51
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
52
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
53
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
54
|
Centrosome, the Newly Identified Passenger through Tunneling Nanotubes, Increases Binucleation and Proliferation Marker in Receiving Cells. Int J Mol Sci 2021; 22:ijms22189680. [PMID: 34575851 PMCID: PMC8467045 DOI: 10.3390/ijms22189680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Type 1 tunneling nanotubes (TNTs-1) are long, cytoplasmic protrusions containing actin, microtubules and intermediate filaments that provide a bi-directional road for the transport of various components between distant cells. TNT-1 formation is accompanied by dramatic cytoskeletal reorganization offering mechanical support for intercellular communication. Although the centrosome is the major microtubule nucleating center and also a signaling hub, the relationship between the centrosome and TNTs-1 is still unexplored. We provide here the first evidence of centrosome localization and orientation towards the TNTs-1 protrusion site, which is implicated in TNT-1 formation. We also envision a model whereby synchronized reorientation of the Golgi apparatus along with the centrosome towards TNTs-1 ensures effective polarized trafficking through TNTs-1. Furthermore, using immunohistochemistry and live imaging, we observed for the first time the movement of an extra centrosome within TNTs-1. In this regard, we hypothesize a novel role for TNTs-1 as a critical pathway serving to displace extra centrosomes and potentially to either protect malignant cells against aberrant centrosome amplification or contribute to altering cells in the tumor environment. Indeed, we have observed the increase in binucleation and proliferation markers in receiving cells. The fact that the centrosome can be both as the base and the user of TNTs-1 offers new perspectives and new opportunities to follow in order to improve our knowledge of the pathophysiological mechanisms under TNT control.
Collapse
|
55
|
Mercadante DL, Manning AL, Olson SD. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys J 2021; 120:3192-3210. [PMID: 34197801 DOI: 10.1016/j.bpj.2021.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
Collapse
Affiliation(s)
- Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester, Massachusetts
| | - Amity L Manning
- Department of Biology and Biotechnology, Worcester, Massachusetts.
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
56
|
Ducrey E, Castrogiovanni C, Meraldi P, Nowak-Sliwinska P. Forcing dividing cancer cells to die; low-dose drug combinations to prevent spindle pole clustering. Apoptosis 2021; 26:248-252. [PMID: 33870441 PMCID: PMC8197716 DOI: 10.1007/s10495-021-01671-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
Mitosis, under the control of the microtubule-based mitotic spindle, is an attractive target for anti-cancer treatments, as cancer cells undergo frequent and uncontrolled cell divisions. Microtubule targeting agents that disrupt mitosis or single molecule inhibitors of mitotic kinases or microtubule motors kill cancer cells with a high efficacy. These treatments have, nevertheless, severe disadvantages: they also target frequently dividing healthy tissues, such as the haematopoietic system, and they often lose their efficacy due to primary or acquired resistance mechanisms. An alternative target that has emerged in dividing cancer cells is their ability to "cluster" the poles of the mitotic spindle into a bipolar configuration. This mechanism is necessary for the specific survival of cancer cells that tend to form multipolar spindles due to the frequent presence of abnormal centrosome numbers or other spindle defects. Here we discuss the recent development of combinatorial treatments targeting spindle pole clustering that specifically target cancer cells bearing aberrant centrosome numbers and that have the potential to avoid resistance mechanism due their combinatorial nature.
Collapse
Affiliation(s)
- Eloise Ducrey
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland
- Translational Research Center in Oncohaematology, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland
| | - Cédric Castrogiovanni
- Translational Research Center in Oncohaematology, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland
| | - Patrick Meraldi
- Translational Research Center in Oncohaematology, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
| |
Collapse
|
57
|
Cutillas V, Johnston CA. Mud binds the kinesin-14 Ncd in Drosophila. Biochem Biophys Rep 2021; 26:101016. [PMID: 34027137 PMCID: PMC8134030 DOI: 10.1016/j.bbrep.2021.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/03/2022] Open
Abstract
Maintenance of proper mitotic spindle structure is necessary for error-free chromosome segregation and cell division. Spindle assembly is controlled by force-generating kinesin motors that contribute to its geometry and bipolarity, and balancing motor-dependent forces between opposing kinesins is critical to the integrity of this process. Non-claret dysjunctional (Ncd), a Drosophila kinesin-14 member, crosslinks and slides microtubule minus-ends to focus spindle poles and sustain bipolarity. However, mechanisms that regulate Ncd activity during mitosis are underappreciated. Here, we identify Mushroom body defect (Mud), the fly ortholog of human NuMA, as a direct Ncd binding partner. We demonstrate this interaction involves a short coiled-coil domain within Mud (MudCC) binding the N-terminal, non-motor microtubule-binding domain of Ncd (NcdnMBD). We further show that the C-terminal ATPase motor domain of Ncd (NcdCTm) directly interacts with NcdnMBD as well. Mud binding competes against this self-association and also increases NcdnMBD microtubule binding in vitro. Our results describe an interaction between two spindle-associated proteins and suggest a potentially new mode of minus-end motor protein regulation at mitotic spindle poles.
Collapse
Affiliation(s)
- Vincent Cutillas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
58
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
59
|
Fan G, Sun L, Meng L, Hu C, Wang X, Shi Z, Hu C, Han Y, Yang Q, Cao L, Zhang X, Zhang Y, Song X, Xia S, He B, Zhang S, Wang C. The ATM and ATR kinases regulate centrosome clustering and tumor recurrence by targeting KIFC1 phosphorylation. Nat Commun 2021; 12:20. [PMID: 33397932 PMCID: PMC7782532 DOI: 10.1038/s41467-020-20208-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Drug resistance and tumor recurrence are major challenges in cancer treatment. Cancer cells often display centrosome amplification. To maintain survival, cancer cells achieve bipolar division by clustering supernumerary centrosomes. Targeting centrosome clustering is therefore considered a promising therapeutic strategy. However, the regulatory mechanisms of centrosome clustering remain unclear. Here we report that KIFC1, a centrosome clustering regulator, is positively associated with tumor recurrence. Under DNA damaging treatments, the ATM and ATR kinases phosphorylate KIFC1 at Ser26 to selectively maintain the survival of cancer cells with amplified centrosomes via centrosome clustering, leading to drug resistance and tumor recurrence. Inhibition of KIFC1 phosphorylation represses centrosome clustering and tumor recurrence. This study identified KIFC1 as a prognostic tumor recurrence marker, and revealed that tumors can acquire therapeutic resistance and recurrence via triggering centrosome clustering under DNA damage stresses, suggesting that blocking KIFC1 phosphorylation may open a new vista for cancer therapy.
