51
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
52
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
53
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
54
|
Schupp PG, Shelton SJ, Brody DJ, Eliscu R, Johnson BE, Mazor T, Kelley KW, Potts MB, McDermott MW, Huang EJ, Lim DA, Pieper RO, Berger MS, Costello JF, Phillips JJ, Oldham MC. Deconstructing Intratumoral Heterogeneity through Multiomic and Multiscale Analysis of Serial Sections. Cancers (Basel) 2024; 16:2429. [PMID: 39001492 PMCID: PMC11240479 DOI: 10.3390/cancers16132429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that are consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.
Collapse
Affiliation(s)
- Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samuel J. Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Daniel J. Brody
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Brett E. Johnson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin W. Kelley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew B. Potts
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Michael W. McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Eric J. Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| |
Collapse
|
55
|
Woo B, Han N, Kim JH, Gwak HS. Early High-Grade Transformation of IDH-Mutant Central Nervous System WHO Grade 2 Astrocytoma: A Case Report. Brain Tumor Res Treat 2024; 12:186-191. [PMID: 39109620 PMCID: PMC11306837 DOI: 10.14791/btrt.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
High-grade transformation of low-grade gliomas has long been a poor prognostic factor during therapy. In 2016, the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) adopted isocitrate dehydrogenase (IDH) mutation status in the classification of diffuse astrocytomas. The 2021 classification denoted glioblastomas as IDH-wildtype and graded IDH-mutant astrocytomas as 2, 3, or 4. Gemistocytic morphology, a large proportion of residual tumor, the patient's age, and recurrence after radiotherapy were previously mentioned as risk factors for high-grade transformation of low-grade gliomas. We report a 34-year-old male patient initially diagnosed with IDH-mutant grade 2 astrocytoma according to the 2021 WHO classification of CNS tumors. As the first surgical resection achieved gross total resection on postoperative MRI, no adjuvant therapy was given and regular follow-up was planned. On 1-year follow-up MRI, two new enhancing nodular lesions appeared at the ipsilateral brain parenchyma abutting the surgical resection cavity. Salvage craniotomy achieved gross total resection, and the pathologic diagnosis was IDH-mutant WHO grade 4 astrocytoma. We describe this tumor in terms of the previous WHO classification to evaluate the risk of high-grade transformation and discuss possible risk factors leading to high-grade transformation of low-grade astrocytoma.
Collapse
Affiliation(s)
- Byungjun Woo
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Nayoung Han
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
56
|
Miramova A, Gartner A, Ivanov D. How to sensitize glioblastomas to temozolomide chemotherapy: a gap-centered view. Front Cell Dev Biol 2024; 12:1436563. [PMID: 39011394 PMCID: PMC11246897 DOI: 10.3389/fcell.2024.1436563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Temozolomide (TMZ) is a methylating agent used as the first-line drug in the chemotherapy of glioblastomas. However, cancer cells eventually acquire resistance, necessitating the development of TMZ-potentiating therapy agents. TMZ induces several DNA base adducts, including O 6 -meG, 3-meA, and 7-meG. TMZ cytotoxicity stems from the ability of these adducts to directly (3-meA) or indirectly (O 6 -meG) impair DNA replication. Although TMZ toxicity is generally attributed to O 6 -meG, other alkylated bases can be similarly important depending on the status of various DNA repair pathways of the treated cells. In this mini-review we emphasize the necessity to distinguish TMZ-sensitive glioblastomas, which do not express methylguanine-DNA methyltransferase (MGMT) and are killed by the futile cycle of mismatch repair (MMR) of the O 6 -meG/T pairs, vs. TMZ-resistant MGMT-positive or MMR-negative glioblastomas, which are selected in the course of the treatment and are killed only at higher TMZ doses by the replication-blocking 3-meA. These two types of cells can be TMZ-sensitized by inhibiting different DNA repair pathways. However, in both cases, the toxic intermediates appear to be ssDNA gaps, a vulnerability also seen in BRCA-deficient cancers. PARP inhibitors (PARPi), which were initially developed to treat BRCA1/2-deficient cancers by synthetic lethality, were re-purposed in clinical trials to potentiate the effects of TMZ. We discuss how the recent advances in our understanding of the genetic determinants of TMZ toxicity might lead to new approaches for the treatment of glioblastomas by inhibiting PARP1 and other enzymes involved in the repair of alkylation damage (e.g., APE1).
Collapse
Affiliation(s)
- Alila Miramova
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Anton Gartner
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Graduate School for Health Sciences and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Dmitri Ivanov
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| |
Collapse
|
57
|
Squalli Houssaini A, Lamrabet S, Nshizirungu JP, Senhaji N, Sekal M, Karkouri M, Bennis S. Glioblastoma Vaccines as Promising Immune-Therapeutics: Challenges and Current Status. Vaccines (Basel) 2024; 12:655. [PMID: 38932383 PMCID: PMC11209492 DOI: 10.3390/vaccines12060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard treatments including surgical resection, radiotherapy, and chemotherapy, have failed to significantly improve the prognosis of glioblastoma patients. Currently, immunotherapeutic approaches based on vaccines, chimeric antigen-receptor T-cells, checkpoint inhibitors, and oncolytic virotherapy are showing promising results in clinical trials. The combination of different immunotherapeutic approaches is proving satisfactory and promising. In view of the challenges of immunotherapy and the resistance of glioblastomas, the treatment of these tumors requires further efforts. In this review, we explore the obstacles that potentially influence the efficacy of the response to immunotherapy and that should be taken into account in clinical trials. This article provides a comprehensive review of vaccine therapy for glioblastoma. In addition, we identify the main biomarkers, including isocitrate dehydrogenase, epidermal growth factor receptor, and telomerase reverse transcriptase, known as potential immunotherapeutic targets in glioblastoma, as well as the current status of clinical trials. This paper also lists proposed solutions to overcome the obstacles facing immunotherapy in glioblastomas.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Jean Paul Nshizirungu
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda;
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco;
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital of Casablanca, Casablanca 20250, Morocco;
- Laboratory of Cellular and molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20360, Morocco
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| |
Collapse
|
58
|
Beccari S, Mohamed E, Voong V, Hilz S, Lafontaine M, Shai A, Lim Y, Martinez J, Switzman B, Yu RL, Lupo JM, Chang EF, Hervey-Jumper SL, Berger MS, Costello JF, Phillips JJ. Quantitative Assessment of Preanalytic Variables on Clinical Evaluation of PI3/AKT/mTOR Signaling Activity in Diffuse Glioma. Mod Pathol 2024; 37:100488. [PMID: 38588881 DOI: 10.1016/j.modpat.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.
