51
|
Schneider JE, Anderson JS. Reconciling Imbalanced and Nonadiabatic Reactivity in Transition Metal-Oxo-Mediated Concerted Proton Electron Transfer (CPET). J Phys Chem Lett 2023; 14:9548-9555. [PMID: 37856336 DOI: 10.1021/acs.jpclett.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure-activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
52
|
Thomas J, Goldberg DP. Factors controlling the reactivity of synthetic compound-I Analogs. J PORPHYR PHTHALOCYA 2023; 27:1489-1501. [PMID: 39132380 PMCID: PMC11308481 DOI: 10.1142/s1088424623300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A high-valent iron(IV)-oxo porphyrin radical cation (FeIV(O)(porph+•) serves as a key, reactive intermediate for a range of heme enzymes, including cytochrome P450 (CYP), horseradish peroxidase (HRP), and catalase (CAT). Synthetic analogs of this intermediate, known as Compound-I (Cpd-I) in the heme enzyme literature, have been generated with different tetrapyrrolic, macrocyclic ligands, including porphyrin derivatives, and the closely related ring-contracted macrocycles, corroles and corrolazines. These synthetic analogs have been useful for assigning and understanding structural and spectroscopic features and examining the reactivity of Cpd-I-like species in controlled and well-defined environments. This review focuses on summarizing recent developments in the synthesis and reactivity of high-valent iron-oxo porphyrinoid complexes in two main classes of reactions, proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT). The relationship between the structure of the complexes and their reactivity is emphasized, including the influence of axial ligation and peripheral macrocyclic substitution, as well as the effects of solvent and secondary coordination spheres on the reactivity of the Cpd-I analogs. In bringing together the latest findings on Cpd-I analogs, this review intends to broaden our current understanding of the factors that control the stability and reactivity of Cpd-I species. This new knowledge should, in turn, point toward new synthetic strategies for constructing catalysts that rely on Cpd-I-like reactive intermediates.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400N. Charles Street, Baltimore, Maryland 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400N. Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
53
|
Zhang Y, Mokkawes T, de Visser SP. Insights into Cytochrome P450 Enzyme Catalyzed Defluorination of Aromatic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202310785. [PMID: 37641517 DOI: 10.1002/anie.202310785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Density functional calculations establish a novel mechanism of aromatic defluorination by P450 Compound I. This is achieved via either an initial epoxide intermediate or through a 1,2-fluorine shift in an electrophilic intermediate, which highlights that the P450s can defluorinate fluoroarenes. However, in the absence of a proton donor a strong Fe-F bond can be obtained as shown from the calculations.
Collapse
Affiliation(s)
- Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
54
|
Das A, Gao S, Athavale SV, Alfonzo E, Long Y, Arnold FH. Directed evolution of P411 enzymes for amination of inert C-H bonds. Methods Enzymol 2023; 693:1-30. [PMID: 37977727 DOI: 10.1016/bs.mie.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Functionalizing inert C-H bonds selectively is a formidable task due to their strong bond energy and the difficulty of distinguishing chemically similar C-H bonds. While enzymatic oxygenation of C-H bonds is ubiquitous and well established, there is currently no known natural enzymatic process for direct nitrogen insertion. Instead, nature typically relies on pre-oxidized compounds for nitrogen incorporation. Direct biocatalytic C-H amination methods developed in the last few years are only selective for activated C-H bonds that contain specific groups such as benzylic, allylic, or propargylic groups. However, we recently used directed evolution to generate cytochrome P411 enzymes (engineered P450 enzymes with axial ligand mutation from cysteine to serine) that directly aminate inert C-H bonds with high site-, diastereo-, and enantioselectivity. Using these enzymes, we demonstrated the regiodivergent desymmetrization of methylcyclohexane, among other reactions. This chapter provides a comprehensive account of the experimental protocols used to evolve P411s for aminating unactivated C-H bonds. These methods are illustrative and can be adapted for other directed enzyme evolution campaigns.
Collapse
Affiliation(s)
- Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Soumitra V Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Yueming Long
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
55
|
Stout CN, Renata H. Self-sufficient P450-reductase chimeras for biocatalysis. Methods Enzymol 2023; 693:51-71. [PMID: 37977738 DOI: 10.1016/bs.mie.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In recent years, cytochromes P450 have emerged as powerful, versatile biocatalysts for the site-selective functionalization of small molecules. Catalyzing an impressive range of chemical transformations, these enzymes have been widely used to effect C-H oxidation, biaryl coupling, and carbon-heteroatom bond formation, among many other reactions. However, the majority of P450s are multi-protein systems that employ secondary redox partners in key steps of the catalytic cycle, which limits their broader applicability. In response, the discovery of self-sufficient P450s, such as P450BM3 and P450RhF, has provided a template for the construction of artificial, self-sufficient P450-reductase fusions. In this chapter, we describe a procedure for the design, assembly, and application of two engineered, self-sufficient P450s of Streptomyces origin via fusion with an exogenous reductase domain. In particular, we generated artificial chimeras of P450s PtmO5 and TleB by linking them covalently with the reductase domain of P450RhF. Upon verification of their activities, both enzymes were employed in preparative-scale biocatalytic reactions. This approach can feasibly be applied to any P450 of interest, thereby laying the groundwork for the production of self-sufficient P450s for diverse chemical applications.
Collapse
Affiliation(s)
- Carter N Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, United States.
| |
Collapse
|
56
|
Chen H, Fu W, Yang Y. P450-catalyzed atom transfer radical cyclization. Methods Enzymol 2023; 693:31-49. [PMID: 37977735 PMCID: PMC11289761 DOI: 10.1016/bs.mie.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cytochromes P450 have been extensively studied for both fundamental enzymology and biotechnological applications. Over the past decade, by taking inspiration from synthetic organic chemistry, new classes of P450-catalyzed reactions that were not previously encountered in the biological world have been developed to address challenging problems in organic chemistry and asymmetric catalysis. In particular, by repurposing and evolving P450 enzymes, stereoselective biocatalytic atom transfer radical cyclization (ATRC) was developed as a new means to impose stereocontrol over transient free radical intermediates. In this chapter, we describe the detailed experimental protocol for the directed evolution of P450 atom transfer radical cyclases. We also delineate protocols for analytical and preparative scale biocatalytic atom transfer radical cyclization processes. These methods will find application in the development of new P450-catalyzed radical reactions, as well as other synthetically useful processes.
