51
|
Control of IFN-I responses by the aminopeptidase IRAP in neonatal C57BL/6 alveolar macrophages during RSV infection. Mucosal Immunol 2021; 14:949-962. [PMID: 33846534 PMCID: PMC8221999 DOI: 10.1038/s41385-021-00402-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
Respiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.
Collapse
|
52
|
Weimershaus M, Mauvais FX, Evnouchidou I, Lawand M, Saveanu L, van Endert P. IRAP Endosomes Control Phagosomal Maturation in Dendritic Cells. Front Cell Dev Biol 2020; 8:585713. [PMID: 33425891 PMCID: PMC7793786 DOI: 10.3389/fcell.2020.585713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DCs) contribute to the immune surveillance by sampling their environment through phagocytosis and endocytosis. We have previously reported that, rapidly following uptake of extracellular antigen into phagosomes or endosomes in DCs, a specialized population of storage endosomes marked by Rab14 and insulin-regulated aminopeptidase (IRAP) is recruited to the nascent antigen-containing compartment, thereby regulating its maturation and ultimately antigen cross-presentation to CD8+ T lymphocytes. Here, using IRAP–/– DCs, we explored how IRAP modulates phagosome maturation dynamics and cross-presentation. We find that in the absence of IRAP, phagosomes acquire more rapidly late endosomal markers, are more degradative, and show increased microbicidal activity. We also report evidence for a role of vesicle trafficking from the endoplasmic reticulum (ER)–Golgi intermediate compartment to endosomes for the formation or stability of the IRAP compartment. Moreover, we dissect the dual role of IRAP as a trimming peptidase and a critical constituent of endosome stability. Experiments using a protease-dead IRAP mutant and pharmacological IRAP inhibition suggest that IRAP expression but not proteolytic activity is required for the formation of storage endosomes and for DC-typical phagosome maturation, whereas proteolysis is required for fully efficient cross-presentation. These findings identify IRAP as a key factor in cross-presentation, trimming peptides to fit the major histocompatibility complex class-I binding site while preventing their destruction through premature phagosome maturation.
Collapse
Affiliation(s)
- Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Irini Evnouchidou
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France.,Inovarion, Paris, France
| | - Myriam Lawand
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Loredana Saveanu
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| |
Collapse
|
53
|
Ramírez-Expósito MJ, Dueñas-Rodríguez B, Carrera-González MP, Navarro-Cecilia J, Martínez-Martos JM. Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin. Cancers (Basel) 2020; 12:cancers12113252. [PMID: 33158090 PMCID: PMC7694176 DOI: 10.3390/cancers12113252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Insulin-regulated aminopeptidase (IRAP) is a well-known enzyme involved mainly in the regulation of the peptide hormones, oxytocin and vasopressin. However, this enzyme activity has hardly been analyzed in breast cancer patients. Additionally, the influence of both the hormonal status (pre or postmenopause) and the administration of neoadjuvant chemotherapy have rarely been studied. We show that there is a weak association between IRAP activity and the circulating levels of peptide hormones with variations depending on the hormonal status and the neoadjuvant treatment, and propose a role beyond oxytocin and vasopressin regulation that is related to the local mammary renin-angiotensin system and glucose transportation to the cells. Abstract Insulin-regulated aminopeptidase (IRAP) is the only enzyme known to cleave oxytocin and vasopressin; however, it is also the high-affinity binding site for angiotensin IV (AngIV) receptor type 4 (AT4) ligands and it is related to insulin-dependent glucose transporters through the translocation of the glucose transporter type 4 (GLUT4). Previous studies have demonstrated an association between IRAP activity and the number and size of mammary tumors in an animal model of breast cancer (BC). Also, a highly significant increase in IRAP activity has been found in BC tissue from women patients. Here, we found no changes in circulating IRAP in premenopausal (preMP) women, but it increased significantly in postmenopausal (postMP) women not treated with neoadjuvant chemotherapy (NACH). However, in women treated with NACH, IRAP activity increased in both preMP and postMP women. Two years of follow-up indicated lower levels of IRAP activity in untreated preMP women, but a return to control levels in untreated postMP women, while IRAP activity returned to control levels in women treated with NACH. Circulating oxytocin decreased in both preMP and postMP women during the follow-up period. Differences in Oxytocin appeared between preMP and postMP women treated with NACH, but not in women who were not treated with NACH. On the contrary, circulating vasopressin increased in untreated and treated preMP and postMP women, with most of the differences related to the hormonal status as well as the neoadjuvant treatment during the two year follow-up We propose that IRAP is involved in mechanisms related not only to oxytocin and/or vasopressin regulation, but also to the local mammary RAS through AngIV and its role in glucose transportation through the IRAP/GLUT4 system.
Collapse
Affiliation(s)
- María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
| | - Basilio Dueñas-Rodríguez
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Unit of Breast Pathology, Complejo Hospitalario de Jaén, E-23007 Jaén, Spain
| | - María Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, Instituto Maimónides de Investigación Biomédica de Córdoba, University of Cordoba, 14004 Córdoba, Spain
| | - Joaquín Navarro-Cecilia
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Unit of Breast Pathology, Complejo Hospitalario de Jaén, E-23007 Jaén, Spain
| | - Jose Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Correspondence: ; Tel.: +34-953-212-600; Fax: +34-953-212-943
| |
Collapse
|
54
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
55
|
Vear A, Gaspari T, Thompson P, Chai SY. Is There an Interplay Between the Functional Domains of IRAP? Front Cell Dev Biol 2020; 8:585237. [PMID: 33134302 PMCID: PMC7550531 DOI: 10.3389/fcell.2020.585237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
As a member of the M1 family of aminopeptidases, insulin regulated aminopeptidase (IRAP) is characterized by distinct binding motifs at the active site in the C-terminal domain that mediate the catalysis of peptide substrates. However, what makes IRAP unique in this family of enzymes is that it also possesses trafficking motifs at the N-terminal domain which regulate the movement of IRAP within different intracellular compartments. Research on the role of IRAP has focused predominantly on the C-terminus catalytic domain in different physiological and pathophysiological states ranging from pregnancy to memory loss. Many of these studies have utilized IRAP inhibitors, that bind competitively to the active site of IRAP, to explore the functional significance of its catalytic activity. However, it is unknown whether these inhibitors are able to access intracellular sites where IRAP is predominantly located in a basal state as the enzyme may need to be at the cell surface for the inhibitors to mediate their effects. This property of IRAP has often been overlooked. Interestingly, in some pathophysiological states, the distribution of IRAP is altered. This, together with the fact that IRAP possesses trafficking motifs, suggest the localization of IRAP may play an important role in defining its physiological or pathological functions and provide insights into the interplay between the two functional domains of the protein.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Philip Thompson
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
56
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
57
|