Collapse
Affiliation(s)
- Guangjian Fan
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Lianhui Sun
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Ling Meng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, 271000, Shandong, China
| | - Chen Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Zhan Shi
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Congli Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Yang Han
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Qingqing Yang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, 110000, Shenyang, China
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R., Detroit, MI, 48201, USA
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Institute of Urology, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Baokun He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Shengping Zhang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| | - Chuangui Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| |
Collapse
|
60
|
Kawakami M, Mustachio LM, Chen Y, Chen Z, Liu X, Wei CH, Roszik J, Kittai AS, Danilov AV, Zhang X, Fang B, Wang J, Heymach JV, Tyutyunyk-Massey L, Freemantle SJ, Kurie JM, Liu X, Dmitrovsky E. A Novel CDK2/9 Inhibitor CYC065 Causes Anaphase Catastrophe and Represses Proliferation, Tumorigenesis, and Metastasis in Aneuploid Cancers. Mol Cancer Ther 2020; 20:477-489. [PMID: 33277443 DOI: 10.1158/1535-7163.mct-19-0987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/18/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) antagonism inhibits clustering of excessive centrosomes at mitosis, causing multipolar cell division and apoptotic death. This is called anaphase catastrophe. To establish induced anaphase catastrophe as a clinically tractable antineoplastic mechanism, induced anaphase catastrophe was explored in different aneuploid cancers after treatment with CYC065 (Cyclacel), a CDK2/9 inhibitor. Antineoplastic activity was studied in preclinical models. CYC065 treatment augmented anaphase catastrophe in diverse cancers including lymphoma, lung, colon, and pancreatic cancers, despite KRAS oncoprotein expression. Anaphase catastrophe was a broadly active antineoplastic mechanism. Reverse phase protein arrays (RPPAs) revealed that along with known CDK2/9 targets, focal adhesion kinase and Src phosphorylation that regulate metastasis were each repressed by CYC065 treatment. Intriguingly, CYC065 treatment decreased lung cancer metastases in in vivo murine models. CYC065 treatment also significantly reduced the rate of lung cancer growth in syngeneic murine and patient-derived xenograft (PDX) models independent of KRAS oncoprotein expression. Immunohistochemistry analysis of CYC065-treated lung cancer PDX models confirmed repression of proteins highlighted by RPPAs, implicating them as indicators of CYC065 antitumor response. Phospho-histone H3 staining detected anaphase catastrophe in CYC065-treated PDXs. Thus, induced anaphase catastrophe after CYC065 treatment can combat aneuploid cancers despite KRAS oncoprotein expression. These findings should guide future trials of this novel CDK2/9 inhibitor in the cancer clinic.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Lisa Maria Mustachio
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zibo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Xiuxia Liu
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Cheng-Hsin Wei
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam S Kittai
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Alexey V Danilov
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Frederick National Laboratory for Cancer Research, Frederick, Maryland.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
61
|
Ghaleb A, Padellan M, Marchenko N. Mutant p53 drives the loss of heterozygosity by the upregulation of Nek2 in breast cancer cells. Breast Cancer Res 2020; 22:133. [PMID: 33267874 PMCID: PMC7709447 DOI: 10.1186/s13058-020-01370-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in one allele of the TP53 gene in early stages are frequently followed by the loss of the remaining wild-type p53 (wtp53) allele (p53LOH) during tumor progression. Despite the strong notion of p53LOH as a critical step in tumor progression, its oncogenic outcomes that facilitate the selective pressure for p53LOH occurrence were not elucidated. METHODS Using MMTV;ErbB2 mouse model of breast cancer carrying heterozygous R172H p53 mutation, we identified a novel gain-of-function (GOF) activity of mutant p53 (mutp53): the exacerbated loss of wtp53 allele in response to γ-irradiation. RESULTS As consequences of p53LOH in mutp53 heterozygous cells, we observed profound stabilization of mutp53 protein, the loss of p21 expression, the abrogation of G2/M checkpoint, chromosomal instability, centrosome amplification, and transcriptional upregulation of mitotic kinase Nek2 (a member of Never in Mitosis (NIMA) Kinases family) involved in the regulation of centrosome function. To avoid the mitotic catastrophe in the absence of G2/M checkpoint, cells with centrosome amplification adapt Nek2-mediated centrosomes clustering as pro-survival mutp53 GOF mechanism enabling unrestricted proliferation and clonal expansion of cells with p53LOH. Thus, the clonal dominance of mutp53 cells with p53LOH may represent the mechanism of irradiation-induced p53LOH. We show that pharmacological and genetic ablation of Nek2 decreases centrosome clustering and viability of specifically mutp53 cells with p53LOH. CONCLUSION In a heterogeneous tumor population, Nek2 inhibition may alter the selective pressure for p53LOH by contraction of the mutp53 population with p53LOH, thus, preventing the outgrowth of genetically unstable, more aggressive cells.
Collapse
Affiliation(s)
- Amr Ghaleb
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA.
| | - Malik Padellan
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| |
Collapse
|
62
|
Goundiam O, Basto R. Centrosomes in disease: how the same music can sound so different? Curr Opin Struct Biol 2020; 66:74-82. [PMID: 33186811 DOI: 10.1016/j.sbi.2020.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Centrosomes are the major microtubule organizing center of animal cells. Centrosomes contribute to timely bipolar spindle assembly during mitosis and participate in the regulation of other processes such as polarity establishment and cell migration. Centrosome numbers are tightly controlled during the cell cycle to ensure that mitosis is initiated with only two centrosomes. Deviations in centrosome number or structure are known to impact cell or tissue homeostasis and can impact different processes as diverse as proliferation, death or disease. Interestingly, defects in centrosome number seem to culminate with common responses, which depend on p53 activation even in different contexts such as development or cancer. p53 is a tumor suppressor gene with essential roles in the maintenance of genetic stability normally stimulated by various cellular stresses. Here, we review current knowledge and discuss how defects in centrosome structure and number can lead to different human pathologies.
Collapse
Affiliation(s)
- Oumou Goundiam
- Department of Translational Research, Institut Curie, PSL University, 26 rue d' Ulm, F-75248 Paris Cedex 05, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, CNRS, Institut Curie, PSL Research University, UMR144, 12 rue Lhomond, 75005 Paris, France.
| |
Collapse
|
63
|
Somarelli JA, Roghani RS, Moghaddam AS, Thomas BC, Rupprecht G, Ware KE, Altunel E, Mantyh JB, Kim SY, McCall SJ, Shen X, Mantyh CR, Hsu DS. A Precision Medicine Drug Discovery Pipeline Identifies Combined CDK2 and 9 Inhibition as a Novel Therapeutic Strategy in Colorectal Cancer. Mol Cancer Ther 2020; 19:2516-2527. [PMID: 33158998 DOI: 10.1158/1535-7163.mct-20-0454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Colorectal cancer is the third most common cancer in the United States and responsible for over 50,000 deaths each year. Therapeutic options for advanced colorectal cancer are limited, and there remains an unmet clinical need to identify new treatments for this deadly disease. To address this need, we developed a precision medicine pipeline that integrates high-throughput chemical screens with matched patient-derived cell lines and patient-derived xenografts (PDX) to identify new treatments for colorectal cancer. High-throughput screens of 2,100 compounds were performed across six low-passage, patient-derived colorectal cancer cell lines. These screens identified the CDK inhibitor drug class among the most effective cytotoxic compounds across six colorectal cancer lines. Among this class, combined targeting of CDK1, 2, and 9 was the most effective, with IC50s ranging from 110 nmol/L to 1.2 μmol/L. Knockdown of CDK9 in the presence of a CDK2 inhibitor (CVT-313) showed that CDK9 knockdown acted synergistically with CDK2 inhibition. Mechanistically, dual CDK2/9 inhibition induced significant G2-M arrest and anaphase catastrophe. Combined CDK2/9 inhibition in vivo synergistically reduced PDX tumor growth. Our precision medicine pipeline provides a robust screening and validation platform to identify promising new cancer therapies. Application of this platform to colorectal cancer pinpointed CDK2/9 dual inhibition as a novel combinatorial therapy to treat colorectal cancer.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Roham Salman Roghani
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Ali Sanjari Moghaddam
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Beatrice C Thomas
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Gabrielle Rupprecht
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Erdem Altunel
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - John B Mantyh
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - So Young Kim
- Duke Functional Genomics Core, Duke University, Durham, North Carolina
| | - Shannon J McCall
- Department of Pathology, Duke University, Durham, North Carolina
| | - Xiling Shen
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina. .,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
64
|
Khetan N, Athale CA. Aster swarming by symmetry breaking of cortical dynein transport and coupling kinesins. SOFT MATTER 2020; 16:8554-8564. [PMID: 32840555 DOI: 10.1039/d0sm01086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubule (MT) radial arrays or asters establish the internal topology of a cell by interacting with organelles and molecular motors. We proceed to understand the general pattern forming potential of aster-motor systems using a computational model of multiple MT asters interacting with motors in cellular confinement. In this model dynein motors are attached to the cell cortex and plus-ended motors resembling kinesin-5 diffuse in the cell interior. The introduction of 'noise' in the form of MT length fluctuations spontaneously results in the emergence of coordinated, achiral vortex-like rotation of asters. The coherence and persistence of rotation require a threshold density of both cortical dyneins and coupling kinesins, while the onset is diffusion-limited with relation to the cortical dynein mobility. The coordinated rotational motion emerges due to the resolution of a 'tug-of-war' of multiple cortical dynein motors bound to MTs of the same aster by 'noise' in the form of MT dynamic instability. This transient symmetry breaking is amplified by local coupling by kinesin-5 complexes. The lack of widespread aster rotation across cell types suggests that biophysical mechanisms that suppress such intrinsic dynamics may have evolved. This model is analogous to more general models of locally coupled self-propelled particles (SPP) that spontaneously undergo collective transport in the presence of 'noise' that have been invoked to explain swarming in birds and fish. However, the aster-motor system is distinct from SPP models with regard to the particle density and 'noise' dependence, providing a set of experimentally testable predictions for a novel sub-cellular pattern forming system.
