51
|
Ges IA, Brindley RL, Currie KPM, Baudenbacher FJ. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. LAB ON A CHIP 2013; 13:4663-73. [PMID: 24126415 PMCID: PMC3892771 DOI: 10.1039/c3lc50779c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
Collapse
Affiliation(s)
- Igor A Ges
- Dept. of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235-1631, USA.
| | | | | | | |
Collapse
|
52
|
James DJ, Martin TFJ. CAPS and Munc13: CATCHRs that SNARE Vesicles. Front Endocrinol (Lausanne) 2013; 4:187. [PMID: 24363652 PMCID: PMC3849599 DOI: 10.3389/fendo.2013.00187] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 11/13/2022] Open
Abstract
CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.
Collapse
Affiliation(s)
- Declan J. James
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Thomas F. J. Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- *Correspondence: Thomas F. J. Martin, Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA e-mail:
| |
Collapse
|
53
|
Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, Schmidt M, Thomas U, Sickmann A, Kamin D, Hell SW, Bürger J, Hollmann C, Mielke T, Wichmann C, Sigrist SJ. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. ACTA ACUST UNITED AC 2013; 202:667-83. [PMID: 23960145 PMCID: PMC3747298 DOI: 10.1083/jcb.201301072] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two Bruchpilot isoforms create a stereotypic arrangement of the cytomatrix that defines the size of the readily releasable pool of synaptic vesicles. Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.
Collapse
Affiliation(s)
- Tanja Matkovic
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells. Neuroscience 2013; 250:755-72. [PMID: 23876326 DOI: 10.1016/j.neuroscience.2013.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
Collapse
|
55
|
Matti U, Pattu V, Halimani M, Schirra C, Krause E, Liu Y, Weins L, Chang HF, Guzman R, Olausson J, Freichel M, Schmitz F, Pasche M, Becherer U, Bruns D, Rettig J. Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion. Nat Commun 2013; 4:1439. [PMID: 23385584 DOI: 10.1038/ncomms2467] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023] Open
Abstract
Cytotoxic T lymphocytes kill virus-infected and tumorigenic target cells through the release of perforin and granzymes via fusion of lytic granules at the contact site, the immunological synapse. It has been postulated that this fusion process is mediated by non-neuronal members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex protein family. Here, using a synaptobrevin2-monomeric red fluorescence protein knock-in mouse we demonstrate that, surprisingly, the major neuronal v-SNARE synaptobrevin2 is expressed in cytotoxic T lymphocytes and exclusively localized on granzyme B-containing lytic granules. Cleavage of synaptobrevin2 by tetanus toxin or ablation of the synaptobrevin2 gene leads to a complete block of lytic granule exocytosis while leaving upstream events unaffected, identifying synaptobrevin2 as the v-SNARE responsible for the fusion of lytic granules at the immunological synapse.
Collapse
Affiliation(s)
- Ulf Matti
- Department of Physiology, Saarland University, Building 59, 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lavi A, Sheinin A, Shapira R, Zelmanoff D, Ashery U. DOC2B and Munc13-1 differentially regulate neuronal network activity. ACTA ACUST UNITED AC 2013; 24:2309-23. [PMID: 23537531 DOI: 10.1093/cercor/bht081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alterations in the levels of synaptic proteins affect synaptic transmission and synaptic plasticity. However, the precise effects on neuronal network activity are still enigmatic. Here, we utilized microelectrode array (MEA) to elucidate how manipulation of the presynaptic release process affects the activity of neuronal networks. By combining pharmacological tools and genetic manipulation of synaptic proteins, we show that overexpression of DOC2B and Munc13-1, proteins known to promote vesicular maturation and release, elicits opposite effects on the activity of the neuronal network. Although both cause an increase in the overall number of spikes, the distribution of spikes is different. While DOC2B enhances, Munc13-1 reduces the firing rate within bursts of spikes throughout the network; however, Munc13-1 increases the rate of network bursts. DOC2B's effects were mimicked by Strontium that elevates asynchronous release but not by a DOC2B mutant that enhances spontaneous release rate. This suggests for the first time that increased asynchronous release on the single-neuron level promotes bursting activity in the network level. This innovative study demonstrates the complementary role of the network level in explaining the physiological relevance of the cellular activity of presynaptic proteins and the transformation of synaptic release manipulation from the neuron to the network level.
Collapse
Affiliation(s)
- Ayal Lavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Shapira
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Zelmanoff
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
57
|
Neuron-specific expression of tomosyn1 in the mouse hippocampal dentate gyrus impairs spatial learning and memory. Neuromolecular Med 2013; 15:351-63. [PMID: 23519441 DOI: 10.1007/s12017-013-8223-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/16/2013] [Indexed: 01/20/2023]
Abstract
Tomosyn, a syntaxin-binding protein, is known to inhibit vesicle priming and synaptic transmission via interference with the formation of SNARE complexes. Using a lentiviral vector, we specifically overexpressed tomosyn1 in hippocampal dentate gyrus neurons in adult mice. Mice were then subjected to spatial learning and memory tasks and electrophysiological measurements from hippocampal slices. Tomosyn1-overexpression significantly impaired hippocampus-dependent spatial memory while tested in the Morris water maze. Further, tomosyn1-overexpressing mice utilize swimming strategies of lesser cognitive ability in the Morris water maze compared with control mice. Electrophysiological measurements at mossy fiber-CA3 synapses revealed impaired paired-pulse facilitation in the mossy fiber of tomosyn1-overexpressing mice. This study provides evidence for novel roles for tomosyn1 in hippocampus-dependent spatial learning and memory, potentially via decreased synaptic transmission in mossy fiber-CA3 synapses. Moreover, it provides new insight regarding the role of the hippocampal dentate gyrus and mossy fiber-CA3 synapses in swimming strategy preference, and in learning and memory.
Collapse
|
58
|
Membrane-proximal tryptophans of synaptobrevin II stabilize priming of secretory vesicles. J Neurosci 2013; 32:15983-97. [PMID: 23136435 DOI: 10.1523/jneurosci.6282-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trans-soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes formed between the SNARE motifs of synaptobrevin II, SNAP-25, and syntaxin play an essential role in Ca(2+)-regulated exocytosis. Apart from the well studied interactions of the SNARE domains, little is known about the functional relevance of other evolutionarily conserved structures in the SNARE proteins. Here, we show that substitution of two highly conserved tryptophan residues within the juxtamembrane domain (JMD) of the vesicular SNARE Synaptobrevin II (SybII) profoundly impairs priming of granules in mouse chromaffin cells without altering catecholamine release from single vesicles. Using molecular dynamic simulations of membrane-embedded SybII, we show that Trp residues of the JMD influence the electrostatic surface potential by controlling the position of neighboring lysine and arginine residues at the membrane-water interface. Our observations indicate a decisive role of the tryptophan moiety of SybII in keeping the vesicles in the release-ready state and support a model wherein tryptophan-mediated protein-lipid interactions assist in bridging the apposing membranes before fusion.