Georgiadis D, Ziotopoulou A, Kaloumenou E, Lelis A, Papasava A. The Discovery of Insulin-Regulated Aminopeptidase (IRAP) Inhibitors: A Literature Review. Front Pharmacol 2020; 11:585838. [PMID: 33071797 PMCID: PMC7538644 DOI: 10.3389/fphar.2020.585838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-Regulated Aminopeptidase (IRAP, EC 3.4.11.3) is a multi-tasking member of the M1 family of zinc aminopeptidases. Among its diverse biological functions, IRAP is a regulator of oxytocin levels during late stages of pregnancy, it affects cellular glucose uptake by trafficking of the glucose transporter type 4 and it mediates antigen cross-presentation by dendritic cells. Accumulating evidence show that pharmacological inhibition of IRAP may hold promise as a valid approach for the treatment of several pathological states such as memory disorders, neurodegenerative diseases, etc. Aiming to the investigation of physiological roles of IRAP and therapeutic potential of its regulation, intense research efforts have been dedicated to the discovery of small-molecule inhibitors. Moreover, reliable structure-activity relationships have been largely facilitated by recent crystal structures of IRAP and detailed computational studies. This review aims to summarize efforts of medicinal chemists toward the design and development of IRAP inhibitors, with special emphasis to factors affecting inhibitor selectivity.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Papasava
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
58
|
Goto Y, Nakamura TJ, Ogawa K, Hattori A, Tsujimoto M. Reciprocal Expression Patterns of Placental Leucine Aminopeptidase/Insulin-Regulated Aminopeptidase and Vasopressin in the Murine Brain. Front Mol Biosci 2020; 7:168. [PMID: 32793633 PMCID: PMC7393517 DOI: 10.3389/fmolb.2020.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Placental leucine aminopeptidase/insulin-regulated aminopeptidase (P-LAP/IRAP) regulates vasopressin and oxytocin levels in the brain and peripheral tissues by controlled degradation of these peptides. In this study, we determined the relationship between P-LAP/IRAP and vasopressin levels in subregions of the murine brain. P-LAP/IRAP expression was observed in almost all brain regions. The expression patterns of P-LAP/IRAP and vasopressin indicated that cells expressing one of these protein/peptide were distinct from those expressing the other, although there was significant overlap between the expression regions. In addition, we found reciprocal diurnal rhythm patterns in P-LAP/IRAP and arginine vasopressin (AVP) expression in the hippocampus and pituitary gland. Further, synchronously cultured PC12 cells on treatment with nerve growth factor (NGF) showed circadian expression patterns of P-LAP/IRAP and enzymatic activity during 24 h of incubation. Considering that vasopressin is one of the most efficient peptide substrates of P-LAP/IRAP, these results suggest a possible feedback loop between P-LAP/IRAP and vasopressin expression, that regulates the function of these substrate peptides of the enzyme via translocation of P-LAP/IRAP from intracellular vesicles to the plasma membrane in brain cells. These findings provide novel insights into the functions of P-LAP/IRAP in the brain and suggest the involvement of these peptides in modulation of brain AVP functions in hyperosmolality, memory, learning, and circadian rhythm.
Collapse
Affiliation(s)
- Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kenji Ogawa
- Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| |
Collapse
|
59
|
Paladini F, Fiorillo MT, Tedeschi V, Mattorre B, Sorrentino R. The Multifaceted Nature of Aminopeptidases ERAP1, ERAP2, and LNPEP: From Evolution to Disease. Front Immunol 2020; 11:1576. [PMID: 32793222 PMCID: PMC7390905 DOI: 10.3389/fimmu.2020.01576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
In the human genome, the aminopeptidases ERAP1, ERAP2 and LNPEP lie contiguously on chromosome 5. They share sequence homology, functions and associations with immune-mediated diseases. By analyzing their multifaceted activities as well as their expression in the zoological scale, we suggest here that the progenitor of the three aminopeptidases might be LNPEP from which the other two aminopeptidases could have derived by gene duplications. We also propose that their functions are partially redundant. More precisely, the evolutionary story of the three aminopeptidases might have been dictated by their role in regulating the renin–angiotensin system, which requires their controlled and coordinated expression. This hypothesis is supported by the many species that lack one or the other gene as well as by the lack of ERAP2 in rodents and a null expression in 25% of humans. Finally, we speculate that their role in antigen presentation has been acquired later on during evolution. They have therefore been diversified between those residing in the ER, ERAP1 and ERAP2, whose role is to refine the MHC-I peptidomes, and LNPEP, mostly present in the endosomal vesicles where it can contribute to antigen cross-presentation or move to the cell membrane as receptor for angiotensin IV. Their association with autoinflammatory/autoimmune diseases can therefore be two-fold: as “contributors” to the shaping of the immune-peptidomes as well as to the regulation of the vascular response.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Benedetta Mattorre
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
60
|
Building GLUT4 Vesicles: CHC22 Clathrin's Human Touch. Trends Cell Biol 2020; 30:705-719. [PMID: 32620516 DOI: 10.1016/j.tcb.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Insulin stimulates glucose transport by triggering regulated delivery of intracellular vesicles containing the GLUT4 glucose transporter to the plasma membrane. This process is defective in diseases such as type 2 diabetes (T2DM). While studies in rodent cells have been invaluable in understanding GLUT4 traffic, evolutionary plasticity must be considered when extrapolating these findings to humans. Recent work has identified species-specific distinctions in GLUT4 traffic, notably the participation of a novel clathrin isoform, CHC22, in humans but not rodents. Here, we discuss GLUT4 sorting in different species and how studies of CHC22 have identified new routes for GLUT4 trafficking. We further consider how different sorting-protein complexes relate to these routes and discuss other implications of these pathways in cell biology and disease.
Collapse
|
61
|
IRAP-dependent endosomal T cell receptor signalling is essential for T cell responses. Nat Commun 2020; 11:2779. [PMID: 32487999 PMCID: PMC7265453 DOI: 10.1038/s41467-020-16471-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/03/2020] [Indexed: 11/09/2022] Open
Abstract
T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation. T cell receptors (TCR) are internalized when activated by their ligands. Here the authors show that the internalized TCRs are localized to endosomes expressing IRAP and Syntaxin 6 to maintain intracellular signalling capacity, whose importance is shown by the absence of efficient polyclonal anti-tumour response in mice with T-specific conditional deletion of IRAP.
Collapse
|
62
|
Belabed M, Mauvais FX, Maschalidi S, Kurowska M, Goudin N, Huang JD, Fischer A, de Saint Basile G, van Endert P, Sepulveda FE, Ménasché G. Kinesin-1 regulates antigen cross-presentation through the scission of tubulations from early endosomes in dendritic cells. Nat Commun 2020; 11:1817. [PMID: 32286311 PMCID: PMC7156633 DOI: 10.1038/s41467-020-15692-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/25/2020] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) constitute a specialized population of immune cells that present exogenous antigen (Ag) on major histocompatibility complex (MHC) class I molecules to initiate CD8 + T cell responses against pathogens and tumours. Although cross-presentation depends critically on the trafficking of Ag-containing intracellular vesicular compartments, the molecular machinery that regulates vesicular transport is incompletely understood. Here, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in their DCs exhibit a major impairment in cross-presentation and thus a poor in vivo anti-tumour response. We find that kinesin-1 critically regulates antigen cross-presentation in DCs, by controlling Ag degradation, the endosomal pH, and MHC-I recycling. Mechanistically, kinesin-1 appears to regulate early endosome maturation by allowing the scission of endosomal tubulations. Our results highlight kinesin-1’s role as a molecular checkpoint that modulates the balance between antigen degradation and cross-presentation. Kinesin-1 is a motor protein transporting cargo along microtubules. Here the authors show that kinesin-1 is required for antigen cross-presentation and coordinates endosome scission from early endosomes to allow sorting internalized cargoes towards the recycling endosomal or lysosomal compartments.
