tpab161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.
Collapse
Affiliation(s)
- Marc Behr
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nathanael Speeckaert
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Oriane Morel
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Martine Prévost
- Unité de recherche Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Adeline Mol
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nassirou Mahamadou Adamou
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Moussa Baragé
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| |
Collapse
|
83
|
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1144-1165. [PMID: 35277905 DOI: 10.1111/tpj.15729] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 05/20/2023]
Abstract
Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
84
|
Insights into the Molecular Regulation of Lignin Content in Triploid Poplar Leaves. Int J Mol Sci 2022; 23:ijms23094603. [PMID: 35562994 PMCID: PMC9099847 DOI: 10.3390/ijms23094603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
After polyploidization, plants usually undergo some morphological and physiological changes, including the lignin content of polyploids usually becoming lower than that of diploids. However, the regulatory mechanism of the variation of lignin content in polyploid plants remains unclear. Therefore, in this research, we used full-sib poplar triploids and diploids to explore the molecular regulatory basis of lignin content in poplar triploid leaves through the determination of lignin content, the observation of xylem cells, and transcriptome sequencing. The results showed that the lignin content of triploid leaves was significantly lower than that of diploid leaves. The xylem cells of triploid leaves were significantly larger than those of diploids. Transcriptome sequencing data show that most lignin biosynthesis genes were significantly downregulated, and genes related to cell growth were mostly upregulated in triploid leaves compared with diploid leaves. In addition, co-expression network analysis showed that several transcription factors might be involved in the regulation of lignin biosynthesis. Consequently, the altered expression of genes related to lignin might lead to the reduced lignin content in triploids. These results provide a theoretical basis for further exploring the molecular mechanism of the variation of polyploid lignin content and the utilization of polyploid lignocellulosic resources.
Collapse
|
85
|
Zhao W, Ding L, Liu J, Zhang X, Li S, Zhao K, Guan Y, Song A, Wang H, Chen S, Jiang J, Chen F. Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in Chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2403-2419. [PMID: 35090011 DOI: 10.1093/jxb/erac015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Stem mechanical strength is one of the most important agronomic traits that affects the resistance of plants against insects and lodging, and plays an essential role in the quality and yield of plants. Several transcription factors regulate mechanical strength in crops. However, mechanisms of stem strength formation and regulation remain largely unexplored, especially in ornamental plants. In this study, we identified an atypical bHLH transcription factor CmHLB (HLH PROTEIN INVOLVED IN LIGNIN BIOSYNTHESIS) in chrysanthemum, belonging to a small bHLH sub-family - the PACLOBUTRAZOL RESISTANCE (PRE) family. Overexpression of CmHLB in chrysanthemum significantly increased mechanical strength of the stem, cell wall thickness, and lignin content, compared with the wild type. In contrast, CmHLB RNA interference lines exhibited the opposite phenotypes. RNA-seq analysis indicated that CmHLB promoted the expression of genes involved in lignin biosynthesis. Furthermore, we demonstrated that CmHLB interacted with Chrysanthemum KNOTTED ARABIDOPSIS THALIANA7 (CmKNAT7) through the KNOX2 domain, which has a conserved function, i.e. it negatively regulates secondary cell wall formation of fibres and lignin biosynthesis. Collectively, our results reveal a novel role for CmHLB in regulating lignin biosynthesis by interacting with CmKNAT7 and affecting stem mechanical strength in Chrysanthemum.
Collapse
Affiliation(s)
- Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayou Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
86
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
87
|
Zhang J, Mei H, Lu H, Chen R, Hu Y, Zhang T. Transcriptome Time-Course Analysis in the Whole Period of Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2022; 13:864529. [PMID: 35463423 PMCID: PMC9022538 DOI: 10.3389/fpls.2022.864529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum and Gossypium barbadense are the widely cultivated tetraploid cottons around the world, which evolved great differences in the fiber yield and quality due to the independent domestication process. To reveal the genetic basis of the difference, we integrated 90 samples from ten time points during the fiber developmental period for investigating the dynamics of gene expression changes associated with fiber in G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 and acc. 3-79. Globally, 44,484 genes expressed in all three cultivars account for 61.14% of the total genes. About 61.39% (N = 3,412) of the cotton transcription factors were involved in fiber development, which consisted of 58 cotton TF families. The differential analysis of intra- and interspecies showed that 3 DPA had more expression changes. To discover the genes with temporally changed expression profiles during the whole fiber development, 1,850 genes predominantly expressed in G. hirsutum and 1,050 in G. barbadense were identified, respectively. Based on the weighted gene co-expression network and time-course analysis, several candidate genes, mainly involved in the secondary cell wall synthesis and phytohormones, were identified in this study, underlying possibly the transcriptional regulation and molecular mechanisms of the fiber quality differences between G. barbadense and G. hirsutum. The quantitative real-time PCR validation of the candidate genes was consistent with the RNA-seq data. Our study provides a strong rationale for the analysis of gene function and breeding of high-quality cotton.
