51
|
Parisi G, Palopoli N, Tosatto SC, Fornasari MS, Tompa P. "Protein" no longer means what it used to. Curr Res Struct Biol 2021; 3:146-152. [PMID: 34308370 PMCID: PMC8283027 DOI: 10.1016/j.crstbi.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Every biologist knows that the word protein describes a group of macromolecules essential to sustain life on Earth. As biologists, we are invariably trained under a protein paradigm established since the early twentieth century. However, in recent years, the term protein unveiled itself as an euphemism to describe the overwhelming heterogeneity of these compounds. Most of our current studies are targeted on carefully selected subsets of proteins, but we tend to think and write about these as representative of the whole population. Here we discuss how seeking for universal definitions and general rules in any arbitrarily segmented study would be misleading about the conclusions. Of course, it is not our purpose to discourage the use of the word protein. Instead, we suggest to embrace the extended universe of proteins to reach a deeper understanding of their full potential, realizing that the term encompasses a group of molecules very heterogeneous in terms of size, shape, chemistry and functions, i.e. the term protein no longer means what it used to.
Collapse
Affiliation(s)
- Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
52
|
Carletti MS, Monzon AM, Garcia-Rios E, Benitez G, Hirsh L, Fornasari MS, Parisi G. Revenant: a database of resurrected proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5828294. [PMID: 32400867 PMCID: PMC7218706 DOI: 10.1093/database/baaa031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Revenant is a database of resurrected proteins coming from extinct organisms. Currently, it contains a manually curated collection of 84 resurrected proteins derived from bibliographic data. Each protein is extensively annotated, including structural, biochemical and biophysical information. Revenant contains a browse capability designed as a timeline from where the different proteins can be accessed. The oldest Revenant entries are between 4200 and 3500 million years ago, while the younger entries are between 8.8 and 6.3 million years ago. These proteins have been resurrected using computational tools called ancestral sequence reconstruction techniques combined with wet-laboratory synthesis and expression. Resurrected proteins are commonly used, with a noticeable increase during the past years, to explore and test different evolutionary hypotheses such as protein stability, to explore the origin of new functions, to get biochemical insights into past metabolisms and to explore specificity and promiscuous behaviour of ancient proteins.
Collapse
Affiliation(s)
- Matias Sebastian Carletti
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova, I-35131, Padova, Italy
| | - Emilio Garcia-Rios
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Guillermo Benitez
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Layla Hirsh
- Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Saenz Peña 182, Bernal, B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
53
|
Luft FC. Solute excretion, metabolism, and cardio-renoprotection via two distinct mechanisms revolutionize clinical outcomes. Acta Physiol (Oxf) 2021; 232:e13589. [PMID: 33249728 DOI: 10.1111/apha.13589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Friedrich C. Luft
- Experimental and Clinical Research Center Charité Medical Faculty Berlin Germany
| |
Collapse
|
54
|
Xie VC, Pu J, Metzger BP, Thornton JW, Dickinson BC. Contingency and chance erase necessity in the experimental evolution of ancestral proteins. eLife 2021; 10:67336. [PMID: 34061027 PMCID: PMC8282340 DOI: 10.7554/elife.67336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of chance, contingency, and necessity in evolution are unresolved because they have never been assessed in a single system or on timescales relevant to historical evolution. We combined ancestral protein reconstruction and a new continuous evolution technology to mutate and select proteins in the B-cell lymphoma-2 (BCL-2) family to acquire protein–protein interaction specificities that occurred during animal evolution. By replicating evolutionary trajectories from multiple ancestral proteins, we found that contingency generated over long historical timescales steadily erased necessity and overwhelmed chance as the primary cause of acquired sequence variation; trajectories launched from phylogenetically distant proteins yielded virtually no common mutations, even under strong and identical selection pressures. Chance arose because many sets of mutations could alter specificity at any timepoint; contingency arose because historical substitutions changed these sets. Our results suggest that patterns of variation in BCL-2 sequences – and likely other proteins, too – are idiosyncratic products of a particular and unpredictable course of historical events. One of the most fundamental and unresolved questions in evolutionary biology is whether the outcomes of evolution are predictable. Is the diversity of life we see today the expected result of organisms adapting to their environment throughout history (also known as natural selection) or the product of random chance? Or did chance events early in history shape the paths that evolution could take next, determining the biological forms that emerged under natural selection much later? These questions are hard to study because evolution happened only once, long ago. To overcome this barrier, Xie, Pu, Metzger et al. developed an experimental approach that can evolve reconstructed ancestral proteins that existed deep in the past. Using this method, it is possible to replay evolution multiple times, from various historical starting points, under conditions similar to those that existed long ago. The end products of the evolutionary trajectories can then be compared to determine how predictable evolution actually is. Xie, Pu, Metzger et al. studied proteins belonging to the BCL-2 family, which originated some 800 million years ago. These proteins have diversified greatly over time in both their genetic sequences and their ability to bind to specific partner proteins called co-regulators. Xie, Pu, Metzger et al. synthesized BCL-2 proteins that existed at various times in the past. Each ancestral protein was then allowed to evolve repeatedly under natural selection to acquire the same co-regulator binding functions that evolved during history. At the end of each evolutionary trajectory, the genetic sequence of the resulting BCL-2 proteins was recorded. This revealed that the outcomes of evolution were almost completely unpredictable: trajectories initiated from the same ancestral protein produced proteins with very different sequences, and proteins launched from different ancestral starting points were even more dissimilar. Further experiments identified the mutations in each trajectory that caused changes in coregulator binding. When these mutations were introduced into other ancestral proteins, they did not yield the same change in function. This suggests that early chance events influenced each protein’s evolution in an unpredictable way by opening and closing the paths available to it in the future. This research expands our understanding of evolution on a molecular level whilst providing a new experimental approach for studying evolutionary drivers in more detail. The results suggest that BCL-2 proteins, in all their various forms, are unique products of a particular, unpredictable course of history set in motion by ancient chance events.
Collapse
Affiliation(s)
| | - Jinyue Pu
- Department of Chemistry, University of Chicago, Chicago, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, United States
| |
Collapse
|
55
|
Bourgeat L, Pacini L, Serghei A, Lesieur C. Experimental diagnostic of sequence-variant dynamic perturbations revealed by broadband dielectric spectroscopy. Structure 2021; 29:1419-1429.e3. [PMID: 34051139 DOI: 10.1016/j.str.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Genetic diversity leads to protein robustness, adaptability, and failure. Some sequence variants are structurally robust but functionally disturbed because mutations bring the protein onto unfolding/refolding routes resulting in misfolding diseases (e.g., Parkinson). We assume dynamic perturbations introduced by mutations foster the alternative unfolding routes and test this possibility by comparing the unfolding dynamics of the heat-labile enterotoxin B pentamers and the cholera toxin B pentamers, two pentamers structurally and functionally related and robust to 17 sequence variations. The B-subunit thermal unfolding dynamics are monitored by broadband dielectric spectroscopy in nanoconfined and weakly hydrated conditions. Distinct dielectric signals reveal the different B-subunits unfolding dynamics. Combined with network analyses, the experiments pinpoint the role of three mutations A1T, E7D, and E102A, in diverting LTB5 to alternative unfolding routes that protect LTB5 from dissociation. Altogether, the methodology diagnoses dynamics faults that may underlie functional disorder, drug resistance, or higher virulence of sequence variants.