Collapse
Affiliation(s)
- Meriem Belabed
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - François-Xavier Mauvais
- Université de Paris, INSERM, U1151, Institut Necker Enfants Malades; Université de Paris; CNRS, UMR8253, F-75015, Paris, France
| | - Sophia Maschalidi
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - Mathieu Kurowska
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - Nicolas Goudin
- Cell Imaging Facility, Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alain Fischer
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France.,Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015, Paris, France.,Collège de France, F-75005, Paris, France
| | - Geneviève de Saint Basile
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - Peter van Endert
- Université de Paris, INSERM, U1151, Institut Necker Enfants Malades; Université de Paris; CNRS, UMR8253, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France.,Centre national de la recherche scientifique (CNRS), F-75015, Paris, France
| | - Gaël Ménasché
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France.
| |
Collapse
|
63
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
64
|
Imai J, Ohashi S, Sakai T. Endoplasmic Reticulum-Associated Degradation-Dependent Processing in Cross-Presentation and Its Potential for Dendritic Cell Vaccinations: A Review. Pharmaceutics 2020; 12:pharmaceutics12020153. [PMID: 32070016 PMCID: PMC7076524 DOI: 10.3390/pharmaceutics12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
65
|
Cruz FM, Colbert JD, Rock KL. The GTPase Rab39a promotes phagosome maturation into MHC-I antigen-presenting compartments. EMBO J 2020; 39:e102020. [PMID: 31821587 PMCID: PMC6960445 DOI: 10.15252/embj.2019102020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
For CD8 T lymphocytes to mount responses to cancer and virally-infected cells, dendritic cells must capture antigens present in tissues and display them as peptides bound to MHC-I molecules. This is most often accomplished through a pathway called antigen cross-presentation (XPT). Here, we report that the vesicular trafficking protein Rab39a is needed for optimal cross-presentation by dendritic cells in vitro and cross-priming of CD8 T cells in vivo. Without Rab39a, MHC-I presentation of intraphagosomal peptides is inhibited, indicating that Rab39a converts phagosomes into peptide-loading compartments. In this process, Rab39a promotes the delivery of MHC-I molecules from the endoplasmic reticulum (ER) to phagosomes, and increases the levels of peptide-empty MHC-I conformers that can be loaded with peptide in this compartment. Rab39a also increases the levels of Sec22b and NOX2, previously recognized to participate in cross-presentation, on phagosomes, thereby filling in a missing link into how phagosomes mature into cross-presenting vesicles.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jeff D Colbert
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kenneth L Rock
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
66
|
Colbert JD, Cruz FM, Rock KL. Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 2020; 64:1-8. [PMID: 31927332 DOI: 10.1016/j.coi.2019.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
In order to get recognized by CD8 T cells, most cells present peptides from endogenously expressed self or foreign proteins on MHC class I molecules. However, specialized antigen-presenting cells, such as DCs and macrophages, can present exogenous antigen on MHC-I in a process called cross-presentation. This pathway plays key roles in antimicrobial and antitumor immunity, and also immune tolerance. Recent advances have broadened our understanding of the underlying mechanisms of cross-presentation. Here, we review some of these recent advances, including the distinct pathways that result in the cross-priming of CD8 T cells and the source of the class I molecules presenting exogenous peptides.
Collapse
Affiliation(s)
- Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, United States.
| |
Collapse
|
67
|
Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. J Med Chem 2019; 63:103-121. [PMID: 31841350 DOI: 10.1021/acs.jmedchem.9b00293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1's hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
Collapse
Affiliation(s)
| | | | - Digamber Rane
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | - W Frank An
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shailesh Metkar
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Marc Hickey
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Samantha Bender
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | | | | | - Irini Evnouchidou
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Roger Schilling
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Jennifer Golden
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | | |
Collapse
|
68
|
Cross-presentation of Exogenous Antigens. Transfus Clin Biol 2019; 26:346-351. [DOI: 10.1016/j.tracli.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
|
69
|
Georgiadis D, Mpakali A, Koumantou D, Stratikos E. Inhibitors of ER Aminopeptidase 1 and 2: From Design to Clinical Application. Curr Med Chem 2019; 26:2715-2729. [PMID: 29446724 DOI: 10.2174/0929867325666180214111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Athens, Greece
| | - Anastasia Mpakali
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Despoina Koumantou
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| |
Collapse
|
70
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
71
|
Sengupta D, Graham M, Liu X, Cresswell P. Proteasomal degradation within endocytic organelles mediates antigen cross-presentation. EMBO J 2019; 38:e99266. [PMID: 31271236 DOI: 10.15252/embj.201899266] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 11/09/2022] Open
Abstract
During MHC-I-restricted antigen processing, peptides generated by cytosolic proteasomes are translocated by the transporter associated with antigen processing (TAP) into the endoplasmic reticulum, where they bind to newly synthesized MHC-I molecules. Dendritic cells and other cell types can also generate MHC-I complexes with peptides derived from internalized proteins, a process called cross-presentation. Here, we show that active proteasomes within cross-presenting cell phagosomes can generate these peptides. Active proteasomes are detectable within endocytic compartments in mouse bone marrow-derived dendritic cells. In TAP-deficient mouse dendritic cells, cross-presentation is enhanced by the introduction of human β2 -microglobulin, which increases surface expression of MHC-I and suggests a role for recycling MHC-I molecules. In addition, surface MHC-I can be reduced by proteasome inhibition and stabilized by MHC-I-restricted peptides. This is consistent with constitutive proteasome-dependent but TAP-independent peptide loading in the endocytic pathway. Rab-GTPase mutants that restrain phagosome maturation increase proteasome recruitment and enhance TAP-independent cross-presentation. Thus, phagosomal/endosomal binding of peptides locally generated by proteasomes allows cross-presentation to generate MHC-I-peptide complexes identical to those produced by conventional antigen processing.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
72
|
Basler M, Groettrup M. Testing the Impact of Protease Inhibitors in Antigen Presentation Assays. Methods Mol Biol 2019; 1988:59-69. [PMID: 31147932 DOI: 10.1007/978-1-4939-9450-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The major histocompatibility complex (MHC) class I restricted pathway of antigen processing allows the presentation of intracellular antigens to cytotoxic T lymphocytes. The proteasome is the main protease in the cytoplasm and the nucleus, which is responsible for the generation of most peptide ligands of MHC-I molecules. Peptides produced by the proteasome can be further trimmed or destroyed by numerous cytosolic or endoplasmic reticulum (ER) luminal proteases. Small molecule inhibitors are useful tools for probing the role of proteases in MHC class I antigen processing. Here, we describe different methods to test the impact of protease inhibitors in antigen presentation assays.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland. .,Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
73
|
Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages. NPJ Vaccines 2019; 4:17. [PMID: 31123605 PMCID: PMC6520342 DOI: 10.1038/s41541-019-0111-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence supports the importance of T cell responses to protect against severe influenza, promote viral clearance, and ensure long-term immunity. Plant-derived virus-like particle (VLP) vaccines bearing influenza hemagglutinin (HA) have been shown to elicit strong humoral and CD4+ T cell responses in both pre-clinical and clinical studies. To better understand the immunogenicity of these vaccines, we tracked the intracellular fate of a model HA (A/California/07/2009 H1N1) in human monocyte-derived macrophages (MDMs) following delivery either as VLPs (H1-VLP) or in soluble form. Compared to exposure to soluble HA, pulsing with VLPs resulted in ~3-fold greater intracellular accumulation of HA at 15 min that was driven by clathrin-mediated and clathrin-independent endocytosis as well as macropinocytosis/phagocytosis. At 45 min, soluble HA had largely disappeared suggesting its handling primarily by high-degradative endosomal pathways. Although the overall fluorescence intensity/cell had declined 25% at 45 min after H1-VLP exposure, the endosomal distribution pattern and degree of aggregation suggested that HA delivered by VLP had entered both high-degradative late and low-degradative static early and/or recycling endosomal pathways. At 45 min in the cells pulsed with VLPs, HA was strongly co-localized with Rab5, Rab7, Rab11, MHC II, and MHC I. High-resolution tandem mass spectrometry identified 115 HA-derived peptides associated with MHC I in the H1-VLP-treated MDMs. These data suggest that HA delivery to antigen-presenting cells on plant-derived VLPs facilitates antigen uptake, endosomal processing, and cross-presentation. These observations may help to explain the broad and cross-reactive immune responses generated by these vaccines. Producing vaccines in plants can have several important advantages, including scalability and relatively low cost. Brian J. Ward and colleagues at McGill University examine the intracellular processing of a plant-derived virus-like particle (VLP) expressing influenza hemagglutinin H1 (H1-VLP) and compare this systematically with soluble monomeric H1. Human monocyte-derived macrophages rapidly take up soluble H1 via degradative pathways resulting in its poor presentation by MHC class I. In contrast, multiple endocytic and pinocytic mechanisms are used to internalize H1-VLP, including handling by non-degradative pathways which favors efficient cross-presentation by MHC class I. This specialized intracellular handling of plant-derived VLPs might underlie their ability to stimulate robust CD8+ T cell responses.