Collapse
|
88
|
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111196. [PMID: 35193745 DOI: 10.1016/j.plantsci.2022.111196] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prashant Misra
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
89
|
Ahn JY, Kim J, Yang JY, Lee HJ, Kim S, Cho KS, Lee SH, Kim JH, Lee TH, Hur Y, Shim D. Comparative Transcriptome Analysis between Two Potato Cultivars in Tuber Induction to Reveal Associated Genes with Anthocyanin Accumulation. Int J Mol Sci 2022; 23:ijms23073681. [PMID: 35409041 PMCID: PMC8998591 DOI: 10.3390/ijms23073681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are generally accumulated within a few layers, including the epidermal cells of leaves and stems in plants. Solanum tuberosum cv. ‘Jayoung’ (hereafter, JY) is known to accumulate anthocyanin both in inner tissues and skins. We discovered that anthocyanin accumulation in the inner tissues of JY was almost diminished (more than 95% was decreased) in tuber induction condition. To investigate the transcriptomic mechanism of anthocyanin accumulation in JY flesh, which can be modulated by growth condition, we performed mRNA sequencing with white-colored flesh tissue of Solanum tuberosum cv. ‘Atlantic’ (hereafter, ‘Daeseo’, DS) grown under canonical growth conditions, a JY flesh sample grown under canonical growth conditions, and a JY flesh sample grown under tuber induction conditions. We could identify 36 common DEGs (differentially expressed genes) in JY flesh from canonical growth conditions that showed JY-specifically increased or decreased expression level. These genes were enriched with flavonoid biosynthetic process terms in GO analysis, as well as gene set enrichment analysis (GSEA) analysis. Further in silico analysis on expression levels of anthocyanin biosynthetic genes including rate-limiting genes such as StCHS and StCHI followed by RT-PCR and qRT-PCR analysis showed a strong positive correlation with the observed phenotypes. Finally, we identified StWRKY44 from 36 common DEGs as a possible regulator of anthocyanin accumulation, which was further supported by network analysis. In conclusion, we identified StWRKY44 as a putative regulator of tuber-induction-dependent anthocyanin accumulation.
Collapse
Affiliation(s)
- Ju Young Ahn
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Ju Yeon Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Hyun Ju Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Soyun Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Admin-istration, Pyeongchang 25342, Korea;
| | - Sang-Ho Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
| | - Jin-Hyun Kim
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Tae-Ho Lee
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| |
Collapse
|
90
|
Nookaraju A, Pandey SK, Ahlawat YK, Joshi CP. Understanding the Modus Operandi of Class II KNOX Transcription Factors in Secondary Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:493. [PMID: 35214825 PMCID: PMC8880547 DOI: 10.3390/plants11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass from the secondary cell walls of plants has a veritable potential to provide some of the most appropriate raw materials for producing second-generation biofuels. Therefore, we must first understand how plants synthesize these complex secondary cell walls that consist of cellulose, hemicellulose, and lignin in order to deconstruct them later on into simple sugars to produce bioethanol via fermentation. Knotted-like homeobox (KNOX) genes encode homeodomain-containing transcription factors (TFs) that modulate various important developmental processes in plants. While Class I KNOX TF genes are mainly expressed in the shoot apical meristems of both monocot and eudicot plants and are involved in meristem maintenance and/or formation, Class II KNOXTF genes exhibit diverse expression patterns and their precise functions have mostly remained unknown, until recently. The expression patterns of Class II KNOX TF genes in Arabidopsis, namely KNAT3, KNAT4, KNAT5, and KNAT7, suggest that TFs encoded by at least some of these genes, such as KNAT7 and KNAT3, may play a significant role in secondary cell wall formation. Specifically, the expression of the KNAT7 gene is regulated by upstream TFs, such as SND1 and MYB46, while KNAT7 interacts with other cell wall proteins, such as KNAT3, MYB75, OFPs, and BLHs, to regulate secondary cell wall formation. Moreover, KNAT7 directly regulates the expression of some xylan synthesis genes. In this review, we summarize the current mechanistic understanding of the roles of Class II KNOX TFs in secondary cell wall formation. Recent success with the genetic manipulation of Class II KNOX TFs suggests that this may be one of the biotechnological strategies to improve plant feedstocks for bioethanol production.