Collapse
Affiliation(s)
- Heyu Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
57
|
Mokkawes T, De Visser T, Cao Y, De Visser SP. Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes. Molecules 2023; 28:6961. [PMID: 37836804 PMCID: PMC10574541 DOI: 10.3390/molecules28196961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Collapse
Affiliation(s)
| | | | | | - Sam P. De Visser
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
58
|
Jóźwik IK, Bombino E, Abdulmughni A, Hartz P, Rozeboom HJ, Wijma HJ, Kappl R, Janssen DB, Bernhardt R, Thunnissen AMWH. Regio- and stereoselective steroid hydroxylation by CYP109A2 from Bacillus megaterium explored by X-ray crystallography and computational modeling. FEBS J 2023; 290:5016-5035. [PMID: 37453052 DOI: 10.1111/febs.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
The P450 monooxygenase CYP109A2 from Bacillus megaterium DSM319 was previously found to convert vitamin D3 (VD3) to 25-hydroxyvitamin D3. Here, we show that this enzyme is also able to convert testosterone in a highly regio- and stereoselective manner to 16β-hydroxytestosterone. To reveal the structural determinants governing the regio- and stereoselective steroid hydroxylation reactions catalyzed by CYP109A2, two crystal structures of CYP109A2 were solved in similar closed conformations, one revealing a bound testosterone in the active site pocket, albeit at a nonproductive site away from the heme-iron. To examine whether the closed crystal structures nevertheless correspond to a reactive conformation of CYP109A2, docking and molecular dynamics (MD) simulations were performed with testosterone and vitamin D3 (VD3) present in the active site. These MD simulations were analyzed for catalytically productive conformations, the relative occurrences of which were in agreement with the experimentally determined stereoselectivities if the predicted stability of each carbon-hydrogen bond was taken into account. Overall, the first-time determination and analysis of the catalytically relevant 3D conformation of CYP109A2 will allow for future small molecule ligand screening in silico, as well as enabling site-directed mutagenesis toward improved enzymatic properties of this enzyme.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Elvira Bombino
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Ammar Abdulmughni
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Philip Hartz
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Henriette J Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Saarbrücken, Germany
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Andy-Mark W H Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
59
|
Zhao J, Zhuo Y, Diaz DE, Shanmugam M, Telfer AJ, Lindley PJ, Kracher D, Hayashi T, Seibt LS, Hardy FJ, Manners O, Hedison TM, Hollywood KA, Spiess R, Cain KM, Diaz-Moreno S, Scrutton NS, Tovborg M, Walton PH, Heyes DJ, Green AP. Mapping the Initial Stages of a Protective Pathway that Enhances Catalytic Turnover by a Lytic Polysaccharide Monooxygenase. J Am Chem Soc 2023; 145:20672-20682. [PMID: 37688545 PMCID: PMC10515631 DOI: 10.1021/jacs.3c06607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 09/11/2023]
Abstract
Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.
Collapse
Affiliation(s)
- Jingming Zhao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ying Zhuo
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Daniel E. Diaz
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Muralidharan Shanmugam
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Abbey J. Telfer
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
- Harwell
Science and Innovation Campus, Diamond Light
Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | - Peter J. Lindley
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, Graz 8010, Austria
| | - Takahiro Hayashi
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Lisa S. Seibt
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Florence J. Hardy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Oliver Manners
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Tobias M. Hedison
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Katherine A. Hollywood
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Reynard Spiess
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Kathleen M. Cain
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sofia Diaz-Moreno
- Harwell
Science and Innovation Campus, Diamond Light
Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Paul H. Walton
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Anthony P. Green
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
60
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
61
|
Ma G, Wang Q, Ma K, Chen Y, Lu J, Zhang J, Wang X, Wei X, Yu H. Enantioselective metabolism of novel chiral insecticide Paichongding by human cytochrome P450 3A4: A computational insight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122088. [PMID: 37348694 DOI: 10.1016/j.envpol.2023.122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
As a novel chiral neonicotinoid insecticide, Paichongding (IPP) has been widely applied in agriculture due to its excellent insecticidal activity. However, the enantioselective metabolism of IPP stereoisomers (5R7R-IPP, 5S7S-IPP, 5R7S-IPP, and 5S7R-IPP) mediated by enzymes in non-target organisms, especially the cytochrome P450s (CYPs), remains unknown. To address this knowledge gap, we developed an integrated computational framework to elucidate the binding interactions and enantioselective metabolism of IPP stereoisomers in human CYP3A4. The results reveal that 5R7R-IPP shows much stronger binding affinity to CYP3A4 than 5S7S-IPP, while enantiomers 5R7S-IPP and 5S7R-IPP have no essential difference in their binding potential, owing to their specific interactions with key CYP3A4 residues. Although enantiomers 5R7R-IPP and 5S7S-IPP feature distinct binding modes resulting from the chiral differences, their transformation activities are slightly different, with C5 and C13 being the primary metabolic sites, respectively. In contrast, CYP3A4 preferably metabolizes 5R7S-IPP over 5S7R-IPP. The metabolism of epimers 5R7R-IPP and 5R7S-IPP share C5-hydroxylation routes due to the conserved 5R-conformaitons, but differ with the transformation routes at C11/C13 and C3 sites. The 7R-chirality of 5S7R-IPP significantly reduces the metabolic potency compared to 5S7S-IPP. CYP3A4-catalyzed hydroxylation and desaturation of IPP stereoisomers generate various chiral metabolites, with C5- and C13-hydroxyIPPs further transforming into depropylated products. Furthermore, the toxicity assessment reveals that IPP, along with the majority of its hydroxylated, desaturated, and depropylated metabolites, can potentially induce adverse effects on human health, specifically hepatotoxicity, respiratory toxicity, and carcinogenicity. This study provides valuable insights into the enantioselective fate of chiral IPP metabolism by CYP3A4, and the identified metabolites can serve as potential biomarkers for monitoring IPP exposure and associated health risk in human body.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Kan Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jiayu Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jing Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China.
| |
Collapse
|
62
|
Podgorski MN, Keto AB, Coleman T, Bruning JB, De Voss JJ, Krenske EH, Bell SG. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023; 29:e202301371. [PMID: 37338048 DOI: 10.1002/chem.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,β-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
63
|
Wu Z, Zhang X, Gao L, Sun D, Zhao Y, Nam W, Wang Y. Elusive Active Intermediates and Reaction Mechanisms of ortho-/ ipso-Hydroxylation of Benzoic Acid by Hydrogen Peroxide Mediated by Bioinspired Iron(II) Catalysts. Inorg Chem 2023; 62:14261-14278. [PMID: 37604675 DOI: 10.1021/acs.inorgchem.3c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Aromatic hydroxylation of benzoic acids (BzOH) to salicylates and phenolates is fundamentally interesting in industrial chemistry. However, key mechanistic uncertainties and dichotomies remain after decades of effort. Herein, the elusive mechanism of the competitive ortho-/ipso-hydroxylation of BzOH by H2O2 mediated by a nonheme iron(II) catalyst was comprehensively investigated using density functional theory calculations. Results revealed that the long-postulated FeV(O)(anti-BzO) oxidant is an FeIV(O)(anti-BzO•) species 2 (anti- and syn- are defined by the orientation of the carboxyl oxygen of BzO to the oxo), which rules out the noted two-oxidant mechanism proposed previously. We propose a new mechanism in which, following the formation of an FeV(O)(syn-BzO) species (3) and its electromer FeIV(O)(syn-BzO•) (3'), 3/3' either converts to salicylate and phenolate via intramolecular self-hydroxylation (route A) or acts as an oxidant to oxygenate another BzOH to generate the same products (route B). In route A, the rotation of the BzO group along the C-O bond forms 2, in which the BzO group is orientated by π-π stacking interactions. An electrophilic ipso-addition forms a phenolate by concomitant decarboxylation or an ortho-attack forms a cationic complex, which readily undergoes an NIH shift and a BzOH-assisted proton shift to form a salicylate. In route B, 3 oxidizes an additional BzOH molecule directed by hydrogen bonding and π-π stacking interactions. In both routes, selectivity is determined by the chemical property of the BzO ring. These mechanistic findings provide a clear mechanistic scenario and enrich the knowledge of hydroxylation of aromatic acids.