Collapse
Affiliation(s)
- Sol Beccari
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Esraa Mohamed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Viva Voong
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Yunita Lim
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jerry Martinez
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Benjamin Switzman
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryon L Yu
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California; Neuropathology Division, Department of Pathology, University of California, San Francisco, California.
| |
Collapse
|
59
|
Choi J, Shin JY, Kim TK, Kim K, Kim J, Jeon E, Park J, Han YD, Kim KA, Sim T, Kim HK, Kim HS. Site-specific mutagenesis screening in KRAS G12D mutant library to uncover resistance mechanisms to KRAS G12D inhibitors. Cancer Lett 2024; 591:216904. [PMID: 38642608 DOI: 10.1016/j.canlet.2024.216904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
KRAS plays a crucial role in regulating cell survival and proliferation and is one of the most commonly mutated oncogenes in human cancers. The novel KRASG12D inhibitor, MRTX1133, demonstrates promising antitumor efficacy in vitro and in vivo. However, the development of acquired resistance in treated patients presents a considerable challenge to sustained therapeutic effectiveness. In response to this challenge, we conducted site-specific mutagenesis screening to identify potential secondary mutations that could induce resistance to MRTX1133. We screened a range of KRASG12D variants harboring potential secondary mutations, and 44 representative variants were selected for in-depth validation of the pooled screening outcomes. We identified eight variants (G12D with V9E, V9W, V9Q, G13P, T58Y, R68G, Y96W, and Q99L) that exhibited substantial resistance, with V9W showing notable resistance, and downstream signaling analyses and structural modeling were conducted. We observed that secondary mutations in KRASG12D can lead to acquired resistance to MRTX1133 and BI-2865, a novel pan-KRAS inhibitor, in human cancer cell lines. This evidence is critical for devising new strategies to counteract resistance mechanisms and, ultimately, enhance treatment outcomes in patients with KRASG12D-mutant cancers.
Collapse
Affiliation(s)
- Jeesoo Choi
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ju-Young Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyul K Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kiwook Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Juyeong Park
- Department of Medicine, Graduate School, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Theragen Bio Co., Ltd, Seongnam-si, 13488, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hui Kwon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Han Sang Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
60
|
Dipasquale A, Franceschi E, Giordano L, Maccari M, Barigazzi C, Di Nunno V, Losurdo A, Persico P, Di Muzio A, Navarria P, Pessina F, Padovan M, Santoro A, Lombardi G, Simonelli M. Dissecting the prognostic signature of patients with astrocytoma isocitrate dehydrogenase-mutant grade 4: a large multicenter, retrospective study. ESMO Open 2024; 9:103485. [PMID: 38833969 PMCID: PMC11179079 DOI: 10.1016/j.esmoop.2024.103485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The World Health Organization (WHO) 2021 classification of central nervous system (CNS) tumors classified astrocytoma isocitrate dehydrogenase-mutant (A IDHm) with either microvascular proliferation and/or necrosis or homozygous deletion of CDKN2A/B as CNS grade 4 (CNS WHO G4), introducing a distinct entity and posing new challenges to physicians for appropriate management and prognostication. PATIENTS AND METHODS We retrospectively collected information about patients diagnosed with A IDHm CNS WHO G4 at three reference neuro-oncological Italian centers and correlated them with survival. RESULTS A total of 133 patients were included. Patients were young (median age 41 years) and most received post-operative treatment including chemo-radiation (n = 101) and/or temozolomide maintenance (n = 112). With a median follow-up of 51 months, the median overall survival (mOS) was 31.2 months, with a 5-year survival probability of 26%. In the univariate analysis, complete resection (mOS: 40.2 versus 26.3 months, P = 0.03), methyl-guaninemethyltransferase (MGMT) promoter methylation (mOS: 40.7 versus 18 months, P = 0.0136), and absence of telomerase reverse transcriptase (TERT) promoter mutation (mOS: 40.7 versus 18 months, P = 0.0003) correlated with better prognosis. In the multivariate models, lack of TERT promoter mutation [hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.07-0.82, P = 0.024] and MGMT methylation (HR 0.40, 95% CI 0.20-0.81, P = 0.01) remained associated with improved survival. CONCLUSIONS This is the largest experience in Western countries exploring the prognostic signature of patients with A IDHm CNS G4. Our results show that MGMT promoter methylation and TERT promoter mutation may impact clinical outcomes. This may support physicians in prognostication, clinical management, and design of future studies of this distinct diagnostic entity.
Collapse
Affiliation(s)
- A Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan. https://twitter.com/AngeloDipa_
| | - E Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
| | - L Giordano
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - M Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua
| | - C Barigazzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - V Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
| | - A Losurdo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - P Persico
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - A Di Muzio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - P Navarria
- Department of Radiotherapy and Radiosurgery
| | - F Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua
| | - A Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - G Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua. https://twitter.com/DrLombardiGiu
| | - M Simonelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan.
| |
Collapse
|
61
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. The Role of Mesenchymal Reprogramming in Malignant Clonal Evolution and Intra-Tumoral Heterogeneity in Glioblastoma. Cells 2024; 13:942. [PMID: 38891074 PMCID: PMC11171993 DOI: 10.3390/cells13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
62
|
Zhao H, Meng L, Du P, Liao X, Mo X, Gong M, Chen J, Liao Y. IDH1 mutation produces R-2-hydroxyglutarate (R-2HG) and induces mir-182-5p expression to regulate cell cycle and tumor formation in glioma. Biol Res 2024; 57:30. [PMID: 38760850 PMCID: PMC11100189 DOI: 10.1186/s40659-024-00512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.
Collapse
Affiliation(s)
- Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurology, Xiangya Hospital, The Central South University (CSU), Changsha, 410008, P.R. China
| | - Li Meng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Radiology, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, 830063, PR China
| | - Xinbin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Mengqi Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China
| | - Jiaxin Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- Department of Neurology, Xiangya Hospital, The Central South University (CSU), Changsha, 410008, P.R. China
| | - Yiwei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, 410008, P.R. China.
| |
Collapse
|
63
|
Picca A, Touat M, Belin L, Gourmelon C, Harlay V, Cuzzubbo S, Cohen-Jonathan Moyal E, Bronnimann C, Di Stefano AL, Laurent I, Lerond J, Carpentier C, Bielle F, Ducray F, Dehais C. REVOLUMAB: A phase II trial of nivolumab in recurrent IDH mutant high-grade gliomas. Eur J Cancer 2024; 202:114034. [PMID: 38537315 DOI: 10.1016/j.ejca.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Novel effective treatments are needed for recurrent IDH mutant high-grade gliomas (IDHm HGGs). The aim of the multicentric, single-arm, phase II REVOLUMAB trial (NCT03925246) was to assess the efficacy and safety of the anti-PD1 Nivolumab in patients with recurrent IDHm HGGs. PATIENTS AND METHODS Adult patients with IDHm WHO grade 3-4 gliomas recurring after radiotherapy and ≥ 1 line of alkylating chemotherapy were treated with intravenous Nivolumab until end of treatment (12 months), progression, unacceptable toxicity, or death. The primary endpoint was the 24-week progression-free survival rate (24w-PFS) according to RANO criteria. RESULTS From July 2019 to June 2020, 39 patients with recurrent IDHm HGGs (twenty-one grade 3, thirteen grade 4, five grade 2 with radiological evidence of anaplastic transformation; 39% 1p/19q codeleted) were enrolled. Median time since diagnosis was 5.7 years, and the median number of previous systemic treatments was two. The 24w-PFS was 28.2% (11/39, CI95% 15-44.9%). Median PFS and OS were 1.84 (CI95% 1.81-5.89) and 14.7 months (CI95% 9.18-NR), respectively. Four patients (10.3%) achieved partial response according to RANO criteria. There were no significant differences in clinical or histomolecular features between responders and non-responders. The safety profile of Nivolumab was consistent with prior studies. CONCLUSIONS We report the results of the first trial of immune checkpoint inhibitors in IDHm gliomas. Nivolumab failed to achieve its primary endpoint. However, treatment was well tolerated, and long-lasting responses were observed in a subset of patients, supporting further evaluation in combination with other agents (e.g. IDH inhibitors).