Collapse
Affiliation(s)
- Neha Khetan
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Chaitanya A Athale
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
65
|
Discovery of Novel Agents on Spindle Assembly Checkpoint to Sensitize Vinorelbine-Induced Mitotic Cell Death Against Human Non-Small Cell Lung Cancers. Int J Mol Sci 2020; 21:ijms21165608. [PMID: 32764382 PMCID: PMC7460560 DOI: 10.3390/ijms21165608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts about 80% of all lung cancers. More than two-thirds of NSCLC patients have inoperable, locally advanced or metastatic tumors. Non-toxic agents that synergistically potentiate cancer-killing activities of chemotherapeutic drugs are in high demand. YL-9 was a novel and non-cytotoxic compound with the structure related to sildenafil but showing much less activity against phosphodiesterase type 5 (PDE5). NCI-H460, an NSCLC cell line with low PDE5 expression, was used as the cell model. YL-9 synergistically potentiated vinorelbine-induced anti-proliferative and apoptotic effects in NCI-H460 cells. Vinorelbine induced tubulin acetylation and Bub1-related kinase (BUBR1) phosphorylation, a necessary component in spindle assembly checkpoint. These effects, as well as BUBR1 cleavage, were substantially enhanced in co-treatment with YL-9. Several mitotic arrest signals were enhanced under combinatory treatment of vinorelbine and YL-9, including an increase of mitotic spindle abnormalities, increased cyclin B1 expression, B-cell lymphoma 2 (Bcl-2) phosphorylation and increased phosphoproteins. Moreover, YL-9 also displayed synergistic activity in combining with vinorelbine to induce apoptosis in A549 cells which express PDE5. In conclusion. the data suggest that YL-9 is a novel agent that synergistically amplifies vinorelbine-induced NSCLC apoptosis through activation of spindle assembly checkpoint and increased mitotic arrest of the cell cycle. YL-9 shows the potential for further development in combinatory treatment against NSCLC.
Collapse
|
66
|
Chatterjee S, Sarkar A, Zhu J, Khodjakov A, Mogilner A, Paul R. Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles. Biophys J 2020; 119:434-447. [PMID: 32610087 DOI: 10.1016/j.bpj.2020.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles. Cancer cells are often multicentrosomal, yet they are able to assemble bipolar spindles by clustering centrosomes into two spindle poles. Mechanisms of this clustering are debated. In this study, we computationally screen effective forces between 1) centrosomes, 2) centrosomes and kinetochores, 3) centrosomes and chromosome arms, and 4) centrosomes and cell cortex to understand mechanics that determines three-dimensional spindle architecture. To do this, we use the stochastic Monte Carlo search for stable mechanical equilibria in the effective energy landscape of the spindle. We find that the following conditions have to be met to robustly assemble the bipolar spindle in a multicentrosomal cell: 1) the strengths of centrosomes' attraction to each other and to the cell cortex have to be proportional to each other and 2) the strengths of centrosomes' attraction to kinetochores and repulsion from the chromosome arms have to be proportional to each other. We also find that three other spindle configurations emerge if these conditions are not met: 1) collapsed, 2) monopolar, and 3) multipolar spindles, and the computational screen reveals mechanical conditions for these abnormal spindles.
Collapse
Affiliation(s)
| | - Apurba Sarkar
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Jie Zhu
- Gerber Technology, Tolland, Connecticut
| | - Alexei Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York; Rensselaer Polytechnic Institute, Troy, New York
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York.
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
67
|
Genome instability in multiple myeloma. Leukemia 2020; 34:2887-2897. [PMID: 32651540 DOI: 10.1038/s41375-020-0921-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by clonal proliferation of plasma cells and a heterogenous genomic landscape. Copy number and structural changes due to chromosomal instability (CIN) are common features of MM. In this review, we describe how primary and secondary genetic events caused by CIN can contribute to increased instability across the genome of malignant plasma cells; with a focus on specific driver genomic events, and how they interfere with cell-cycle checkpoints, to prompt accelerated proliferation. We also provide insight into other forms of CIN, such as chromothripsis and chromoplexy. We evaluate how the tumor microenvironment can contribute to a further increase in chromosomal instability in myeloma cells. Lastly, we highlight the role of certain mutational signatures in leading to high mutation rate and genome instability in certain MM patients. We suggest that assessing CIN in MM and its precursors states may help improve predicting the risk of progression to symptomatic disease and relapse and identifying future therapeutic targets.
Collapse
|
68
|
The Modified Phenanthridine PJ34 Unveils an Exclusive Cell-Death Mechanism in Human Cancer Cells. Cancers (Basel) 2020; 12:cancers12061628. [PMID: 32575437 PMCID: PMC7352794 DOI: 10.3390/cancers12061628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
This overview summarizes recent data disclosing the efficacy of the PARP inhibitor PJ34 in exclusive eradication of a variety of human cancer cells without impairing healthy proliferating cells. Its cytotoxic activity in cancer cells is attributed to the insertion of specific un-repairable anomalies in the structure of their mitotic spindle, leading to mitotic catastrophe cell death. This mechanism paves the way to a new concept of cancer therapy.
Collapse
|
69
|
Centrosome reduction in newly-generated tetraploid cancer cells obtained by separase depletion. Sci Rep 2020; 10:9152. [PMID: 32499568 PMCID: PMC7272426 DOI: 10.1038/s41598-020-65975-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Tetraploidy, a common feature in cancer, results in the presence of extra centrosomes, which has been associated with chromosome instability (CIN) and aneuploidy. Deregulation in the number of centrosomes triggers tumorigenesis. However, how supernumerary centrosomes evolve during the emergence of tetraploid cells remains yet to be elucidated. Here, generating tetraploid isogenic clones in colorectal cancer and in non-transformed cells, we show that near-tetraploid clones exhibit a significant increase in the number of centrosomes. Moreover, we find that centrosome area in near-tetraploids is twice as large as in near-diploids. To evaluate whether centrosome clustering was occurring, we next analysed the number of centrioles revealing centriole amplification. Notwithstanding, more than half of the near-tetraploids maintained in culture do not present centrosome aberrations. To test whether cells progressively lost centrioles after becoming near-tetraploid, we transiently transfected diploid cells with siRNA against ESPL1/Separase, a protease responsible for triggering anaphase, to generate newly near-tetraploid cells. Finally, using this model, we assessed the number of centrioles at different time-points after tetraploidization finding that near-tetraploids rapidly lose centrosomes over time. Taken together, these data demonstrate that although most cells reduce supernumerary centrosomes after tetraploidization, a small fraction retains extra centrioles, potentially resulting in CIN.
Collapse
|
70
|
Sapkota H, Wren JD, Gorbsky GJ. CSAG1 maintains the integrity of the mitotic centrosome in cells with defective p53. J Cell Sci 2020; 133:jcs.239723. [PMID: 32295846 DOI: 10.1242/jcs.239723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosomes focus microtubules to promote mitotic spindle bipolarity, a critical requirement for balanced chromosome segregation. Comprehensive understanding of centrosome function and regulation requires a complete inventory of components. While many centrosome components have been identified, others yet remain undiscovered. We have used a bioinformatics approach, based on 'guilt by association' expression to identify novel mitotic components among the large group of predicted human proteins that have yet to be functionally characterized. Here, we identify chondrosarcoma-associated gene 1 protein (CSAG1) in maintaining centrosome integrity during mitosis. Depletion of CSAG1 disrupts centrosomes and leads to multipolar spindles, particularly in cells with compromised p53 function. Thus, CSAG1 may reflect a class of 'mitotic addiction' genes, whose expression is more essential in transformed cells.