Collapse
Affiliation(s)
- Laëtitia Bourgeat
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Univ Lyon, CNRS, IMP, 69622, Villeurbanne, France
| | - Lorenza Pacini
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France
| | | | - Claire Lesieur
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France.
| |
Collapse
|
56
|
Hensley NM, Ellis EA, Leung NY, Coupart J, Mikhailovsky A, Taketa DA, Tessler M, Gruber DF, De Tomaso AW, Mitani Y, Rivers TJ, Gerrish GA, Torres E, Oakley TH. Selection, drift, and constraint in cypridinid luciferases and the diversification of bioluminescent signals in sea fireflies. Mol Ecol 2021; 30:1864-1879. [PMID: 33031624 PMCID: PMC11629831 DOI: 10.1111/mec.15673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Understanding the genetic causes of evolutionary diversification is challenging because differences across species are complex, often involving many genes. However, cases where single or few genetic loci affect a trait that varies dramatically across a radiation of species provide tractable opportunities to understand the genetics of diversification. Here, we begin to explore how diversification of bioluminescent signals across species of cypridinid ostracods ("sea fireflies") was influenced by evolution of a single gene, cypridinid-luciferase. In addition to emission spectra ("colour") of bioluminescence from 21 cypridinid species, we report 13 new c-luciferase genes from de novo transcriptomes, including in vitro assays to confirm function of four of those genes. Our comparative analyses suggest some amino acid sites in c-luciferase evolved under episodic diversifying selection and may be associated with changes in both enzyme kinetics and colour, two enzymatic functions that directly impact the phenotype of bioluminescent signals. The analyses also suggest multiple other amino acid positions in c-luciferase evolved neutrally or under purifying selection, and may have impacted the variation of colour of bioluminescent signals across genera. Previous mutagenesis studies at candidate sites show epistatic interactions, which could constrain the evolution of c-luciferase function. This work provides important steps toward understanding the genetic basis of diversification of behavioural signals across multiple species, suggesting different evolutionary processes act at different times during a radiation of species. These results set the stage for additional mutagenesis studies that could explicitly link selection, drift, and constraint to the evolution of phenotypic diversification.
Collapse
Affiliation(s)
- Nicholai M. Hensley
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Emily A. Ellis
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Nicole Y. Leung
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - John Coupart
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alexander Mikhailovsky
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Daryl A. Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Michael Tessler
- American Museum of Natural History and New York University, New York, NY, USA
- Department of Biology, St. Francis College, Brooklyn, NY, USA
| | - David F. Gruber
- Department of Biology and Environmental Science, City University of New York Baruch College, New York, NY, USA
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Trevor J. Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Gretchen A. Gerrish
- Department of Biology, University of Wisconsin – La Crosse, La Crosse, WI, USA
| | - Elizabeth Torres
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
57
|
DeLeo DM, Bracken-Grissom HD. Lighting the way: Forces driving the diversification of bioluminescent signalling in sea fireflies. Mol Ecol 2021; 30:1747-1750. [PMID: 33709451 DOI: 10.1111/mec.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022]
Abstract
Understanding the drivers of diversification and processes that maintain biodiversity remains a central theme of evolutionary biology. However, these efforts are often impeded due to disparities across species and environments and the genetic complexity underlying many traits. The factors driving biodiversity can be more readily understood by focusing on the genetics of diversification, of one or few genes shared across species, with large influence over an organism's phenotype (Templeton, 1981; Wright, 1984). In this pursuit, previous studies often focus on the selective pressures that impact phenotypic diversity (Brawand et al., 2014; Yokoyama et al., 2015), often overlooking the contribution of neutral processes (i.e., genetic drift). In this issue of Molecular Ecology, Hensley et al. (2020) use an integrative approach, including RNA sequencing, in vitro protein expression and spectral measurements, to explore the drivers behind the diversification of bioluminescent signalling in cypridinid ostracods (Figure 1). Typical bioluminescent reactions primarily include an enzyme (luciferase) and substrate (luciferin). By focusing on a single gene, this study traces the molecular evolution of (c)luciferase in sea fireflies, elucidating diverse signatures of selection, drift and constraint to decipher the link between genotype and phenotype of their bioluminescent emissions.
Collapse
Affiliation(s)
- Danielle M DeLeo
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Heather D Bracken-Grissom
- Department of Biological Sciences, Institute of Environment, Florida International University, North Miami, FL, USA
| |
Collapse
|
58
|
Schriever K, Saenz-Mendez P, Rudraraju RS, Hendrikse NM, Hudson EP, Biundo A, Schnell R, Syrén PO. Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. J Am Chem Soc 2021; 143:3794-3807. [PMID: 33496585 PMCID: PMC8023661 DOI: 10.1021/jacs.0c10214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Structural information is crucial for understanding catalytic mechanisms and to guide enzyme engineering efforts of biocatalysts, such as terpene cyclases. However, low sequence similarity can impede homology modeling, and inherent protein instability presents challenges for structural studies. We hypothesized that X-ray crystallography of engineered thermostable ancestral enzymes can enable access to reliable homology models of extant biocatalysts. We have applied this concept in concert with molecular modeling and enzymatic assays to understand the structure activity relationship of spiroviolene synthase, a class I terpene cyclase, aiming to engineer its specificity. Engineering a surface patch in the reconstructed ancestor afforded a template structure for generation of a high-confidence homology model of the extant enzyme. On the basis of structural considerations, we designed and crystallized ancestral variants with single residue exchanges that exhibited tailored substrate specificity and preserved thermostability. We show how the two single amino acid alterations identified in the ancestral scaffold can be transferred to the extant enzyme, conferring a specificity switch that impacts the extant enzyme's specificity for formation of the diterpene spiroviolene over formation of sesquiterpenes hedycaryol and farnesol by up to 25-fold. This study emphasizes the value of ancestral sequence reconstruction combined with enzyme engineering as a versatile tool in chemical biology.
Collapse
Affiliation(s)
- Karen Schriever
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | | | - Natalie M. Hendrikse
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Swedish
Orphan Biovitrum AB, 112
76 Stockholm, Sweden
| | - Elton P. Hudson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Protein Science, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 165 Stockholm, Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Wallenberg
Wood Science Center, Teknikringen 56−58, 100 44 Stockholm, Sweden
| |
Collapse
|
59
|
Modi T, Campitelli P, Kazan IC, Ozkan SB. Protein folding stability and binding interactions through the lens of evolution: a dynamical perspective. Curr Opin Struct Biol 2020; 66:207-215. [PMID: 33388636 DOI: 10.1016/j.sbi.2020.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
While the function of a protein depends heavily on its ability to fold into a correct 3D structure, billions of years of evolution have tailored proteins from highly stable objects to flexible molecules as they adapted to environmental changes. Nature maintains the fine balance of protein folding and stability while still evolving towards new function through generations of fine-tuning necessary interactions with other proteins and small molecules. Here we focus on recent computational and experimental studies that shed light onto how evolution molds protein folding and the functional landscape from a conformational dynamics' perspective. Particularly, we explore the importance of dynamic allostery throughout protein evolution and discuss how the protein anisotropic network can give rise to allosteric and epistatic interactions.