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neuro-oncologie, Institut de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Mehdi Touat
- Service de Neuro-oncologie, Institut de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Lisa Belin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, CIC-1901, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Carole Gourmelon
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Vincent Harlay
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Stefania Cuzzubbo
- Department of Neurology, Hôpital Saint-Louis, Université Paris Cité, APHP, Paris, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiotherapy, Oncopole Claudius Regaud, Cancer University Institute of Toulouse, Oncopole Paul Sabatier University, Toulouse III, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Charlotte Bronnimann
- Hôpital Saint-André Bordeaux, Centre Hospitalier Universitaire, Service d'Oncologie, 33000 Bordeaux, France
| | - Anna Luisa Di Stefano
- Department of Neurology, Foch Hospital, 92150 Suresnes, France; Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Isaura Laurent
- Unité de Recherche Clinique PSL-CFX, CIC-1901, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Julie Lerond
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France; Department of Neuropathology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Caroline Dehais
- Service de Neuro-oncologie, Institut de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France.
| |
Collapse
|
64
|
Tang Q, Yuan Y, Li L, Xu Y, Ji W, Xiao S, Han Y, Miao W, Cai J, You P, Chen M, Ding S, Li Z, Qi Z, Hou W, Luo H. Comprehensive analysis reveals that LTBR is a immune-related biomarker for glioma. Comput Biol Med 2024; 174:108457. [PMID: 38599071 DOI: 10.1016/j.compbiomed.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Lingjuan Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of General Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Siyu Xiao
- Department of Rehabilitation, Gongan Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Jingzhou, 434300, Hubei Province, China
| | - Yi Han
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Wenrong Miao
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jing Cai
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Pu You
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai, 201210, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Saineng Ding
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Zhen Li
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai, 201210, China.
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Weiliang Hou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Hao Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
65
|
Ebrahimi A, Waha A, Schittenhelm J, Gohla G, Schuhmann MU, Pietsch T. BCOR::CREBBP fusion in malignant neuroepithelial tumor of CNS expands the spectrum of methylation class CNS tumor with BCOR/BCOR(L1)-fusion. Acta Neuropathol Commun 2024; 12:60. [PMID: 38637838 PMCID: PMC11025138 DOI: 10.1186/s40478-024-01780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.
Collapse
Affiliation(s)
- Azadeh Ebrahimi
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany.
| | - Andreas Waha
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Jens Schittenhelm
- Institute of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Georg Gohla
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| |
Collapse
|
66
|
Appin CL, Hong C, Suwala AK, Hilz S, Mathur R, Solomon DA, Smirnov IV, Stevers NO, Shai A, Wang A, Berger MS, Chang SM, Phillips JJ, Costello JF. Whole tumor analysis reveals early origin of the TERT promoter mutation and intercellular heterogeneity in TERT expression. Neuro Oncol 2024; 26:640-652. [PMID: 38141254 PMCID: PMC10995505 DOI: 10.1093/neuonc/noad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The TERT promoter mutation (TPM) is acquired in most IDH-wildtype glioblastomas (GBM) and IDH-mutant oligodendrogliomas (OD) enabling tumor cell immortality. Previous studies on TPM clonality show conflicting results. This study was performed to determine whether TPM is clonal on a tumor-wide scale. METHODS We investigated TPM clonality in relation to presumed early events in 19 IDH-wildtype GBM and 10 IDH-mutant OD using 3-dimensional comprehensive tumor sampling. We performed Sanger sequencing on 264 tumor samples and deep amplicon sequencing on 187 tumor samples. We obtained tumor purity and copy number estimates from whole exome sequencing. TERT expression was assessed by RNA-seq and RNAscope. RESULTS We detected TPM in 100% of tumor samples with quantifiable tumor purity (219 samples). Variant allele frequencies (VAF) of TPM correlate positively with chromosome 10 loss in GBM (R = 0.85), IDH1 mutation in OD (R = 0.87), and with tumor purity (R = 0.91 for GBM; R = 0.90 for OD). In comparison, oncogene amplification was tumor-wide for MDM4- and most EGFR-amplified cases but heterogeneous for MYCN and PDGFRA, and strikingly high in low-purity samples. TPM VAF was moderately correlated with TERT expression (R = 0.52 for GBM; R = 0.65 for OD). TERT expression was detected in a subset of cells, solely in TPM-positive samples, including samples equivocal for tumor. CONCLUSIONS On a tumor-wide scale, TPM is among the earliest events in glioma evolution. Intercellular heterogeneity of TERT expression, however, suggests dynamic regulation during tumor growth. TERT expression may be a tumor cell-specific biomarker.
Collapse
Affiliation(s)
- Christina L Appin
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Abigail K Suwala
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neuropathology, University of Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - David A Solomon
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
67
|
Liu J, Hu S, Jiang H, Cui Y. Case report: Temozolomide induced hypermutation indicates an unfavorable response to immunotherapy in patient with gliomas. Front Immunol 2024; 15:1369972. [PMID: 38690285 PMCID: PMC11059094 DOI: 10.3389/fimmu.2024.1369972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Background Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Shuli Hu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| |
Collapse
|
68
|
Higuchi F, Uzuka T, Matsuda H, Sumi T, Iwata K, Namatame T, Shin M, Akutsu H, Ueki K. Rise of oligodendroglioma hypermutator phenotype from a subclone harboring TP53 mutation after TMZ treatment. Brain Tumor Pathol 2024; 41:80-84. [PMID: 38294664 DOI: 10.1007/s10014-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Oligodendrogliomas characterized and defined by 1p/19q co-deletion are slowly growing tumors showing better prognosis than astrocytomas. TP53 mutation is rare in oligodendrogliomas while the vast majority of astrocytomas harbor the mutation, making TP53 mutation mutually exclusive with 1p/19q codeletion in lower grade gliomas virtually. We report a case of 51-year-old woman with a left fronto-temporal oligodendroglioma that contained a small portion with a TP53 mutation, R248Q, at the initial surgery. On a first, slow-growing recurrence 29 months after radiation and nitrosourea-based chemotherapy, the patient underwent TMZ chemotherapy. The recurrent tumor responded well to TMZ but developed a rapid progression after 6 cycles as a malignant hypermutator tumor with a MSH6 mutation. Most of the recurrent tumor lacked typical oligodendroglioma morphology that was observed in the primary tumor, while it retained the IDH1 mutation and 1p/19q co-deletion. The identical TP53 mutation observed in the small portion of the primary tumor was universal in the recurrence. This case embodied the theoretically understandable clonal expansion of the TP53 mutation with additional mismatch repair gene dysfunction leading to hypermutator phenotype. It thus indicated that TP53 mutation in oligodendroglioma, although not common, may play a critical role in the development of hypermutator after TMZ treatment.
Collapse
Affiliation(s)
- Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan.
- Department of Neurosurgery, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi, Tokyo, 173-8606, Japan.