Collapse
|
74
|
Hanson AL, Morton CJ, Parker MW, Bessette D, Kenna TJ. The genetics, structure and function of the M1 aminopeptidase oxytocinase subfamily and their therapeutic potential in immune-mediated disease. Hum Immunol 2019; 80:281-289. [DOI: 10.1016/j.humimm.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
|
75
|
Marongiu L, Gornati L, Artuso I, Zanoni I, Granucci F. Below the surface: The inner lives of TLR4 and TLR9. J Leukoc Biol 2019; 106:147-160. [PMID: 30900780 PMCID: PMC6597292 DOI: 10.1002/jlb.3mir1218-483rr] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
TLRs are a class of pattern recognition receptors (PRRs) that detect invading microbes by recognizing pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, TLRs activate a signaling cascade that leads to the production of inflammatory mediators. The localization of TLRs, either on the plasma membrane or in the endolysosomal compartment, has been considered to be a fundamental aspect to determine to which ligands the receptors bind, and which transduction pathways are induced. However, new observations have challenged this view by identifying complex trafficking events that occur upon TLR-ligand binding. These findings have highlighted the central role that endocytosis and receptor trafficking play in the regulation of the innate immune response. Here, we review the TLR4 and TLR9 transduction pathways and the importance of their different subcellular localization during the inflammatory response. Finally, we discuss the implications of TLR9 subcellular localization in autoimmunity.
Collapse
Affiliation(s)
- Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Irene Artuso
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
76
|
Paladini F, Fiorillo MT, Tedeschi V, Cauli A, Mathieu A, Sorrentino R. Ankylosing Spondylitis: A Trade Off of HLA-B27, ERAP, and Pathogen Interconnections? Focus on Sardinia. Front Immunol 2019; 10:35. [PMID: 30740100 PMCID: PMC6355666 DOI: 10.3389/fimmu.2019.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
The frequency of HLA-B27 in patients with Ankylosing Spondylitis (AS) is over 85%. There are more than 170 recognized HLA-B27 alleles but the majority of them is not sufficiently represented for genetic association studies. So far only two alleles, the HLA-B*2706 in Asia and the HLA-B*2709 in Sardinia, have not been found to be associated with AS. The highly homogenous genetic structure of the Sardinian population has favored the search of relevant variants for disease-association studies. Moreover, malaria, once endemic in the island, has been shown to have contributed to shape the native population genome affecting the relative allele frequency of relevant genes. In Sardinia, the prevalence of HLA-B*2709, which differs from the strongly AS-associated B*2705 prototype for one amino acid (His/Asp116) in the F pocket of the peptide binding groove, is around 20% of all HLA-B27 alleles. We have previously hypothesized that malaria could have contributed to the establishment of this allele in Sardinia. Based on our recent findings, in this perspective article we speculate that the Endoplasmic Reticulum Amino Peptidases, ERAP1 and 2, associated with AS and involved in antigen presentation, underwent co-selection by malaria. These genes, besides shaping the immunopeptidome of HLA-class I molecules, have other biological functions that could also be involved in the immunosurveillance against malaria.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Alberto Cauli
- Department of Medical Sciences and Public Health, Chair of Rheumatology and Rheumatology Unit, University and AOU of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Department of Medical Sciences and Public Health, Chair of Rheumatology and Rheumatology Unit, University and AOU of Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
77
|
Montealegre S, van Endert PM. Endocytic Recycling of MHC Class I Molecules in Non-professional Antigen Presenting and Dendritic Cells. Front Immunol 2019; 9:3098. [PMID: 30666258 PMCID: PMC6330327 DOI: 10.3389/fimmu.2018.03098] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules are glycoproteins that display peptide epitopes at the cell surface of nucleated cells for recognition by CD8+ T cells. Like other cell surface receptors, MHC class I molecules are continuously removed from the surface followed by intracellular degradation or recycling to the cell surface, in a process likely involving active quality control the mechanism of which remains unknown. The molecular players and pathways involved in internalization and recycling have previously been studied in model cell lines such as HeLa. However, dendritic cells (DCs), which rely on a specialized endocytic machinery that confers them the unique ability to “cross”-present antigens acquired by internalization, may use distinct MHC I recycling pathways and quality control mechanisms. By providing MHC I molecules cross-presenting antigens, these pathways may play an important role in one of the key functions of DCs, priming of T cell responses against pathogens and tumors. In this review, we will focus on endocytic recycling of MHC I molecules in various experimental conditions and cell types. We discuss the organization of the recycling pathway in model cell lines compared to DCs, highlighting the differences in the recycling rates and pathways of MHC I molecules between various cell types, and their putative functional consequences. Reviewing the literature, we find that conclusive evidence for significant recycling of MHC I molecules in primary DCs has yet to be demonstrated. We conclude that endocytic trafficking of MHC class I in DCs remains poorly understood and should be further studied because of its likely role in antigen cross-presentation.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Peter M van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| |
Collapse
|
78
|
Ho NI, Huis In 't Veld LGM, Raaijmakers TK, Adema GJ. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines? Front Immunol 2018; 9:2874. [PMID: 30619259 PMCID: PMC6300500 DOI: 10.3389/fimmu.2018.02874] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, vaccine development has advanced significantly in pursuing higher safety with less side effects. However, this is often accompanied by a reduction in vaccine immunogenicity and an increased dependency on adjuvants to enhance vaccine potency. Especially for diseases like cancer, it is important that therapeutic vaccines contain adjuvants that promote strong T cell responses. An important mode of action for such adjuvants is to prolong antigen exposure to dendritic cells (DCs) and to induce their maturation. These mature DCs are extremely effective in the activation of antigen-specific T cells, which is a pre-requisite for induction of potent and long-lasting cellular immunity. For the activation of CD8+ cytotoxic T cell responses, however, the exogenous vaccine antigens need to gain access to the endogenous MHCI presentation pathway of DCs, a process referred to as antigen cross-presentation. In this review, we will focus on recent insights in clinically relevant vaccine adjuvants that impact DC cross-presentation efficiency, including aluminum-based nanoparticles, saponin-based adjuvants, and Toll-like receptor ligands. Furthermore, we will discuss the importance of adjuvant combinations and highlight new developments in cancer vaccines. Understanding the mode of action of adjuvants in general and on antigen cross-presentation in DCs in particular will be important for the design of novel adjuvants as part of vaccines able to induce strong cellular immunity.