Collapse
Affiliation(s)
- Hem Sapkota
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
71
|
Baudoin NC, Nicholson JM, Soto K, Martin O, Chen J, Cimini D. Asymmetric clustering of centrosomes defines the early evolution of tetraploid cells. eLife 2020; 9:54565. [PMID: 32347795 PMCID: PMC7250578 DOI: 10.7554/elife.54565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraploidy has long been of interest to both cell and cancer biologists, partly because of its documented role in tumorigenesis. A common model proposes that the extra centrosomes that are typically acquired during tetraploidization are responsible for driving tumorigenesis. However, tetraploid cells evolved in culture have been shown to lack extra centrosomes. This observation raises questions about how tetraploid cells evolve and more specifically about the mechanisms(s) underlying centrosome loss. Here, using a combination of fixed cell analysis, live cell imaging, and mathematical modeling, we show that populations of newly formed tetraploid cells rapidly evolve in vitro to retain a near-tetraploid chromosome number while losing the extra centrosomes gained at the time of tetraploidization. This appears to happen through a process of natural selection in which tetraploid cells that inherit a single centrosome during a bipolar division with asymmetric centrosome clustering are favored for long-term survival.
Collapse
Affiliation(s)
- Nicolaas C Baudoin
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Joshua M Nicholson
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Kimberly Soto
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Olga Martin
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Jing Chen
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| |
Collapse
|
72
|
Vitre B, Taulet N, Guesdon A, Douanier A, Dosdane A, Cisneros M, Maurin J, Hettinger S, Anguille C, Taschner M, Lorentzen E, Delaval B. IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis. EMBO Rep 2020; 21:e49234. [PMID: 32270908 PMCID: PMC7271317 DOI: 10.15252/embr.201949234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock‐down of various IFT proteins or AID‐inducible degradation of endogenous IFT88 in combination with small‐molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high‐resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.
Collapse
Affiliation(s)
- Benjamin Vitre
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Nicolas Taulet
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Guesdon
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Douanier
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Aurelie Dosdane
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Melanie Cisneros
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Justine Maurin
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Sabrina Hettinger
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Christelle Anguille
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Benedicte Delaval
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| |
Collapse
|
73
|
Beksac M, Balli S, Akcora Yildiz D. Drug Targeting of Genomic Instability in Multiple Myeloma. Front Genet 2020; 11:228. [PMID: 32373151 PMCID: PMC7179656 DOI: 10.3389/fgene.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic instability can be observed at both chromosomal and chromatin levels. Instability at the macro level includes centrosome abnormalities (CA) resulting in numerical as well as structural chromosomal changes, whereas instability at the micro level is characterized by defects in DNA repair pathways resulting in microsatellite instability (MIN) or mutations. Genomic instability occurs during carcinogenesis without impairing survival and growth, though the precise mechanisms remain unclear. Solid tumors arising from most cells of epithelial origin are characterized by genomic instability which renders them resistant to chemotherapy and radiotherapy. This instability is also observed in 25% of myeloma patients and has been shown to be highly prognostic, independently of the international staging system (ISS). However, a biomarker of aberrant DNA repair and loss of heterozygosity (LOH), was only observed at a frequency of 5% in newly diagnosed patients. Several new molecules targeting the pathways involved in genomic instability are under development and some have already entered clinical trials. Poly(ADP-ribose) polymerase-1 (PARP) inhibitors have been FDA-approved for the treatment of breast cancer type 1 susceptibility protein (BRCA1)-mutated metastatic breast cancer, as well as ovarian and lung cancer. Topoisomerase inhibitors and epigenetic histone modification-targeting inhibitors, such as HDAC (Histone Deacetylase) inhibitors which are novel agents that can target genomic instability. Several of the small molecule inhibitors targeting chromosomal level instability such as PARP, Akt, Aurora kinase, cyclin dependent kinase or spindle kinase inhibitors have been tested in mouse models and early phase I/II trials. ATM, ATR kinase inhibitors and DNA helicase inhibitors are also promising novel agents. However, most of these drugs are not effective as single agents but appear to act synergistically with DNA damaging agents such as radiotherapy, platinum derivatives, immunomodulators, and proteasome inhibitors. In this review, new drugs targeting genomic instability and their mechanisms of action will be discussed.
Collapse
Affiliation(s)
- Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Sevinc Balli
- Kars Selim Public Hospital, Internal Medicine, Kars, Turkey
| | - Dilara Akcora Yildiz
- Department of Biology, Science & Art Faculty, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
74
|
Goupil A, Nano M, Letort G, Gemble S, Edwards F, Goundiam O, Gogendeau D, Pennetier C, Basto R. Chromosomes function as a barrier to mitotic spindle bipolarity in polyploid cells. J Cell Biol 2020; 219:133854. [PMID: 32328633 PMCID: PMC7147111 DOI: 10.1083/jcb.201908006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 01/24/2020] [Indexed: 01/22/2023] Open
Abstract
Ploidy variations such as genome doubling are frequent in human tumors and have been associated with genetic instability favoring tumor progression. How polyploid cells deal with increased centrosome numbers and DNA content remains unknown. Using Drosophila neuroblasts and human cancer cells to study mitotic spindle assembly in polyploid cells, we found that most polyploid cells divide in a multipolar manner. We show that even if an initial centrosome clustering step can occur at mitotic entry, the establishment of kinetochore-microtubule attachments leads to spatial chromosome configurations, whereby the final coalescence of supernumerary poles into a bipolar array is inhibited. Using in silico approaches and various spindle and DNA perturbations, we show that chromosomes act as a physical barrier blocking spindle pole coalescence and bipolarity. Importantly, microtubule stabilization suppressed multipolarity by improving both centrosome clustering and pole coalescence. This work identifies inhibitors of bipolar division in polyploid cells and provides a rationale to understand chromosome instability typical of polyploid cancer cells.
Collapse
Affiliation(s)
- Alix Goupil
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Maddalena Nano
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology, Collège de France, UMR7241/U1050, Paris, France
| | - Simon Gemble
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Frances Edwards
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Oumou Goundiam
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France.,Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Delphine Gogendeau
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Carole Pennetier
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Renata Basto
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| |
Collapse
|
75
|
Marthiens V, Basto R. Centrosomes: The good and the bad for brain development. Biol Cell 2020; 112:153-172. [PMID: 32170757 DOI: 10.1111/boc.201900090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Centrosomes nucleate and organise the microtubule cytoskeleton in animal cells. These membraneless organelles are key structures for tissue organisation, polarity and growth. Centrosome dysfunction, defined as deviation in centrosome numbers and/or structural integrity, has major impact on brain size and functionality, as compared with other tissues of the organism. In this review, we discuss the contribution of centrosomes to brain growth during development. We discuss in particular the impact of centrosome dysfunction in Drosophila and mammalian neural stem cell division and fitness, which ultimately underlie brain growth defects.
Collapse
Affiliation(s)
- Véronique Marthiens
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| |
Collapse
|
76
|
Pospisilova V, Esner M, Cervenkova I, Fedr R, Tinevez JY, Hampl A, Anger M. The frequency and consequences of multipolar mitoses in undifferentiated embryonic stem cells. J Appl Biomed 2019; 17:209-217. [PMID: 34907719 DOI: 10.32725/jab.2019.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 01/28/2023] Open
Abstract
Embryonic stem (ES) cells are pluripotent cells widely used in cell therapy and tissue engineering. However, the broader clinical applications of ES cells are limited by their genomic instability and karyotypic abnormalities. Thus, understanding the mechanisms underlying ES cell karyotypic abnormalities is critical to optimizing their clinical use. In this study, we focused on proliferating human and mouse ES cells undergoing multipolar divisions. Specifically, we analyzed the frequency and outcomes of such divisions using a combination of time-lapse microscopy and cell tracking. This revealed that cells resulting from multipolar divisions were not only viable, but they also frequently underwent subsequent cell divisions. Our novel data also showed that in human and mouse ES cells, multipolar spindles allowed more robust escape from chromosome segregation control mechanisms than bipolar spindles. Considering the frequency of multipolar divisions in proliferating ES cells, it is conceivable that cell division errors underlie ES cell karyotypic instability.