Collapse
Affiliation(s)
- Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xuan Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Lanping Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
64
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
65
|
Huang X, Sun Y, Osawa Y, Chen YE, Zhang H. Computational redesign of cytochrome P450 CYP102A1 for highly stereoselective omeprazole hydroxylation by UniDesign. J Biol Chem 2023; 299:105050. [PMID: 37451479 PMCID: PMC10413352 DOI: 10.1016/j.jbc.2023.105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Cytochrome P450 CYP102A1 is a prototypic biocatalyst that has great potential in chemical synthesis, drug discovery, and biotechnology. CYP102A1 variants engineered by directed evolution and/or rational design are capable of catalyzing the oxidation of a wide range of organic compounds. However, it is difficult to foresee the outcome of engineering CYP102A1 for a compound of interest. Here, we introduce UniDesign as a computational framework for enzyme design and engineering. We tested UniDesign by redesigning CYP102A1 for stereoselective metabolism of omeprazole (OMP), a proton pump inhibitor, starting from an active but nonstereoselective triple mutant (TM: A82F/F87V/L188Q). To shift stereoselectivity toward (R)-OMP, we computationally scanned three active site positions (75, 264, and 328) for mutations that would stabilize the binding of the transition state of (R)-OMP while destabilizing that of (S)-OMP and picked three variants, namely UD1 (TM/L75I), UD2 (TM/A264G), and UD3 (TM/A328V), for experimentation, based on computed energy scores and models. UD1, UD2, and UD3 exhibit high turnover rates of 55 ± 4.7, 84 ± 4.8, and 79 ± 5.7 min-1, respectively, for (R)-OMP hydroxylation, whereas the corresponding rates for (S)-OMP are only 2.2 ± 0.19, 6.0 ± 0.68, and 14 ± 2.8 min-1, yielding an enantiomeric excess value of 92, 87, and 70%, respectively. These results suggest the critical roles of L75I, A264G, and A328V in steering OMP in the optimal orientation for stereoselective oxidation and demonstrate the utility of UniDesign for engineering CYP102A1 to produce drug metabolites of interest. The results are discussed in the context of protein structures.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yudong Sun
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
66
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
67
|
Heuer A, Coste SC, Singh G, Mercado BQ, Mayer JM. A Guide to Tris(4-Substituted)-triphenylmethyl Radicals. J Org Chem 2023; 88:9893-9901. [PMID: 37403939 PMCID: PMC10367072 DOI: 10.1021/acs.joc.3c00658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/06/2023]
Abstract
Triphenylmethyl (trityl, Ph3C•) radicals have been considered the prototypical carbon-centered radical since their discovery in 1900. Tris(4-substituted)-trityls [(4-R-Ph)3C•] have since been used in many ways due to their stability, persistence, and spectroscopic activity. Despite their widespread use, existing synthetic routes toward tris(4-substituted)-trityl radicals are not reproducible and often lead to impure materials. We report here robust syntheses of six electronically varied (4-RPh)3C•, where R = NMe2, OCH3, tBu, Ph, Cl, and CF3. The characterization reported for the radicals and related compounds includes five X-ray crystal structures, electrochemical potentials, and optical spectra. Each radical is best accessed using a stepwise approach from the trityl halide, (RPh)3CCl or (RPh)3CBr, by controllably removing the halide with subsequent 1e- reduction of the trityl cation, (RPh)3C+. These syntheses afford consistently crystalline trityl radicals of high purity for further studies.
Collapse
Affiliation(s)
| | | | - Gurjot Singh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
68
|
Sun Y, Huang X, Osawa Y, Chen YE, Zhang H. The Versatile Biocatalyst of Cytochrome P450 CYP102A1: Structure, Function, and Engineering. Molecules 2023; 28:5353. [PMID: 37513226 PMCID: PMC10383305 DOI: 10.3390/molecules28145353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Wild-type cytochrome P450 CYP102A1 from Bacillus megaterium is a highly efficient monooxygenase for the oxidation of long-chain fatty acids. The unique features of CYP102A1, such as high catalytic activity, expression yield, regio- and stereoselectivity, and self-sufficiency in electron transfer as a fusion protein, afford the requirements for an ideal biocatalyst. In the past three decades, remarkable progress has been made in engineering CYP102A1 for applications in drug discovery, biosynthesis, and biotechnology. The repertoire of engineered CYP102A1 variants has grown tremendously, whereas the substrate repertoire is avalanched to encompass alkanes, alkenes, aromatics, organic solvents, pharmaceuticals, drugs, and many more. In this article, we highlight the major advances in the past five years in our understanding of the structure and function of CYP102A1 and the methodologies used to engineer CYP102A1 for novel applications. The objective is to provide a succinct review of the latest developments with reference to the body of CYP102A1-related literature.
Collapse
Affiliation(s)
- Yudong Sun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.S.); (Y.O.)
| | - Xiaoqiang Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.S.); (Y.O.)
| | - Yuqing Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.S.); (Y.O.)
| |
Collapse
|
69
|
Hou Z, Li Y, Zheng M, Liu X, Zhang Q, Wang W. Regioselective oxidation of heterocyclic aromatic hydrocarbons catalyzed by cytochrome P450: A case study of carbazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114964. [PMID: 37121081 DOI: 10.1016/j.ecoenv.2023.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Recently there are increasing interests in accurately evaluating the health effects of heterocyclic PAHs. However, the activation mechanism and possible metabolites of heterocyclic PAHs catalyzed by human CYP1A1 is still elusive to a great extent. Here, leveraged to high level QM/MM calculations, the corresponding activation pathways of a representative heterocyclic PAHs, carbazole, were systematically explored. The first stage is electrophilic addition or hydrogen abstraction from N-H group. Electrophilic addition was evidenced to be more feasible and regioselectivity at C3 and C4 sites were identified. Correlations between energy barriers and key structural/electrostatic parameters reveal that O-Cα distance and Fe-O-Cα angle are the main origin for the catalytic regioselectivity. Electrophilic addition was determined as the rate-determining step and the subsequent possible reactions include epoxidation, NIH shift (the hydrogen migration from the site of hydroxylation to the adjacent carbon) and proton shuttle. The corresponding products are epoxides, ketones and hydroxylated carbazoles, respectively. The main metabolites (hydroxylated carbazoles) are estimated to be more toxic than carbazole. The regioselectivity of carbazole activated by CYP1A1 is different from the environmental processes (gas and aqueous phase). Collectively, these results will inform the in-depth understanding the metabolic processes of heterocyclic PAHs and aid the accurate evaluation of their health effects.
Collapse
Affiliation(s)
- Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
70
|
Denisov IG, Sligar SG. Solvent isotope effects in the catalytic cycle of P450 CYP17A1: Computational modeling of the hydroxylation and lyase reactions. J Inorg Biochem 2023; 243:112202. [PMID: 37004494 PMCID: PMC10128154 DOI: 10.1016/j.jinorgbio.2023.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The catalytic cycle of the cytochromes P450 (CYP) requires two electrons from a protein redox partner and two protons from water to generate the main catalytic intermediate, a ferryl-oxo complex with π-cation on the heme porphyrin ring, termed Compound 1. The protonation steps are at least partially rate-limiting, therefore the steady-state rates of P450 catalysis are usually slower in deuterated solvent (D2O) by a factor of 1.5-3. However, in several P450 systems a pronounced inverse kinetic solvent isotope effect (KSIE ∼0.4-0.7) is observed, where the reaction is faster in D2O. This raises an important mechanistic question: Is this inverse solvent isotope effect compatible with Compound 1 catalyzed reactions, or is it indicative of another catalytic intermediate being involved? In this communication we use exhaustive numerical modeling of the P450 steady-state kinetics to demonstrate that a significant inverse KSIE cannot be obtained for a pure Compound 1 driven catalytic cycle of P450. Rather, an alternative, protonation independent, catalytic intermediate needs to be introduced. This result is applicable to the broad spectrum of P450s in nature, but as an example we use the extensively documented inverse isotope effect in the human steroid biosynthetic P450 CYP17A1 where the involvement of a heme peroxo anion intermediate has been characterized. Based on this analysis, we show that the observation of an inverse KSIE can be used as a general mechanistic probe for reaction cycle intermediates in the cytochromes P450.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America.
| |
Collapse
|
71
|
Rade LL, Generoso WC, Das S, Souza AS, Silveira RL, Avila MC, Vieira PS, Miyamoto RY, Lima ABB, Aricetti JA, de Melo RR, Milan N, Persinoti GF, Bonomi AMFLJ, Murakami MT, Makris TM, Zanphorlin LM. Dimer-assisted mechanism of (un)saturated fatty acid decarboxylation for alkene production. Proc Natl Acad Sci U S A 2023; 120:e2221483120. [PMID: 37216508 PMCID: PMC10235961 DOI: 10.1073/pnas.2221483120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.