Collapse
Affiliation(s)
- Nataschja I Ho
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lisa G M Huis In 't Veld
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tonke K Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
79
|
Qiu F, Becker KW, Knight FC, Baljon JJ, Sevimli S, Shae D, Gilchuk P, Joyce S, Wilson JT. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials 2018; 182:82-91. [PMID: 30107272 PMCID: PMC6778406 DOI: 10.1016/j.biomaterials.2018.07.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Abstract
Cancer vaccines targeting patient-specific tumor neoantigens have recently emerged as a promising component of the rapidly expanding immunotherapeutic armamentarium. However, neoantigenic peptides typically elicit weak CD8+ T cell responses, and so there is a need for universally applicable vaccine delivery strategies to enhance the immunogenicity of these peptides. Ideally, such vaccines could also be rapidly fabricated using chemically synthesized peptide antigens customized to an individual patient. Here, we describe a strategy for simple and rapid packaging of peptide antigens into pH-responsive nanoparticles with endosomal escape activity. Electrostatically-stabilized polyplex nanoparticles (nanoplexes) can be assembled instantaneously by mixing decalysine-modified antigenic peptides and poly(propylacrylic acid) (pPAA), a polyanion with pH-dependent, membrane destabilizing activity. These nanoplexes increase and prolong antigen uptake and presentation on MHC-I (major histocompatibility complex class I) molecules expressed by dendritic cells, resulting in enhanced activation of CD8+ T cells. Using an intranasal immunization route, nanoplex vaccines inhibit formation of lung metastases in a murine melanoma model. Additionally, nanoplex vaccines strongly synergize with the adjuvant α-galactosylceramide (α-GalCer) in stimulating robust CD8+ T cell responses, significantly increasing survival time in mice with established melanoma tumors. Collectively, these findings demonstrate that peptide/pPAA nanoplexes offer a facile and versatile platform for enhancing CD8+ T cell responses to peptide antigens, with potential to complement ongoing advancements in the development of neoantigen-targeted cancer vaccines.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kyle W Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Frances C Knight
- Department of Biomedical Engineering, Vanderbilt University, USA
| | | | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, USA; Department of Veterans Administration Tennessee Valley Healthcare System, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, USA; Department of Veterans Administration Tennessee Valley Healthcare System, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, USA.
| |
Collapse
|
80
|
Salomon E, Schmitt M, Marapaka AK, Stamogiannos A, Revelant G, Schmitt C, Alavi S, Florent I, Addlagatta A, Stratikos E, Tarnus C, Albrecht S. Aminobenzosuberone Scaffold as a Modular Chemical Tool for the Inhibition of Therapeutically Relevant M1 Aminopeptidases. Molecules 2018; 23:molecules23102607. [PMID: 30314342 PMCID: PMC6222927 DOI: 10.3390/molecules23102607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
The synthesis of racemic substituted 7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one hydrochlorides was optimized to enhance reproducibility and increase the overall yield. In order to investigate their specificity, series of enzyme inhibition assays were carried out against a diversity of proteases, covering representative members of aspartic, cysteine, metallo and serine endopeptidases and including eight members of the monometallic M1 family of aminopeptidases as well as two members of the bimetallic M17 and M28 aminopeptidase families. This aminobenzosuberone scaffold indeed demonstrated selective inhibition of M1 aminopeptidases to the exclusion of other tested protease families; it was particularly potent against mammalian APN and its bacterial/parasitic orthologues EcPepN and PfAM1.
Collapse
Affiliation(s)
- Emmanuel Salomon
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| | - Marjorie Schmitt
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| | - Anil Kumar Marapaka
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Dehli 110001, India.
| | - Athanasios Stamogiannos
- Protein Chemistry Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece.
| | - Germain Revelant
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| | - Céline Schmitt
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| | - Sarah Alavi
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| | - Isabelle Florent
- Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, 75231 Paris, France.
| | - Anthony Addlagatta
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Dehli 110001, India.
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Agia Paraskevi, 15310 Athens, Greece.
| | - Céline Tarnus
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| | - Sébastien Albrecht
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, 68093 Mulhouse, France.
| |
Collapse
|
81
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
82
|
Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, Montealegre S, Lawand M, Evnouchidou I, Huber KJ, Chadt A, Zwick M, Vargas P, Dussiot M, Lennon-Dumenil AM, Brocker T, Al-Hasani H, van Endert P. Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation. Cell Rep 2018; 24:3568-3581. [DOI: 10.1016/j.celrep.2018.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/14/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
|
83
|
Colbert RA, Navid F, Gill T. The role of HLA-B*27 in spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 31:797-815. [PMID: 30509441 DOI: 10.1016/j.berh.2018.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
The mechanism by which HLA-B*27 predisposes to spondyloarthritis remains unresolved. Arthritogenic peptides have not been defined in humans and are not involved in experimental models of spondyloarthritis. Aberrant properties of HLA-B*27 can activate the IL-23/IL-17 axis in HLA-B*27 transgenic rats and humans. In HLA-B*27-independent rodent models, spondyloarthritis can be driven by IL-23 triggering entheseal-resident CD4-/CD8- T cells or CD4+ Th17 T cells. These findings point toward noncanonical mechanisms linking HLA-B*27 to the disease and provide a potential explanation for HLA-B*27-negative spondyloarthritis. Gut microbial dysbiosis may be important in the development of spondyloarthritis. HLA-B*27-induced changes in gut microbiota are complex and suggest an ecological model of dysbiosis in rodents. The importance of the IL-23/IL-17 axis in ankylosing spondylitis has been demonstrated by studies showing efficacy of IL-17. Although deciphering the precise role(s) of HLA-B*27 in disease requires further investigation, considerable progress has been made in understanding this complex relationship.
Collapse
Affiliation(s)
- Robert A Colbert
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| |
Collapse
|
84
|
Embgenbroich M, Burgdorf S. Current Concepts of Antigen Cross-Presentation. Front Immunol 2018; 9:1643. [PMID: 30061897 PMCID: PMC6054923 DOI: 10.3389/fimmu.2018.01643] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells have the ability to efficiently present internalized antigens on major histocompatibility complex (MHC) I molecules. This process is termed cross-presentation and is important role in the generation of an immune response against viruses and tumors, after vaccinations or in the induction of immune tolerance. The molecular mechanisms enabling cross-presentation have been topic of intense debate since many years. However, a clear view on these mechanisms remains difficult, partially due to important remaining questions, controversial results and discussions. Here, we give an overview of the current concepts of antigen cross-presentation and focus on a description of the major cross-presentation pathways, the role of retarded antigen degradation for efficient cross-presentation, the dislocation of antigens from endosomal compartment into the cytosol, the reverse transport of proteasome-derived peptides for loading on MHC I and the translocation of the cross-presentation machinery from the ER to endosomes. We try to highlight recent advances, discuss some of the controversial data and point out some of the major open questions in the field.