Collapse
Affiliation(s)
- Veronika Pospisilova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| | - Milan Esner
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic.,Masaryk University, CEITEC - Central European Institute of Technology, Cellular Imaging Core Facility, Brno, Czech Republic
| | - Iveta Cervenkova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Ales Hampl
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic.,St. Anne's University Hospital, International Clinical Research Center, Brno, Czech Republic
| | - Martin Anger
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic.,Masaryk University, CEITEC - Central European Institute of Technology, Cellular Imaging Core Facility, Brno, Czech Republic
| |
Collapse
|
77
|
Paim LMG, FitzHarris G. Tetraploidy causes chromosomal instability in acentriolar mouse embryos. Nat Commun 2019; 10:4834. [PMID: 31645568 PMCID: PMC6811537 DOI: 10.1038/s41467-019-12772-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Abstract
Tetraploidisation is considered a common event in the evolution of chromosomal instability (CIN) in cancer cells. The current model for how tetraploidy drives CIN in mammalian cells is that a doubling of the number of centrioles that accompany the genome doubling event leads to multipolar spindle formation and chromosome segregation errors. By exploiting the unusual scenario of mouse blastomeres, which lack centrioles until the ~64-cell stage, we show that tetraploidy can drive CIN by an entirely distinct mechanism. Tetraploid blastomeres assemble bipolar spindles dictated by microtubule organising centres, and multipolar spindles are rare. Rather, kinetochore-microtubule turnover is altered, leading to microtubule attachment defects and anaphase chromosome segregation errors. The resulting blastomeres become chromosomally unstable and exhibit a dramatic increase in whole chromosome aneuploidies. Our results thus reveal an unexpected mechanism by which tetraploidy drives CIN, in which the acquisition of chromosomally-unstable microtubule dynamics contributes to chromosome segregation errors following tetraploidisation.
Collapse
Affiliation(s)
- Lia Mara Gomes Paim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montreal, QC, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montreal, QC, Canada.
- Département d'Obstétrique-Gynécologie, Université de Montréal, H3T 1C5, Montreal, QC, Canada.
| |
Collapse
|
78
|
Velásquez ZD, Conejeros I, Larrazabal C, Kerner K, Hermosilla C, Taubert A. Toxoplasma gondii-induced host cellular cell cycle dysregulation is linked to chromosome missegregation and cytokinesis failure in primary endothelial host cells. Sci Rep 2019; 9:12496. [PMID: 31467333 PMCID: PMC6715697 DOI: 10.1038/s41598-019-48961-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a zoonotic and intracellular parasite with fast proliferating properties leading to rapid host cell lysis. T. gondii modulates its host cell on numerous functional levels. T. gondii was previously reported to influence host cellular cell cycle and to dampen host cell division. By using primary endothelial host cells, we show for the first time that T. gondii tachyzoite infections led to increased host cell proliferation and to an enhanced number of multi-nucleated host cells. As detected on DNA content level, parasite infections induced a G2/M cell cycle arrest without affecting expression of G2-specific cyclin B1. In line, parasite-driven impairment mainly concerned mitotic phase of host cells by propagating several functional alterations, such as chromosome segregation errors, mitotic spindle alteration and blockage of cytokinesis progression, with the latter most likely being mediated by the downregulation of the Aurora B kinase expression.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
79
|
Chen S, Liu M, Huang H, Li B, Zhao H, Feng XQ, Zhao HP. Heat Stress-Induced Multiple Multipolar Divisions of Human Cancer Cells. Cells 2019; 8:E888. [PMID: 31412680 PMCID: PMC6721694 DOI: 10.3390/cells8080888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022] Open
Abstract
Multipolar divisions of heated cells has long been thought to stem from centrosome aberrations of cells directly caused by heat stress. In this paper, through long-term live-cell imaging, we provide direct cellular evidences to demonstrate that heat stress can promote multiple multipolar divisions of MGC-803 and MCF-7 cells. Our results show that, besides facilitating centrosome aberration, polyploidy induced by heat stress is another mechanism that causes multipolar cell divisions, in which polyploid cancer cells engendered by mitotic slippage, cytokinesis failure, and cell fusion. Furthermore, we also find that the fates of theses polyploid cells depend on their origins, in the sense that the polyploid cells generated by mitotic slippage experience bipolar divisions with a higher rate than multipolar divisions, while those polyploid cells induced by both cytokinesis failure and cell fusion have a higher frequency of multipolar divisions compared with bipolar divisions. This work indicates that heat stress-induced multiple multipolar divisions of cancer cells usually produce aneuploid daughter cells, and might lead to genetically unstable cancer cells and facilitate tumor heterogeneity.
Collapse
Affiliation(s)
- Shaoyong Chen
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Mingyue Liu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huiming Huang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Hong-Ping Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
80
|
Kondo T, Kimura A. Choice between 1- and 2-furrow cytokinesis in Caenorhabditis elegans embryos with tripolar spindles. Mol Biol Cell 2019; 30:2065-2075. [PMID: 30785847 PMCID: PMC6727771 DOI: 10.1091/mbc.e19-01-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023] Open
Abstract
Excessive centrosomes often lead to multipolar spindles, and thus probably to multipolar mitosis and aneuploidy. In Caenorhabditis elegans, ∼70% of the paternal emb-27APC6 mutant embryonic cells contained more than two centrosomes and formed multipolar spindles. However, only ~30% of the cells with tripolar spindles formed two cytokinetic furrows. The rest formed one furrow, similar to normal cells. To investigate the mechanism via which cells avoid forming two cytokinetic furrows even with a tripolar spindle, we conducted live-cell imaging in emb-27APC6 mutant cells. We observed that the chromatids were aligned on only two of the three sides of the tripolar spindle, and the angle of the tripolar spindle relative to the long axis of the cell correlated with the number of cytokinetic furrows. Our numerical modeling showed that the combination of cell shape, cortical pulling forces, and heterogeneity of centrosome size determines whether cells with a tripolar spindle form one or two cytokinetic furrows.
Collapse
Affiliation(s)
- Tomo Kondo
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (Sokendai), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
81
|
Antao NV, Marcet-Ortega M, Cifani P, Kentsis A, Foley EA. A Cancer-Associated Missense Mutation in PP2A-Aα Increases Centrosome Clustering during Mitosis. iScience 2019; 19:74-82. [PMID: 31357169 PMCID: PMC6664223 DOI: 10.1016/j.isci.2019.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Whole-genome doubling (WGD) is common early in tumorigenesis. WGD doubles ploidy and centrosome number. In the ensuing mitoses, excess centrosomes form a multipolar spindle, resulting in a lethal multipolar cell division. To survive, cells must cluster centrosomes to allow bipolar cell division. Cancer cells are often more proficient at centrosome clustering than untransformed cells, but the mechanism behind increased clustering ability is not well understood. Heterozygous missense mutations in PPP2R1A, which encodes the alpha isoform of the "scaffolding" subunit of PP2A (PP2A-Aα), positively correlate with WGD. We introduced a heterozygous hotspot mutation, P179R, into PPP2R1A in human RPE-1 cells. PP2A-AαP179R decreases PP2A assembly and intracellular targeting in mitosis. Strikingly, PP2A-AαP179R enhances centrosome clustering when centrosome number is increased either by cytokinesis failure or centrosome amplification, likely through PP2A-Aα loss of function. Thus cancer-associated mutations in PP2A-Aα may increase cellular fitness after WGD by enhancing centrosome clustering.