Collapse
Affiliation(s)
- Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Ismail Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| |
Collapse
|
60
|
Nawaz MS, Asghar R, Pervaiz N, Ali S, Hussain I, Xing P, Bao Y, Abbasi AA. Molecular evolutionary and structural analysis of human UCHL1 gene demonstrates the relevant role of intragenic epistasis in Parkinson's disease and other neurological disorders. BMC Evol Biol 2020; 20:130. [PMID: 33028204 PMCID: PMC7542113 DOI: 10.1186/s12862-020-01684-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/07/2020] [Indexed: 12/04/2022] Open
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disorder. PD associated human UCHL1 (Ubiquitin C-terminal hydrolase L1) gene belongs to the family of deubiquitinases and is known to be highly expressed in neurons (1–2% in soluble form). Several functions of UCHL1 have been proposed including ubiquitin hydrolyze activity, ubiquitin ligase activity and stabilization of the mono-ubiquitin. Mutations in human UCHL1 gene have been associated with PD and other neurodegenerative disorders. The present study aims to decipher the sequence evolutionary pattern and structural dynamics of UCHL1. Furthermore, structural and interactional analysis of UCHL1 was performed to help elucidate the pathogenesis of PD. Results The phylogenetic tree topology suggests that the UCHL1 gene had originated in early gnathostome evolutionary history. Evolutionary rate analysis of orthologous sequences reveals strong purifying selection on UCHL1. Comparative structural analysis of UCHL1 pinpoints an important protein segment spanning amino acid residues 32 to 39 within secretion site with crucial implications in evolution and PD pathogenesis through a well known phenomenon called intragenic epistasis. Identified critical protein segment appears to play an indispensable role in protein stability, proper protein conformation as well as harboring critical interaction sites. Conclusions Conclusively, the critical protein segment of UCHL1 identified in the present study not only demonstrates the relevant role of intraprotein conformational epistasis in the pathophysiology of PD but also offers a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Muhammad Saqib Nawaz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Razia Asghar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Peiqi Xing
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
61
|
Furukawa R, Toma W, Yamazaki K, Akanuma S. Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Sci Rep 2020; 10:15493. [PMID: 32968141 PMCID: PMC7511310 DOI: 10.1038/s41598-020-72418-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Enzymes have high catalytic efficiency and low environmental impact, and are therefore potentially useful tools for various industrial processes. Crucially, however, natural enzymes do not always have the properties required for specific processes. It may be necessary, therefore, to design, engineer, and evolve enzymes with properties that are not found in natural enzymes. In particular, the creation of enzymes that are thermally stable and catalytically active at low temperature is desirable for processes involving both high and low temperatures. In the current study, we designed two ancestral sequences of 3-isopropylmalate dehydrogenase by an ancestral sequence reconstruction technique based on a phylogenetic analysis of extant homologous amino acid sequences. Genes encoding the designed sequences were artificially synthesized and expressed in Escherichia coli. The reconstructed enzymes were found to be slightly more thermally stable than the extant thermophilic homologue from Thermus thermophilus. Moreover, they had considerably higher low-temperature catalytic activity as compared with the T. thermophilus enzyme. Detailed analyses of their temperature-dependent specific activities and kinetic properties showed that the reconstructed enzymes have catalytic properties similar to those of mesophilic homologues. Collectively, our study demonstrates that ancestral sequence reconstruction can produce a thermally stable enzyme with catalytic properties adapted to low-temperature reactions.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Wakako Toma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Koji Yamazaki
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
62
|
Queiroz APS, Freitas MCC, Silva JRA, Lima AB, Sawada L, Martins Monteiro RF, de Freitas ACGA, Maués LAL, Arruda AC, Silva MN, Maia CSF, Fontes-Júnior EA, do Nascimento JLM, Arruda MSP, Bastos GNT. Pellucidin A promotes antinociceptive activity by peripheral mechanisms inhibiting COX-2 and NOS: In vivo and in silico study. PLoS One 2020; 15:e0238834. [PMID: 32941458 PMCID: PMC7498071 DOI: 10.1371/journal.pone.0238834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023] Open
Abstract
Peperomia pellucida (PP) belongs to the Peperomia genus, which has a pantropic distribution. PP is used to treat a wide range of symptoms and diseases, such as pain, inflammation, and hypertension. Intriguingly, PP extract is used by different tropical countries for its anti-inflammatory and antinociceptive effects. In fact, these outcomes have been shown in animal models, though the exact bioactive products of PP that exert such results are yet to be discovered. To determine and elucidate the mechanism of action of one of these compounds, we evaluated the antinociceptive effect of the novel dimeric ArC2 compound, Pellucidin A by using in vivo and in silico models. Animals were then subjected to chemical, biphasic and thermal models of pain. Pellucidin A induced an antinociceptive effect against chemical-induced pain in mice, demonstrated by the decrease of the number of writhes, reaching a reduction of 43% and 65% in animals treated with 1 and 5 mg/kg of Pellucidin A, respectively. In the biphasic response (central and peripheral), animals treated with Pellucidin A showed a significant reduction of the licking time exclusively during the second phase (inflammatory phase). In the hot-plate test, Pellucidin A did not have any impact on the latency time of the treated animals. Moreover, in vivo and in silico results show that Pellucidin A’s mechanism of action in the inflammatory pain occurs most likely through interaction with the nitric oxide (NO) pathway. Our results demonstrate that the antinociceptive activities of Pellucidin A operate under mechanism(s) of peripheral action, involving inflammatory mediators. This work provides insightful novel evidence of the biological properties of Pellucidin A, and leads to a better understanding of its mechanism of action, pointing to potential pharmacological use.
Collapse
Affiliation(s)
- Amanda Pâmela Santos Queiroz
- Laboratório de Neuroinflamação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Manolo Cleiton Costa Freitas
- Laboratório Central de Extração, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
- Universidade Federal do Pará, Campus Universitário do Marajó- Breves, Breves, Pará, Brasil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Anderson Bentes Lima
- Laboratório de Neuroinflamação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Morfofisiologia Aplicada à Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
| | - Leila Sawada
- Laboratório de Neuroinflamação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Rayan Fidel Martins Monteiro
- Laboratório de Neuroinflamação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Luís Antônio Loureiro Maués
- Laboratório de Neuroinflamação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Alberto Cardoso Arruda
- Laboratório Central de Extração, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Milton Nascimento Silva
- Laboratório Central de Extração, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório Cromatografia Líquida, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratório de Farmacologia da inflamação e comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da inflamação e comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém, Pará, Brasil
| | - José Luiz M. do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Mara Silvia P. Arruda
- Laboratório Central de Extração, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Gilmara N. T. Bastos
- Laboratório de Neuroinflamação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| |
Collapse
|
63
|
Emlaw JR, Burkett KM, daCosta CJB. Contingency between Historical Substitutions in the Acetylcholine Receptor Pore. ACS Chem Neurosci 2020; 11:2861-2868. [PMID: 32786311 DOI: 10.1021/acschemneuro.0c00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human adult muscle-type acetylcholine receptors incorporating a reconstructed ancestral β-subunit exhibit reduced single-channel conductance when compared to wild-type. The ancestral and wild-type β-subunits differ by 132 amino acids, including substitution of residues that line the lumen of the channel pore, near its narrowest constriction. Here we show that a single historical substitution in this region of the ancestral β-subunit accounts for the difference in conductance. Furthermore, the contribution of the substituted residue to conductance is dependent upon its ancestral or wild-type background, and it can be modulated by a neighboring residue that has also evolved throughout the β-subunit history. Using an expanded molecular phylogeny, we track the order in which these two mutations occurred and then show that the order in which they are installed upon the ancestral, but not the human, background determines their individual contribution to conductance. Our results show how the contribution of amino acids to acetylcholine receptor conductance is contingent upon their evolutionary history and that the order in which substitutions occurred was important for shaping conductance in the modern-day receptor.
Collapse
|
64
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
65
|
Bravi B, Ravasio R, Brito C, Wyart M. Direct coupling analysis of epistasis in allosteric materials. PLoS Comput Biol 2020; 16:e1007630. [PMID: 32119660 PMCID: PMC7067494 DOI: 10.1371/journal.pcbi.1007630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2020] [Accepted: 01/03/2020] [Indexed: 11/22/2022] Open
Abstract
In allosteric proteins, the binding of a ligand modifies function at a distant active site. Such allosteric pathways can be used as target for drug design, generating considerable interest in inferring them from sequence alignment data. Currently, different methods lead to conflicting results, in particular on the existence of long-range evolutionary couplings between distant amino-acids mediating allostery. Here we propose a resolution of this conundrum, by studying epistasis and its inference in models where an allosteric material is evolved in silico to perform a mechanical task. We find in our model the four types of epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both short or long-range and have a simple mechanical interpretation. We perform a Direct Coupling Analysis (DCA) and find that DCA predicts well the cost of point mutations but is a rather poor generative model. Strikingly, it can predict short-range epistasis but fails to capture long-range epistasis, in consistence with empirical findings. We propose that such failure is generic when function requires subparts to work in concert. We illustrate this idea with a simple model, which suggests that other methods may be better suited to capture long-range effects. Allostery in proteins is the property of highly specific responses to ligand binding at a distant site. To inform protocols of de novo drug design, it is fundamental to understand the impact of mutations on allosteric regulation and whether it can be predicted from evolutionary correlations. In this work we consider allosteric architectures artificially evolved to optimize the cooperativity of binding at allosteric and active site. We first characterize the emergent pattern of epistasis as well as the underlying mechanical phenomena, finding the four types of epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both short or long-range. The numerical evolution of these allosteric architectures allows us to benchmark Direct Coupling Analysis, a method which relies on co-evolution in sequence data to infer direct evolutionary couplings, in connection to allostery. We show that Direct Coupling Analysis predicts quantitatively point mutation costs but underestimates strong long-range epistasis. We provide an argument, based on a simplified model, illustrating the reasons for this discrepancy. Our analysis suggests neural networks as more promising tool to measure epistasis.