Collapse
Affiliation(s)
- Akula Nookaraju
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Kaveri Seed Company Limited, Secunderabad 500003, Telangana, India
| | - Shashank K. Pandey
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Chandrashekhar P. Joshi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
| |
Collapse
|
91
|
Identification of the Regulatory Genes of UV-B-Induced Anthocyanin Biosynthesis in Pepper Fruit. Int J Mol Sci 2022; 23:ijms23041960. [PMID: 35216077 PMCID: PMC8879456 DOI: 10.3390/ijms23041960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit peels of certain pepper (Capsicum annum L.) varieties accumulate a large amount of anthocyanins and exhibit purple color under medium-wave ultraviolet (UV-B) conditions, which severely impacts the commodity value of peppers. However, the regulatory mechanism of the above process has not been well studied so far. To explore which key genes are involved in this regulatory mechanism, pepper variety 19Q6100, the fruit peels of which turn purple under UV-B conditions, was investigated in this study. Transcription factors with expression levels significantly impacted by UV-B were identified by RNA-seq. Those genes may be involved in the regulation of UV-B-induced anthocyanin biosynthesis. Yeast one-hybrid results revealed that seven transcription factors, CabHLH143, CaMYB113, CabHLH137, CaMYBG, CaWRKY41, CaWRKY44 and CaWRKY53 directly bound to the putative promotor regions of the structural genes in the anthocyanin biosynthesis pathway. CaMYB113 was found to interact with CabHLH143 and CaHY5 by yeast two-hybrid assay, and those three genes may participate collaboratively in UV-B-induced anthocyanin biosynthesis in pepper fruit. Virus-induced gene silencing (VIGS) indicated that fruit peels of CaMYB113-silenced plants were unable to turn purple under UV-B conditions. These findings could deepen our understanding of UV-B-induced anthocyanin biosynthesis in pepper.
Collapse
|
92
|
He F, Shi YJ, Li JL, Lin TT, Zhao KJ, Chen LH, Mi JX, Zhang F, Zhong Y, Lu MM, Niu MX, Feng CH, Ding SS, Peng MY, Huang JL, Yang HB, Wan XQ. Genome-wide analysis and expression profiling of Cation/H + exchanger (CAX) family genes reveal likely functions in cadmium stress responses in poplar. Int J Biol Macromol 2022; 204:76-88. [PMID: 35124018 DOI: 10.1016/j.ijbiomac.2022.01.202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Cadmium, a toxic heavy metal, seriously affects human health and ecological security. The cation/H+ exchanger (CAX) family is a unique metal transporter that plays a crucial role in Cd acquisition, transfer, and remission in plants. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been done on the CAX family genes, especially concerning Cd stress. In this study, genome-wide analysis of the Populus CAX family identified seven stress-related CAX genes. The evolutionary tree indicated that the CaCA family genes were grouped into four clusters. Moreover, seven pairs of genes were derived by segmental duplication in poplars. Cis-acting element analysis identified numerous stress-related elements in the promoters of diverse PtrCAXs. Furthermore, some PtrCAXs were up-regulated by drought, beetle, and mechanical damage, indicating their possible function in regulating stress response. Under cadmium stress, all CAX genes in the roots were up-regulated. Our findings suggest that plants may regulate their response to Cd stress through the TF-CAXs module. Comprehensively investigating the CAX family provides a scientific basis for the phytoremediation of heavy metal pollution by Populus.