Collapse
Affiliation(s)
- Maria Embgenbroich
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
85
|
Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol 2018; 28:xii44-xii55. [PMID: 28945841 DOI: 10.1093/annonc/mdx237] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are the main professional antigen-presenting cells for induction of T-cell adaptive responses. Cancer cells express tumor antigens, including neoantigens generated by nonsynonymous mutations, but are poor for antigen presentation and for providing costimulatory signals for T-cell priming. Mounting evidence suggests that antigen transfer to DCs and their surrogate presentation on major histocompatibility complex class I and II molecules together with costimulatory signals is paramount for induction of viral and cancer immunity. Of the great diversity of DCs, BATF3/IRF8-dependent conventional DCs type 1 (cDC1) excel at cross-presentation of tumor cell-associated antigens. Location of cDC1s in the tumor correlates with improved infiltration by CD8+ T cells and tumor-specific T-cell immunity. Indeed, cDC1s are crucial for antitumor efficacy using checkpoint inhibitors and anti-CD137 agonist monoclonal antibodies in mouse models. Enhancement and exploitation of T-cell cross-priming by cDC1s offer opportunities for improved cancer immunotherapy, including in vivo targeting of tumor antigens to internalizing receptors on cDC1s and strategies to increase their numbers, activation and priming capacity within tumors and tumor-draining lymph nodes.
Collapse
Affiliation(s)
- A R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - A Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - F J Cueto
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid.,Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid
| | - S Garasa
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - J L Pérez-Gracia
- University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| | - A Sánchez-Arráez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - D Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid
| | - I Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona.,University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
86
|
Lawand M, Evnouchidou I, Baranek T, Montealegre S, Tao S, Drexler I, Saveanu L, Si-Tahar M, van Endert P. Impact of the TAP-like transporter in antigen presentation and phagosome maturation. Mol Immunol 2018; 113:75-86. [PMID: 29941219 DOI: 10.1016/j.molimm.2018.06.268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Cross-presentation is thought to require transport of proteasome-generated peptides by the TAP transporters into MHC class I loading compartments for most antigens. However, a proteasome-dependent but TAP-independent pathway has also been described. Depletion of the pool of recycling cell surface MHC class I molecules available for loading with cross-presented peptides might partly or largely account for the critical role of TAP in cross-presentation of phagocytosed antigens. Here we examined a potential role of the homodimeric lysosomal TAP-like transporter in cross-presentation and in presentation of endogenous peptides by MHC class II molecules. We find that TAP-L is strongly recruited to dendritic cell phagosomes at a late stage, when internalized antigen and MHC class I molecules have been degraded or sorted away from phagosomes. Cross-presentation of a receptor-targeted antigen in vitro and of a phagocytosed antigen in vivo, as well as presentation of a cytosolic antigen by MHC class II molecules, is not affected by TAP-L deficiency. However, accumulation in vitro of a peptide optimally adapted to TAP-L selectivity in purified phagosomes is abolished by TAP-L deficiency. Unexpectedly, we find that TAP-L deficiency accelerates phagosome maturation, as reflected in increased Lamp2b recruitment and enhanced proteolytic degradation of phagocytosed antigen and in vitro transported peptides. Although additional experimentation will be required to definitely conclude on the role of TAP-L in transport of peptides presented by MHC class I and class II molecules, our data suggest that the principal role of TAP-L in dendritic cells may be related to regulation of phagosome maturation.
Collapse
Affiliation(s)
- Myriam Lawand
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Irini Evnouchidou
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Thomas Baranek
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Sebastian Montealegre
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Sha Tao
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ingo Drexler
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Loredana Saveanu
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Peter van Endert
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France.
| |
Collapse
|
87
|
Ho NI, Camps MGM, de Haas EFE, Ossendorp F. Sustained cross-presentation capacity of murine splenic dendritic cell subsets in vivo. Eur J Immunol 2018; 48:1164-1173. [PMID: 29676785 PMCID: PMC6055716 DOI: 10.1002/eji.201747372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
An exclusive feature of dendritic cells (DCs) is their ability to cross‐present exogenous antigens in MHC class I molecules. We analyzed the fate of protein antigen in antigen presenting cell (APC) subsets after uptake of naturally formed antigen‐antibody complexes in vivo. We observed that murine splenic DC subsets were able to present antigen in vivo for at least a week. After ex vivo isolation of four APC subsets, the presence of antigen in the storage compartments was visualized by confocal microscopy. Although all APC subsets stored antigen for many days, their ability and kinetics in antigen presentation was remarkably different. CD8α+ DCs showed sustained MHC class I‐peptide specific CD8+ T‐cell activation for more than 4 days. CD8α− DCs also presented antigenic peptides in MHC class I but presentation decreased after 48 h. In contrast, only the CD8α− DCs were able to present antigen in MHC class II to specific CD4+ T cells. Plasmacytoid DCs and macrophages were unable to activate any of the two T‐cell types despite detectable antigen uptake. These results indicate that naturally occurring DC subsets have functional antigen storage capacity for prolonged T‐cell activation and have distinct roles in antigen presentation to specific T cells in vivo.
Collapse
Affiliation(s)
- Nataschja I Ho
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin F E de Haas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
88
|
Sanz-Bravo A, Martín-Esteban A, Kuiper JJW, García-Peydró M, Barnea E, Admon A, López de Castro JA. Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy. Mol Cell Proteomics 2018; 17:1564-1577. [PMID: 29769354 DOI: 10.1074/mcp.ra118.000778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.
Collapse
Affiliation(s)
- Alejandro Sanz-Bravo
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Jonas J W Kuiper
- §Department of Ophthalmology, University Medical Center Utrecht, The Netherlands
| | - Marina García-Peydró
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Eilon Barnea
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
89
|
Vanga SR, Sävmarker J, Ng L, Larhed M, Hallberg M, Åqvist J, Hallberg A, Chai SY, Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS OMEGA 2018; 3:4509-4521. [PMID: 30023895 PMCID: PMC6045421 DOI: 10.1021/acsomega.8b00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.