Collapse
Affiliation(s)
- Barbara Bravi
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (BB); (MW)
| | - Riccardo Ravasio
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carolina Brito
- Instituto de Fìsica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (BB); (MW)
| |
Collapse
|
66
|
Sidorova A, Levashova N, Garaeva A, Tverdislov V. A percolation model of natural selection. Biosystems 2020; 193-194:104120. [PMID: 32092352 DOI: 10.1016/j.biosystems.2020.104120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
A new approach has been proposed and developed: the selection of optimal variants in the evolutionary mutation flow is considered as an analogue of a percolation filter. Interaction of mutations in a series of generations and random processes of drift determine the collective behavior of nodes (individuals - carriers and converters of mutations) and bonds (mutations) in the space of percolation lattice. It is shown that the choice of the development trajectory at the population level depends on the spectrum of supporting and prohibiting mutations under the influence of conjugate deterministic and random factors. From the point of view of the fluctuation-bifurcation process, new concepts of the lower and upper thresholds of the percolation selection grid are defined in the hierarchical structure of speciation. The upper threshold determines the state of self-organized criticality, which, when overcome, leads to irreversible self-organization processes in the population caused by the accumulation of mutations.
Collapse
Affiliation(s)
- Alla Sidorova
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Natalia Levashova
- Department of Mathematics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Anastasia Garaeva
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Vsevolod Tverdislov
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| |
Collapse
|
67
|
Bridging non-overlapping reads illuminates high-order epistasis between distal protein sites in a GPCR. Nat Commun 2020; 11:690. [PMID: 32019920 PMCID: PMC7000732 DOI: 10.1038/s41467-020-14495-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022] Open
Abstract
Epistasis emerges when the effects of an amino acid depend on the identities of interacting residues. This phenomenon shapes fitness landscapes, which have the power to reveal evolutionary paths and inform evolution of desired functions. However, there is a need for easily implemented, high-throughput methods to capture epistasis particularly at distal sites. Here, we combine deep mutational scanning (DMS) with a straightforward data processing step to bridge reads in distal sites within genes (BRIDGE). We use BRIDGE, which matches non-overlapping reads to their cognate templates, to uncover prevalent epistasis within the binding pocket of a human G protein-coupled receptor (GPCR) yielding variants with 4-fold greater affinity to a target ligand. The greatest functional improvements in our screen result from distal substitutions and substitutions that are deleterious alone. Our results corroborate findings of mutational tolerance in GPCRs, even in conserved motifs, but reveal inherent constraints restricting tolerated substitutions due to epistasis. Epistasis effects among amino acids at distal sites within binding pockets can have important impacts on protein fitness landscapes. Here the authors present BRIDGE, which matches non-overlapping sequence reads with their cognate DNA templates.
Collapse
|
68
|
Damry AM, Mayer MM, Broom A, Goto NK, Chica RA. Origin of conformational dynamics in a globular protein. Commun Biol 2019; 2:433. [PMID: 31799435 PMCID: PMC6879633 DOI: 10.1038/s42003-019-0681-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/06/2019] [Indexed: 11/28/2022] Open
Abstract
Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.
Collapse
Affiliation(s)
- Adam M. Damry
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Marc M. Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Aron Broom
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Natalie K. Goto
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Roberto A. Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| |
Collapse
|
69
|
Teyra J, Ernst A, Singer A, Sicheri F, Sidhu SS. Comprehensive analysis of all evolutionary paths between two divergent PDZ domain specificities. Protein Sci 2019; 29:433-442. [PMID: 31654425 DOI: 10.1002/pro.3759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
To understand the molecular evolution of functional diversity in protein families, we comprehensively investigated the consequences of all possible mutation combinations separating two peptide-binding domains with highly divergent specificities. We analyzed the Erbin PDZ domain (Erbin-PDZ), which exhibits canonical type I specificity, and a synthetic Erbin-PDZ variant (E-14) that differs at six positions and exhibits an atypical specificity that closely resembles that of the natural Pdlim4 PDZ domain (Pdlim4-PDZ). We constructed a panel of 64 PDZ domains covering all possible transitions between Erbin-PDZ and E-14 (i.e., the panel contained variants with all possible combinations of either the Erbin-PDZ or E-14 sequence at the six differing positions). We assessed the specificity profiles of the 64 PDZ domains using a C-terminal phage-displayed peptide library containing all possible genetically encoded heptapeptides. The specificity profiles clustered into six distinct groups, showing that intermediate domains can be nodes for the evolution of divergent functions. Remarkably, three substitutions were sufficient to convert the specificity of Erbin-PDZ to that of Pdlim4-PDZ, whereas Pdlim4-PDZ contains 71 differences relative to Erbin-PDZ. X-ray crystallography revealed the structural basis for specificity transition: a single substitution in the center of the binding site, supported by contributions from auxiliary substitutions, altered the main chain conformation of the peptide ligand to resemble that of ligands bound to Pdlim4-PDZ. Our results show that a very small set of mutations can dramatically alter protein specificity, and these findings support the hypothesis whereby complex protein functions evolve by gene duplication followed by cumulative mutations.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andreas Ernst
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Alex Singer
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Tomala K, Zrebiec P, Hartl DL. Limits to Compensatory Mutations: Insights from Temperature-Sensitive Alleles. Mol Biol Evol 2019; 36:1874-1883. [PMID: 31058959 PMCID: PMC6735812 DOI: 10.1093/molbev/msz110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous experiments with temperature-sensitive mutants of the yeast enzyme orotidine 5'-phosphate decarboxylase (encoded in gene URA3) yielded the unexpected result that reversion occurs only through exact reversal of the original mutation (Jakubowska A, Korona R. 2009. Lack of evolutionary conservation at positions important for thermal stability in the yeast ODCase protein. Mol Biol Evol. 26(7):1431-1434.). We recreated a set of these mutations in which the codon had two nucleotide substitutions, making exact reversion much less likely. We screened these double mutants for reversion and obtained a number of compensatory mutations occurring at alternative sites in the molecule. None of these compensatory mutations fully restored protein performance. The mechanism of partial compensation is consistent with a model in which protein stabilization is additive, as the same secondary mutations can compensate different primary alternations. The distance between primary and compensatory residues precludes direct interaction between the sites. Instead, most of the compensatory mutants were clustered in proximity to the catalytic center. All of the second-site compensatory substitutions occurred at relatively conserved sites, and the amino acid replacements were to residues found at these sites in a multispecies alignment of the protein. Based on the estimated distribution of changes in Gibbs free energy among a large number of amino acid replacements, we estimate that, for most proteins, the probability that a second-site mutation would have a sufficiently large stabilizing effect to offset a temperature-sensitive mutation in the order of 10-4 or less. Hence compensation is likely to take place only for slightly destabilizing mutations because highly stabilizing mutations are exceeding rare.