Collapse
Affiliation(s)
- Leticia L. Rade
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Wesley C. Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Suman Das
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Amanda S. Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Rodrigo L. Silveira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Mayara C. Avila
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Plinio S. Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Renan Y. Miyamoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ana B. B. Lima
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Juliana A. Aricetti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ricardo R. de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Natalia Milan
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Gabriela F. Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Antonio M. F. L. J. Bonomi
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Mario T. Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Leticia M. Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| |
Collapse
|
72
|
Hu CH, Kim ST, Baik MH, Mirica LM. Nickel-Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species. J Am Chem Soc 2023; 145:11161-11172. [PMID: 37183827 DOI: 10.1021/jacs.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Described herein is the synthesis of the NiII complex (tBuMe2tacn)NiII(cycloneophyl) (tBuMe2tacn = 1-tert-butyl-4,7-dimethyl-1,4,7-triazacyclononane, cycloneophyl = -CH2CMe2-o-C6H4-) and its reactivity with dioxygen and peroxides. The new tBuMe2tacn ligand is designed to enhance the oxidatively induced bond-forming reactivity of high-valent Ni intermediates. Tunable chemoselectivity for Csp2-O vs Csp2-Csp3 bond formation was achieved by selecting the appropriate solvent and reaction conditions. Importantly, the use of cumene hydroperoxide and meta-chloroperbenzoic acid suggests a heterolytic O-O bond cleavage upon reaction with (tBuMe2tacn)NiII(cycloneophyl). Mechanistic studies using isotopically labeled H2O2 support the generation of a high-valent Ni-oxygen species via an inner-sphere mechanism and subsequent reductive elimination to form the Csp2-O bond. Kinetic studies of the exceptionally fast Csp2-O bond-forming reaction reveal a first-order dependence on both (tBuMe2tacn)NiII(cycloneophyl) and H2O2, and thus an overall second-order reaction. Eyring analysis further suggests that the oxidation of the NiII complex by H2O2 is the rate-determining step, which can be modulated by the presence of coordinating solvents. Moreover, computational studies fully support the conclusions drawn from experimental results. Overall, this study reveals for the first time the ability to control the oxidatively induced C-C vs C-O bond formation reactions at a Ni center. Importantly, the described system merges the known organometallic reactivity of Ni with the biomimetic oxidative transformations resembling oxygenases and peroxidases, and involving high-valent metal-oxygen intermediates, which is a novel approach that should lead to unprecedented oxidative catalytic transformations.
Collapse
Affiliation(s)
- Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
73
|
Skipworth T, Klaine S, Zhang R. Photochemical generation and reactivity of a new phthalocyanine-manganese-oxo intermediate. Chem Commun (Camb) 2023; 59:6540-6543. [PMID: 37161771 DOI: 10.1039/d3cc01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The first phthalocyanine-manganese-oxo intermediate was successfully generated by visible-light photolysis of chlorate or nitrite manganese(III) precursors, and its reactivity towards organic substrates was kinetically probed and compared with other related porphyrin-metal-oxo intermediates.
Collapse
Affiliation(s)
- Tristan Skipworth
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | - Seth Klaine
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| |
Collapse
|
74
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
75
|
Abstract
Enzymes fold into three-dimensional structures to distribute amino acid residues for catalysis, which inspired the supramolecular approach to construct enzyme-mimicking catalysts. A key concern in the development of supramolecular strategies is the ability to confine and orient functional groups to form enzyme-like active sites in artificial materials. This review introduces the design principles and construction of supramolecular nanomaterials exhibiting catalytic functions of heme-dependent enzymes, a large class of metalloproteins, which rely on a heme cofactor and spatially configured residues to catalyze diverse reactions via a complex multistep mechanism. We focus on the structure-activity relationship of the supramolecular catalysts and their applications in materials synthesis/degradation, biosensing, and therapeutics. The heme-free catalysts that catalyze reactions achieved by hemeproteins are also briefly discussed. Towards the end of the review, we discuss the outlook on the challenges related to catalyst design and future prospective, including the development of structure-resolving techniques and design concepts, with the aim of creating enzyme-mimicking materials that possess catalytic power rivaling that of natural enzymes..
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
76
|
Sharko A, Spitzbarth B, Hermans TM, Eelkema R. Redox-Controlled Shunts in a Synthetic Chemical Reaction Cycle. J Am Chem Soc 2023; 145:9672-9678. [PMID: 37092741 PMCID: PMC10161229 DOI: 10.1021/jacs.3c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Shunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can enable access to two shunts within this CRN with different kinetics and a reduced number of side reactions compared to the main cycle that is driven by strong oxidants. Furthermore, we introduce a strategy to recycle one of the main products under flow conditions to partially reverse the CRN and control product speciation throughout time. These findings introduce new levels of control over artificial CRNs, driven by redox chemistry, narrowing the gap between synthetic and natural systems.
Collapse
Affiliation(s)
| | - Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas M Hermans
- University of Strasbourg & CNRS, UMR7140, 67083 Strasbourg, France
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
77
|
Coleman T, Podgorski MN, Doyle ML, Scaffidi-Muta JM, Campbell EC, Bruning JB, De Voss JJ, Bell SG. Cytochrome P450-catalyzed oxidation of halogen-containing substrates. J Inorg Biochem 2023; 244:112234. [PMID: 37116269 DOI: 10.1016/j.jinorgbio.2023.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
Cytochrome P450 (CYP) enzymes are heme-thiolate monooxygenases which catalyze the oxidation of aliphatic and aromatic C-H bonds and other reactions. The oxidation of halogens by cytochrome P450 enzymes has also been reported. Here we use CYP199A4, from the bacterium Rhodopseudomonas palustris strain HaA2, with a range of para-substituted benzoic acid ligands, which contain halogens, to assess if this enzyme can oxidize these species or if the presence of these electronegative atoms can alter the outcome of P450-catalyzed reactions. Despite binding to the enzyme, there was no detectable oxidation of any of the 4-halobenzoic acids. CYP199A4 was, however, able to efficiently catalyze the oxidation of both 4-chloromethyl- and 4-bromomethyl-benzoic acid to 4-formylbenzoic acid via hydroxylation of the α‑carbon. The 4-chloromethyl substrate bound in the enzyme active site in a similar manner to 4-ethylbenzoic acid. This places the benzylic α‑carbon hydrogens in an unfavorable position for abstraction indicating a degree of substrate mobility must be possible within the active site. CYP199A4 catalyzed oxidations of 4-(2'-haloethyl)benzoic acids yielding α-hydroxylation and desaturation metabolites. The α-hydroxylation product was the major metabolite. The desaturation pathway is significantly disfavored compared to 4-ethylbenzoic acid. This may be due to the electron-withdrawing halogen atom or a different positioning of the substrate within the active site. The latter was demonstrated by the X-ray crystal structures of CYP199A4 with these substrates. Overall, the presence of a halogen atom positioned close to the heme iron can alter the binding orientation and outcomes of enzyme-catalyzed oxidation.