Collapse
|
59
|
Thorn P. New insights into the control of secretion. Commun Integr Biol 2013; 2:315-7. [PMID: 19721876 DOI: 10.4161/cib.2.4.8262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/21/2009] [Indexed: 11/19/2022] Open
Abstract
Vesicular secretion is a fundamental process in the body with vesicle fusion releasing vesicle contents to the outside. This process called exocytosis is usually thought of as leading to an all-or-none release of content; regulation of secretory output dependent on regulating the numbers of fused vesicles. However, it is well established that the fusion pore that forms when the vesicle membrane fuses with the cell membrane is dynamic. More recent evidence indicates the dynamic opening and closing, and the size of the fusion pore, are limiting factors to the release of vesicle content. What remains unclear is whether these fusion pore behaviors are under cellular control and therefore relevant to cell physiology.Accumulating evidence over the last two years points to myosin 2 as one regulator of fusion pore behavior. This is interesting since myosin 2 activity is in turn controlled by kinases and phosphatases, well known to be under cellular control. We conclude that fusion pore behavior is likely a genuine control point for vesicle content release. This leads to a model for secretion with secretory output controlled not only by the numbers of vesicles fused but also by the regulation of the behavior of individual vesicles.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Sciences; University of Queensland; St. Lucia, Queensland Australia
| |
Collapse
|
60
|
Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1603-11. [PMID: 23220009 DOI: 10.1016/j.bbamcr.2012.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 01/13/2023]
Abstract
Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Eva C Schwarz
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
61
|
Abdel-Samad D, Perreault C, Ahmarani L, Avedanian L, Bkaily G, Magder S, D'Orléans-Juste P, Jacques D. Differences in neuropeptide Y-induced secretion of endothelin-1 in left and right human endocardial endothelial cells. Neuropeptides 2012; 46:373-82. [PMID: 23107364 DOI: 10.1016/j.npep.2012.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/01/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
Abstract
The aim of the study was to test the hypothesis that neuropeptide Y (NPY) may induce endothelin-1 (ET-1) secretion in left (hLEECs) and right (hREECs) human endocardial endothelial cells. Furthermore, the type of NPY receptor implicated could be different in NPY-induced secretion in hLEECs and hREECs. Using immunofluorescence coupled to real 3D confocal microscopy and ELISA, our results showed that stimulation of secretion by NPY induced the release of ET-1 from both right and left human ventricular endocardial endothelial cells (hEECs) in a time-dependent manner. Furthermore, the secretory capacity of hREECs was higher than that of hLEECs. In addition, our results showed that the effect of NPY on ET-1 secretion in hLEECs was only due to activation of Y(5) receptors. However, the effect of NPY on ET-1 secretion in hREECs was due to mainly Y(2) and partially Y(5) receptors activation. In conclusion, our results suggest that differences in excitation-secretion coupling exist between hREECS and hLEECs which may contribute to the functional differences between right and left ventricular muscle. Furthermore, high NPY level contributes to ET-1 release by hEECs and Y(2) and Y(5) receptors antagonists may be used for regulation of ET-1 secretion in the heart.
Collapse
Affiliation(s)
- Dima Abdel-Samad
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Nonconserved Ca(2+)/calmodulin binding sites in Munc13s differentially control synaptic short-term plasticity. Mol Cell Biol 2012; 32:4628-41. [PMID: 22966208 DOI: 10.1128/mcb.00933-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Munc13s are presynaptic proteins that mediate synaptic vesicle priming and thereby control the size of the readily releasable pool of vesicles. During high synaptic activity, Munc13-1 and its closely related homolog, ubMunc13-2, bind Ca(2+)/calmodulin, resulting in enhanced priming activity and in changes of short-term synaptic plasticity characteristics. Here, we studied whether bMunc13-2 and Munc13-3, two remote isoforms of Munc13-1 with a neuronal subtype-specific expression pattern, mediate synaptic vesicle priming and regulate short-term synaptic plasticity in a Ca(2+)/calmodulin-dependent manner. We identified a single functional Ca(2+)/calmodulin binding site in these isoforms and provide structural evidence that all Munc13s employ a common mode of interaction with calmodulin despite the lack of sequence homology between their Ca(2+)/calmodulin binding sites. Electrophysiological analysis showed that, during high-frequency activity, Ca(2+)/calmodulin binding positively regulates the priming activity of bMunc13-2 and Munc13-3, resulting in an increase in the size of the readily releasable pool of vesicles and subsequently in strong short-term synaptic enhancement of neurotransmission. We conclude that Ca(2+)/calmodulin-dependent regulation of priming activity is structurally and functionally conserved in all Munc13 proteins, and that the composition of Munc13 isoforms in a neuron differentially controls its short-term synaptic plasticity characteristics.
Collapse
|
63
|
Bkaily G, Avedanian L, Al-Khoury J, Ahmarani L, Perreault C, Jacques D. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions. Can J Physiol Pharmacol 2012; 90:953-65. [DOI: 10.1139/y2012-077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation–contraction coupling, excitation–secretion coupling, and excitation – gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Levon Avedanian
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Lena Ahmarani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Claudine Perreault
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
64
|
Lazarowski ER. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 2012; 8:359-73. [PMID: 22528679 DOI: 10.1007/s11302-012-9304-9] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/21/2012] [Indexed: 12/22/2022] Open
Abstract
Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| |
Collapse
|
65
|
Miklavc P, Hecht E, Hobi N, Wittekindt OH, Dietl P, Kranz C, Frick M. Actin coating and compression of fused secretory vesicles are essential for surfactant secretion--a role for Rho, formins and myosin II. J Cell Sci 2012; 125:2765-74. [PMID: 22427691 DOI: 10.1242/jcs.105262] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Secretion of vesicular contents by exocytosis is a fundamental cellular process. Increasing evidence suggests that post-fusion events play an important role in determining the composition and quantity of the secretory output. In particular, regulation of fusion pore dilation and closure is considered a key regulator of the post-fusion phase. However, depending on the nature of the cargo, additional mechanisms might be essential to facilitate effective release. We have recently described that in alveolar type II (ATII) cells, lamellar bodies (LBs), which are secretory vesicles that store lung surfactant, are coated with actin following fusion with the plasma membrane. Surfactant, a lipoprotein complex, does not readily diffuse out of fused LBs following opening and dilation of the fusion pore. Using fluorescence microscopy, atomic force microscopy and biochemical assays, we present evidence that actin coating and subsequent contraction of the actin coat is essential to facilitate surfactant secretion. Latrunculin B prevents actin coating of fused LBs and inhibits surfactant secretion almost completely. Simultaneous imaging of the vesicle membrane and the actin coat revealed that contraction of the actin coat compresses the vesicle following fusion. This leads to active extrusion of vesicle contents. Initial actin coating of fused vesicles is dependent on activation of Rho and formin-dependent actin nucleation. Actin coat contraction is facilitated by myosin II. In summary, our data suggest that fusion pore opening and dilation itself is not sufficient for release of bulky vesicle cargos and that active extrusion mechanisms are required.