Collapse
Affiliation(s)
- Fang He
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Jie Shi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Lin Li
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tian-Tian Lin
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Kuang-Ji Zhao
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang-Hua Chen
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xuan Mi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhong
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Meng Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meng-Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shan-Shan Ding
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Min-Yue Peng
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Liang Huang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han-Bo Yang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
93
|
Jiang PF, Lin XY, Bian XY, Zeng QY, Liu YJ. Ectopic expression of Populus MYB10 promotes secondary cell wall thickening and inhibits anthocyanin accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:24-32. [PMID: 35016103 DOI: 10.1016/j.plaphy.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Secondary cell wall (SCW) formation is regulated by a multilevel transcriptional regulatory network, in which MYB transcription factors (TFs) play key roles. In woody plants, hundreds of MYB TFs have been identified, most of which have unknown functions in wood SCW biosynthesis. Here, we characterized the function of a Populus MYB gene, PtoMYB10. PtoMYB10 was found to encode an R2R3-MYB TF and exhibit dominant expression in xylem tissues. PtoMYB10 was determined to be located in the nucleus with the ability to activate transcription. Overexpression of PtoMYB10 in Populus resulted in a drastic increase in SCW thickening in xylem fiber cells as well as ectopic deposition of lignin in cortex cells. The expression of genes associated with lignin biosynthesis was induced in PtoMYB10 overexpressing plants, whereas repressed gene expression was found with the anthocyanin biosynthesis pathway. Lignin and anthocyanin are both produced from metabolites of the phenylpropanoid pathway. Accordingly, the anthocyanin content of Populus overexpressing PtoMYB10 decreased by more than 68%. These results indicate that PtoMYB10 can positively regulate xylary fiber SCW thickening, accompanied by the reprogramming of phenylpropanoid metabolism, which redirects metabolic flux from anthocyanin biosynthesis to monolignol biosynthesis.
Collapse
Affiliation(s)
- Peng-Fei Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiao-Yang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiu-Yan Bian
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
94
|
Shi J, Yan X, Sun T, Shen Y, Shi Q, Wang W, Bao M, Luo H, Nian F, Ning G. Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco. Gene 2022; 809:146017. [PMID: 34655725 DOI: 10.1016/j.gene.2021.146017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
Flavonoids and lignin consist of a large number of secondarymetabolites which are derived from the phenylpropanoid pathway, and they act as a significant role in plant growth, development, and stress response. However, few reports have documented that how different subbranches of phenylpropanoid metablolic pathway mutually interact. In Arabidopsis, AtCPC (AtCAPRICE) is known to play a negative role in anthocyanin accumulation. Nonetheless, whether AtCPC could control the biosynthesis of lignin is largely unknown. Additionally, whether the RrFLS and RrANR, flavonol synthase and anthocyanidin reductase, from Rosa rugosa regulate different branches of phenylpropanoid pathway is unclear. Here, we performed a series of transgenic experiments with short life cycle tobacco and RNA-Seq analysis. Finally, a series of assays related to biological, physiological, and phenotypic characteristics were undertaken. Our results indicated that ectopic expression of AtCPC in tobacco not only decreased the flavonoid compound accumulation, but also up-regulated several lignin biosynthetic genes, and significantly increased the accumulation of lignin. Our results also revealed that although they respectively improved the flavonol and proanthocyanidin contents, the overexpression of RrFLS and RrANR plays positive roles in lignin biosynthesis in transgenic tobacco plants. Our findings provide a novel insight into the mechanism underlying homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of plants.
Collapse
Affiliation(s)
- Jiewei Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxiao Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenen Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318, USA
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, No.452, Fengyuan Road, Kunming, China.