Collapse
Affiliation(s)
- Tom Coleman
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | | | - Maya L Doyle
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | | | - Eleanor C Campbell
- Australian Synchrotron, 800 Blackburn Rd, Clayton, Melbourne, VIC 3168. Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
78
|
Akter J, Stockdale TP, Child SA, Lee JHZ, De Voss JJ, Bell SG. Selective carbon-hydrogen bond hydroxylation using an engineered cytochrome P450 peroxygenase. J Inorg Biochem 2023; 244:112209. [PMID: 37080140 DOI: 10.1016/j.jinorgbio.2023.112209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The cytochrome P450 enzyme CYP102A1 (P450BM3) is a versatile monooxygenase enzyme which has been adapted and engineered for multiple applications in chemical synthesis. Mutation of threonine 268 to glutamate (Thr268Glu) converted the heme domain of this enzyme into a H2O2 utilizing peroxygenase. This variant displayed significantly increased peroxide driven hydroxylation activity towards the saturated linear fatty acids tested (undecanoic through to hexadecenoic acid) when compared to the wild-type heme domain. The product distributions arising from fatty acid oxidation using this peroxygenase variant were broadly similar to those obtained with the wild-type monooxygenase holoenzyme, with oxidation occurring predominantly at the ω-1 through to ω-3 positions. 10-Undecenoic acid was regioselectively hydroxylated at the allylic ω-2 carbon by the Thr268Glu peroxygenase. The effect of isotopic substitution were measured using [9,9,10,10-d4]-dodecanoic acid. The kinetic isotope effect for both the monooxygenase and peroxygenase systems ranged between 7.9 and 9.5, with that of the peroxygenase enzyme being marginally lower. This highlights that carbon‑hydrogen bond abstraction is important in the mechanism of both the monooxygenase and peroxygenase systems. This would infer that the ferryl-oxo radical cation intermediate, compound I, is the likely reactive intermediate in both systems. The peroxygenase variant offers the possibility of simpler cytochrome P450 systems for selective oxidations. To demonstrate this we used this system to oxidize tetradecanoic acid using light driven generation of H2O2 by a flavin.
Collapse
Affiliation(s)
- Jinia Akter
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia
| | - Tegan P Stockdale
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Stella A Child
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia.
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
79
|
Zhang H, Wang X, Song R, Ding W, Li F, Ji L. Emerging Metabolic Profiles of Sulfonamide Antibiotics by Cytochromes P450: A Computational-Experimental Synergy Study on Emerging Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5368-5379. [PMID: 36921339 DOI: 10.1021/acs.est.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metabolism, especially by CYP450 enzymes, is the main reason for mediating the toxification and detoxification of xenobiotics in humans, while some uncommon metabolic pathways, especially for emerging pollutants, probably causing idiosyncratic toxicity are easily overlooked. The pollution of sulfonamide antibiotics in aqueous system has attracted increasing public attention. Hydroxylation of the central amine group can trigger a series of metabolic processes of sulfonamide antibiotics in humans; however, this work parallelly reported the coupling and fragmenting initiated by amino H-abstraction of sulfamethoxazole (SMX) catalyzed by human CYP450 enzymes. Elucidation of the emerging metabolic profiles was mapped via a multistep synergy between computations and experiments, involving preliminary DFT computations and in vitro and in vivo assays, profiling adverse effects, and rationalizing the fundamental factors via targeted computations. Especially, the confirmed SMX dimer was shown to potentially act as a metabolism disruptor in humans, while spin aromatic delocalization resulting in the low electron donor ability of amino radicals was revealed as the fundamental factor to enable coupling of sulfonamide antibiotics by CYP450 through the nonconventional nonrebound pathway. This work may further strengthen the synergistic use of computations prior to experiments to avoid wasteful experimental screening efforts in environmental chemistry and toxicology.
Collapse
Affiliation(s)
- Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)─International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
80
|
Yanai K, Hada M, Fujii H. Electric field effect of positive and negative charges of substituents on electronic structure and reactivity of oxoiron(IV) porphyrin π-cation radical complex. J Inorg Biochem 2023; 244:112208. [PMID: 37037142 DOI: 10.1016/j.jinorgbio.2023.112208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Electric field effect by the positive and negative changes near the active site is an important factor for controlling the reactivity of metalloenzymes. Previously, we reported that the positive charge of the N-methyl-2-pyridinium cation increases the reactivity of oxoiron(IV) porphyrin π-cation radical complex (Compound I), due to the attractive Coulomb interaction with electrons in Compound I. To further investigate the electric field effect, we study here the effect of the negative charge of the sulfonate group on the electronic structure and reactivity using Compound I of meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphyrin (TMPS-I). Although Compound I has been known as a very unstable complex, TMPS-I is very stable in 0.1 M acetate buffer at pH = 6. The half-life of TMPS-I is estimated to be 6.9 × 103 s, which is the longest in Compound I previously reported. The redox potential of TMPS-I is estimated to be 0.76 V vs SCE in phosphate buffer, pH = 10. Kinetic analysis with stopped-flow technique indicates TMPS-I is less reactive than Compounds I reported previously. However, 1H NMR and EPR spectra of TMPS-I are very close to those of Compounds I reported previously. The DFT calculations show that the orbital energy of Compound I is drastically altered by the positive and negative charges on the meso-phenyl group, suggesting the electric field effect. The difference of the reactivity of Compound I can be rationalized with the change of the orbital energy caused by the intramolecular electric field effect of the positive and negative charges.
Collapse
Affiliation(s)
- Kanae Yanai
- Department of Chemistry, Biology, and Environmental Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan.
| |
Collapse
|
81
|
Katogi Y, Okamoto A, Hada M, Fujii H. Characterization and Reactivity of an Incredibly Reactive Intermediate in the Protonation Reaction of Dioxo-Manganese(V) Porphyrin with Acid. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
82
|
Panda C, Anny-Nzekwue O, Doyle LM, Gericke R, McDonald AR. Evidence for a High-Valent Iron-Fluoride That Mediates Oxidative C(sp 3)-H Fluorination. JACS AU 2023; 3:919-928. [PMID: 37006763 PMCID: PMC10052241 DOI: 10.1021/jacsau.3c00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[FeII(NCCH3)(NTB)](OTf)2 (NTB = tris(2-benzimidazoylmethyl)amine, OTf = trifluoromethanesulfonate) was reacted with difluoro(phenyl)-λ3-iodane (PhIF2) in the presence of a variety of saturated hydrocarbons, resulting in the oxidative fluorination of the hydrocarbons in moderate-to-good yields. Kinetic and product analysis point towards a hydrogen atom transfer oxidation prior to fluorine radical rebound to form the fluorinated product. The combined evidence supports the formation of a formally FeIV(F)2 oxidant that performs hydrogen atom transfer followed by the formation of a dimeric μ-F-(FeIII)2 product that is a plausible fluorine atom transfer rebound reagent. This approach mimics the heme paradigm for hydrocarbon hydroxylation, opening up avenues for oxidative hydrocarbon halogenation.
Collapse
|
83
|
Wang Z, Diao W, Wu P, Li J, Fu Y, Guo Z, Cao Z, Shaik S, Wang B. How the Conformational Movement of the Substrate Drives the Regioselective C-N Bond Formation in P450 TleB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. J Am Chem Soc 2023; 145:7252-7267. [PMID: 36943409 DOI: 10.1021/jacs.2c12962] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
P450 TleB catalyzes the oxidative cyclization of the dipeptide N-methylvalyl-tryptophanol into indolactam V through selective intramolecular C-H bond amination at the indole C4 position. Understanding its catalytic mechanism is instrumental for the engineering or design of P450-catalyzed C-H amination reactions. Using multiscale computational methods, we show that the reaction proceeds through a diradical pathway, involving a hydrogen atom transfer (HAT) from N1-H to Cpd I, a conformational transformation of the substrate radical species, and a second HAT from N13-H to Cpd II. Intriguingly, the conformational transformation is found to be the key to enabling efficient and selective C-N coupling between N13 and C4 in the subsequent diradical coupling reaction. The underlined conformational transformation is triggered by the first HAT, which proceeds with an energy-demanding indole ring flip and is followed by the facile approach of the N13-H group to Cpd II. Detailed analysis shows that the internal electric field (IEF) from the protein environment plays key roles in the transformation process, which not only provides the driving force but also stabilizes the flipped conformation of the indole radical. Our simulations provide a clear picture of how the P450 enzyme can smartly modulate the selective C-N coupling reaction. The present findings are in line with all available experimental data, highlighting the crucial role of substrate dynamics in controlling this highly valuable reaction.