Collapse
Affiliation(s)
- Pika Miklavc
- Department of General Physiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
A role for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in membrane fusion was originally identified for regulated dense-core vesicle exocytosis in neuroendocrine cells. Subsequent studies demonstrated essential roles for PI(4,5)P(2) in regulated synaptic vesicle and constitutive vesicle exocytosis. For regulated dense-core vesicle exocytosis, PI(4,5)P(2) appears to be primarily required for priming, a stage in vesicle exocytosis that follows vesicle docking and precedes Ca(2) (+)-triggered fusion. The priming step involves the organization of SNARE protein complexes for fusion. A central issue concerns the mechanisms by which PI(4,5)P(2) exerts an essential role in membrane fusion events at the plasma membrane. The observed microdomains of PI(4,5)P(2) in the plasma membrane of neuroendocrine cells at fusion sites has suggested possible direct effects of the phosphoinositide on membrane curvature and tension. More likely, PI(4,5)P(2) functions in vesicle exocytosis as in other cellular processes to recruit and activate PI(4,5)P(2)-binding proteins. CAPS and Munc13 proteins, which bind PI(4,5)P(2) and function in vesicle priming to organize SNARE proteins, are key candidates as effectors for the role of PI(4,5)P(2) in vesicle priming. Consistent with roles prior to fusion that affect SNARE function, subunits of the exocyst tethering complex involved in constitutive vesicle exocytosis also bind PI(4,5)P(2). Additional roles for PI(4,5)P(2) in fusion pore dilation have been described, which may involve other PI(4,5)P(2)-binding proteins such as synaptotagmin. Lastly, the SNARE proteins that mediate exocytic vesicle fusion contain highly basic membrane-proximal domains that interact with acidic phospholipids that likely affect their function.
Collapse
Affiliation(s)
- Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, 53706, Madison, WI, U.S.A,
| |
Collapse
|
67
|
Collins R, Holz R, Zimmerberg J. 5.14 The Biophysics of Membrane Fusion. COMPREHENSIVE BIOPHYSICS 2012. [PMCID: PMC7151979 DOI: 10.1016/b978-0-12-374920-8.00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A crucial interplay between protein conformations and lipid membrane energetics emerges as the guiding principle for the regulation and mechanism of membrane fusion in biological systems. As some of the basics of fusion become clear, a myriad of compelling questions come to the fore. Is the interior of the fusion pore protein or lipid? Why is synaptic release so fast? Why is PIP2 needed for exocytosis? How does fusion peptide insertion lead to fusion of viruses to cell membranes? What role does the TMD play? How can studies on membrane fission contribute to our understanding of membrane fusion? What exactly are SNARE proteins doing?
Collapse
|
68
|
Ges IA, Currie KPM, Baudenbacher F. Electrochemical detection of catecholamine release using planar iridium oxide electrodes in nanoliter microfluidic cell culture volumes. Biosens Bioelectron 2011; 34:30-6. [PMID: 22398270 DOI: 10.1016/j.bios.2011.11.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022]
Abstract
Release of neurotransmitters and hormones by calcium regulated exocytosis is a fundamental cellular/molecular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. Therefore, this area represents a relevant target for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistically rich data with increased throughput. Toward this goal, we have electrochemically deposited iridium oxide (IrOx) films onto planar thin film platinum electrodes (20 μm×300 μm) and utilized these for quantitative detection of catecholamine release from adrenal chromaffin cells trapped in a microfluidic network. The IrOx electrodes show a linear response to norepinephrine in the range of 0-400 μM, with a sensitivity of 23.1±0.5 mA/M mm(2). The sensitivity of the IrOx electrodes does not change in the presence of ascorbic acid, a substance commonly found in biological samples. A replica molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. Small populations of chromaffin cells were trapped in the microfluidic device and stimulated by rapid perfusion with high potassium (50mM) containing Tyrode's solution at a flow rate of 1 nL/s. Stimulation of the cells produced a rapid increase in current due to oxidation of the released catecholamines, with an estimated maximum concentration in the cell culture volume of ~52 μM. Thus, we demonstrate the utility of an integrated microfluidic network with IrOx electrodes for real-time quantitative detection of catecholamines released from small populations of chromaffin cells.
Collapse
Affiliation(s)
- Igor A Ges
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631, USA
| | | | | |
Collapse
|
69
|
Abstract
HPC-1/syntaxin1A (STX1A) is considered to regulate exocytosis in neurones and endocrine cells. Previously, we reported that STX1A null mutant (STX1A KO) mice unexpectedly showed normal glutamatergic and GABAergic fast synaptic transmission but exhibited disturbances in monoaminergic transmission, such as serotonin, 5-hydroxytryptamine (5-HT), which may induce attenuation of latent inhibition. These results suggest that STX1A may contribute to dense-core vesicle exocytosis in vivo. Thus, we hypothesised that the lack of STX1A might affect the secretion of several hormones, as also mediated by dense-core vesicles exocytosis. In the present study, we focused on the hypothalamic-pituitary-adrenal (HPA) axis, which is a neuroendocrine system that regulates responses to stress stimuli and is considered to be associated with neuropsychiatric disorders. Specifically, we examined whether the HPA axis is impaired in STX1A KO mice. Interestingly, plasma concentrations of both corticosterone (CORT) and adrenocorticotrophin hormone (ACTH) during the resting condition decreased in STX1A KO mice compared to WT mice. Additionally, elevated plasma CORT, ACTH and corticotrophin-releasing hormone (CRH) which were usually observed after acute restraint stress, were also reduced in STX1A KO mice. We also observed the suppression of 5-HT-induced CRH release in STX1A KO mice in vitro. Furthermore, an in vivo microdialysis study revealed that the elevation of extracellular 5-HT in the hypothalamus, which was induced by the selective serotonin reuptake inhibitor, fluoxetine, was significantly reduced in STX1A KO mice compared to WT mice. 5-HT elevation in the hypothalamus, which was induced by acute restraint stress, was also reduced in STX1A KO mice. Finally, STX1A KO mice showed abnormal behavioural responses after mild restraint stress. These results indicate that the lack of STX1A could induce dysfunction of the HPA axis, and the deficit may result in abnormal behavioural properties, such as unusual responses to stress stimuli.