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
95
|
Huang D, Ming R, Xu S, Yao S, Li L, Huang R, Tan Y. Genome-Wide Identification of R2R3-MYB Transcription Factors: Discovery of a "Dual-Function" Regulator of Gypenoside and Flavonol Biosynthesis in Gynostemma pentaphyllum. FRONTIERS IN PLANT SCIENCE 2022; 12:796248. [PMID: 35069652 PMCID: PMC8767017 DOI: 10.3389/fpls.2021.796248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The R2R3-MYB gene family participates in several plant physiological processes, especially the regulation of the biosynthesis of secondary metabolites. However, little is known about the functions of R2R3-MYB genes in Gynostemma pentaphyllum (G. pentaphyllum), a traditional Chinese medicinal herb that is an excellent source of gypenosides (a class of triterpenoid saponins) and flavonoids. In this study, a systematic genome-wide analysis of the R2R3-MYB gene family was performed using the recently sequenced G. pentaphyllum genome. In total, 87 R2R3-GpMYB genes were identified and subsequently divided into 32 subgroups based on phylogenetic analysis. The analysis was based on conserved exon-intron structures and motif compositions within the same subgroup. Collinearity analysis demonstrated that segmental duplication events were majorly responsible for the expansion of the R2R3-GpMYB gene family, and Ka/Ks analysis indicated that the majority of the duplicated R2R3-GpMYB genes underwent purifying selection. A combination of transcriptome analysis and quantitative reverse transcriptase-PCR (qRT-PCR) confirmed that Gynostemma pentaphyllum myeloblastosis 81 (GpMYB81) along with genes encoding gypenoside and flavonol biosynthetic enzymes exhibited similar expression patterns in different tissues and responses to methyl jasmonate (MeJA). Moreover, GpMYB81 could bind to the promoters of Gynostemma pentaphyllum farnesyl pyrophosphate synthase 1 (GpFPS1) and Gynostemma pentaphyllum chalcone synthase (GpCHS), the key structural genes of gypenoside and flavonol biosynthesis, respectively, and activate their expression. Altogether, this study highlights a novel transcriptional regulatory mechanism that suggests that GpMYB81 acts as a "dual-function" regulator of gypenoside and flavonol biosynthesis in G. pentaphyllum.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiqiang Xu
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
96
|
Xing Y, Wang K, Huang C, Huang J, Zhao Y, Si X, Li Y. Global Transcriptome Analysis Revealed the Molecular Regulation Mechanism of Pigment and Reactive Oxygen Species Metabolism During the Stigma Development of Carya cathayensis. FRONTIERS IN PLANT SCIENCE 2022; 13:881394. [PMID: 35615144 PMCID: PMC9125253 DOI: 10.3389/fpls.2022.881394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 05/20/2023]
Abstract
Hickory (Carya cathayensis Sarg.) is a monoecious plant of the genus Carya of the Juglandaceae family. Its nuts contain a number of nutritional compounds and are deeply loved by consumers. Interestingly, it was observed that the color of hickory stigma changed obviously from blooming to mature. However, the molecular mechanism underlying color formation during stigma development and the biological significance of this phenomenon was mostly unknown. In this work, pigment content, reactive oxygen species (ROS) removal capacity, and transcriptome analysis of developing stigma of hickory at 4 differential sampling time points (S1, S2, S3, and S4) were performed to reveal the dynamic changes of related pigment, antioxidant capacity, and its internal molecular regulatory mechanism. It was found that total chlorophyll content was decreased slightly from S1 to S4, while total carotenoids content was increased from S1 to S3 but decreased gradually from S3 to S4. Total anthocyanin content continued to increase during the four periods of stigma development, reaching the highest level at the S4. Similarly, the antioxidant capacity of stigma was also gradually improved from S1 to S4. Furthermore, transcriptome analysis of developing hickory stigma identified 31,027 genes. Time-series analysis of gene expressions showed that these genes were divided into 12 clusters. Cluster 5 was enriched with some genes responsible for porphyrin and chlorophyll metabolism, carotenoid metabolism, and photosynthesis. Meanwhile, cluster 10 was enriched with genes related to flavonoid metabolism, including anthocyanin involved in ROS scavenging, and its related genes were mainly distributed in cluster 12. Based on the selected threshold values, a total of 10432 differentially expressed genes were screened out and enriched in the chlorophyll, carotenoid, anthocyanin, and ROS metabolism. The expression trends of these genes provided plausible explanations for the dynamic change of color and ROS level of hickory stigma with development. qRT-PCR analyses were basically consistent with the results of RNA-seq. The gene co-regulatory networks of pigment and ROS metabolism were further constructed and MYB113 (CCA0887S0030) and WRKY75 (CCA0573S0068) were predicted to be two core transcriptional regulators. These results provided in-depth evidence for revealing the molecular mechanism of color formation in hickory stigma and its biological significance.