Collapse
Affiliation(s)
- Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Functional-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
84
|
Suzuki K, Stanfield JK, Omura K, Shisaka Y, Ariyasu S, Kasai C, Aiba Y, Sugimoto H, Shoji O. A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450-Catalysed Oxidations. Angew Chem Int Ed Engl 2023; 62:e202215706. [PMID: 36519803 DOI: 10.1002/anie.202215706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuma Shisaka
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chie Kasai
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Centre, 1-1-1, Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
85
|
Zhao N, Goetz MK, Schneider JE, Anderson JS. Testing the Limits of Imbalanced CPET Reactivity: Mechanistic Crossover in H-Atom Abstraction by Co(III)-Oxo Complexes. J Am Chem Soc 2023; 145:5664-5673. [PMID: 36867838 PMCID: PMC10023487 DOI: 10.1021/jacs.2c10553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.
Collapse
Affiliation(s)
- Norman Zhao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
86
|
Giang PD, Churchman LR, Stok JE, Bell SG, De Voss JJ. Cymredoxin, a [2Fe-2S] ferredoxin, supports catalytic activity of the p-cymene oxidising P450 enzyme CYP108N12. Arch Biochem Biophys 2023; 737:109549. [PMID: 36801262 DOI: 10.1016/j.abb.2023.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Rhodococcus globerulus is a metabolically active organism that has been shown to utilise eucalypt oil as its sole source of carbon and energy. This oil includes 1,8-cineole, p-cymene and limonene. Two identified and characterised cytochromes P450 (P450s) from this organism initiate the biodegradation of the monoterpenes 1,8-cineole (CYP176A1) and p-cymene (CYP108N12). Extensive characterisation has been completed for CYP176A1 and it has been successfully reconstituted with its immediate redox partner, cindoxin, and E. coli flavodoxin reductase. Two putative redox partner genes are encoded in the same operon as CYP108N12 and here the isolation, expression, purification, and characterisation of its specific [2Fe-2S] ferredoxin redox partner, cymredoxin is presented. Reconstitution of CYP108N12 with cymredoxin in place of putidaredoxin, a [2Fe-2S] redox partner of another P450, improves both the rate of electron transfer (from 13 ± 2 to 70 ± 1 μM NADH/min/μM CYP108N12) and the efficiency of NADH utilisation (the so-called coupling efficiency increases from 13% to 90%). Cymredoxin improves the catalytic ability of CYP108N12 in vitro. Aldehyde oxidation products of the previously identified substrates p-cymene (4-isopropylbenzaldehyde) and limonene (perillaldehyde) were observed in addition to major hydroxylation products 4-isopropylbenzyl alcohol and perillyl alcohol respectively. These further oxidation products had not previously been seen with putidaredoxin supported oxidation. Furthermore, when supported by cymredoxin CYP108N12 is able to oxidise a wider range of substrates than previously reported. These include o-xylene, α-terpineol, (-)-carveol and thymol yielding o-tolylmethanol, 7-hydroxyterpineol, (4R)-7-hydroxycarveol and 5-hydroxymethyl-2-isopropylphenol, respectively. Cymredoxin is also capable of supporting CYP108A1 (P450terp) and CYP176A1 activity, allowing them to catalyse the hydroxylation of their native substrates α-terpineol to 7-hydroxyterpineol and 1,8-cineole to 6β-hydroxycineole respectively. These results indicate that cymredoxin not only improves the catalytic capability of CYP108N12 but can also support the activity of other P450s and prove useful for their characterisation.
Collapse
Affiliation(s)
- Peter D Giang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia.
| |
Collapse
|
87
|
Zhou W, Lai R, Cheng Y, Bao Y, Miao W, Cao X, Jia G, Li G, Li C. Insights into How NH 4+ Ions Enhance the Activity of Dimeric G-Quadruplex/Hemin DNAzyme. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Wenqin Zhou
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Rui Lai
- State Key Laboratory of Molecular Reaction Dynamics, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Bao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Can Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
88
|
Zhu W, Sharma N, Lee YM, El-Khouly ME, Fukuzumi S, Nam W. Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex. Inorg Chem 2023; 62:4116-4123. [PMID: 36862977 DOI: 10.1021/acs.inorgchem.2c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Nonheme iron(III)-superoxo intermediates are generated in the activation of dioxygen (O2) by nonheme iron(II) complexes and then converted to iron(IV)-oxo species by reacting with hydrogen donor substrates with relatively weak C-H bonds. If singlet oxygen (1O2) with ca. 1 eV higher energy than the ground state triplet oxygen (3O2) is employed, iron(IV)-oxo complexes can be synthesized using hydrogen donor substrates with much stronger C-H bonds. However, 1O2 has never been used in generating iron(IV)-oxo complexes. Herein, we report that a nonheme iron(IV)-oxo species, [FeIV(O)(TMC)]2+ (TMC = tetramethylcyclam), is generated using 1O2, which is produced with boron subphthalocyanine chloride (SubPc) as a photosensitizer, and hydrogen donor substrates with relatively strong C-H bonds, such as toluene (BDE = 89.5 kcal mol-1), via electron transfer from [FeII(TMC)]2+ to 1O2, which is energetically more favorable by 0.98 eV, as compared with electron transfer from [FeII(TMC)]2+ to 3O2. Electron transfer from [FeII(TMC)]2+ to 1O2 produces an iron(III)-superoxo complex, [FeIII(O2)(TMC)]2+, followed by abstracting a hydrogen atom from toluene by [FeIII(O2)(TMC)]2+ to form an iron(III)-hydroperoxo complex, [FeIII(OOH)(TMC)]2+, that is further converted to the [FeIV(O)(TMC)]2+ species. Thus, the present study reports the first example of generating a mononuclear nonheme iron(IV)-oxo complex with the use of singlet oxygen, instead of triplet oxygen, and a hydrogen atom donor with relatively strong C-H bonds. Detailed mechanistic aspects, such as the detection of 1O2 emission, the quenching by [FeII(TMC)]2+, and the quantum yields, have also been discussed to provide valuable mechanistic insights into understanding nonheme iron-oxo chemistry.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
89
|
Manesis AC, Slater JW, Cantave K, Martin Bollinger J, Krebs C, Rosenzweig AC. Capturing a bis-Fe(IV) State in Methylosinus trichosporium OB3b MbnH. Biochemistry 2023; 62:1082-1092. [PMID: 36812111 PMCID: PMC10083075 DOI: 10.1021/acs.biochem.3c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The diheme bacterial cytochrome c peroxidase (bCcP)/MauG superfamily is a diverse set of enzymes that remains largely uncharacterized. One recently discovered member, MbnH, converts a tryptophan residue in its substrate protein, MbnP, to kynurenine. Here we show that upon reaction with H2O2, MbnH forms a bis-Fe(IV) intermediate, a state previously detected in just two other enzymes, MauG and BthA. Using absorption, Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies coupled with kinetic analysis, we characterized the bis-Fe(IV) state of MbnH and determined that this intermediate decays back to the diferric state in the absence of MbnP substrate. In the absence of MbnP substrate, MbnH can also detoxify H2O2 to prevent oxidative self damage, unlike MauG, which has long been viewed as the prototype for bis-Fe(IV) forming enzymes. MbnH performs a different reaction from MauG, while the role of BthA remains unclear. All three enzymes can form a bis-Fe(IV) intermediate but within distinct kinetic regimes. The study of MbnH significantly expands our knowledge of enzymes that form this species. Computational and structural analyses indicate that electron transfer between the two heme groups in MbnH and between MbnH and the target tryptophan in MbnP likely occurs via a hole-hopping mechanism involving intervening tryptophan residues. These findings set the stage for discovery of additional functional and mechanistic diversity within the bCcP/MauG superfamily.