Collapse
Affiliation(s)
- T Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | |
Collapse
|
70
|
Fusion-activated Ca2+ entry via vesicular P2X4 receptors promotes fusion pore opening and exocytotic content release in pneumocytes. Proc Natl Acad Sci U S A 2011; 108:14503-8. [PMID: 21844344 DOI: 10.1073/pnas.1101039108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) is considered a key element in multiple steps during regulated exocytosis. During the postfusion phase, an elevated cytoplasmic Ca(2+) concentration ([Ca(2+)])(c) leads to fusion pore dilation. In neurons and neuroendocrine cells, this results from activation of voltage-gated Ca(2+) channels in the plasma membrane. However, these channels are activated in the prefusion stage, and little is known about Ca(2+) entry mechanisms during the postfusion stage. This may be particularly important for slow and nonexcitable secretory cells. We recently described a "fusion-activated" Ca(2+) entry (FACE) mechanism in alveolar type II (ATII) epithelial cells. FACE follows initial fusion pore opening with a delay of 200-500 ms. The site, molecular mechanisms, and functions of this mechanism remain unknown, however. Here we show that vesicle-associated Ca(2+) channels mediate FACE. Using RT-PCR, Western blot analysis, and immunofluorescence, we demonstrate that P2X(4) receptors are expressed on exocytotic vesicles known as lamellar bodies (LBs). Electrophysiological, pharmacological, and genetic data confirm that FACE is mediated via these vesicular P2X(4) receptors. Furthermore, analysis of fluorophore diffusion into and out of individual vesicles after exocytotic fusion provides evidence that FACE regulates postfusion events of LB exocytosis via P2X(4). Fusion pore dilation was clearly correlated with the amplitude of FACE, and content release from fused LBs was accelerated in fusions followed by FACE. Based on these findings, we propose a model for regulation of the exocytotic postfusion phase in nonexcitable cells in which Ca(2+) influx via vesicular Ca(2+) channels regulates fusion pore expansion and vesicle content release.
Collapse
|
71
|
Khodthong C, Kabachinski G, James DJ, Martin TFJ. Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis. Cell Metab 2011; 14:254-63. [PMID: 21803295 PMCID: PMC3148490 DOI: 10.1016/j.cmet.2011.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/09/2011] [Accepted: 06/21/2011] [Indexed: 01/11/2023]
Abstract
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.
Collapse
|
72
|
Abstract
Cochlear inner hair cells (IHCs) use Ca(2+)-dependent exocytosis of glutamate to signal sound information. Otoferlin (Otof), a C(2) domain protein essential for IHC exocytosis and hearing, may serve as a Ca(2+) sensor in vesicle fusion in IHCs that seem to lack the classical neuronal Ca(2+) sensors synaptotagmin 1 (Syt1) and Syt2. Support for the Ca(2+) sensor of fusion hypothesis for otoferlin function comes from biochemical experiments, but additional roles in late exocytosis upstream of fusion have been indicated by physiological studies. Here, we tested the functional equivalence of otoferlin and Syt1 in three neurosecretory model systems: auditory IHCs, adrenal chromaffin cells, and hippocampal neurons. Long-term and short-term ectopic expression of Syt1 in IHCs of Otof (-/-) mice by viral gene transfer in the embryonic inner ear and organotypic culture failed to rescue their Ca(2+) influx-triggered exocytosis. Conversely, virally mediated overexpression of otoferlin did not restore phasic exocytosis in Syt1-deficient chromaffin cells or neurons but enhanced asynchronous release in the latter. We further tested exocytosis in Otof (-/-) hippocampal neurons and in Syt1(-/-) IHCs but found no deficits in vesicle fusion. Expression analysis of different synaptotagmin isoforms indicated that Syt1 and Syt2 are absent from mature IHCs. Our data argue against a simple functional equivalence of the two C(2) domain proteins in exocytosis of IHC ribbon synapses, chromaffin cells, and hippocampal synapses.
Collapse
|
73
|
Pattu V, Qu B, Marshall M, Becherer U, Junker C, Matti U, Schwarz EC, Krause E, Hoth M, Rettig J. Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 2011; 12:890-901. [PMID: 21438968 DOI: 10.1111/j.1600-0854.2011.01193.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SNARE proteins are essential fusion mediators for many intracellular trafficking events. Here, we investigate the role of Syntaxin7 (Stx7) in the release of lytic granules from cytotoxic T lymphocytes (CTLs). We show that Stx7 is expressed in CTLs and is preferentially localized to the region of lytic granule release, the immunological synapse (IS). Interference of Stx7 function by expression of a dominant-negative Stx7 construct or by small interfering RNA leads to a dramatic reduction of CTL-mediated killing of target cells. Real-time visualization of individual lytic granules at the IS by evanescent wave microscopy reveals that lytic granules in Stx7-deprived CTLs not only fail to fuse with the plasma membrane but even fail to accumulate at the IS. Surprisingly, the accumulation defect is not caused by an overall reduction in lytic granule number, but by a defect in the trafficking of T cell receptors (TCRs) through endosomes. Subsequent high-resolution nanoscopy shows that Stx7 colocalizes with Rab7 on late endosomes. We conclude from these data that the accumulation of recycling TCRs at the IS is a SNARE-dependent process and that Stx7-mediated processing of recycling TCRs through endosomes is a prerequisite for the cytolytic function of CTLs.
Collapse
Affiliation(s)
- Varsha Pattu
- Institut für Physiologie, Universität des Saarlandes, Kirrberger Straße 8, Gebäude 59, 66421 Homburg, Saarland, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Herring BE, McMillan K, Pike CM, Marks J, Fox AP, Xie Z. Etomidate and propofol inhibit the neurotransmitter release machinery at different sites. J Physiol 2011; 589:1103-15. [PMID: 21173083 PMCID: PMC3060590 DOI: 10.1113/jphysiol.2010.200964] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
The mechanism of general anaesthetic action is only partially understood. Facilitation of inhibitory GABAA receptors plays an important role in the action of most anaesthetics, but is thought to be especially relevant in the case of intravenous anaesthetics, like etomidate and propofol. Recent evidence suggests that anaesthetics also inhibit excitatory synaptic transmission via a presynaptic mechanism(s), but it has been difficult to determine whether these agents act on the neurotransmitter release machinery itself. In the present study we sought to determine whether the intravenous anaesthetics propofol and etomidate inhibit the release machinery. For these studies we used an experimental approach that directly regulated [Ca2+]i at neurotransmitter release sites, thereby bypassing anaesthetic effects on channels and receptors in order to allow anaesthetic effects on the neurotransmitter release machinery to be examined in isolation. The data show that clinically relevant concentrations of propofol and etomidate inhibited the neurotransmitter release machinery in neurosecretory cells and in cultured hippocampal neurons. md130A is a mutant form of syntaxin with a truncated C-terminus. Overexpressing md130A in PC12 cells completely eliminated the reduction in neurotransmitter release produced by propofol, without affecting release itself. In contrast, overexpressing md130A in PC12 cells had little or no effect on the response to etomidate. These results suggest that both propofol and etomidate inhibit neurotransmitter release by a direct interaction with SNAREs and/or SNARE-associated proteins but they do so at different sites.