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Hadzki Matsuda
- Department of Diagnostic Pathology, Dokkyo Medical University, Kitakobayashi880, Mibu, Tochigi, 321-0293, Japan
| | - Takuma Sumi
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Kayoko Iwata
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Takashi Namatame
- Clinical Research Center, Dokkyo Medical University, Kitakobayashi880, Mibu, Tochigi, 321-0293, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi, Tokyo, 173-8606, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| |
Collapse
|
69
|
Sun M, Zhang S, Wang J, Du G, Ji T. Synthesis of Novel Acetyl-11-keto-β-boswellic Acid Derivatives as Potential Anti-GBM Agents. Chem Biodivers 2024; 21:e202301979. [PMID: 38302832 DOI: 10.1002/cbdv.202301979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Acetyl-11-keto-β-boswellic acid (AKBA) is known to inhibit the growth of glioblastoma (GBM) cells and subcutaneous GBM. A series of acetyl-11-keto-β-boswellic acid (AKBA) derivatives containing the oxime-ester functionality or amide side chains were synthesized, and their anti-GBM activities were evaluated. Some of these compounds exhibited significant inhibitory activity against cell proliferation in U87 and U251 GBM cell lines, with IC50 values in the micromolar concentration range. Cellular thermal shift analysis showed that A-01 and A-10 improved the thermal stability of FOXM1, indicating that these highly active compounds may directly bind to FOXM1 in cells. Docking studies of the two most active compounds, A-01 and A-10, revealed key interactions between these compounds and the active site of FOXM1, in which the amide moiety at the C-24 position was essential for improving the activity. These results suggested that A-10 is a suitable lead molecule for the development of FOXM1 inhibitors. Thus, the rational design of AKBA derivatives with amide side chains holds significant potential for discovering of a new class of triterpenoids capable of inhibiting GBM cell proliferation.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinhua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
70
|
Sasaki H, Kitamura Y, Toda M, Hirose Y, Yoshida K. Oligodendroglioma, IDH-mutant and 1p/19q-codeleted-prognostic factors, standard of care and chemotherapy, and future perspectives with neoadjuvant strategy. Brain Tumor Pathol 2024; 41:43-49. [PMID: 38564040 DOI: 10.1007/s10014-024-00480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted is known for their relative chemosensitivity and indolent clinical course among diffuse gliomas of adult type. Based on the data from phase 3 clinical trials, the standard of post-surgical care for those tumors is considered to be initial chemoradiotherapy regardless of histopathological grade, particularly with PCV. However, partly due to its renewed definition in late years, prognostic factors in patients with those tumors are not well established. Moreover, the survival rate declines over 15 years, with only a 37% OS rate at 20 years for grade 3 tumors, even with the current standard of care. Given that most of this disease occurs in young or middle-aged adults, further improvements in treatment and management are necessary. Here, we discuss prognostic factors, standard of care and chemotherapy, and future perspectives with neoadjuvant strategy in those tumors.
Collapse
Affiliation(s)
- Hikaru Sasaki
- Department of Neurosurgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8523, Japan.
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yohei Kitamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
71
|
Schupp PG, Shelton SJ, Brody DJ, Eliscu R, Johnson BE, Mazor T, Kelley KW, Potts MB, McDermott MW, Huang EJ, Lim DA, Pieper RO, Berger MS, Costello JF, Phillips JJ, Oldham MC. Deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.545365. [PMID: 37645893 PMCID: PMC10461981 DOI: 10.1101/2023.06.21.545365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.
Collapse
Affiliation(s)
- Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Samuel J. Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Daniel J. Brody
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Brett E. Johnson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Kevin W. Kelley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Matthew B. Potts
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Michael W. McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Eric J. Huang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| |
Collapse
|
72
|
Nejo T, Wang L, Leung KK, Wang A, Lakshmanachetty S, Gallus M, Kwok DW, Hong C, Chen LH, Carrera DA, Zhang MY, Stevers NO, Maldonado GC, Yamamichi A, Watchmaker PB, Naik A, Shai A, Phillips JJ, Chang SM, Wiita AP, Wells JA, Costello JF, Diaz AA, Okada H. Challenges in the discovery of tumor-specific alternative splicing-derived cell-surface antigens in glioma. Sci Rep 2024; 14:6362. [PMID: 38493204 PMCID: PMC10944514 DOI: 10.1038/s41598-024-56684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Lin Wang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Senthilnath Lakshmanachetty
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Diego A Carrera
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Michael Y Zhang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Gabriella C Maldonado
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Akul Naik
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
73
|
Kim KH, Migliozzi S, Koo H, Hong JH, Park SM, Kim S, Kwon HJ, Ha S, Garofano L, Oh YT, D'Angelo F, Kim CI, Kim S, Lee JY, Kim J, Hong J, Jang EH, Mathon B, Di Stefano AL, Bielle F, Laurenge A, Nesvizhskii AI, Hur EM, Yin J, Shi B, Kim Y, Moon KS, Kwon JT, Lee SH, Lee SH, Gwak HS, Lasorella A, Yoo H, Sanson M, Sa JK, Park CK, Nam DH, Iavarone A, Park JB. Integrated proteogenomic characterization of glioblastoma evolution. Cancer Cell 2024; 42:358-377.e8. [PMID: 38215747 PMCID: PMC10939876 DOI: 10.1016/j.ccell.2023.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harim Koo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seung Min Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sooheon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyung Joon Kwon
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seokjun Ha
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Luciano Garofano
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seongsoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bertrand Mathon
- Service de Neurochirurgie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Anna-Luisa Di Stefano
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Department of Neurology, Foch Hospital, Suresnes, France
| | - Franck Bielle
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alice Laurenge
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | | | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Youngwook Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Jeong Taik Kwon
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Shin Heon Lee
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Eulji University School of Medicine, Daejeon, Korea
| | - Ho Shin Gwak
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Marc Sanson
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France.
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.
| | - Chul-Kee Park
- Deparment of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| |
Collapse
|
74
|
Liu P, Xing N, Xiahou Z, Yan J, Lin Z, Zhang J. Unraveling the intricacies of glioblastoma progression and recurrence: insights into the role of NFYB and oxidative phosphorylation at the single-cell level. Front Immunol 2024; 15:1368685. [PMID: 38510250 PMCID: PMC10950940 DOI: 10.3389/fimmu.2024.1368685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Background Glioblastoma (GBM), with its high recurrence and mortality rates, makes it the deadliest neurological malignancy. Oxidative phosphorylation is a highly active cellular pathway in GBM, and NFYB is a tumor-associated transcription factor. Both are related to mitochondrial function, but studies on their relationship with GBM at the single-cell level are still scarce. Methods We re-analyzed the single-cell profiles of GBM from patients with different subtypes by single-cell transcriptomic analysis and further subdivided the large population of Glioma cells into different subpopulations, explored the interrelationships and active pathways among cell stages and clinical subtypes of the populations, and investigated the relationship between the transcription factor NFYB of the key subpopulations and GBM, searching for the prognostic genes of GBM related to NFYB, and verified by experiments. Results Glioma cells and their C5 subpopulation had the highest percentage of G2M staging and rGBM, which we hypothesized might be related to the higher dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative phosphorylation pathway activity is elevated in both the Glioma and C5 subgroup, and NFYB is a key transcription factor for the C5 subgroup, suggesting its possible involvement in GBM proliferation and recurrence, and its close association with mitochondrial function. We also identified 13 prognostic genes associated with NFYB, of which MEM60 may cause GBM patients to have a poor prognosis by promoting GBM proliferation and drug resistance. Knockdown of the NFYB was found to contribute to the inhibition of proliferation, invasion, and migration of GBM cells. Conclusion These findings help to elucidate the key mechanisms of mitochondrial function in GBM progression and recurrence, and to establish a new prognostic model and therapeutic target based on NFYB.