Collapse
Affiliation(s)
- Anastasia C Manesis
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeffrey W Slater
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenny Cantave
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
90
|
Jana S, Pattanayak S, Das S, Ghosh M, Velasco L, Moonshiram D, Sen Gupta S. Comparing the reactivity of an oxoiron(IV) cation radical and its oxoiron(V) tautomer towards C-H bonds. Chem Commun (Camb) 2023; 59:2755-2758. [PMID: 36779358 DOI: 10.1039/d2cc07005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
An oxoiron(IV) cation radical is generated upon two-electron oxidation of an iron(III) complex bearing an electron-rich methoxy substituted bTAML framework and thoroughly characterized via multiple spectroscopic techniques and density functional theory (DFT). Reactivity studies demonstrate faster rates for oxidation of strong aliphatic sp3 C-H bonds than for its corresponding oxoiron(V) valence tautomer.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Santanu Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain.
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain.
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
91
|
Gable JA, Poulos TL, Follmer AH. Cooperative Substrate Binding Controls Catalysis in Bacterial Cytochrome P450terp (CYP108A1). J Am Chem Soc 2023; 145:10.1021/jacs.2c12388. [PMID: 36779970 PMCID: PMC10576961 DOI: 10.1021/jacs.2c12388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite being one of the most well-studied aspects of cytochrome P450 chemistry, important questions remain regarding the nature and ubiquity of allosteric regulation of catalysis. The crystal structure of a bacterial P450, P450terp, in the presence of substrate reveals two binding sites, one above the heme in position for regioselective hydroxylation and another in the substrate access channel. Unlike many bacterial P450s, P450terp does not exhibit an open to closed conformational change when substrate binds; instead, P450terp uses the second substrate molecule to hold the first substrate molecule in position for catalysis. Spectral titrations clearly show that substrate binding to P450terp is cooperative with a Hill coefficient of 1.4 and is supported by isothermal titration calorimetry. The importance of the allosteric site was explored by a series of mutations that weaken the second site and that help hold the first substrate in position for proper catalysis. We further measured the coupling efficiency of both the wild-type (WT) enzyme and the mutant enzymes. While the WT enzyme exhibits 97% efficiency, each of the variants showed lower catalytic efficiency. Additionally, the variants show decreased spin shifts upon binding of substrate. These results are the first clear example of positive homotropic allostery in a class 1 bacterial P450 with its natural substrate. Combined with our recent results from P450cam showing complex substrate allostery and conformational dynamics, our present study with P450terp indicates that bacterial P450s may not be as simple as once thought and share complex substrate binding properties usually associated with only mammalian P450s.
Collapse
Affiliation(s)
- Jessica A Gable
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Alec H Follmer
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
92
|
Mokkawes T, de Visser SP. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Int J Mol Sci 2023; 24:3651. [PMID: 36835057 PMCID: PMC9959256 DOI: 10.3390/ijms24043651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cytochrome P450 enzymes are versatile enzymes found in most biosystems that catalyze mono-oxygenation reactions as a means of biosynthesis and biodegradation steps. In the liver, they metabolize xenobiotics, but there are a range of isozymes with differences in three-dimensional structure and protein chain. Consequently, the various P450 isozymes react with substrates differently and give varying product distributions. To understand how melatonin is activated by the P450s in the liver, we did a thorough molecular dynamics and quantum mechanics study on cytochrome P450 1A2 activation of melatonin forming 6-hydroxymelatonin and N-acetylserotonin products through aromatic hydroxylation and O-demethylation pathways, respectively. We started from crystal structure coordinates and docked substrate into the model, and obtained ten strong binding conformations with the substrate in the active site. Subsequently, for each of the ten substrate orientations, long (up to 1 μs) molecular dynamics simulations were run. We then analyzed the orientations of the substrate with respect to the heme for all snapshots. Interestingly, the shortest distance does not correspond to the group that is expected to be activated. However, the substrate positioning gives insight into the protein residues it interacts with. Thereafter, quantum chemical cluster models were created and the substrate hydroxylation pathways calculated with density functional theory. These relative barrier heights confirm the experimental product distributions and highlight why certain products are obtained. We make a detailed comparison with previous results on CYP1A1 and identify their reactivity differences with melatonin.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
93
|
Schmidt D, Falb N, Serra I, Bellei M, Pfanzagl V, Hofbauer S, Van Doorslaer S, Battistuzzi G, Furtmüller PG, Obinger C. Compound I Formation and Reactivity in Dimeric Chlorite Dismutase: Impact of pH and the Dynamics of the Catalytic Arginine. Biochemistry 2023; 62:835-850. [PMID: 36706455 PMCID: PMC9910045 DOI: 10.1021/acs.biochem.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Indexed: 01/28/2023]
Abstract
The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.
Collapse
Affiliation(s)
- Daniel Schmidt
- Institute
of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190Vienna, Austria
| | - Nikolaus Falb
- Institute
of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190Vienna, Austria
| | - Ilenia Serra
- BIMEF
Laboratory, Department of Chemistry, University
of Antwerp, 2000Antwerp, Belgium
| | - Marzia Bellei
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41100Modena, Italy
| | - Vera Pfanzagl
- Institute
of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190Vienna, Austria
| | - Stefan Hofbauer
- Institute
of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190Vienna, Austria
| | - Sabine Van Doorslaer
- BIMEF
Laboratory, Department of Chemistry, University
of Antwerp, 2000Antwerp, Belgium
| | - Gianantonio Battistuzzi
- Department
of Chemistry and Geology, University of
Modena and Reggio Emilia, 41100Modena, Italy
| | - Paul G. Furtmüller
- Institute
of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190Vienna, Austria
| | - Christian Obinger
- Institute
of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190Vienna, Austria
| |
Collapse
|
94
|
Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat Chem 2023; 15:206-212. [PMID: 36376390 DOI: 10.1038/s41557-022-01083-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/02/2022] [Indexed: 11/16/2022]
Abstract
The formation of C-N bonds-of great importance to the pharmaceutical industry-can be facilitated enzymatically using nucleophilic and nitrene transfer mechanisms. However, neither natural nor engineered enzymes are known to generate and control nitrogen-centred radicals, which serve as valuable species for C-N bond formation. Here we use flavin-dependent 'ene'-reductases with an exogenous photoredox catalyst to selectively generate amidyl radicals within the protein active site. These enzymes are engineered through directed evolution to catalyse 5-exo, 6-endo, 7-endo, 8-endo, and intermolecular hydroamination reactions with high levels of enantioselectivity. Mechanistic studies suggest that radical initiation occurs via an enzyme-gated mechanism, where the protein thermodynamically activates the substrate for reduction by the photocatalyst. Molecular dynamics studies indicate that the enzymes bind substrates using non-canonical binding interactions, which may serve as a handle to further manipulate reactivity. This approach demonstrates the versatility of these enzymes for controlling the reactivity of high-energy radical intermediates and highlights the opportunity for synergistic catalyst strategies to unlock previously inaccessible enzymatic functions.