Collapse
Affiliation(s)
- Katarzyna Tomala
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Piotr Zrebiec
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
71
|
Affiliation(s)
| | - Christopher J Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
72
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
73
|
Savory FR, Milner DS, Miles DC, Richards TA. Ancestral Function and Diversification of a Horizontally Acquired Oomycete Carboxylic Acid Transporter. Mol Biol Evol 2019; 35:1887-1900. [PMID: 29701800 PMCID: PMC6063262 DOI: 10.1093/molbev/msy082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer (HGT) can equip organisms with novel genes, expanding the repertoire of genetic material available for evolutionary innovation and allowing recipient lineages to colonize new environments. However, few studies have characterized the functions of HGT genes experimentally or examined postacquisition functional divergence. Here, we report the use of ancestral sequence reconstruction and heterologous expression in Saccharomyces cerevisiae to examine the evolutionary history of an oomycete transporter gene family that was horizontally acquired from fungi. We demonstrate that the inferred ancestral oomycete HGT transporter proteins and their extant descendants transport dicarboxylic acids which are intermediates of the tricarboxylic acid cycle. The substrate specificity profile of the most ancestral protein has largely been retained throughout the radiation of oomycetes, including in both plant and animal pathogens and in a free-living saprotroph, indicating that the ancestral HGT transporter function has been maintained by selection across a range of different lifestyles. No evidence of neofunctionalization in terms of substrate specificity was detected for different HGT transporter paralogues which have different patterns of temporal expression. However, a striking expansion of substrate range was observed for one plant pathogenic oomycete, with a HGT derived paralogue from Pythium aphanidermatum encoding a protein that enables tricarboxylic acid uptake in addition to dicarboxylic acid uptake. This demonstrates that HGT acquisitions can provide functional additions to the recipient proteome as well as the foundation material for the evolution of expanded protein functions.
Collapse
Affiliation(s)
- Fiona R Savory
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David S Milner
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel C Miles
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
74
|
Evolutionary Modes in Protein Observable Space: The Case of Thioredoxins. J Mol Evol 2019; 87:175-183. [PMID: 31129690 DOI: 10.1007/s00239-019-09894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
In this article, we investigated the structural and dynamical evolutionary behaviour of a set of ten thioredoxin proteins as formed by three extant forms and seven resurrected ones in laboratory. Starting from the crystallographic structures, we performed all-atom molecular dynamics simulations and compare the trajectories in terms of structural and dynamical properties. Interestingly, the structural properties related to the protein density (i.e. the number of residues divided by the excluded molecular volume) well describe the protein evolutionary behaviour. Our results also suggest that the changes in sequence as occurred during the evolution have affected the protein essential motions, allowing us to discriminate between ancient and extant proteins in terms of their dynamical behaviour. Such results are yet more evident when the bacterial, archaeal and eukaryotic thioredoxins are separately analysed.
Collapse
|
75
|
Domingo J, Baeza-Centurion P, Lehner B. The Causes and Consequences of Genetic Interactions (Epistasis). Annu Rev Genomics Hum Genet 2019; 20:433-460. [PMID: 31082279 DOI: 10.1146/annurev-genom-083118-014857] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The same mutation can have different effects in different individuals. One important reason for this is that the outcome of a mutation can depend on the genetic context in which it occurs. This dependency is known as epistasis. In recent years, there has been a concerted effort to quantify the extent of pairwise and higher-order genetic interactions between mutations through deep mutagenesis of proteins and RNAs. This research has revealed two major components of epistasis: nonspecific genetic interactions caused by nonlinearities in genotype-to-phenotype maps, and specific interactions between particular mutations. Here, we provide an overview of our current understanding of the mechanisms causing epistasis at the molecular level, the consequences of genetic interactions for evolution and genetic prediction, and the applications of epistasis for understanding biology and determining macromolecular structures.
Collapse
Affiliation(s)
- Júlia Domingo
- Systems Biology Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; , ,
| | - Pablo Baeza-Centurion
- Systems Biology Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; , ,
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; , , .,Universitat Pompeu Fabra, 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
76
|
Abstract
For nearly a century adaptive landscapes have provided overviews of the evolutionary process and yet they remain metaphors. We redefine adaptive landscapes in terms of biological processes rather than descriptive phenomenology. We focus on the underlying mechanisms that generate emergent properties such as epistasis, dominance, trade-offs and adaptive peaks. We illustrate the utility of landscapes in predicting the course of adaptation and the distribution of fitness effects. We abandon aged arguments concerning landscape ruggedness in favor of empirically determining landscape architecture. In so doing, we transform the landscape metaphor into a scientific framework within which causal hypotheses can be tested.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, St. Paul, MN
| | - Antony M Dean
- BioTechnology Institute, University of Minnesota, St. Paul, MN
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
77
|
Seemab S, Pervaiz N, Zehra R, Anwar S, Bao Y, Abbasi AA. Molecular evolutionary and structural analysis of familial exudative vitreoretinopathy associated FZD4 gene. BMC Evol Biol 2019; 19:72. [PMID: 30849938 PMCID: PMC6408821 DOI: 10.1186/s12862-019-1400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frizzled family members belong to G-protein coupled receptors and encode proteins accountable for cell signal transduction, cell proliferation and cell death. Members of Frizzled receptor family are considered to have critical roles in causing various forms of cancer, cardiac hypertrophy, familial exudative vitreoretinopathy (FEVR) and schizophrenia. RESULTS This study investigates the evolutionary and structural aspects of Frizzled receptors, with particular focus on FEVR associated FZD4 gene. The phylogenetic tree topology suggests the diversification of Frizzled receptors at the root of metazoans history. Moreover, comparative structural data reveals that FEVR associated missense mutations in FZD4 effect the common protein region (amino acids 495-537) through a well-known phenomenon called epistasis. This critical protein region is present at the carboxyl-terminal domain and encompasses the K-T/S-XXX-W, a PDZ binding motif and S/T-X-V PDZ recognition motif. CONCLUSION Taken together these results demonstrate that during the course of evolution, FZD4 has acquired new functions or epistasis via complex patter of gene duplications, sequence divergence and conformational remodeling. In particular, amino acids 495-537 at the C-terminus region of FZD4 protein might be crucial in its normal function and/or pathophysiology. This critical region of FZD4 protein may offer opportunities for the development of novel therapeutics approaches for human retinal vascular disease.
Collapse
Affiliation(s)
- Suman Seemab
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Rabail Zehra
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Saneela Anwar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Yiming Bao
- BIG Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| |
Collapse
|
78
|
Whittington AC, Mason AJ, Rokyta DR. A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin. Mol Biol Evol 2019; 35:887-898. [PMID: 29329419 DOI: 10.1093/molbev/msx334] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Collapse
Affiliation(s)
- A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Andrew J Mason
- Department of Biology, University of Central Florida, Orlando, FL
- Department of Biological Sciences, Clemson University, Clemson, SC
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
79
|
Peng F, Widmann S, Wünsche A, Duan K, Donovan KA, Dobson RCJ, Lenski RE, Cooper TF. Effects of Beneficial Mutations in pykF Gene Vary over Time and across Replicate Populations in a Long-Term Experiment with Bacteria. Mol Biol Evol 2019; 35:202-210. [PMID: 29069429 PMCID: PMC5850340 DOI: 10.1093/molbev/msx279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The fitness effects of mutations can depend on the genetic backgrounds in which they occur and thereby influence future opportunities for evolving populations. In particular, mutations that fix in a population might change the selective benefit of subsequent mutations, giving rise to historical contingency. We examine these effects by focusing on mutations in a key metabolic gene, pykF, that arose independently early in the history of 12 Escherichia coli populations during a long-term evolution experiment. Eight different evolved nonsynonymous mutations conferred similar fitness benefits of ∼10% when transferred into the ancestor, and these benefits were greater than the one conferred by a deletion mutation. In contrast, the same mutations had highly variable fitness effects, ranging from ∼0% to 25%, in evolved clones isolated from the populations at 20,000 generations. Two mutations that were moved into these evolved clones conferred similar fitness effects in a given clone, but different effects between the clones, indicating epistatic interactions between the evolved pykF alleles and the other mutations that had accumulated in each evolved clone. We also measured the fitness effects of six evolved pykF alleles in the same populations in which they had fixed, but at seven time points between 0 and 50,000 generations. Variation in fitness effects was high at intermediate time points, and declined to a low level at 50,000 generations, when the mean fitness effect was lowest. Our results demonstrate the importance of genetic context in determining the fitness effects of different beneficial mutations even within the same gene.