Collapse
Affiliation(s)
- Noelle V Antao
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Marcet-Ortega
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
82
|
Miteva KT, Pedicini L, Wilson LA, Jayasinghe I, Slip RG, Marszalek K, Gaunt HJ, Bartoli F, Deivasigamani S, Sobradillo D, Beech DJ, McKeown L. Rab46 integrates Ca 2+ and histamine signaling to regulate selective cargo release from Weibel-Palade bodies. J Cell Biol 2019; 218:2232-2246. [PMID: 31092558 PMCID: PMC6605797 DOI: 10.1083/jcb.201810118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/24/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
It is unclear how a plethora of stimuli evoke differential cargo secretion from endothelial cells to produce stimulus-appropriate responses. Miteva et al. show that Rab46 integrates histamine signaling and Ca2+ signals to regulate selective cargo release from Weibel-Palade bodies. Endothelial cells selectively release cargo stored in Weibel-Palade bodies (WPBs) to regulate vascular function, but the underlying mechanisms are poorly understood. Here we show that histamine evokes the release of the proinflammatory ligand, P-selectin, while diverting WPBs carrying non-inflammatory cargo away from the plasma membrane to the microtubule organizing center. This differential trafficking is dependent on Rab46 (CRACR2A), a newly identified Ca2+-sensing GTPase, which localizes to a subset of P-selectin–negative WPBs. After acute stimulation of the H1 receptor, GTP-bound Rab46 evokes dynein-dependent retrograde transport of a subset of WPBs along microtubules. Upon continued histamine stimulation, Rab46 senses localized elevations of intracellular calcium and evokes dispersal of microtubule organizing center–clustered WPBs. These data demonstrate for the first time that a Rab GTPase, Rab46, integrates G protein and Ca2+ signals to couple on-demand histamine signals to selective WPB trafficking.
Collapse
Affiliation(s)
- Katarina T Miteva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lesley A Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Izzy Jayasinghe
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Raphael G Slip
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Katarzyna Marszalek
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Hannah J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Shruthi Deivasigamani
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Diego Sobradillo
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
83
|
Odell J, Sikirzhytski V, Tikhonenko I, Cobani S, Khodjakov A, Koonce M. Force balances between interphase centrosomes as revealed by laser ablation. Mol Biol Cell 2019; 30:1705-1715. [PMID: 31067156 PMCID: PMC6727758 DOI: 10.1091/mbc.e19-01-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have highlighted the self-centering activities of individual microtubule (MT) arrays in animal cells, but relatively few works address the behavior of multiple arrays that coexist in a common cytoplasm. In multinucleated Dictyostelium discoideum cells, each centrosome organizes a radial MT network, and these networks remain separate from one another. This feature offers an opportunity to reveal the mechanism(s) responsible for the positioning of multiple centrosomes. Using a laser microbeam to eliminate one of the two centrosomes in binucleate cells, we show that the unaltered array is rapidly repositioned at the cell center. This result demonstrates that each MT array is constantly subject to centering forces and infers a mechanism to balance the positions of multiple arrays. Our results address the limited actions of three kinesins and a cross-linking MAP that are known to have effects in maintaining MT organization and suggest a simple means used to keep the arrays separated.
Collapse
Affiliation(s)
- Jacob Odell
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Vitali Sikirzhytski
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Irina Tikhonenko
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Sonila Cobani
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Alexey Khodjakov
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Michael Koonce
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| |
Collapse
|
84
|
Ganapathi Sankaran D, Stemm-Wolf AJ, Pearson CG. CEP135 isoform dysregulation promotes centrosome amplification in breast cancer cells. Mol Biol Cell 2019; 30:1230-1244. [PMID: 30811267 PMCID: PMC6724517 DOI: 10.1091/mbc.e18-10-0674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The centrosome, composed of two centrioles surrounded by pericentriolar material, is the cell's central microtubule-organizing center. Centrosome duplication is coupled with the cell cycle such that centrosomes duplicate once in S phase. Loss of such coupling produces supernumerary centrosomes, a condition called centrosome amplification (CA). CA promotes cell invasion and chromosome instability, two hallmarks of cancer. We examined the contribution of centriole overduplication to CA and the consequences for genomic stability in breast cancer cells. CEP135, a centriole assembly protein, is dysregulated in some breast cancers. We previously identified a short isoform of CEP135, CEP135mini, that represses centriole duplication. Here, we show that the relative level of full-length CEP135 (CEP135full) to CEP135mini (the CEP135full:mini ratio) is increased in breast cancer cell lines with high CA. Inducing expression of CEP135full in breast cancer cells increases the frequency of CA, multipolar spindles, anaphase-lagging chromosomes, and micronuclei. Conversely, inducing expression of CEP135mini reduces centrosome number. The differential expression of the CEP135 isoforms in vivo is generated by alternative polyadenylation. Directed genetic mutations near the CEP135mini alternative polyadenylation signal reduces the CEP135full:mini ratio and decreases CA. We conclude that dysregulation of CEP135 isoforms promotes centriole overduplication and contributes to chromosome segregation errors in breast cancer cells.
Collapse
Affiliation(s)
- Divya Ganapathi Sankaran
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| |
Collapse
|
85
|
Stigliani S, Moretti S, Casciano I, Canepa P, Remorgida V, Anserini P, Scaruffi P. Presence of aggregates of smooth endoplasmic reticulum in MII oocytes affects oocyte competence: molecular-based evidence. Mol Hum Reprod 2019; 24:310-317. [PMID: 29635518 DOI: 10.1093/molehr/gay018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/06/2018] [Indexed: 01/19/2023] Open
Abstract
STUDY QUESTION Does the presence of aggregates of smooth endoplasmic reticulum (SERa) impact the transcriptome of human metaphase II (MII) oocytes?. SUMMARY ANSWER The presence of SERa alters the molecular status of human metaphase II oocytes. WHAT IS KNOWN ALREADY Oocytes presenting SERa are considered dysmorphic. Oocytes with SERa (SERa+) have been associated with reduced embryological outcome and increased risk of congenital anomalies, although some authors have reported that SERa+ oocytes can lead to healthy newborns. The question of whether or not SERa+ oocytes should be discarded is still open for debate, and no experimental information about the effect of the presence of SERa on the oocyte molecular status is available. STUDY DESIGN, SIZE, DURATION This study included 28 women, aged <38 years, without any ovarian pathology, and undergoing IVF treatment. Supernumerary MII oocytes with no sign of morphological alterations as well as SERa+ oocytes were donated after written informed consent. A total of 31 oocytes without SERa (SERa-) and 24 SERa+ oocytes were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS Pools of 8-10 oocytes for both group were prepared. Total RNA was extracted from each pool, amplified, labeled and hybridized on oligonucleotide microarrays. Analyses were performed by R software using the limma package. MAIN RESULTS AND THE ROLE OF CHANCE The expression profiles of SERa+ oocytes significantly differed from those of SERa- oocytes in 488 probe sets corresponding to 102 down-regulated and 283 up-regulated unique transcripts. Gene Ontology analysis by DAVID bioinformatics disclosed that genes involved in three main biological processes were significantly down-regulated in SERa+ oocytes respective to SERa- oocytes: (i) cell and mitotic/meiotic nuclear division, spindle assembly, chromosome partition and G2/M transition of mitotic cell cycle; (ii) organization of cytoskeleton and microtubules; and (iii) mitochondrial structure and activity. Among the transcripts up-regulated in SERa+ oocytes, the most significantly (P = 0.002) enriched GO term was 'GoLoco motif', including the RAP1GAP, GPSM3 and GPSM1 genes. LARGE SCALE DATA Raw microarray data are accessible through GEO Series accession number GSE106222 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106222). LIMITATIONS, REASONS FOR CAUTION Data validation in a larger cohort of samples would be beneficial, although we applied stringent criteria for gene selection (fold-change >3 or <1/3 and FDR < 0.1). Surveys on clinical outcomes, malformation rates and follow-up of babies born after transfer of embryos from SERa+ oocytes are necessary. WIDER IMPLICATIONS OF THE FINDINGS We provide information on the molecular status of SERa+ oocytes, highlighting possible associations between presence of SERa, altered oocyte physiology and reduced developmental competence. Our study may offer further information that can assist embryologists to make decisions on whether, and with what possible implications, SERa+ oocytes should be used. We believe that the presence of SERa should be still a 'red flag' in IVF practices and that the decision to inseminate SERa+ oocytes should be discussed on a case-by-case basis. STUDY FUNDING/COMPETING INTEREST(s) This study was partially supported by Ferring Pharmaceuticals. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Sara Stigliani