Collapse
Affiliation(s)
- Sudarsana Reddy Vanga
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Jonas Sävmarker
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Leelee Ng
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mats Larhed
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- The
Beijer Laboratory, Department of Pharmaceutical Biosciences, Division
of Biological Research on Drug Dependence, Uppsala University, BMC, SE-751 23 Uppsala, Sweden
| | - Johan Åqvist
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Siew Yeen Chai
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
- E-mail: . Phone: +61 3 990 52515. Fax: +61 3 990 52547 (S.Y.C.)
| | - Hugo Gutiérrez-de-Terán
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
- E-mail: . Phone: +46 18 471 5056. Fax: +46 18 53 69 71 (H.G.-d.-T.)
| |
Collapse
|
90
|
Cozzani E, Rosa GM, Burlando M, Parodi A. Psoriasis as a cardiovascular risk factor: updates and algorithmic approach. GIORN ITAL DERMAT V 2018; 153:659-665. [PMID: 29683293 DOI: 10.23736/s0392-0488.18.06040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although psoriasis is predominantly a chronic inflammatory skin disorder, it has been known to be associated with cardiovascular disease. Patients with psoriasis, particularly with moderate to severe forms, present an increased rate of cardiovascular mortality, myocardial infarction and stroke. However the pathophysiology of the relationship between psoriasis and cardiovascular risk and comorbidities has not yet completely known. Chronic inflammation may be considered a solid link between psoriasis and related cardiovascular events. Several cytokines and inflammatory cells play a pivotal role in the development of psoriatic lesions, resulting in angiogenesis and endothelial dysfunction. Furthermore, the imbalance between oxidative stress and antioxidant mechanisms in psoriatic patients may contribute to explain the pathogenesis of increased reactive oxygen species and the formation of atherosclerotic plaque. Other mechanistic pathways which may be involved in this relationship include cardiovascular effects of medications, a common genetic background and a higher prevalence of cardiovascular risk factors, which are often under-diagnosed and under-treated in psoriatic patients. Indeed, the early detection of specific markers of cardiovascular impairment, such as N-terminal pro B-type natriuretic peptide, homocysteine and YKL-40, may enable psoriatic patients at higher cardiovascular risk to be identified as soon as possible. This review examines the increased cardiovascular risk profile and high prevalence of cardiovascular disease associated with psoriasis, focusing on pathogenic links between psoriasis and atherosclerosis, serological markers of cardiovascular involvement and the implications of antipsoriatic therapies on cardiovascular risk and proposes a flow chart, that every dermatologist should follow to screen psoriatic patients.
Collapse
Affiliation(s)
- Emanuele Cozzani
- Department of Dermatology, San Martino Policlinic, University of Genoa, Genoa, Italy -
| | - Gian Marco Rosa
- Department of Cardiology, San Martino Policlinic, University of Genoa, Genoa, Italy
| | - Martina Burlando
- Department of Dermatology, San Martino Policlinic, University of Genoa, Genoa, Italy
| | - Aurora Parodi
- Department of Dermatology, San Martino Policlinic, University of Genoa, Genoa, Italy
| |
Collapse
|
91
|
Mpakali A, Maben Z, Stern LJ, Stratikos E. Molecular pathways for antigenic peptide generation by ER aminopeptidase 1. Mol Immunol 2018; 113:50-57. [PMID: 29678301 DOI: 10.1016/j.molimm.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that can generate or destroy potential peptide ligands for MHC class I molecules. ERAP1 activity influences the cell-surface immunopeptidome and epitope immunodominance patterns but in complex and poorly understood manners. Two main distinct pathways have been proposed to account for ERAP1's effects on the nature and quantity of MHCI-bound peptides: i) ERAP1 trims peptides in solution, generating the correct length for binding to MHCI or overtrimming peptides so that they are too short to bind, and ii) ERAP1 trims peptides while they are partially bound onto MHCI in manner that leaves the peptide amino terminus accessible. For both pathways, once an appropriate length peptide is generated it could bind conventionally to MHCI, competing with further trimming by ERAP1. The two pathways, although not necessarily mutually exclusive, provide distinct vantage points for understanding of the rules behind the generation of the immunopeptidome. Resolution of the mechanistic details of ERAP1-mediated antigenic peptide generation can have important consequences for pharmacological efforts to regulate the immunopeptidome for therapeutic applications, and for understanding association of ERAP1 alleles with susceptibility to autoimmune disease and cancer. We review current evidence in support of these two pathways and discuss their relative importance and potential complementarity.
Collapse
Affiliation(s)
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| | | |
Collapse
|
92
|
Schmidt K, Keller C, Kühl AA, Textor A, Seifert U, Blankenstein T, Willimsky G, Kloetzel PM. ERAP1-Dependent Antigen Cross-Presentation Determines Efficacy of Adoptive T-cell Therapy in Mice. Cancer Res 2018; 78:3243-3254. [PMID: 29559473 DOI: 10.1158/0008-5472.can-17-1946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes can reject established tumors if their target peptide is efficiently presented by MHC class I molecules (pMHC-I) on the surface of cancerous cells. Therapeutic success upon adoptive T-cell transfer (ATT), however, requires additional cross-presentation of the same pMHC-I on noncancerous cells. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an enzyme that customizes the N-terminus of proteasome-generated peptides so they can be loaded onto MHC-I molecules in the endoplasmic reticulum (ER). We show here that ERAP1 is critically involved in the process of tumor rejection and assumes a dual role by independently operating on both sides. Direct presentation of two MHC-I-restricted epitopes of a cancer-driving transplantation rejection antigen through ERAP1 moderately affected tumor rejection by adoptively transferred T-cell receptor gene-modified T cells in each case. ERAP1 expression by antigen cross-presenting cells of the ATT recipients was critical for expansion of therapeutic monospecific T cells and correlated with tumor rejection. Specifically, lack of ERAP1 expression in the ATT recipient's noncancerous cells enabled progression of pMHC-I-positive, IFNγ-responsive tumors, despite the presence of antigen-specific functional cytotoxic T lymphocytes. These data reveal a decisive role for ERAP1 in T-cell-mediated tumor rejection and will enhance the choice of MHC-I-restricted epitopes targeted by adoptive T-cell transfer.Significance: This study demonstrates a role of ERAP1 in the efficacy of adoptive T-cell transfer and has potential to improve personalized T-cell therapy for solid tumors. Cancer Res; 78(12); 3243-54. ©2018 AACR.
Collapse
Affiliation(s)
- Karin Schmidt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| | - Christin Keller
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja A Kühl
- iPath.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ana Textor
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Seifert
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter-Michael Kloetzel
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
93
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
94
|
Croce C, Mayorga LS, Cebrian I. Differential requirement of Rab22a for the recruitment of ER-derived proteins to phagosomes and endosomes in dendritic cells. Small GTPases 2018; 11:211-219. [PMID: 28960134 DOI: 10.1080/21541248.2017.1384088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The recruitment of endoplasmic reticulum (ER) components to dendritic cell (DC) phagosomes and endosomes is a crucial event to achieve efficient cross-presentation of exogenous antigens. We have previously identified the small GTPase Rab22a as a key regulator of MHC-I trafficking and antigen cross-presentation by DCs. In this study we show that low expression of Rab22a does not prevent the normal delivery of ER-derived proteins to DC phagosomes. In contrast, the presence of these proteins was diminished in endosomes labelled with a fluid phase marker. These observations were confirmed by a functional assay that assesses the translocation of a soluble protein to the cytosol. Interestingly, we also demonstrate that early endosomal maturation is altered in Rab22a deficient DCs. Our results indicate that Rab22a plays a major role in endosomal function and highlight the importance of studying the endocytic and phagocytic pathways separately in DCs.