Collapse
Affiliation(s)
- Pulin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China
- National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Naifei Xing
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Jingwei Yan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China
- National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
75
|
Malta TM, Sabedot TS, Morosini NS, Datta I, Garofano L, Vallentgoed W, Varn FS, Aldape K, D'Angelo F, Bakas S, Barnholtz-Sloan JS, Gan HK, Hasanain M, Hau AC, Johnson KC, Cazacu S, deCarvalho AC, Khasraw M, Kocakavuk E, Kouwenhoven MC, Migliozzi S, Niclou SP, Niers JM, Ormond DR, Paek SH, Reifenberger G, Sillevis Smitt PA, Smits M, Stead LF, van den Bent MJ, Van Meir EG, Walenkamp A, Weiss T, Weller M, Westerman BA, Ylstra B, Wesseling P, Lasorella A, French PJ, Poisson LM, Verhaak RG, Iavarone A, Noushmehr H. The Epigenetic Evolution of Glioma Is Determined by the IDH1 Mutation Status and Treatment Regimen. Cancer Res 2024; 84:741-756. [PMID: 38117484 PMCID: PMC10911804 DOI: 10.1158/0008-5472.can-23-2093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.
Collapse
Affiliation(s)
- Tathiane M. Malta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thais S. Sabedot
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan
| | | | - Indrani Datta
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan
| | - Luciano Garofano
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wies Vallentgoed
- Neurology Department, The Brain Tumour Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Frederick S. Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Hui K. Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia
| | - Mohammad Hasanain
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Kevin C. Johnson
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan
| | - Ana C. deCarvalho
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan
| | | | - Emre Kocakavuk
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), National Center for Tumor Diseases (NCT) West, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathilde C.M. Kouwenhoven
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Johanna M. Niers
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - D. Ryan Ormond
- University of Colorado School of Medicine, Department of Neurosurgery, Aurora, Colorado
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Hypoxia Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea (South)
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Dusseldorf, Germany
| | - Peter A. Sillevis Smitt
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- The Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Lucy F. Stead
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Martin J. van den Bent
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- The Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Erwin G. Van Meir
- Department of Neurosurgery and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Tobias Weiss
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Bart A. Westerman
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Wesseling
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Pim J. French
- Neurology Department, The Brain Tumour Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Laila M. Poisson
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan
| | - Roel G.W. Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Houtan Noushmehr
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
76
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby GN, Wang Y, Wang C, Gao Y, Anand JR, Shelton A, Satterlee AB, Mann B, Hsiao YC, Liu CW, Lu K, Hingtgen S, Wang J, Liu Z, Miller CR, Wu D, Vaziri C, Yang Y. Trans-lesion synthesis and mismatch repair pathway crosstalk defines chemoresistance and hypermutation mechanisms in glioblastoma. Nat Commun 2024; 15:1957. [PMID: 38438348 PMCID: PMC10912752 DOI: 10.1038/s41467-024-45979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Qisheng Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Nabil Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jay Ramanlal Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - C Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
77
|
Sawada M, Hida T, Kamiya T, Minowa T, Kato J, Okura M, Idogawa M, Tokino T, Uhara H. Effects of temozolomide on tumor mutation burden and microsatellite instability in melanoma cells. J Dermatol 2024; 51:409-418. [PMID: 37658676 DOI: 10.1111/1346-8138.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The efficacy of combination therapy with an immune checkpoint inhibitor (ICI) and cytotoxic chemotherapeutic agents has been investigated in cancer, including melanoma. Before ICIs were introduced, dacarbazine or temozolomide (TMZ) were used to treat melanoma. Several studies using glioma or colorectal cancer cells showed that TMZ can increase the tumor mutation burden (TMB) and induce mismatch repair (MMR) deficiency associated with microsatellite instability (MSI). These could increase immunoreactivity to an ICI, but this has not been evaluated in melanoma cells. We investigated the effects of TMZ on MSI status and TMB in melanoma cells. To evaluate the TMB, we performed whole-exome sequencing using genomic DNA from the human melanoma cell lines Mel18, A375, WM266-4, G361, and TXM18 before and after TMZ treatment. Polymerase chain reaction amplification of five mononucleotide repeat markers, BAT25, BAT26, NR21, NR24, and MONO27, was performed, and we analyzed changes in the MSI status. In all cell lines, the TMB was increased after TMZ treatment (the change amount of TMB with ≤ 5% variant allele frequency [VAF] was 18.0-38.3 mutations per megabase) even in the condition without obvious cytological damage. MSI after TMZ treatment was not observed in any cells. TMZ increased TMB but did not change MSI status in melanoma cells.
Collapse
Affiliation(s)
- Masahide Sawada
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoyuki Minowa
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
78
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
79
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
80
|
Gately L, Mesía C, Sepúlveda JM, Del Barco S, Pineda E, Gironés R, Fuster J, Hong W, Dumas M, Gill S, Navarro LM, Herrero A, Dowling A, de Las Peñas R, Vaz MA, Alonso M, Lwin Z, Harrup R, Peralta S, Long A, Perez-Segura P, Ahern E, Garate CO, Wong M, Campbell R, Cuff K, Jennens R, Gallego O, Underhill C, Martinez-Garcia M, Covela M, Cooper A, Brown S, Rosenthal M, Torres J, Collins IM, Gibbs P, Balana C. A combined analysis of two prospective randomised studies exploring the impact of extended post-radiation temozolomide on survival outcomes in newly diagnosed glioblastoma. J Neurooncol 2024; 166:407-415. [PMID: 38153582 DOI: 10.1007/s11060-023-04513-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE The optimal duration of post-radiation temozolomide in newly diagnosed glioblastoma remains unclear, with no published phase III randomised trials. Standard-of-care stipulates 6 months. However, in routine care, it is often extended to 12 months, despite lacking robust supporting data. METHODS GEINO14-01 (Spain) and EX-TEM (Australia) studies enrolled glioblastoma patients without progression at the end of 6 months post-radiation temozolomide. Participants were randomised 1:1 to six additional months of temozolomide or observation. Primary endpoint was 6-month progression free survival from date of randomisation (6mPFS). Secondary endpoints included overall survival (OS) and toxicity. 204 patients were required to detect an improvement in 6mPFS from 50 to 60% (80% power). Neither study recruited sufficient patients. We performed a combined analysis of individual patient data. RESULTS 205 patients were recruited: 159 in GEINO14-01 (2014-2018) and 46 in EX-TEM (2019-2022). Median follow-up was 20.0 and 14.5 months. Baseline characteristics were balanced. There was no significant improvement in 6mPFS (57.2% vs 64.0%, OR0.75, p = 0.4), nor across any subgroups, including MGMT methylated; PFS (HR0.92, p = 0.59, median 7.8 vs 9.7 months); or OS (HR1.03, p = 0.87, median 20.1 vs 19.4 months). During treatment extension, 64% experienced any grade adverse event, mainly fatigue and gastrointestinal (both 54%). Only a minority required treatment changes: 4.5% dose delay, 7.5% dose reduction, 1.5% temozolomide discontinuation. CONCLUSION For glioblastoma patients, extending post-radiation temozolomide from 6 to 12 months is well tolerated but does not improve 6mPFS. We could not identify any subset that benefitted from extended treatment. Six months should remain standard-of-care.