- Unit of Physiopathology of Human Reproduction, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Ida Casciano
- Unit of Physiopathology of Human Reproduction, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pierandrea Canepa
- Unit of Physiopathology of Human Reproduction, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Paola Anserini
- Unit of Physiopathology of Human Reproduction, Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Scaruffi
- Unit of Physiopathology of Human Reproduction, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
86
|
McCoy RC, Newnham LJ, Ottolini CS, Hoffmann ER, Chatzimeletiou K, Cornejo OE, Zhan Q, Zaninovic N, Rosenwaks Z, Petrov DA, Demko ZP, Sigurjonsson S, Handyside AH. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos. Hum Mol Genet 2019; 27:2573-2585. [PMID: 29688390 DOI: 10.1093/hmg/ddy147] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24 653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17 051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Louise J Newnham
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | | | - Eva R Hoffmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK.,Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability, University of Copenhagen, Copenhagen N, Denmark
| | - Katerina Chatzimeletiou
- Section of Reproductive Medicine, First Department of Obstetrics & Gynaecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Qiansheng Zhan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
87
|
Navarro-Serer B, Childers EP, Hermance NM, Mercadante D, Manning AL. Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes. Oncotarget 2019; 10:1649-1659. [PMID: 30899434 PMCID: PMC6422193 DOI: 10.18632/oncotarget.26714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/29/2023] Open
Abstract
The presence of supernumerary centrosomes is prevalent in cancer, where they promote the formation of transient multipolar mitotic spindles. Active clustering of supernumerary centrosomes enables the formation of a functional bipolar spindle that is competent to complete a bipolar division. Disruption of spindle pole clustering in cancer cells promotes multipolar division and generation of non-proliferative daughter cells with compromised viability. Hence molecular pathways required for spindle pole clustering in cells with supernumerary centrosomes, but dispensable in normal cells, are promising therapeutic targets. Here we demonstrate that Aurora A kinase activity is required for spindle pole clustering in cells with extra centrosomes. While cells with two centrosomes are ultimately able to build a bipolar spindle and proceed through a normal cell division in the presence of Aurora A inhibition, cells with supernumerary centrosomes form multipolar and disorganized spindles that are not competent for chromosome segregation. Instead, following a prolonged mitosis, these cells experience catastrophic divisions that result in grossly aneuploid, and non-proliferative daughter cells. Aurora A inhibition in a panel of Acute Myeloid Leukemia cancer cells has a similarly disparate impact on cells with supernumerary centrosomes, suggesting that centrosome number and spindle polarity may serve as predictive biomarkers for response to therapeutic approaches that target Aurora A kinase function.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Eva P Childers
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Nicole M Hermance
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Dayna Mercadante
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Amity L Manning
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| |
Collapse
|
88
|
KIFC1 Inhibitor CW069 Induces Apoptosis and Reverses Resistance to Docetaxel in Prostate Cancer. J Clin Med 2019; 8:jcm8020225. [PMID: 30744126 PMCID: PMC6407017 DOI: 10.3390/jcm8020225] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Kinesin family member C1 (KIFC1) is a minus end-directed motor protein that plays an essential role in centrosome clustering. Previously, we reported that KIFC1 is involved in cancer progression in prostate cancer (PCa). We designed this study to assess the involvement of KIFC1 in docetaxel (DTX) resistance in PCa and examined the effect of KIFC1 on DTX resistance. We also analyzed the possible role of a KIFC1 inhibitor (CW069) in PCa. We used DTX-resistant PCa cell lines in DU145 and C4-2 cells to analyze the effect of KIFC1 on DTX resistance in PCa. Western blotting showed that KIFC1 expression was higher in the DTX-resistant cell lines than in the parental cell lines. Downregulation of KIFC1 re-sensitized the DTX-resistant cell lines to DTX treatment. CW069 treatment suppressed cell viability in both parental and DTX-resistant cell lines. DTX alone had little effect on cell viability in the DTX-resistant cells. However, the combination of DTX and CW069 significantly reduced cell viability in the DTX-resistant cells, indicating that CW069 re-sensitized the DTX-resistant cell lines to DTX treatment. These results suggest that a combination of CW069 and DTX could be a potential strategy to overcome DTX resistance.
Collapse
|
89
|
PARP6 inhibition as a strategy to exploit centrosome clustering in cancer cells? Oncotarget 2019; 10:690-691. [PMID: 30774769 PMCID: PMC6366821 DOI: 10.18632/oncotarget.26599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/25/2022] Open
|
90
|
Li M, Li X, Zhao L, Zhou J, Cheng Y, Xu B, Wang J, Wei L. Spontaneous formation of tumorigenic hybrids between human omental adipose-derived stromal cells and endometrial cancer cells increased motility and heterogeneity of cancer cells. Cell Cycle 2019; 18:320-332. [PMID: 30636489 DOI: 10.1080/15384101.2019.1568743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent reports indicate that mesenchymal stem cells (MSCs) can fuse with cancer cells to promote cancer progression. Omental adipose-derived stromal cells (O-ASCs) are similar to MSCs, which could be recruited to the stroma in endometrial cancer. The aim of our study was to investigate whether O-ASCs can fuse with endometrial cancer cells to influence cancer cells biological characteristics. We isolated O-ASCs from patients with endometrial cancer. O-ASCs and endometrial cancer cells were labeled with different fluorescent tags and directly co-cultured in an Opera high-throughput spinning-disk confocal microscopy system to observe the processes involved in the fusion, division and migration of hybrid cells. Immunofluorescence and high-throughput imaging analyzes were performed to evaluate proteins related to epithelial-mesenchymal transition (EMT).We found O-ASCs could spontaneously fuse with endometrial cancer cells, including cytomembrane and nuclear fusion. After fusion, endometrial cancer cells assume an elongated and fibroblast-like appearance that exhibit mesenchymal phenotypes. The hybrid cells proliferated through bipolar and multipolar divisions and exhibited more rapid migratory speeds than were observed in the parental cells (P < 0.01), potentially because of their EMT-associated changes, including the down-regulation of E-cadherin and up-regulation of Vimentin. Our results collectively suggest that tumorigenic hybrids spontaneously formed between human O-ASCs and endometrial cancer cells, and that the resulting cells enhanced cancer mobility and heterogeneity by accelerated migration and undergoing multipolar divisions. These data provide a new avenue for investigating the roles of O-ASCs in endometrial cancer.
Collapse
Affiliation(s)
- Mingxia Li
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China.,b Department of Gynecology and Obstetrics, People's Liberation Army (PLA) Medical School , Chinese PLA General Hospital , Beijing , China
| | - Xiaoping Li
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China
| | - Lijun Zhao
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China
| | - Jingyi Zhou
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China
| | - Yuan Cheng
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China
| | - Bo Xu
- c State Key Laboratory of Natural and Biomietic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Jianliu Wang
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China
| | - Lihui Wei
- a Department of Gynecology and Obstetrics , Peking University People's Hospital , Beijing , China
| |
Collapse
|
91
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
92
|
Abstract
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Collapse
Affiliation(s)
- Susanne M A Lens
- Oncode Institute, Utrecht, Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - René H Medema
- Oncode Institute, Utrecht, Netherlands.