Collapse
|
95
|
Bower JK, Reese MS, Mazin IM, Zarnitsa LM, Cypcar AD, Moore CE, Sokolov AY, Zhang S. C(sp 3)-H cyanation by a formal copper(iii) cyanide complex. Chem Sci 2023; 14:1301-1307. [PMID: 36756315 PMCID: PMC9891353 DOI: 10.1039/d2sc06573h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
High-valent metal oxo complexes are prototypical intermediates for the activation and hydroxylation of alkyl C-H bonds. Substituting the oxo ligand with other functional groups offers the opportunity for additional C-H functionalization beyond C-O bond formation. However, few species aside from metal oxo complexes have been reported to both activate and functionalize alkyl C-H bonds. We herein report the first example of an isolated copper(iii) cyanide complex (LCuIIICN) and its C-H cyanation reactivity. We found that the redox potential (E ox) of substrates, instead of C-H bond dissociation energy, is a key determinant of the rate of PCET, suggesting an oxidative asynchronous CPET or ETPT mechanism. Among substrates with the same BDEs, those with low redox potentials transfer H atoms up to a million-fold faster. Capitalizing on this mechanistic insight, we found that LCuIIICN is highly selective for cyanation of amines, which is predisposed to oxidative asynchronous or stepwise transfer of H+/e-. Our study demonstrates that the asynchronous effect of PCET is an appealing tool for controlling the selectivity of C-H functionalization.
Collapse
Affiliation(s)
- Jamey K. Bower
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Maxwell S. Reese
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Ilia M. Mazin
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Lina M. Zarnitsa
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Andrew D. Cypcar
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
96
|
Walton PH, Davies GJ, Diaz DE, Franco‐Cairo JP. The histidine brace: nature's copper alternative to haem? FEBS Lett 2023; 597:485-494. [PMID: 36660911 PMCID: PMC10952591 DOI: 10.1002/1873-3468.14579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
The copper histidine brace is a structural unit in metalloproteins (Proc Natl Acad Sci USA 2011, 108, 15079). It consists of a copper ion chelated by the NH2 and π-N atom of an N-terminal histidine, and the τ-N atom of a further histidine, in an overall T-shaped coordination geometry (Nat Catal 2018, 1, 571). Like haem-containing proteins, histidine-brace-containing proteins have peroxygenase and/or oxygenase activity, where the substrates are notable for resistance to oxidation, for example, lytic polysaccharide monooxygenases (LPMOs). Moreover, the histidine brace is an invariant unit around which different protein structures exert different activities. Given the similarities in the diversity of function of proteins that contain either the copper histidine brace or haem, the question arises as to whether the functions of histidine brace-containing proteins duplicate those containing haem groups.
Collapse
|
97
|
Yan Y, Zheng C, Song W, Wu J, Guo L, Gao C, Liu J, Chen X, Zhu M, Liu L. Efficient Production of Epoxy-Norbornane from Norbornene by an Engineered P450 Peroxygenase. Chembiochem 2023; 24:e202200529. [PMID: 36354378 DOI: 10.1002/cbic.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Epoxy-norbornane (EPO-NBE) is a crucial building block for the synthesis of various biologically active heterocyclic systems. To develop an efficient protocol for producing EPO-NBE using norbornene (NBE) as a substrate, cytochrome P450 enzyme from Pseudomonas putida (CYP238A1) was examined and its crystal structure (PDB code: 7X53) was resolved. Molecular mechanism analysis showed a high energy barrier related to iron-alkoxy radical complex formation. Therefore, a protein engineering strategy was developed and an optimal CYP238A1NPV variant containing a local hydrophobic "fence" at the active site was obtained, which increased the H2 O2 -dependent epoxidation activity by 7.5-fold compared with that of CYP238A1WT . Among the "fence", Glu255 participates in an efficient proton transfer system. Whole-cell transformation using CYP238A1NPV achieved an EPO-NBE yield of 77.6 g ⋅ L-1 in a 30-L reactor with 66.3 % conversion. These results demonstrate the potential of this system for industrial production of EPO-NBE and provides a new biocatalytic platform for epoxidation chemistry.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chenni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Meng Zhu
- Wuxi Acryl Technology Co., Ltd., Wuxi, 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
98
|
Pandit YA, Usman M, Sarkar A, Shah SJ, Rath SP. Control of spin coupling through a redox-active bridge in a dinickel(II) porphyrin dimer: step-wise oxidations enable isolations of a chlorin-porphyrin heterodimer and a dication diradical with a singlet ground state. Dalton Trans 2023; 52:877-891. [PMID: 36464989 DOI: 10.1039/d2dt03283j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A dinickel(II)porphyrin dimer has been used here in which the redox-active pyrrole-moiety, similar to the tryptophan residue in diheme enzymes such as MauG and bCcP, has been placed between two Ni(II)porphyrin centers connected via a flexible, but unconjugated methylene bridge. This arrangement provides a large physical separation between the two metal centers and thus displays almost no communication between them through the bridge. Upon treatment with DDQ as an oxidant, the dinickel(II) porphyrin dimer slowly gets converted into an indolizinium-fused chlorin-porphyrin heterodimer. However, oxidations of the dinickel(II) porphyrin dimer up to two oxidizing equivalents using oxidants such as AgSbF6 and FeCl3 resulted in the formation of a dication diradical complex. Interestingly, in order to stabilize such a highly oxidized dication diradical, two non-conjugated methylene spacers undergo facile 2e-/-2H+ oxidation to make the bridge fully π-conjugated for promoting through-bond communication. Through the oxidized and conjugated bridge, two porphyrin π-cation radicals display considerable communications leading to an efficient intramolecular spin coupling to form a singlet state. Interestingly, the redox-active nature of the bridge controls the electronic communication just by simple oxidation or reduction, and thereby, acts as a molecular switch for efficient magnetic relay.
Collapse
Affiliation(s)
- Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Anindya Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
99
|
Hermano Sampaio Dias A, Yadav R, Mokkawes T, Kumar A, Skaf MS, Sastri CV, Kumar D, de Visser SP. Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study. Inorg Chem 2023; 62:2244-2256. [PMID: 36651185 PMCID: PMC9923688 DOI: 10.1021/acs.inorgchem.2c03984] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho- or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C4-aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Rolly Yadav
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India
| | - Thirakorn Mokkawes
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom
| | - Asheesh Kumar
- Department
of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh (U.P.)226025, India
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India,
| | - Devesh Kumar
- Department
of Physics, Siddharth University, Kapilvastu, Siddharthnagar272202, India,
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,
| |
Collapse
|
100
|
Peng X, Li T, Zheng Q, Lu Y, He Y, Tang Y, Qiu R. Citrobacter sp. Y3 harbouring novel gene HBCD-hd-1 mineralizes hexabromocyclododecane via new metabolic pathways according to multi-omics characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130071. [PMID: 36183513 DOI: 10.1016/j.jhazmat.2022.130071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Hexabromocyclododecane (HBCD) is a typical persistent organic pollutant that is widely detected in the environment. Despite the significant efforts put into its mineralisation, there is still a lack of microorganism resources that can completely mineralise HBCD. Stable isotope analysis revealed that the Citrobacter sp. Y3 can use [13C]HBCD as its sole carbon source and degrade or even mineralise it into 13CO2, with a maximum conversion rate of 100% in approximately 14 days. Strain Y3 could completely mineralise HBCD, which it used as its only carbon source, and six debromination enzymes related to HBCD degradation were found in Y3, including haloalkane dehalogenase (DhaA), haloacid dehalogenase (HAD), etc. A functional gene named HBCD-hd-1, encoding a HAD, was found to be upregulated during HBCD degradation and heterologously expressed in Escherichia coli. Recombinant E. coli with the HBCD-hd-1 gene transformed the typical intermediate 4-bromobutyric acid to 4-hydroxybutanoic acid and showed excellent degradation performance on HBCD, accompanied by nearly 100% bromine (Br) ion generation. The expression of HBCD-hd-1 in Y3 rapidly accelerated the biodegradation of HBCD. With HBCD as its sole carbon source, strain Y3 could potentially degrade HBCD, especially in a low-nutrient environment.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qihang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingyuan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|