Collapse
Affiliation(s)
- Cristina Croce
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Mendoza, Argentina
| |
Collapse
|
95
|
Nunes-Hasler P, Maschalidi S, Lippens C, Castelbou C, Bouvet S, Guido D, Bermont F, Bassoy EY, Page N, Merkler D, Hugues S, Martinvalet D, Manoury B, Demaurex N. STIM1 promotes migration, phagosomal maturation and antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1852. [PMID: 29176619 PMCID: PMC5701258 DOI: 10.1038/s41467-017-01600-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Antigen cross-presentation by dendritic cells (DC) stimulates cytotoxic T cell activation to promote immunity to intracellular pathogens, viruses and cancer. Phagocytosed antigens generate potent T cell responses, but the signalling and trafficking pathways regulating their cross-presentation are unclear. Here, we show that ablation of the store-operated-Ca2+-entry regulator STIM1 in mouse myeloid cells impairs cross-presentation and DC migration in vivo and in vitro. Stim1 ablation reduces Ca2+ signals, cross-presentation, and chemotaxis in mouse bone-marrow-derived DCs without altering cell differentiation, maturation or phagocytic capacity. Phagosomal pH homoeostasis and ROS production are unaffected by STIM1 deficiency, but phagosomal proteolysis and leucyl aminopeptidase activity, IRAP recruitment, as well as fusion of phagosomes with endosomes and lysosomes are all impaired. These data suggest that STIM1-dependent Ca2+ signalling promotes the delivery of endolysosomal enzymes to phagosomes to enable efficient cross-presentation. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+-entry (SOCE) in response, a process associated with dendritic cell functions. Here the authors show STIM1 is the major isoform controlling SOCE in mouse dendritic cells and provide a mechanism for its requirement in antigen cross-presentation.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland.
| | - Sophia Maschalidi
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, 75015, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine Paris Descartes, Paris, 75015, France
| | - Carla Lippens
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Samuel Bouvet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Daniele Guido
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Flavien Bermont
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Esen Y Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Bénédicte Manoury
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine Paris Descartes, Paris, 75015, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, 75014, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, 75014, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
96
|
Maschalidi S, Nunes-Hasler P, Nascimento CR, Sallent I, Lannoy V, Garfa-Traore M, Cagnard N, Sepulveda FE, Vargas P, Lennon-Duménil AM, van Endert P, Capiod T, Demaurex N, Darrasse-Jèze G, Manoury B. UNC93B1 interacts with the calcium sensor STIM1 for efficient antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1640. [PMID: 29158474 PMCID: PMC5696382 DOI: 10.1038/s41467-017-01601-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DC) have the unique ability to present exogenous antigens via the major histocompatibility complex class I pathway to stimulate naive CD8+ T cells. In DCs with a non-functional mutation in Unc93b1 (3d mutation), endosomal acidification, phagosomal maturation, antigen degradation, antigen export to the cytosol and the function of the store-operated-Ca2+-entry regulator STIM1 are impaired. These defects result in compromised antigen cross-presentation and anti-tumor responses in 3d-mutated mice. Here, we show that UNC93B1 interacts with the calcium sensor STIM1 in the endoplasmic reticulum, a critical step for STIM1 oligomerization and activation. Expression of a constitutively active STIM1 mutant, which no longer binds UNC93B1, restores antigen degradation and cross-presentation in 3d-mutated DCs. Furthermore, ablation of STIM1 in mouse and human cells leads to a decrease in cross-presentation. Our data indicate that the UNC93B1 and STIM1 cooperation is important for calcium flux and antigen cross-presentation in DCs. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+ entry in response, a process associated with dendritic cell (DC) functions. Here, the authors show that optimal antigen cross-presentation in DCs requires the association of the chaperone molecule UNC93B1 with STIM1.
Collapse
Affiliation(s)
- Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Clarissa R Nascimento
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Ignacio Sallent
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Valérie Lannoy
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Meriem Garfa-Traore
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Nicolas Cagnard
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France.,Institut Pierre-Gilles de Genes, PSL Research University, 75005, Paris, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherché Médicale, Unité 932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Peter van Endert
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Thierry Capiod
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Guillaume Darrasse-Jèze
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Bénédicte Manoury
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France. .,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France.
| |
Collapse
|
97
|
Zufferey A, Speck ER, Machlus KR, Aslam R, Guo L, McVey MJ, Kim M, Kapur R, Boilard E, Italiano JE, Semple JW. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv 2017; 1:1773-1785. [PMID: 29296823 PMCID: PMC5728336 DOI: 10.1182/bloodadvances.2017007021] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Megakaryocytes (MKs) are bone marrow-derived cells that are primarily responsible for generating platelets for the maintenance of hemostasis. Although MK can variably express major histocompatibility complex (MHC) class I and II molecules during their differentiation, little is known whether they can elicit nonhemostatic immune functions such as T-cell activation. Here, we demonstrate that mature CD34- MHC class II- CD41+ MKs can endocytose exogenous ovalbumin (OVA) and proteolytically generate its immunogenic peptide ligand, which is crosspresented on their surface in association with MHC class I molecules. This crosspresentation triggered in vitro and in vivo OVA-specific CD8+ T-cell activation and proliferation. In addition, the OVA-MHC class I complexes were transferred from MK to pro-platelets upon thrombopoiesis in vitro. MK could also present endogenous MK-associated (CD61) peptides to activate CD61-specific CD8+ T cells and mediate immune thrombocytopenia in vivo. These results suggest that, in addition to their hemostatic role, mature MKs can significantly affect antigen-specific CD8+ T-cell responses via antigen presentation and are able to spread this immunogenic information through platelets.
Collapse
Affiliation(s)
- Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Edwin R Speck
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Kellie R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rukhsana Aslam
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Li Guo
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Mark J McVey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Anesthesia and Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael Kim
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; and
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| |
Collapse
|
98
|
Imai J, Otani M, Sakai T, Hatta S. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation. J Vis Exp 2017:55949. [PMID: 28872140 PMCID: PMC5614360 DOI: 10.3791/55949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8+ T cells and memory CD8+ T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.
Collapse
Affiliation(s)
- Jun Imai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare;
| | - Mayu Otani
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takahiro Sakai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Shinichi Hatta
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
99
|
Papakyriakou A, Stratikos E. The Role of Conformational Dynamics in Antigen Trimming by Intracellular Aminopeptidases. Front Immunol 2017; 8:946. [PMID: 28824657 PMCID: PMC5545687 DOI: 10.3389/fimmu.2017.00946] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Antigenic peptides presented by the major histocompatibility complex class I (MHC-I) molecules for recognition by cytotoxic T-lymphocytes are processed by members of the oxytocinase sub-family of M1 aminopeptidases ERAP1, ERAP2, and IRAP. These three homologous zinc metallopeptidases trim N-terminally extended precursor antigenic peptides down to the correct length for loading onto the MHC-I but can also destroy some antigenic peptides by over-trimming, therefore, influencing the antigenic peptide repertoire and immunodominance hierarchy. Polymorphic variation has been found to affect their trimming function and predispose to human disease in complex and poorly understood patterns. Structural and biochemical analysis have pointed toward a complicated trimming mechanism that involves a major conformational transition during each catalytic cycle. Here, we provide an overview of current knowledge on the structure and mechanism of action of those enzymes with a focus on the proposed key role of conformational dynamics in their function.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,National Centre for Scientific Research "Demokritos", Athens, Greece
| | | |
Collapse
|
100
|
Abstract
Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8(+) T-cell priming by dendritic cells.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, France
| |
Collapse
|