Collapse
Affiliation(s)
- Fen Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Scott Widmann
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Andrea Wünsche
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Kristina Duan
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Katherine A Donovan
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI
| | - Tim F Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
80
|
Straub K, Linde M, Kropp C, Blanquart S, Babinger P, Merkl R. Sequence selection by FitSS4ASR alleviates ancestral sequence reconstruction as exemplified for geranylgeranylglyceryl phosphate synthase. Biol Chem 2019; 400:367-381. [PMID: 30763032 DOI: 10.1515/hsz-2018-0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/07/2018] [Indexed: 11/15/2022]
Abstract
For evolutionary studies, but also for protein engineering, ancestral sequence reconstruction (ASR) has become an indispensable tool. The first step of every ASR protocol is the preparation of a representative sequence set containing at most a few hundred recent homologs whose composition determines decisively the outcome of a reconstruction. A common approach for sequence selection consists of several rounds of manual recompilation that is driven by embedded phylogenetic analyses of the varied sequence sets. For ASR of a geranylgeranylglyceryl phosphate synthase, we additionally utilized FitSS4ASR, which replaces this time-consuming protocol with an efficient and more rational approach. FitSS4ASR applies orthogonal filters to a set of homologs to eliminate outlier sequences and those bearing only a weak phylogenetic signal. To demonstrate the usefulness of FitSS4ASR, we determined experimentally the oligomerization state of eight predecessors, which is a delicate and taxon-specific property. Corresponding ancestors deduced in a manual approach and by means of FitSS4ASR had the same dimeric or hexameric conformation; this concordance testifies to the efficiency of FitSS4ASR for sequence selection. FitSS4ASR-based results of two other ASR experiments were added to the Supporting Information. Program and documentation are available at https://gitlab.bioinf.ur.de/hek61586/FitSS4ASR.
Collapse
Affiliation(s)
- Kristina Straub
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Mona Linde
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Cosimo Kropp
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Samuel Blanquart
- University of Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
81
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
82
|
High-Throughput Reconstruction of Ancestral Protein Sequence, Structure, and Molecular Function. Methods Mol Biol 2019; 1851:135-170. [PMID: 30298396 DOI: 10.1007/978-1-4939-8736-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ancestral protein sequence reconstruction is a powerful technique for explicitly testing hypotheses about the evolution of molecular function, allowing researchers to meticulously dissect how historical changes in protein sequence impacted functional repertoire by altering the protein's 3D structure. These techniques have provided concrete, experimentally validated insights into ancient evolutionary processes and help illuminate the complex relationship between protein sequence, structure, and function. Inferring the protein family phylogenies on which ancestral sequence reconstruction depends and reconstructing the sequences, themselves, are amenable to high-throughput computational analysis. However, determining the structures of ancestral-reconstructed proteins and characterizing their functions typically rely on time-consuming and expensive laboratory analyses, limiting most current studies to examining a relatively small number of specific hypotheses. For this reason, we have little detailed, unbiased information about how molecular function evolves across large protein family phylogenies. Here we describe a generalized protocol that integrates ancestral sequence reconstruction with structural homology modeling and structure-based molecular affinity prediction to characterize historical changes in protein function across families with thousands of individual sequences. We highlight key steps in the analysis protocol requiring particularly careful attention to avoid introducing potential errors as well as steps for which computationally efficient subroutines can be substituted for more intensive approaches, allowing researchers to scale the analysis up or down, depending on available resources and requirements for reproducibility and scientific rigor. In our view, this approach provides a compelling compliment to more laboratory-intensive procedures, generating important contextual information that can help guide detailed experiments.
Collapse
|
83
|
del Olmo Toledo V, Puccinelli R, Fordyce PM, Pérez JC. Diversification of DNA binding specificities enabled SREBP transcription regulators to expand the repertoire of cellular functions that they govern in fungi. PLoS Genet 2018; 14:e1007884. [PMID: 30596634 PMCID: PMC6329520 DOI: 10.1371/journal.pgen.1007884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/11/2019] [Accepted: 12/08/2018] [Indexed: 01/08/2023] Open
Abstract
The Sterol Regulatory Element Binding Proteins (SREBPs) are basic-helix-loop-helix transcription regulators that control the expression of sterol biosynthesis genes in higher eukaryotes and some fungi. Surprisingly, SREBPs do not regulate sterol biosynthesis in the ascomycete yeasts (Saccharomycotina) as this role was handed off to an unrelated transcription regulator in this clade. The SREBPs, nonetheless, expanded in fungi such as the ascomycete yeasts Candida spp., raising questions about their role and evolution in these organisms. Here we report that the fungal SREBPs diversified their DNA binding preferences concomitantly with an expansion in function. We establish that several branches of fungal SREBPs preferentially bind non-palindromic DNA sequences, in contrast to the palindromic DNA motifs recognized by most basic-helix-loop-helix proteins (including SREBPs) in higher eukaryotes. Reconstruction and biochemical characterization of the likely ancestor protein suggest that an intrinsic DNA binding promiscuity in the family was resolved by alternative mechanisms in different branches of fungal SREBPs. Furthermore, we show that two SREBPs in the human commensal yeast Candida albicans drive a transcriptional cascade that inhibits a morphological switch under anaerobic conditions. Preventing this morphological transition enhances C. albicans colonization of the mammalian intestine, the fungus' natural niche. Thus, our results illustrate how diversification in DNA binding preferences enabled the functional expansion of a family of eukaryotic transcription regulators.
Collapse
Affiliation(s)
- Valentina del Olmo Toledo
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - Robert Puccinelli
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Polly M. Fordyce
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Stanford CheM-H Institute, Stanford University, Stanford, California, United States of America
| | - J. Christian Pérez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
84
|
Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation. Nat Struct Mol Biol 2018; 26:25-34. [PMID: 30598552 DOI: 10.1038/s41594-018-0175-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
The functionally tolerated sequence space of proteins can now be explored in an unprecedented way, owing to the expansion of genomic databases and the development of high-throughput methods to interrogate protein function. For signaling proteins, several recent studies have shown how the analysis of sequence variation leverages the available protein-structure information to provide new insights into specificity and allosteric regulation. In this Review, we discuss recent work that illustrates how this emerging approach is providing a deeper understanding of signaling proteins.
Collapse
|
85
|
Blount ZD, Lenski RE, Losos JB. Contingency and determinism in evolution: Replaying life’s tape. Science 2018; 362:362/6415/eaam5979. [DOI: 10.1126/science.aam5979] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Collapse
Affiliation(s)
- Zachary D. Blount
- Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan B. Losos
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
86
|
Hilton SK, Bloom JD. Modeling site-specific amino-acid preferences deepens phylogenetic estimates of viral sequence divergence. Virus Evol 2018; 4:vey033. [PMID: 30425841 PMCID: PMC6220371 DOI: 10.1093/ve/vey033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular phylogenetics is often used to estimate the time since the divergence of modern gene sequences. For highly diverged sequences, such phylogenetic techniques sometimes estimate surprisingly recent divergence times. In the case of viruses, independent evidence indicates that the estimates of deep divergence times from molecular phylogenetics are sometimes too recent. This discrepancy is caused in part by inadequate models of purifying selection leading to branch-length underestimation. Here we examine the effect on branch-length estimation of using models that incorporate experimental measurements of purifying selection. We find that models informed by experimentally measured site-specific amino-acid preferences estimate longer deep branches on phylogenies of influenza virus hemagglutinin. This lengthening of branches is due to more realistic stationary states of the models, and is mostly independent of the branch-length extension from modeling site-to-site variation in amino-acid substitution rate. The branch-length extension from experimentally informed site-specific models is similar to that achieved by other approaches that allow the stationary state to vary across sites. However, the improvements from all of these site-specific but time homogeneous and site independent models are limited by the fact that a protein’s amino-acid preferences gradually shift as it evolves. Overall, our work underscores the importance of modeling site-specific amino-acid preferences when estimating deep divergence times—but also shows the inherent limitations of approaches that fail to account for how these preferences shift over time.