Collapse
Affiliation(s)
- L Gately
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia.
| | - C Mesía
- Medical Oncology Service, Institut Català d'Oncologia, Hospitalet de Llobregat, Barcelona, Spain
| | - J M Sepúlveda
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - S Del Barco
- Medical Oncology Service, Institut Català d'Oncologia Girona, Girona, Spain
| | - E Pineda
- Medical Oncology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - R Gironés
- Medical Oncology Service, Hospital Universitario La Fe, Valencia, Spain
| | - J Fuster
- Medical Oncology Service, Hospital Son Espases, Palma de Mallorca, Spain
| | - W Hong
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Dumas
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - S Gill
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
| | - L M Navarro
- Medical Oncology Service, Hospital de Salamanca, Salamanca, Spain
| | - A Herrero
- Medical Oncology Service, Hospital Miguel Servet, Zaragoza, Spain
| | - A Dowling
- Department of Medical Oncology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - R de Las Peñas
- Medical Oncology Service, Hospital Provincial de Castellón, Castellón, Spain
| | - M A Vaz
- Medical Oncology Service, Hospital Ramón y Cajal, Madrid, Spain
| | - M Alonso
- Medical Oncology Service, Hospital Virgen del Rocio, Seville, Spain
| | - Z Lwin
- Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - R Harrup
- Department of Medical Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - S Peralta
- Medical Oncology Service, Hospital Sant Joan de Reus, Reus, Spain
| | - A Long
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - P Perez-Segura
- Medical Oncology Service, Hospital Clinico San Carlos, Madrid, Spain
| | - E Ahern
- Department of Medical Oncology, Monash Health, Melbourne, VIC, Australia
| | - C O Garate
- Medical Oncology Service, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - M Wong
- Department of Medical Oncology, Westmead Hospital, Westmead, NSW, Australia
| | - R Campbell
- Department of Medical Oncology, Bendigo Health, Bendigo, VIC, Australia
| | - K Cuff
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - R Jennens
- Department of Medical Oncology, Epworth Health, Richmond, VIC, Australia
| | - O Gallego
- Medical Oncology Service, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - C Underhill
- Department of Medical Oncology, Border Medical Oncology, East Albury, NSW, Australia
| | | | - M Covela
- Medical Oncology Service, Hospital Lucus Augusti, Lugo, Spain
| | - A Cooper
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW, Australia
| | - S Brown
- Department of Medical Oncology, Ballarat Health Services, Ballarat, VIC, Australia
| | - M Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - J Torres
- Department of Medical Oncology, Goulburn Valley Health, Shepparton, VIC, Australia
| | - I M Collins
- Department of Medical Oncology, South West Regional Cancer Centre, Geelong, VIC, Australia
| | - P Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - C Balana
- Medical Oncology Service, Institut Català d'Oncologia, Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
81
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
82
|
Mahmoudi K, Kim DH, Tavakkol E, Kihira S, Bauer A, Tsankova N, Khan F, Hormigo A, Yedavalli V, Nael K. Multiparametric Radiogenomic Model to Predict Survival in Patients with Glioblastoma. Cancers (Basel) 2024; 16:589. [PMID: 38339340 PMCID: PMC10854536 DOI: 10.3390/cancers16030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Clinical, histopathological, and imaging variables have been associated with prognosis in patients with glioblastoma (GBM). We aimed to develop a multiparametric radiogenomic model incorporating MRI texture features, demographic data, and histopathological tumor biomarkers to predict prognosis in patients with GBM. METHODS In this retrospective study, patients were included if they had confirmed diagnosis of GBM with histopathological biomarkers and pre-operative MRI. Tumor segmentation was performed, and texture features were extracted to develop a predictive radiomic model of survival (<18 months vs. ≥18 months) using multivariate analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regularization to reduce the risk of overfitting. This radiomic model in combination with clinical and histopathological data was inserted into a backward stepwise logistic regression model to assess survival. The diagnostic performance of this model was reported for the training and external validation sets. RESULTS A total of 116 patients were included for model development and 40 patients for external testing validation. The diagnostic performance (AUC/sensitivity/specificity) of the radiomic model generated from seven texture features in determination of ≥18 months survival was 0.71/69.0/70.3. Three variables remained as independent predictors of survival, including radiomics (p = 0.004), age (p = 0.039), and MGMT status (p = 0.025). This model yielded diagnostic performance (AUC/sensitivity/specificity) of 0.77/81.0/66.0 (training) and 0.89/100/78.6 (testing) in determination of survival ≥ 18 months. CONCLUSIONS Results show that our radiogenomic model generated from radiomic features at baseline MRI, age, and MGMT status can predict survival ≥ 18 months in patients with GBM.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Daniel H. Kim
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Elham Tavakkol
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Shingo Kihira
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Adam Bauer
- Department of Radiology, Kaiser Permanente Fontana Medical Center, Fontana, CA 92335, USA
| | - Nadejda Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fahad Khan
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Adilia Hormigo
- Department of Oncology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224, USA
| | - Kambiz Nael
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
83
|
Hariharan S, Whitfield BT, Pirozzi CJ, Waitkus MS, Brown MC, Bowie ML, Irvin DM, Roso K, Fuller R, Hostettler J, Dharmaiah S, Gibson EA, Briley A, Mangoli A, Fraley C, Shobande M, Stevenson K, Zhang G, Malgulwar PB, Roberts H, Roskoski M, Spasojevic I, Keir ST, He Y, Castro MG, Huse JT, Ashley DM. Interplay between ATRX and IDH1 mutations governs innate immune responses in diffuse gliomas. Nat Commun 2024; 15:730. [PMID: 38272925 PMCID: PMC10810843 DOI: 10.1038/s41467-024-44932-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Stimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX, defining molecular alterations in IDH-mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity. To explore this, we generated ATRX-deficient glioma models in the presence and absence of the IDH1R132H mutation. ATRX-deficient glioma cells are sensitive to dsRNA-based innate immune agonism and exhibit impaired lethality and increased T-cell infiltration in vivo. However, the presence of IDH1R132H dampens baseline expression of key innate immune genes and cytokines in a manner restored by genetic and pharmacological IDH1R132H inhibition. IDH1R132H co-expression does not interfere with the ATRX deficiency-mediated sensitivity to dsRNA. Thus, ATRX loss primes cells for recognition of dsRNA, while IDH1R132H reversibly masks this priming. This work reveals innate immunity as a therapeutic vulnerability of astrocytomas.