Collapse
|
97
|
Li D, Yang J, Pak S, Zeng M, Sun J, Yu S, He Y, Li C. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis. THE NEW PHYTOLOGIST 2022; 233:390-408. [PMID: 34643281 DOI: 10.1111/nph.17799] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Since the roots are the very organ where plants first sense and respond drought stress, it is of great importance to better understand root responses to drought. Yet the underlying molecular mechanisms governing root responses to drought stress have been poorly understood. Here, we identified and functionally characterized a CCCH type transcription factor, PuC3H35, and its targets, anthocyanin reductase (PuANR) and early Arabidopsis aluminum induced1 (PuEARLI1), which are involved in mediating proanthocyanidin (PA) and lignin biosynthesis in response to drought stress in Populus ussuriensis root. PuC3H35 was root-specifically induced upon drought stress. Overexpressing PuC3H35 promoted PA and lignin biosynthesis and vascular tissue development, resulting in enhanced tolerance to drought stress by the means of anti-oxidation and mechanical supporting. We further demonstrated that PuC3H35 directly bound to the promoters of PuANR and PuEARLI1 and overexpressing PuANR or PuEARLI1 increased root PA or lignin levels, respectively, under drought stress. Taken together, these results revealed a novel regulatory pathway for drought tolerance, in which PuC3H35 mediated PA and lignin biosynthesis by collaboratively regulating 'PuC3H35-PuANR-PA' and 'PuC3H35-PuEARLI1-PuCCRs-lignin' modules in poplar roots.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Key Lab Forest Tree Genetics and Breeding of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Minzhen Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Sen Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yuting He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
98
|
Zhang M, Li M, Fu H, Wang K, Tian X, Qiu R, Liu J, Gao S, Zhong Z, Yang B, Zhang L. Transcriptomic analysis unravels the molecular response of Lonicera japonica leaves to chilling stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1092857. [PMID: 36618608 PMCID: PMC9815118 DOI: 10.3389/fpls.2022.1092857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
Lonicera japonica is not only an important resource of traditional Chinese medicine, but also has very high horticultural value. Studies have been performed on the physiological responses of L. japonica leaves to chilling, however, the molecular mechanism underlying the low temperature-induced leaves morphological changes remains unclear. In this study, it has been demonstrated that the ratio of pigments content including anthocyanins, chlorophylls, and carotenoids was significantly altered in response to chilling condition, resulting in the color transformation of leaves from green to purple. Transcriptomic analysis showed there were 10,329 differentially expressed genes (DEGs) co-expressed during chilling stress. DEGs were mainly mapped to secondary metabolism, cell wall, and minor carbohydrate. The upregulated genes (UGs) were mainly enriched in protein metabolism, transport, and signaling, while UGs in secondary metabolism were mainly involved in phenylpropaoids-flavonoids pathway (PFP) and carotenoids pathway (CP). Protein-protein interaction analysis illustrated that 21 interacted genes including CAX3, NHX2, ACA8, and ACA9 were enriched in calcium transport/potassium ion transport. BR biosynthesis pathway related genes and BR insensitive (BRI) were collectively induced by chilling stress. Furthermore, the expression of genes involved in anthocyanins and CPs as well as the content of chlorogenic acid (CGA) and luteoloside were increased in leaves of L. japonica under stress. Taken together, these results indicate that the activation of PFP and CP in leaves of L. japonica under chilling stress, largely attributed to the elevation of calcium homeostasis and stimulation of BR signaling, which then regulated the PFP/CP related transcription factors.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongwei Fu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kehao Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu Tian
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Renping Qiu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinkun Liu
- Department of Techonology Center, Shandong Anran Nanometer Industry Development Company Limited, Weihai, China
| | - Shuai Gao
- Department of Techonology Center, Shandong Anran Nanometer Industry Development Company Limited, Weihai, China
| | - Zhuoheng Zhong
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bingxian Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Bingxian Yang, ; Lin Zhang,
| | - Lin Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Bingxian Yang, ; Lin Zhang,