Collapse
Affiliation(s)
- Bruce E Herring
- Department of Neurobiology, The University of Chicago, 5835 S. Cottage Grove Ave, Abbott Hall, Ab131, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
75
|
Gutiérrez-Martín Y, Bustillo D, Gómez-Villafuertes R, Sánchez-Nogueiro J, Torregrosa-Hetland C, Binz T, Gutiérrez LM, Miras-Portugal MT, Artalejo AR. P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells. J Biol Chem 2011; 286:11370-81. [PMID: 21292765 PMCID: PMC3064193 DOI: 10.1074/jbc.m110.139410] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca2+-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca2+ concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca2+ and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.
Collapse
|
76
|
The Coffin-Lowry Syndrome-Associated Protein rsk2 and Neurosecretion. Cell Mol Neurobiol 2010; 30:1401-6. [DOI: 10.1007/s10571-010-9578-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/02/2010] [Indexed: 11/24/2022]
|
77
|
Gustavsson N, Wang X, Wang Y, Seah T, Xu J, Radda GK, Südhof TC, Han W. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion. PLoS One 2010; 5:e15414. [PMID: 21085706 PMCID: PMC2976867 DOI: 10.1371/journal.pone.0015414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.
Collapse
Affiliation(s)
- Natalia Gustavsson
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (WH); (NG)
| | - Xiaorui Wang
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Yue Wang
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Tingting Seah
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Xu
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - George K. Radda
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Thomas C. Südhof
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (WH); (NG)
| |
Collapse
|
78
|
Denker A, Rizzoli SO. Synaptic vesicle pools: an update. Front Synaptic Neurosci 2010; 2:135. [PMID: 21423521 PMCID: PMC3059705 DOI: 10.3389/fnsyn.2010.00135] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/02/2010] [Indexed: 12/04/2022] Open
Abstract
During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool.
Collapse
Affiliation(s)
- Annette Denker
- European Neuroscience Institute, DFG Center for Molecular Physiology of the Brain Göttingen, Germany
| | | |
Collapse
|
79
|
Daily NJ, Boswell KL, James DJ, Martin TFJ. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion. J Biol Chem 2010; 285:35320-9. [PMID: 20826818 DOI: 10.1074/jbc.m110.145169] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.
Collapse
Affiliation(s)
- Neil J Daily
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
80
|
Schonn JS, Van Weering JRT, Mohrmann R, Schlüter OM, Südhof TC, De Wit H, Verhage M, Sørensen JB. Rab3 Proteins Involved in Vesicle Biogenesis and Priming in Embryonic Mouse Chromaffin Cells. Traffic 2010; 11:1415-28. [DOI: 10.1111/j.1600-0854.2010.01107.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Feinshreiber L, Singer-Lahat D, Friedrich R, Matti U, Sheinin A, Yizhar O, Nachman R, Chikvashvili D, Rettig J, Ashery U, Lotan I. Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells. J Cell Sci 2010; 123:1940-7. [DOI: 10.1242/jcs.063719] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulation of exocytosis by voltage-gated K+ channels has classically been viewed as inhibition mediated by K+ fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K+ flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine cells, but also occurs in the somatic-vesicle release from dorsal-root-ganglion neurons and is mediated by direct association of Kv2.1 with syntaxin. We further show in adrenal chromaffin cells that facilitation induced by both wild-type and non-conducting mutant Kv2.1 channels in response to long stimulation persists during successive stimulation, and can be attributed to an increased number of exocytotic events and not to changes in single-spike kinetics. Moreover, rigorous analysis of the pools of released vesicles reveals that Kv2.1 enhances the rate of vesicle recruitment during stimulation with high Ca2+, without affecting the size of the readily releasable vesicle pool. These findings place a voltage-gated K+ channel among the syntaxin-binding proteins that directly regulate pre-fusion steps in exocytosis.
Collapse
Affiliation(s)
- Lori Feinshreiber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Reut Friedrich
- Department of Neurobiochemistry, Life Science Institute, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ulf Matti
- Physiologisches Institut, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Anton Sheinin
- Department of Neurobiochemistry, Life Science Institute, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ofer Yizhar
- Department of Neurobiochemistry, Life Science Institute, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Rachel Nachman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jens Rettig
- Physiologisches Institut, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Uri Ashery
- Department of Neurobiochemistry, Life Science Institute, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
82
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
83
|
Villanueva J, Torregrosa-Hetland CJ, Gil A, González-Vélez V, Segura J, Viniegra S, Gutiérrez LM. The organization of the secretory machinery in chromaffin cells as a major factor in modeling exocytosis. HFSP JOURNAL 2010; 4:85-92. [PMID: 20885775 DOI: 10.2976/1.3338707] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/27/2010] [Indexed: 11/19/2022]
Abstract
The organization of cytoplasm in excitable cells was a largely ignored factor when mathematical models were developed to understand intracellular calcium and secretory behavior. Here we employed a combination of fluorescent evanescent and transmitted light microscopy to explore the F-actin cytoskeletal organization in the vicinity of secretory sites in cultured bovine chromaffin cells. This technique and confocal fluorescent microscopy show chromaffin granules associated with the borders of cortical cytoskeletal cages forming an intricate tridimensional network. Furthermore, the overexpression of SNAP-25 in these cells also reveals the association of secretory machinery clusters with the borders of these cytoskeletal cages. The importance of these F-actin cage borders is stressed when granules appear to interact and remain associated during exocytosis visualized in acridin orange loaded vesicles. These results will prompt us to propose a model of cytoskeletal cages, where the secretory machinery is associated with its borders. Both the calcium level and the secretory response are enhanced in this geometrical arrangement when compared with a random distribution of the secretory machinery that is not restricted to the borders of the cage.
Collapse
|
84
|
Chueh BH, Zheng Y, Torisawa YS, Hsiao AY, Ge C, Hsiong S, Huebsch N, Franceschi R, Mooney DJ, Takayama S. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed Microdevices 2010; 12:145-51. [PMID: 19830565 PMCID: PMC2825700 DOI: 10.1007/s10544-009-9369-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper describes a simple reversible hydrogel patterning method for 3D cell culture. Alginate gel is formed in select regions of a microfluidic device through light-triggered release of caged calcium. In the pre-gelled alginate solution, calcium is chelated by DM-nitrophen (DM-n) to prevent cross-linking of alginate. After sufficient UV exposure the caged calcium is released from DM-n causing alginate to cross-link. The effect of using different concentrations of calcium and chelating agents as well as the duration of UV exposure is described. Since the cross-linking is based on calcium concentration, the cross-linked alginate can easily be dissolved by EDTA. We also demonstrate application of this capability to patterned microscale 3D co-culture using endothelial cells and osteoblastic cells in a microchannel.