Collapse
Affiliation(s)
- Seethalakshmi Hariharan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Benjamin T Whitfield
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Michael C Brown
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Michelle L Bowie
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - David M Irvin
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Fuller
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Janell Hostettler
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Sharvari Dharmaiah
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emiley A Gibson
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Aaron Briley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Avani Mangoli
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Casey Fraley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Mariah Shobande
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Kevin Stevenson
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Gao Zhang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Prit Benny Malgulwar
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah Roberts
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Roskoski
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Ivan Spasojevic
- PK/PD Core Laboratory, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine - Oncology, Duke University Medical Center, Durham, NC, USA
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
84
|
Mathur R, Wang Q, Schupp PG, Nikolic A, Hilz S, Hong C, Grishanina NR, Kwok D, Stevers NO, Jin Q, Youngblood MW, Stasiak LA, Hou Y, Wang J, Yamaguchi TN, Lafontaine M, Shai A, Smirnov IV, Solomon DA, Chang SM, Hervey-Jumper SL, Berger MS, Lupo JM, Okada H, Phillips JJ, Boutros PC, Gallo M, Oldham MC, Yue F, Costello JF. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 2024; 187:446-463.e16. [PMID: 38242087 PMCID: PMC10832360 DOI: 10.1016/j.cell.2023.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick G Schupp
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ana Nikolic
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Darwin Kwok
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marisa Lafontaine
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB; Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
85
|
Jones JJ, Jones KL, Wong SQ, Whittle J, Goode D, Nguyen H, Iaria J, Stylli S, Towner J, Pieters T, Gaillard F, Kaye AH, Drummond KJ, Morokoff AP. Plasma ctDNA enables early detection of temozolomide resistance mutations in glioma. Neurooncol Adv 2024; 6:vdae041. [PMID: 38596716 PMCID: PMC11003533 DOI: 10.1093/noajnl/vdae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background Liquid biopsy based on circulating tumor DNA (ctDNA) is a novel tool in clinical oncology, however, its use has been limited in glioma to date, due to low levels of ctDNA. In this study, we aimed to demonstrate that sequencing techniques optimized for liquid biopsy in glioma patients can detect ctDNA in plasma with high sensitivity and with potential clinical utility. Methods We investigated 10 glioma patients with tumor tissue available from at least 2 surgical operations, who had 49 longitudinally collected plasma samples available for analysis. Plasma samples were sequenced with CAPP-seq (AVENIO) and tissue samples with TSO500. Results Glioma-derived ctDNA mutations were detected in 93.8% of plasma samples. 25% of all mutations detected were observed in plasma only. Mutations of the mismatch repair (MMR) genes MSH2 and MSH6 were the most frequent circulating gene alterations seen after temozolomide treatment and were frequently observed to appear in plasma prior to their appearance in tumor tissue at the time of surgery for recurrence. Conclusions This pilot study suggests that plasma ctDNA in glioma is feasible and may provide sensitive and complementary information to tissue biopsy. Furthermore, plasma ctDNA detection of new MMR gene mutations not present in the initial tissue biopsy may provide an early indication of the development of chemotherapy resistance. Additional clinical validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Jordan J Jones
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Kate L Jones
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - James Whittle
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Hong Nguyen
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Josie Iaria
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Stan Stylli
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - James Towner
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Thomas Pieters
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Frank Gaillard
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew H Kaye
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Kate J Drummond
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Andrew P Morokoff
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
86
|
Jiang Y, Zhang J, Yu S, Zheng L, Shen Y, Ju W, Lin L. LncRNA CAI2 Contributes to Poor Prognosis of Glioma through the PI3K-Akt Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:420-427. [PMID: 37211840 DOI: 10.2174/1386207326666230519115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/23/2023]
Abstract
AIMS We aim to explore new potential therapeutic targets and markers in human glioma. BACKGROUND Gliomas are the most common malignant primary tumor in the brain. OBJECTIVE In the present research, we evaluated the effect of CAI2, a long non-coding RNA, on the biological behaviors of glioma and explored the related molecular mechanism. METHODS The expression of CAI2 was analyzed using qRT-PCR in 65 cases of glioma patients. The cell proliferation was determined with MTT and colony formation assays, and the PI3K-AKt signaling pathway was analyzed using western blot. RESULTS CAI2 was upregulated in human glioma tissue compared with the matched, adjacent nontumor tissue and was correlated with WHO grade. Survival analyses proved that the overall survival of patients with high CAI2 expression was poor compared to that of patients with low CAI2 expression. High CAI2 expression was an independent prognostic factor in glioma. The absorbance values in the MTT assay after 96 h were .712 ± .031 for the si-control and .465 ± .018 for the si- CAI2-transfected cells, and si-CAI2 inhibited colony formation in U251 cells by approximately 80%. The levels of PI3K, p-AKt, and AKt in si-CAI2-treated cells were decreased. CONCLUSION CAI2 may promote glioma growth through the PI3K-AKt signaling pathway. This research provided a novel potential diagnostic marker for human glioma.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Jinhui Zhang
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Linlin Zheng
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Yue Shen
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Weiwei Ju
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| |
Collapse
|
87
|
Betancur MI, Case A, Ilich E, Mehta N, Meehan S, Pogrebivsky S, Keir ST, Stevenson K, Brahma B, Gregory S, Chen W, Ashley DM, Bellamkonda R, Mokarram N. A neural tract-inspired conduit for facile, on-demand biopsy of glioblastoma. Neurooncol Adv 2024; 6:vdae064. [PMID: 38813113 PMCID: PMC11135361 DOI: 10.1093/noajnl/vdae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background A major hurdle to effectively treating glioblastoma (GBM) patients is the lack of longitudinal information about tumor progression, evolution, and treatment response. Methods In this study, we report the use of a neural tract-inspired conduit containing aligned polymeric nanofibers (i.e., an aligned nanofiber device) to enable on-demand access to GBM tumors in 2 rodent models. Depending on the experiment, a humanized U87MG xenograft and/or F98-GFP+ syngeneic rat tumor model was chosen to test the safety and functionality of the device in providing continuous sampling access to the tumor and its microenvironment. Results The aligned nanofiber device was safe and provided a high quantity of quality genomic materials suitable for omics analyses and yielded a sufficient number of live cells for in vitro expansion and screening. Transcriptomic and genomic analyses demonstrated continuity between material extracted from the device and that of the primary, intracortical tumor (in the in vivo model). Conclusions The results establish the potential of this neural tract-inspired, aligned nanofiber device as an on-demand, safe, and minimally invasive access point, thus enabling rapid, high-throughput, longitudinal assessment of tumor and its microenvironment, ultimately leading to more informed clinical treatment strategies.
Collapse
Affiliation(s)
| | - Ayden Case
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nalini Mehta
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sean Meehan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sabrina Pogrebivsky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Stephen T Keir
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Kevin Stevenson
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Barun Brahma
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Simon Gregory
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wei Chen
- Center for Genomic and Computational Biology, Duke University, Durham, Georgia, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
88
|
Hadad S, Gupta R, Oberheim Bush NA, Taylor JW, Villanueva-Meyer JE, Young JS, Wu J, Ravindranathan A, Zhang Y, Warrier G, McCoy L, Shai A, Pekmezci M, Perry A, Bollen AW, Phillips JJ, Braunstein SE, Raleigh DR, Theodosopoulos P, Aghi MK, Chang EF, Hervey-Jumper SL, Costello JF, de Groot J, Butowski NA, Clarke JL, Chang SM, Berger MS, Molinaro AM, Solomon DA. "De novo replication repair deficient glioblastoma, IDH-wildtype" is a distinct glioblastoma subtype in adults that may benefit from immune checkpoint blockade. Acta Neuropathol 2023; 147:3. [PMID: 38079020 PMCID: PMC10713691 DOI: 10.1007/s00401-023-02654-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.
Collapse
Affiliation(s)
- Sara Hadad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rohit Gupta
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jasper Wu
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Ajay Ravindranathan
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gayathri Warrier
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Philip Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John de Groot
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
89
|
de la Fuente MI. Adult-type Diffuse Gliomas. Continuum (Minneap Minn) 2023; 29:1662-1679. [PMID: 38085893 DOI: 10.1212/con.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This article highlights key aspects of the diagnosis and management of adult-type diffuse gliomas, including glioblastomas and IDH-mutant gliomas relevant to the daily practice of the general neurologist. LATEST DEVELOPMENTS The advances in molecular characterization of gliomas have translated into more accurate prognostication and tumor classification. Gliomas previously categorized by histological appearance solely as astrocytomas or oligodendrogliomas are now also defined by molecular features. Furthermore, ongoing clinical trials have incorporated these advances to tailor more effective treatments for specific glioma subtypes. ESSENTIAL POINTS Despite recent insights into the molecular aspects of gliomas, these tumors remain incurable. Care for patients with these complex tumors requires a multidisciplinary team in which the general neurologist has an important role. Efforts focus on translating the latest data into more effective therapies that can prolong survival.