Collapse
Affiliation(s)
- Sarah K Hilton
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center.,Department of Genome Sciences, University of Washington, USA
| | - Jesse D Bloom
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center.,Department of Genome Sciences, University of Washington, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
87
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
88
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
89
|
Phillips AM, Ponomarenko AI, Chen K, Ashenberg O, Miao J, McHugh SM, Butty VL, Whittaker CA, Moore CL, Bloom JD, Lin YS, Shoulders MD. Destabilized adaptive influenza variants critical for innate immune system escape are potentiated by host chaperones. PLoS Biol 2018; 16:e3000008. [PMID: 30222731 PMCID: PMC6160216 DOI: 10.1371/journal.pbio.3000008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 08/30/2018] [Indexed: 11/24/2022] Open
Abstract
The threat of viral pandemics demands a comprehensive understanding of evolution at the host-pathogen interface. Here, we show that the accessibility of adaptive mutations in influenza nucleoprotein at fever-like temperatures is mediated by host chaperones. Particularly noteworthy, we observe that the Pro283 nucleoprotein variant, which (1) is conserved across human influenza strains, (2) confers resistance to the Myxovirus resistance protein A (MxA) restriction factor, and (3) critically contributed to adaptation to humans in the 1918 pandemic influenza strain, is rendered unfit by heat shock factor 1 inhibition-mediated host chaperone depletion at febrile temperatures. This fitness loss is due to biophysical defects that chaperones are unavailable to address when heat shock factor 1 is inhibited. Thus, influenza subverts host chaperones to uncouple the biophysically deleterious consequences of viral protein variants from the benefits of immune escape. In summary, host proteostasis plays a central role in shaping influenza adaptation, with implications for the evolution of other viruses, for viral host switching, and for antiviral drug development.
Collapse
Affiliation(s)
- Angela M. Phillips
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anna I. Ponomarenko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Orr Ashenberg
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Sean M. McHugh
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Charles A. Whittaker
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christopher L. Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jesse D. Bloom
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
90
|
Modi T, Huihui J, Ghosh K, Ozkan SB. Ancient thioredoxins evolved to modern-day stability-function requirement by altering native state ensemble. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170184. [PMID: 29735738 PMCID: PMC5941179 DOI: 10.1098/rstb.2017.0184] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Thioredoxins (THRXs)-small globular proteins that reduce other proteins-are ubiquitous in all forms of life, from Archaea to mammals. Although ancestral thioredoxins share sequential and structural similarity with the modern-day (extant) homologues, they exhibit significantly different functional activity and stability. We investigate this puzzle by comparative studies of their (ancient and modern-day THRXs') native state ensemble, as quantified by the dynamic flexibility index (DFI), a metric for the relative resilience of an amino acid to perturbations in the rest of the protein. Clustering proteins using DFI profiles strongly resemble an alternative classification scheme based on their activity and stability. The DFI profiles of the extant proteins are substantially different around the α3, α4 helices and catalytic regions. Likewise, allosteric coupling of the active site with the rest of the protein is different between ancient and extant THRXs, possibly explaining the decreased catalytic activity at low pH with evolution. At a global level, we note that the population of low-flexibility (called hinges) and high-flexibility sites increases with evolution. The heterogeneity (quantified by the variance) in DFI distribution increases with the decrease in the melting temperature typically associated with the evolution of ancient proteins to their modern-day counterparts.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Huihui
- Department of Physics and Astronomy, University of Denver, Denver, CO 80209, USA
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, CO 80209, USA
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
91
|
Storz JF. Compensatory mutations and epistasis for protein function. Curr Opin Struct Biol 2018; 50:18-25. [PMID: 29100081 PMCID: PMC5936477 DOI: 10.1016/j.sbi.2017.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023]
Abstract
Adaptive protein evolution may be facilitated by neutral amino acid mutations that confer no benefit when they first arise but which potentiate subsequent function-altering mutations via direct or indirect structural mechanisms. Theoretical and empirical results indicate that such compensatory interactions (intramolecular epistasis) can exert a strong influence on trajectories of protein evolution. For this reason, assessing the form and prevalence of intramolecular epistasis and characterizing biophysical mechanisms of compensatory interaction are important research goals at the nexus of structural biology and molecular evolution. Here I review recent insights derived from protein-engineering studies, and I describe an approach for identifying and characterizing mechanisms of epistasis that integrates experimental data on structure-function relationships with analyses of comparative sequence data.
Collapse
Affiliation(s)
- Jay F Storz
- University of Nebraska, School of Biological Sciences, Lincoln, NE 68588-0114, United States.
| |
Collapse
|
92
|
Odokonyero D, McMillan AW, Ramagopal UA, Toro R, Truong DP, Zhu M, Lopez MS, Somiari B, Herman M, Aziz A, Bonanno JB, Hull KG, Burley SK, Romo D, Almo SC, Glasner ME. Comparison of Alicyclobacillus acidocaldarius o-Succinylbenzoate Synthase to Its Promiscuous N-Succinylamino Acid Racemase/ o-Succinylbenzoate Synthase Relatives. Biochemistry 2018; 57:3676-3689. [PMID: 29767960 DOI: 10.1021/acs.biochem.8b00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studying the evolution of catalytically promiscuous enzymes like those from the N-succinylamino acid racemase/ o-succinylbenzoate synthase (NSAR/OSBS) subfamily can reveal mechanisms by which new functions evolve. Some enzymes in this subfamily have only OSBS activity, while others catalyze OSBS and NSAR reactions. We characterized several NSAR/OSBS subfamily enzymes as a step toward determining the structural basis for evolving NSAR activity. Three enzymes were promiscuous, like most other characterized NSAR/OSBS subfamily enzymes. However, Alicyclobacillus acidocaldarius OSBS (AaOSBS) efficiently catalyzes OSBS activity but lacks detectable NSAR activity. Competitive inhibition and molecular modeling show that AaOSBS binds N-succinylphenylglycine with moderate affinity in a site that overlaps its normal substrate. On the basis of possible steric conflicts identified by molecular modeling and sequence conservation within the NSAR/OSBS subfamily, we identified one mutation, Y299I, that increased NSAR activity from undetectable to 1.2 × 102 M-1 s-1 without affecting OSBS activity. This mutation does not appear to affect binding affinity but instead affects kcat, by reorienting the substrate or modifying conformational changes to allow both catalytic lysines to access the proton that is moved during the reaction. This is the first site known to affect reaction specificity in the NSAR/OSBS subfamily. However, this gain of activity was obliterated by a second mutation, M18F. Epistatic interference by M18F was unexpected because a phenylalanine at this position is important in another NSAR/OSBS enzyme. Together, modest NSAR activity of Y299I AaOSBS and epistasis between sites 18 and 299 indicate that additional sites influenced the evolution of NSAR reaction specificity in the NSAR/OSBS subfamily.