Collapse
Affiliation(s)
- Bor-han Chueh
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Zheng
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-suke Torisawa
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Y. Hsiao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunxi Ge
- Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan Hsiong
- School of Engineering and Applied Science, Harvard University, Cambridge, MA 02115, USA
| | - Nathaniel Huebsch
- School of Engineering and Applied Science, Harvard University, Cambridge, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Renny Franceschi
- Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - David J. Mooney
- School of Engineering and Applied Science, Harvard University, Cambridge, MA 02115, USA
| | - Shuichi Takayama
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science & Engineering program, University of Michigan, Ann Arbor, MI 48109, USA,
| |
Collapse
|
85
|
Li J, Xiao Y, Zhou W, Wu Z, Zhang R, Xu T. Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells. ACTA ACUST UNITED AC 2009; 52:1156-63. [PMID: 20016973 DOI: 10.1007/s11427-009-0160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Synaptotagmin VII (Syt VII), which has a higher Ca(2+) affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca(2+)-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca(2+) sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells.
Collapse
Affiliation(s)
- JiangLi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
86
|
Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity. EMBO J 2009; 29:680-91. [PMID: 20010694 DOI: 10.1038/emboj.2009.373] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/18/2009] [Indexed: 12/25/2022] Open
Abstract
Ca(2+) signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca(2+)-CaM binds a conserved region in the priming proteins Munc13-1 and ubMunc13-2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca(2+) signals. We solved the structure of Ca(2+)(4)-CaM in complex with the CaM-binding domain of Munc13-1, which features a novel 1-5-8-26 CaM-binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13-2 isoform. The N-module can be dissociated with EGTA to form the half-loaded Munc13/Ca(2+)(2)-CaM complex. The Ca(2+) regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca(2+)-CaM interactions, where the C-module provides a high-affinity interaction activated at nanomolar [Ca(2+)](i), whereas the N-module acts as a sensor at micromolar [Ca(2+)](i). This Ca(2+)/CaM-binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca(2+)-dependent modulation of short-term synaptic plasticity.
Collapse
|
87
|
Ackermann F, Zitranski N, Borth H, Buech T, Gudermann T, Boekhoff I. CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci 2009; 122:4547-57. [PMID: 19934217 DOI: 10.1242/jcs.058263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The success of acrosomal exocytosis, a complex process with a variety of inter-related steps, relies on the coordinated interaction of participating signaling molecules. Since the acrosome reaction resembles Ca(2+)-regulated exocytosis in neurons, we investigated whether cognate neuronal binding partners of the multi-PDZ domain protein MUPP1, which recruits molecules that control the initial tethering and/or docking between the acrosomal vesicle and the plasma membrane, are also expressed in spermatozoa, and whether they contribute to the regulation of acrosomal secretion. We observed that CaMKIIalpha colocalizes with MUPP1 in the acrosomal region of epididymal spermatozoa where the kinase selectively binds to a region encompassing PDZ domains 10-11 of MUPP1. Furthermore, we found that pre-treating mouse spermatozoa with a CaMKII inhibitor that directly blocks the catalytic region of the kinase, as well as a competitive displacement of CaMKIIalpha from PDZ domains 10-11, led to a significant increase in spontaneous acrosomal exocytosis. Since Ca(2+)-calmodulin releases CaMKIIalpha from the PDZ scaffolding protein, MUPP1 represents a central signaling platform to dynamically regulate the assembly and disassembly of binding partners pertinent to acrosomal secretion, thereby precisely adjusting an increase in Ca(2+) to synchronized fusion pore formation.
Collapse
Affiliation(s)
- Frauke Ackermann
- Karolinska Institute, Department of Neuroscience, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
88
|
Josephson IR, Guia A, Lakatta EG, Lederer WJ, Stern MD. Ca(2+)-dependent components of inactivation of unitary cardiac L-type Ca(2+) channels. J Physiol 2009; 588:213-23. [PMID: 19917566 DOI: 10.1113/jphysiol.2009.178343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A Ca(2+) ion-dependent inactivation (CDI) of L-type Ca(2+) channels (LCC) is vital in limiting and shaping local Ca(2+) ion signalling in a variety of excitable cell types. However, under physiological conditions the unitary LCC properties that underlie macroscopic inactivation are unclear. Towards this end, we have probed the gating kinetics of individual cardiac LCCs recorded with a physiological Ca(2+) ion concentration (2 mM) permeating the channel, and in the absence of channel agonists. Upon depolarization the ensemble-averaged LCC current decayed with a fast and a slow exponential component. We analysed the unitary behaviour responsible for this biphasic decay by means of a novel kinetic dissection of LCC gating parameters. We found that inactivation was caused by a rapid decrease in the frequency of LCC reopening, and a slower decline in mean open time of the LCC. In contrast, with barium ions permeating the channel ensemble-averaged currents displayed only a single, slow exponential decay and little time dependence of the LCC open time. Our results demonstrate that the fast and slow phases of macroscopic inactivation reflect the distinct time courses for the decline in the frequency of LCC reopening and the open dwell time, both of which are modulated by Ca(2+) influx. Analysis of the evolution of CDI in individual LCC episodes was employed to examine the stochastic nature of the underlying molecular switch, and revealed that influx on the order of a thousand Ca(2+) ions may be sufficient to trigger CDI. This is the first study to characterize both the unitary kinetics and the stoichiometry of CDI of LCCs with a physiological Ca(2+) concentration. These novel findings may provide a basis for understanding the mechanisms regulating unitary LCC gating, which is a pivotal element in the local control of Ca(2+)-dependent signalling processes.
Collapse
Affiliation(s)
- Ira R Josephson
- Department of Physiology and Pharmacology, CUNY Medical School, City College of New York, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
89
|
Abstract
Exocytosis, the fusion of intracellular vesicles with the membrane and subsequent release of vesicular contents, is important in intercellular communication. The release event is a rapid process (milliseconds), hence detection of released chemicals requires a detection scheme that is both sensitive and has rapid temporal dynamics. Electrochemistry at carbon-fiber microelectrodes allows time-resolved exocytosis of electroactive catecholamines to be observed at very low levels. When coupled with constant-potential amperometry, the number of molecules released and the kinetics of quantal release can be determined. The rapid response time (milliseconds) of microelectrodes makes them well suited for monitoring the dynamic process of exocytosis.
Collapse
|
90
|
Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci Rep 2009; 29:245-59. [PMID: 19500075 DOI: 10.1042/bsr20090031] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion. Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems.