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
93
|
Liu C, Wei J, Xu K, Sun X, Zhang H, Xiong C. CSE1L participates in regulating cell mitosis in human seminoma. Cell Prolif 2018; 52:e12549. [PMID: 30485574 PMCID: PMC6496685 DOI: 10.1111/cpr.12549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives CSE1L has been reported to be highly expressed in various tumours. Testicular germ cell tumours are common among young males, and seminoma is the major type. However, whether CSE1L has functions in the seminoma is unclear. Materials and methods The expression of CSE1L was detected by immunohistochemistry in seminoma tissues and non‐tumour normal testis tissues from patients. CSE1L distribution during cell mitosis was determined by immunofluorescent staining with CSE1L, α‐tubulin and γ‐tubulin antibodies. The effects of Cse1L knockdown on cell proliferation and cell cycle progression were determined by Cell Counting Kit‐8 assay, flow cytometry, PH3 staining and bromodeoxyuridine incorporation assay. Results CSE1L was significantly enriched in the seminoma tissue compared with the non‐tumour normal testis tissue. CSE1L also co‐localized with α‐tubulin in the cells with a potential to divide. In the seminoma cell line TCam‐2, CSE1L was associated with the spindles and the centrosomes during cell division. The knockdown of CSE1L in TCam‐2 cells attenuated the cells’ proliferative capacity. Cell cycle assay revealed that the CSE1L‐deficient cells were mainly arrested in the G0/G1 phase and moderately delayed in the G2/M phase. The proportion of cells with multipolar spindle and abnormal spindle geometry was obviously increased by CSE1L expression silencing in the TCam‐2 cells. Conclusions Overall, these findings showed that CSE1L plays a pivotal role in maintaining cell proliferation and cell division in seminomas.
Collapse
Affiliation(s)
- Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Xu
- The First People's Hospital of Tianmen City, Tianmen, China
| | - Xiaosong Sun
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| |
Collapse
|
94
|
Wang Z, Grosskurth SE, Cheung T, Petteruti P, Zhang J, Wang X, Wang W, Gharahdaghi F, Wu J, Su N, Howard RT, Mayo M, Widzowski D, Scott DA, Johannes JW, Lamb ML, Lawson D, Dry JR, Lyne PD, Tate EW, Zinda M, Mikule K, Fawell SE, Reimer C, Chen H. Pharmacological Inhibition of PARP6 Triggers Multipolar Spindle Formation and Elicits Therapeutic Effects in Breast Cancer. Cancer Res 2018; 78:6691-6702. [PMID: 30297535 DOI: 10.1158/0008-5472.can-18-1362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/23/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
: PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity. SIGNIFICANCE: These findings describe a new inhibitor of PARP6 and identify a novel function of PARP6 in regulating activation of Chk1 in breast cancer cells.
Collapse
Affiliation(s)
- Zebin Wang
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Shaun E Grosskurth
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Tony Cheung
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Philip Petteruti
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Jingwen Zhang
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Xin Wang
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Wenxian Wang
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Farzin Gharahdaghi
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Jiaquan Wu
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Nancy Su
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Ryan T Howard
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Michele Mayo
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Dan Widzowski
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - David A Scott
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Jeffrey W Johannes
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Michelle L Lamb
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Deborah Lawson
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Jonathan R Dry
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Paul D Lyne
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Edward W Tate
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Michael Zinda
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Keith Mikule
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Stephen E Fawell
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Corinne Reimer
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Huawei Chen
- Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham, Massachusetts.
| |
Collapse
|
95
|
Kawakami M, Liu X, Dmitrovsky E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu Rev Pharmacol Toxicol 2018; 59:361-377. [PMID: 30110577 DOI: 10.1146/annurev-pharmtox-010818-021649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aneuploidy is a hallmark of cancer. Defects in chromosome segregation result in aneuploidy. Multiple pathways are engaged in this process, including errors in kinetochore-microtubule attachments, supernumerary centrosomes, spindle assembly checkpoint (SAC) defects, and chromosome cohesion defects. Although aneuploidy provides an adaptation and proliferative advantage in affected cells, excessive aneuploidy beyond a critical level can be lethal to cancer cells. Given this, enhanced chromosome missegregation is hypothesized to limit survival of aneuploid cancer cells, especially when compared to diploid cells. Based on this concept, proteins and pathways engaged in chromosome segregation are being exploited as candidate therapeutic targets for aneuploid cancers. Agents that induce chromosome missegregation and aneuploidy now exist, including SAC inhibitors, those that alter centrosome fidelity and others that are under active study in preclinical and clinical contexts. This review explores the therapeutic potentials of such new agents, including the benefits of combining them with other antineoplastic agents.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Current affiliation: Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA;
| |
Collapse
|
96
|
Jusino S, Fernández-Padín FM, Saavedra HI. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. ACTA ACUST UNITED AC 2018; 4. [PMID: 30381801 PMCID: PMC6205736 DOI: 10.20517/2394-4722.2018.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Centrosomes serve as the major microtubule organizing centers in cells and thereby contribute to cell shape, polarity, and motility. Also, centrosomes ensure equal chromosome segregation during mitosis. Centrosome aberrations arise when the centrosome cycle is deregulated, or as a result of cytokinesis failure. A long-standing postulate is that centrosome aberrations are involved in the initiation and progression of cancer. However, this notion has been a subject of controversy because until recently the relationship has been correlative. Recently, it was shown that numerical or structural centrosome aberrations can initiate tumors in certain tissues in mice, as well as invasion. Particularly, we will focus on centrosome amplification and chromosome instability as drivers of intra-tumor heterogeneity and their consequences in cancer. We will also discuss briefly the controversies surrounding this theory to highlight the fact that the role of both centrosome amplification and chromosome instability in cancer is highly context-dependent. Further, we will discuss single-cell sequencing as a novel technique to understand intra-tumor heterogeneity and some therapeutic approaches to target chromosome instability.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| | - Fabiola M Fernández-Padín
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
97
|
Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 2018; 128:3517-3534. [PMID: 30035751 PMCID: PMC6063474 DOI: 10.1172/jci120316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.
Collapse
Affiliation(s)
- Khaled Aziz
- Department of Biochemistry and Molecular Biology and
| | | | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | | | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology and
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
98
|
Tanaka K, Goto H, Nishimura Y, Kasahara K, Mizoguchi A, Inagaki M. Tetraploidy in cancer and its possible link to aging. Cancer Sci 2018; 109:2632-2640. [PMID: 29949679 PMCID: PMC6125447 DOI: 10.1111/cas.13717] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy‐prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence‐associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy‐induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy‐induced CIN to control these pathological conditions.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hidemasa Goto
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
99
|
Abstract
This review by Levine and Holland reviews the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. They discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy and survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically. Mitosis is a delicate event that must be executed with high fidelity to ensure genomic stability. Recent work has provided insight into how mitotic errors shape cancer genomes by driving both numerical and structural alterations in chromosomes that contribute to tumor initiation and progression. Here, we review the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. We discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy. Finally, we survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
100
|
Norris SR, Jung S, Singh P, Strothman CE, Erwin AL, Ohi MD, Zanic M, Ohi R. Microtubule minus-end aster organization is driven by processive HSET-tubulin clusters. Nat Commun 2018; 9:2659. [PMID: 29985404 PMCID: PMC6037785 DOI: 10.1038/s41467-018-04991-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Higher-order structures of the microtubule (MT) cytoskeleton are comprised of two architectures: bundles and asters. Although both architectures are critical for cellular function, the molecular pathways that drive aster formation are poorly understood. Here, we study aster formation by human minus-end-directed kinesin-14 (HSET/KIFC1). We show that HSET is incapable of forming asters from preformed, nongrowing MTs, but rapidly forms MT asters in the presence of soluble (non-MT) tubulin. HSET binds soluble (non-MT) tubulin via its N-terminal tail domain to form heterogeneous HSET-tubulin clusters containing multiple motors. Cluster formation induces motor processivity and rescues the formation of asters from nongrowing MTs. We then show that excess soluble (non-MT) tubulin stimulates aster formation in HeLa cells overexpressing HSET during mitosis. We propose a model where HSET can toggle between MT bundle and aster formation in a manner governed by the availability of soluble (non-MT) tubulin.
Collapse
Affiliation(s)
- Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Seungyeon Jung
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Prashant Singh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amanda L Erwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109-2216, USA
- The Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-2216, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109-2216, USA
- The Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-2216, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109-2216, USA.
- The Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-2216, USA.
| |
Collapse
|