| |
Collapse
|
99
|
Liu W, Zheng T, Yang Y, Li P, Qiu L, Li L, Wang J, Cheng T, Zhang Q. Meta-Analysis of the Effect of Overexpression of MYB Transcription Factors on the Regulatory Mechanisms of Anthocyanin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:781343. [PMID: 34975967 PMCID: PMC8714666 DOI: 10.3389/fpls.2021.781343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 05/30/2023]
Abstract
MYBs (v-myb avian myeloblastosis viral oncogene homologs) are important transcriptional regulators that play critical roles in the regulation of anthocyanin biosynthesis. The overexpression of MYB genes has been reported in different plant species. However, the inconsistent strategies to assess transgenic plants have made it difficult to explain the complex mechanisms of regulation of anthocyanin biosynthesis by MYBs. We report here a meta-analysis of 608 studies from 206 publications assessing the effects of MYB overexpression on anthocyanins and evaluate the experimental variables that have an influence on transgenic plant performance. We found that MYB expression enhanced the magnitude of 20 out of 26 examined plant parameters by at least of 21% and reduced the magnitude of 1 indicator by at least 37%. We explored the variety of moderating variables causing these variations. A deeper color induced by MYBs caused higher plant attributes as compared to normal color changes. MYB genes from dicots stimulated the accumulation of anthocyanins, flavonols and impacted the expressions of PAL, CHS, CHI, FLS, F3'5'H, ANS, UFGT, and ANR as compared to monocots. Heterologous expression and homologous expression showed a great difference in anthocyanin biosynthesis. Transient gene transformation had a significant effect on the expression of flavonoid biosynthetic genes, and stable transformation had a significant effect on flavonoid accumulation. Stress could result in a significantly increased accumulation of flavonoids, especially anthocyanin, flavonol, and proanthocyanidin. Our study, thus, provides new insights into the function of MYBs in the regulatory mechanisms of flavonoid biosynthesis and the use of genetic engineering for improving anthocyanins contents.
Collapse
|
100
|
Kim MH, Cho JS, Bae EK, Choi YI, Eom SH, Lim YJ, Lee H, Park EJ, Ko JH. PtrMYB120 functions as a positive regulator of both anthocyanin and lignin biosynthetic pathway in a hybrid poplar. TREE PHYSIOLOGY 2021; 41:2409-2423. [PMID: 34100089 DOI: 10.1093/treephys/tpab082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Both anthocyanins and lignins are essential secondary metabolites in plant growth and development. Their biosynthesis is metabolically interconnected and diverges in the central metabolite 4-coumaroyl CoA of the phenylpropanoid pathway. Considerable progress has been made in understanding transcriptional regulation of genes involved in lignin and anthocyanin synthesis pathways, but the concerted regulation of these pathways is not yet fully understood. Here, we functionally characterized PtrMYB120, a R2R3-MYB transcription factor from Populus trichocarpa. Overexpression of PtrMYB120 in a hybrid poplar (i.e., 35S::PtrMYB120) was associated with increased anthocyanin (i.e., cyanidin 3-O-glucoside) accumulation and upregulation of anthocyanin biosynthetic genes. However, transgenic poplars with dominant suppression of PtrMYB120 function achieved by fusing the ERF-associated amphiphilic repression motif to PtrMYB120 (i.e., 35S::PtrMYB120-SRDX) had a dramatic decrease in not only anthocyanin but also Klason lignin content with downregulation of both anthocyanin and lignin biosynthetic genes. Indeed, 35S::PtrMYB120-SRDX poplars had irregularly shaped xylem vessels with reduced S-lignin content in stems, which was proportionally related to the level of the introduced PtrMYB120-SRDX gene. Furthermore, protoplast-based transcriptional activation assay using the PtrMYB120-GR system suggested that PtrMYB120 directly regulates genes involved in both anthocyanin and lignin biosynthesis, including chalcone synthase and ferulate-5 hydroxylase. Interestingly, the saccharification efficiency of line #6 of 35S::PtrMYB120-SRDX poplars, which had slightly reduced lignin content with a normal growth phenotype, was dramatically enhanced (>45%) by NaOH treatment. Taken together, our results suggest that PtrMYB120 functions as a positive regulator of both anthocyanin and lignin biosynthetic pathways and can be targeted to enhance saccharification efficiency in woody perennials.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
- Abio materials Co., Ltd., 7-44 Jamsil-gil, Cheonan 31005, Republic of Korea
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Hyoshin Lee
- Department of Horticultural Biotechnology, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| |
Collapse
|