Collapse
|
91
|
Soekmadji C, Thorn P. Secretory control: evidence for agonist regulation of post-fusion vesicle behaviour. Clin Exp Pharmacol Physiol 2009; 37:218-21. [PMID: 19769603 DOI: 10.1111/j.1440-1681.2009.05298.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Here, we review recent work on vesicular secretion, with a focus on the control of post-fusion events as a means of regulating secretory output. 2. In the classical model of secretion, each fused vesicle releases the entirety of its content in an all-or-none manner. In this way, the secretory output of a cell is controlled by regulating the numbers of fused vesicles. The realisation that post-fusion events can control secretory output leads to a distinct model of partial release of vesicle content. 3. Recent work shows that post-fusion events are under cellular control. Further, new data from our laboratory demonstrates agonist-dependent regulation of fusion pore behaviour. 4. We conclude that post-fusion events are not epiphenomena, but are likely an important mechanism of secretory control.
Collapse
Affiliation(s)
- Carolina Soekmadji
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
92
|
Insulin granule biogenesis, trafficking and exocytosis. VITAMINS AND HORMONES 2009; 80:473-506. [PMID: 19251047 DOI: 10.1016/s0083-6729(08)00616-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from increased production of ATP, closure of the ATP-sensitive potassium channel and cellular depolarization. In turn, this opens voltage-dependent calcium channels allowing increased influx of extracellular calcium. Calcium is thought to bind to members of the fusion regulatory proteins synaptogamin that functionally repressors the fusion inhibitory protein complexin. Both complexin and synaptogamin interact as well as several other regulatory proteins interact with the core fusion machinery composed of the Q- or t-SNARE proteins syntaxin 1 and SNAP25 in the plasma membrane that assembles with the R- or v-SNARE protein VAMP2 in insulin granules. In this chapter we will review the current progress of insulin granule biogenesis, sorting, trafficking, exocytosis and signaling pathways that comprise the molecular basis of glucose-dependent insulin secretion.
Collapse
|
93
|
Herring BE, Xie Z, Marks J, Fox AP. Isoflurane inhibits the neurotransmitter release machinery. J Neurophysiol 2009; 102:1265-73. [PMID: 19515956 DOI: 10.1152/jn.00252.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite their importance, the mechanism of action of general anesthetics is still poorly understood. Facilitation of inhibitory GABA(A) receptors plays an important role in anesthesia, but other targets have also been linked to anesthetic actions. Anesthetics are known to suppress excitatory synaptic transmission, but it has been difficult to determine whether they act on the neurotransmitter release machinery itself. By directly elevating [Ca(2+)](i) at neurotransmitter release sites without altering plasma membrane channels or receptors, we show that the commonly used inhalational general anesthetic, isoflurane, inhibits neurotransmitter release at clinically relevant concentrations, in a dose-dependent fashion in PC12 cells and hippocampal neurons. We hypothesized that a SNARE and/or SNARE-associated protein represents an important target(s) for isoflurane. Overexpression of a syntaxin 1A mutant, previously shown in Caenorhabditis elegans to block the behavioral effects of isoflurane, completely eliminated the reduction in neurotransmitter release produced by isoflurane, without affecting release itself, thereby establishing the possibility that syntaxin 1A is an intermediary in isoflurane's ability to inhibit neurotransmitter release.
Collapse
Affiliation(s)
- Bruce E Herring
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
94
|
Bkaily G, Avedanian L, Jacques D. Nuclear membrane receptors and channels as targets for drug development in cardiovascular diseases. Can J Physiol Pharmacol 2009; 87:108-19. [PMID: 19234574 DOI: 10.1139/y08-115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of confocal microscopy has shown that the nucleus plays an important role in excitation-contraction and excitation-secretion coupling of several excitable and nonexcitable cardiovascular cells. It has shown that the nuclear membranes, like the sarcolemmal membrane, possess ionic transporters as well as G protein-coupled receptors (GPCRs), which play a major role in modulating both cytosolic and nuclear ionic homeostasis and nuclear signalling. During spontaneous contraction of heart cells, the increase in cytosolic Ca2+ was immediately followed by a transient increase in nuclear Ca2+. The nuclear Ca2+ rise during excitation-contraction and excitation-secretion coupling was both dependent and independent of changes in cytosolic Ca2+. Nuclear membrane GPCRs, such as those of angiotensin II, neuropeptide Y, and ET-1, were functional and contributed to modulation of nuclear ionic homeostasis via direct and (or) indirect modulation of nuclear membrane ionic transporters such as channels, pumps, and exchangers. The signalling of nuclear membrane GPCRs may also contribute to modulation of gene expression, which may regulate proliferation and remodelling of cells and, indeed, life and death. Direct or indirect targeting of nuclear membrane ionic transporters and GPCRs may constitute a new target for drug action.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001-12th Avenue North, Sherbrooke, QC J1H5N4, Canada.
| | | | | |
Collapse
|
95
|
Hirasawa H, Puopolo M, Raviola E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 2009; 102:146-58. [PMID: 19403749 DOI: 10.1152/jn.00130.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA release by dopaminergic amacrine (DA) cells of the mouse retina was detected by measuring Cl- currents generated by isolated perikarya in response to their own neurotransmitter. The possibility that the Cl- currents were caused by GABA release from synaptic endings that had survived the dissociation of the retina was ruled out by examining confocal Z series of the surface of dissociated tyrosine hydroxylase-positive perikarya after staining with antibodies to pre and postsynaptic markers. GABA release was caused by exocytosis because 1) the current events were transient on the millisecond time scale and thus resembled miniature synaptic currents; 2) they were abolished by treatment with a blocker of the vesicular proton pump, bafilomycin A1; and 3) their frequency was controlled by the intracellular Ca2+ concentration. Because DA cell perikarya do not contain presynaptic active zones, release was by necessity extrasynaptic. A range of depolarizing stimuli caused GABA exocytosis, showing that extrasynaptic release of GABA is controlled by DA cell electrical activity. With all modalities of stimulation, including long-lasting square pulses, segments of pacemaker activity delivered by the action-potential-clamp method and high-frequency trains of ramps, discharge of GABAergic currents exhibited considerable variability in latency and duration, suggesting that coupling between Ca2+ influx and transmitter exocytosis is extremely loose in comparison with the synapse. Paracrine signaling based on extrasynaptic release of GABA by DA cells and other GABAergic amacrines may participate in controlling the excitability of the neuronal processes that interact synaptically in the inner plexiform layer.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
96
|
Han C, Chen T, Yang M, Li N, Liu H, Cao X. Human SCAMP5, a novel secretory carrier membrane protein, facilitates calcium-triggered cytokine secretion by interaction with SNARE machinery. THE JOURNAL OF IMMUNOLOGY 2009; 182:2986-96. [PMID: 19234194 DOI: 10.4049/jimmunol.0802002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokines produced by immune cells play pivotal roles in the regulation of both innate and adaptive immunity. However, the mechanisms controlling secretion of cytokines have not been fully elucidated. Secretory carrier membrane proteins (SCAMPs) are widely distributed integral membrane molecules implicated in regulating vesicular transport. In this study, we report the functional characterization of human SCAMP5 (hSCAMP5), a novel SCAMP protein that is widely expressed by a variety of neuronal and nonneuronal tissues and cells. By measuring the cytokine secretion (RANTES/CCL5 and IL-1beta) as an exocytotic model, we show that hSCAMP5 can promote the calcium-regulated signal peptide-containing cytokine (CCL5 but not IL-1beta) secretion in human epithelial cancer cells, human monocytes, and mouse macrophages. By using subcellular fractionation, immunofluorescence confocal microscopy, and membrane vesicle immunoisolation methods, we find that hSCAMP5 is mainly localized in the Golgi-associated compartments, and the calcium ionophore ionomycin can trigger a rapid translocation of hSCAMP5 from Golgi apparatus to plasma membrane along the classical exocytosis pathway. During the translocation of hSCAMP5 from Golgi apparatus to plasma membrane, hSCAMP5 can codistribute and complex with local soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) molecules. We further demonstrate that hSCAMP5 can directly interact with the calcium sensor synaptotagmins via the cytosolic C-terminal tail of hSCAMP5, thus providing a potential molecular mechanism linking SCAMPs with the SNARE molecules. Our findings suggest that hSCAMP5, in cooperation with the SNARE machinery, is involved in calcium-regulated exocytosis of signal peptide-containing cytokines.