Collapse
Affiliation(s)
- Denis Odokonyero
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | - Andrew W McMillan
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | | | | | - Dat P Truong
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | - Mingzhao Zhu
- CPRIT Synthesis and Drug-Lead Discovery Lab, Department of Chemistry and Biochemistry , Baylor University , One Bear Place , Waco , Texas 76798-7348 , United States
| | - Mariana S Lopez
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | - Belema Somiari
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | - Meghann Herman
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | - Asma Aziz
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| | | | - Kenneth G Hull
- CPRIT Synthesis and Drug-Lead Discovery Lab, Department of Chemistry and Biochemistry , Baylor University , One Bear Place , Waco , Texas 76798-7348 , United States
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854-8076 , United States.,Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey 08903-2681 , United States
| | - Daniel Romo
- CPRIT Synthesis and Drug-Lead Discovery Lab, Department of Chemistry and Biochemistry , Baylor University , One Bear Place , Waco , Texas 76798-7348 , United States
| | | | - Margaret E Glasner
- Department of Biochemistry and Biophysics , Texas A&M University , 2128 TAMU , College Station , Texas 77843-2128 , United States
| |
Collapse
|
93
|
Dutta S, Eckmann JP, Libchaber A, Tlusty T. Green function of correlated genes in a minimal mechanical model of protein evolution. Proc Natl Acad Sci U S A 2018; 115:E4559-E4568. [PMID: 29712824 PMCID: PMC5960285 DOI: 10.1073/pnas.1716215115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of proteins arises from cooperative interactions and rearrangements of their amino acids, which exhibit large-scale dynamical modes. Long-range correlations have also been revealed in protein sequences, and this has motivated the search for physical links between the observed genetic and dynamic cooperativity. We outline here a simplified theory of protein, which relates sequence correlations to physical interactions and to the emergence of mechanical function. Our protein is modeled as a strongly coupled amino acid network with interactions and motions that are captured by the mechanical propagator, the Green function. The propagator describes how the gene determines the connectivity of the amino acids and thereby, the transmission of forces. Mutations introduce localized perturbations to the propagator that scatter the force field. The emergence of function is manifested by a topological transition when a band of such perturbations divides the protein into subdomains. We find that epistasis-the interaction among mutations in the gene-is related to the nonlinearity of the Green function, which can be interpreted as a sum over multiple scattering paths. We apply this mechanical framework to simulations of protein evolution and observe long-range epistasis, which facilitates collective functional modes.
Collapse
Affiliation(s)
- Sandipan Dutta
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Korea
| | - Jean-Pierre Eckmann
- Département de Physique Théorique and Section de Mathématiques, Université de Genève, CH-1211 Geneva 4, Switzerland
| | - Albert Libchaber
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021;
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Korea;
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
94
|
Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. Proc Natl Acad Sci U S A 2018; 115:4453-4458. [PMID: 29626131 DOI: 10.1073/pnas.1718133115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interactions among mutations within a protein have the potential to make molecular evolution contingent and irreversible, but the extent to which epistasis actually shaped historical evolutionary trajectories is unclear. To address this question, we experimentally measured how the fitness effects of historical sequence substitutions changed during the billion-year evolutionary history of the heat shock protein 90 (Hsp90) ATPase domain beginning from a deep eukaryotic ancestor to modern Saccharomyces cerevisiae We found a pervasive influence of epistasis. Of 98 derived amino acid states that evolved along this lineage, about half compromise fitness when introduced into the reconstructed ancestral Hsp90. And the vast majority of ancestral states reduce fitness when introduced into the extant S. cerevisiae Hsp90. Overall, more than 75% of historical substitutions were contingent on permissive substitutions that rendered the derived state nondeleterious, became entrenched by subsequent restrictive substitutions that made the ancestral state deleterious, or both. This epistasis was primarily caused by specific interactions among sites rather than a general effect on the protein's tolerance to mutation. Our results show that epistasis continually opened and closed windows of mutational opportunity over evolutionary timescales, producing histories and biological states that reflect the transient internal constraints imposed by the protein's fleeting sequence states.
Collapse
|
95
|
Wu NC, Thompson AJ, Xie J, Lin CW, Nycholat CM, Zhu X, Lerner RA, Paulson JC, Wilson IA. A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site. Nat Commun 2018; 9:1264. [PMID: 29593268 PMCID: PMC5871881 DOI: 10.1038/s41467-018-03663-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
The hemagglutinin (HA) receptor-binding site (RBS) in human influenza A viruses is critical for attachment to host cells, which imposes a functional constraint on its natural evolution. On the other hand, being part of the major antigenic sites, the HA RBS of human H3N2 viruses needs to constantly mutate to evade the immune system. From large-scale mutagenesis experiments, we here show that several of the natural RBS substitutions become integrated into an extensive epistatic network that prevents substitution reversion. X-ray structural analysis reveals the mechanistic consequences as well as changes in the mode of receptor binding. Further studies are necessary to elucidate whether such entrenchment limits future options for immune escape or adversely affect long-term viral fitness.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
96
|
Dungan SZ, Chang BSW. Epistatic interactions influence terrestrial-marine functional shifts in cetacean rhodopsin. Proc Biol Sci 2018; 284:rspb.2016.2743. [PMID: 28250185 DOI: 10.1098/rspb.2016.2743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions.
Collapse
Affiliation(s)
- Sarah Z Dungan
- Department Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Belinda S W Chang
- Department Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2 .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada M5S 3B2.,Department Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| |
Collapse
|
97
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
98
|
Siddiq MA, Hochberg GK, Thornton JW. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr Opin Struct Biol 2017; 47:113-122. [PMID: 28841430 PMCID: PMC6141201 DOI: 10.1016/j.sbi.2017.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Specific interactions between proteins and their molecular partners drive most biological processes, so understanding how these interactions evolve is an important question for biochemists and evolutionary biologists alike. It is often thought that ancestral proteins were systematically more promiscuous than modern proteins and that specificity usually evolves after gene duplication by partitioning and refining the activities of multifunctional ancestors. However, recent studies using ancestral protein reconstruction (APR) have found that ligand-specific functions in some modern protein families evolved de novo from ancestors that did not already have those functions. Further, the new specific interactions evolved by simple mechanisms, with just a few mutations changing classically recognized biochemical determinants of specificity, such as steric and electrostatic complementarity. Acquiring new specific interactions during evolution therefore appears to be neither difficult nor rare. Rather, it is likely that proteins continually gain and lose new activities over evolutionary time as mutations cause subtle but consequential changes in the shape and electrostatics of interaction interfaces. Only a few of these activities, however, are incorporated into the biological processes that contribute to fitness before they are lost to the ravages of further mutation.
Collapse
Affiliation(s)
| | | | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, USA; Department of Human Genetics, University of Chicago, USA.
| |
Collapse
|
99
|
Tanaka H, Shimizu N, Yoshikawa N. Role of skeletal muscle glucocorticoid receptor in systemic energy homeostasis. Exp Cell Res 2017; 360:24-26. [DOI: 10.1016/j.yexcr.2017.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
|
100
|
Sunden F, AlSadhan I, Lyubimov A, Doukov T, Swan J, Herschlag D. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. J Biol Chem 2017; 292:20960-20974. [PMID: 29070681 DOI: 10.1074/jbc.m117.788240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. We mutated distinguishing active-site residues to generate enzymes that had a common Zn2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of these pruned enzymes with a series of substrates. A substantial rate enhancement of ∼1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 107-108-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.
Collapse
Affiliation(s)
- Fanny Sunden
- From the Department of Biochemistry, Beckman Center
| | | | - Artem Lyubimov
- the Departments of Molecular and Cellular Physiology.,Neurology and Neurological Science.,Structural Biology, and.,Photon Science.,Howard Hughes Medical Institute
| | - Tzanko Doukov
- the Macromolecular Crystallographic Group, Stanford Synchrotron Radiation Lightsource, National Accelerator Laboratory, Stanford University, Stanford, California 94309
| | - Jeffrey Swan
- From the Department of Biochemistry, Beckman Center
| | - Daniel Herschlag
- From the Department of Biochemistry, Beckman Center, .,the Departments of Chemical Engineering and Chemistry, and.,Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305 and
| |
Collapse
|