Collapse
Affiliation(s)
- Chaofeng Han
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
97
|
Yamamura S, Saito H, Suzuki N, Kashimoto S, Hamaguchi T, Ohoyama K, Suzuki D, Kanehara S, Nakagawa M, Shiroyama T, Okada M. Effects of zonisamide on neurotransmitter release associated with inositol triphosphate receptors. Neurosci Lett 2009; 454:91-6. [DOI: 10.1016/j.neulet.2009.02.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/13/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
98
|
Yamamura S, Hamaguchi T, Ohoyama K, Sugiura Y, Suzuki D, Kanehara S, Nakagawa M, Motomura E, Matsumoto T, Tanii H, Shiroyama T, Okada M. Topiramate and zonisamide prevent paradoxical intoxication induced by carbamazepine and phenytoin. Epilepsy Res 2009; 84:172-86. [PMID: 19268540 DOI: 10.1016/j.eplepsyres.2009.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/24/2009] [Accepted: 01/29/2009] [Indexed: 11/19/2022]
Abstract
The mechanisms of paradoxical aggravation of epileptic seizures induced by selected antiepileptic drugs (AEDs) remain unclear. The present study addressed this issue by determining the seizure-threshold doses of carbamazepine (CBZ) and phenytoin (PHT), as well the dose-dependent effects of CBZ, PHT, and carbonic anhydrase-inhibiting AEDs, acetazolamide (AZM), topiramate (TPM), and zonisamide (ZNS), on neurotransmitter release in rat hippocampus. The dose-dependent effects of AEDs on hippocampal extracellular levels of glutamate (Glu), GABA, norepinephrine (NE), dopamine (DA), and serotonin (5-HT) were determined by microdialysis with high-speed and high-sensitive extreme liquid chromatography. Proconvulsive effects of AEDs were determined by telemetric-electrocorticography. Therapeutically relevant doses of AZM, CBZ, TPM, and ZNS increased hippocampal extracellular levels of GABA, NE, DA, and 5-HT, while PHT had no effect. Supratherapeutic doses of AZM, CBZ, PHT, TPM, and ZNS decreased extracellular levels of GABA, NE, DA, and 5-HT, without affecting Glu levels. Toxic doses of CBZ and PHT produced seizures (paradoxical intoxication), markedly increasing all transmitter levels, but TPM and ZNS even at toxic doses did not produce seizure. Co-administration experiments showed that therapeutically relevant doses of CBZ or PHT reduced the seizure-threshold doses of PHT or CBZ, respectively. In contrast, therapeutically relevant doses of AZM, TPM, and ZNS elevated the seizure-threshold doses of CBZ and PHT. These results suggested that blockade of high percentage of the population of voltage-dependent sodium channels by CBZ and PHT might be important in inducing paradoxical intoxication/reaction, and that inhibition of carbonic anhydrase inhibits this effect. TPM and ZNS are candidate first-choice agents in treatment of epilepsy when first-line AEDs are ineffective.
Collapse
Affiliation(s)
- Satoshi Yamamura
- Department of Psychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Pan PY, Tian JH, Sheng ZH. Snapin facilitates the synchronization of synaptic vesicle fusion. Neuron 2009; 61:412-24. [PMID: 19217378 PMCID: PMC2656773 DOI: 10.1016/j.neuron.2008.12.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 12/23/2008] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Synaptic vesicle (SV) fusion is a fine-tuned process requiring a concert of fusion machineries. Using cortical neurons from snapin-deficient mice, we reveal a role for Snapin in facilitating synchronous release. In addition to reduced frequency of miniature excitatory postsynaptic currents (mini-EPSCs) and smaller release-ready vesicle pool (RRP) size, snapin deficiency results in EPSCs with multiple peaks and increased rise and decay times, reflecting "desynchronized" SV fusion. These defects impair both synaptic precision and efficacy during sustained neurotransmission. Transient expression of Snapin not only rescues the slowed kinetics of EPSCs, but also further accelerates the rate found in wild-type neurons. Furthermore, expression of Snapin-C66A, a dimerization-defective mutant with impaired interactions with SNAP-25 and Synaptotagmin, reduces the RRP size but exhibits less effect on synchronized fusion. Our studies provide mechanistic insights into a dual role of Snapin in enhancing the efficacy of SV priming and in fine-tuning synchronous SV fusion.
Collapse
Affiliation(s)
- Ping-Yue Pan
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, 35 Convent Drive, Bethesda, Maryland 20892-3701, USA
- Department of Neurobiology, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jin-Hua Tian
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, 35 Convent Drive, Bethesda, Maryland 20892-3701, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, 35 Convent Drive, Bethesda, Maryland 20892-3701, USA
| |
Collapse
|
100
|
López I, Ortiz JA, Villanueva J, Torres V, Torregrosa-Hetland CJ, del Mar Francés M, Viniegra S, Gutiérrez LM. Vesicle Motion and Fusion are Altered in Chromaffin Cells with Increased SNARE Cluster Dynamics. Traffic 2009; 10:172-85. [DOI: 10.1111/j.1600-0854.2008.00861.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|