Collapse
|
90
|
Tan IL, Perez AR, Lew RJ, Sun X, Baldwin A, Zhu YK, Shah MM, Berger MS, Doudna JA, Fellmann C. Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis. Cell Rep 2023; 42:113339. [PMID: 37917583 PMCID: PMC10725516 DOI: 10.1016/j.celrep.2023.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common lethal primary brain cancer in adults. Despite treatment regimens including surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, growth of residual tumor leads to therapy resistance and death. At recurrence, a quarter to a third of all gliomas have hypermutated genomes, with mutational burdens orders of magnitude greater than in normal tissue. Here, we quantified the mutational landscape progression in a patient's primary and recurrent GBM, and we uncovered Cas9-targetable repeat elements. We show that CRISPR-mediated targeting of highly repetitive loci enables rapid elimination of GBM cells, an approach we term "genome shredding." Importantly, in the patient's recurrent GBM, we identified unique repeat sequences with TMZ mutational signature and demonstrated that their CRISPR targeting enables cancer-specific cell ablation. "Cancer shredding" leverages the non-coding genome and therapy-induced mutational signatures for targeted GBM cell depletion and provides an innovative paradigm to develop treatments for hypermutated glioma.
Collapse
Affiliation(s)
- I-Li Tan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexendar R Perez
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94131, USA; Silico Therapeutics, San Francisco, CA 94131, USA
| | - Rachel J Lew
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xiaoyu Sun
- Silico Therapeutics, San Francisco, CA 94131, USA
| | - Alisha Baldwin
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yong K Zhu
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mihir M Shah
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Jennifer A Doudna
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christof Fellmann
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
91
|
Wan Y, Li G, Deng J, Zhu H, Ma X. A gene signature predicting prognosis of patients with lower-grade gliomas receiving temozolomide therapy. Discov Oncol 2023; 14:202. [PMID: 37955724 PMCID: PMC10643648 DOI: 10.1007/s12672-023-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Temozolomide (TMZ) has been used as a first-line therapy against lower-grade gliomas (LGGs) combined with other chemotherapy drugs. However, there has been no reliable index predicting TMZ response of patients with LGGs. In this study, we aim to investigate the relationship between gene expressions and the prognosis of TMZ therapy in LGGs. We integrated transcriptome and clinical data of 171 LGGs from the Chinese Glioma Genome Atlas (CGGA). Consensus LASSO Cox regression was used to identify 14 key genes related to different clinical outcomes under TMZ chemotherapy. We constructed and evaluated a risk score based on the 14 genes. Patients with LGGs of lower risk scores (low-risk group) generally had better survival than those LGGs of higher risk scores (high-risk group), which is independent of clinicopathological factors. High-risk patients showed activation of innate and humoral-type immunity. The prognostic contribution of the risk score was validated in an independent validation cohort of 65 patients. Besides, combined with three independent predictors (grade, IDH1 mutation status, and chr1p19q co-deletion status), we further developed a nomogram to predict the benefit of TMZ treatment in LGGs. Our results indicate that a transcriptome-based index can optimize the treatment strategy for patients with LGGs under TMZ therapy.
Collapse
Affiliation(s)
- Yanzhi Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangqi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyue Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
92
|
Rautajoki KJ, Jaatinen S, Hartewig A, Tiihonen AM, Annala M, Salonen I, Valkonen M, Simola V, Vuorinen EM, Kivinen A, Rauhala MJ, Nurminen R, Maass KK, Lahtela SL, Jukkola A, Yli-Harja O, Helén P, Pajtler KW, Ruusuvuori P, Haapasalo J, Zhang W, Haapasalo H, Nykter M. Genomic characterization of IDH-mutant astrocytoma progression to grade 4 in the treatment setting. Acta Neuropathol Commun 2023; 11:176. [PMID: 37932833 PMCID: PMC10629206 DOI: 10.1186/s40478-023-01669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
As the progression of low-grade diffuse astrocytomas into grade 4 tumors significantly impacts patient prognosis, a better understanding of this process is of paramount importance for improved patient care. In this project, we analyzed matched IDH-mutant astrocytomas before and after progression to grade 4 from six patients (discovery cohort) with genome-wide sequencing, 21 additional patients with targeted sequencing, and 33 patients from Glioma Longitudinal AnalySiS cohort for validation. The Cancer Genome Atlas data from 595 diffuse gliomas provided supportive information. All patients in our discovery cohort received radiation, all but one underwent chemotherapy, and no patient received temozolomide (TMZ) before progression to grade 4 disease. One case in the discovery cohort exhibited a hypermutation signature associated with the inactivation of the MSH2 and DNMT3A genes. In other patients, the number of chromosomal rearrangements and deletions increased in grade 4 tumors. The cell cycle checkpoint gene CDKN2A, or less frequently RB1, was most commonly inactivated after receiving both chemo- and radiotherapy when compared to other treatment groups. Concomitant activating PDGFRA/MET alterations were detected in tumors that acquired a homozygous CDKN2A deletion. NRG3 gene was significantly downregulated and recurrently altered in progressed tumors. Its decreased expression was associated with poorer overall survival in both univariate and multivariate analysis. We also detected progression-related alterations in RAD51B and other DNA repair pathway genes associated with the promotion of error-prone DNA repair, potentially facilitating tumor progression. In our retrospective analysis of patient treatment and survival timelines (n = 75), the combination of postoperative radiation and chemotherapy (mainly TMZ) outperformed radiation, especially in the grade 3 tumor cohort, in which it was typically given after primary surgery. Our results provide further insight into the contribution of treatment and genetic alterations in cell cycle, growth factor signaling, and DNA repair-related genes to tumor evolution and progression.
Collapse
Affiliation(s)
- Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| | - Serafiina Jaatinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Aliisa M Tiihonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Iida Salonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Masi Valkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Vili Simola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Elisa M Vuorinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Anni Kivinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Minna J Rauhala
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Riikka Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Kendra K Maass
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro Oncology, German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sirpa-Liisa Lahtela
- Department of Oncology, Tampere University Hospital and Tays Cancer Centre, Tampere, Finland
| | - Arja Jukkola
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- Department of Oncology, Tampere University Hospital and Tays Cancer Centre, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Pauli Helén
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro Oncology, German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Pekka Ruusuvuori
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Joonas Haapasalo
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
93
|
Nejo T, Wang L, Leung KK, Wang A, Lakshmanachetty S, Gallus M, Kwok DW, Hong C, Chen LH, Carrera DA, Zhang MY, Stevers NO, Maldonado GC, Yamamichi A, Watchmaker P, Naik A, Shai A, Phillips JJ, Chang SM, Wiita AP, Wells JA, Costello JF, Diaz AA, Okada H. Challenges in the discovery of tumor-specific alternative splicing-derived cell-surface antigens in glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564156. [PMID: 37961484 PMCID: PMC10634890 DOI: 10.1101/2023.10.26.564156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter-and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of neoantigens. Results In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface neoantigens that could be targeted by antibodies and chimeric antigen receptor (CAR)-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas [TCGA]) and 9,166 normal tissue samples (from the Genotype-Tissue Expression project [GTEx]), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN , which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative neoantigens. Conclusions Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.
Collapse
|
94
|
Ruffle JK, Mohinta S, Pombo G, Gray R, Kopanitsa V, Lee F, Brandner S, Hyare H, Nachev P. Brain tumour genetic network signatures of survival. Brain 2023; 146:4736-4754. [PMID: 37665980 PMCID: PMC10629773 DOI: 10.1093/brain/awad199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 09/06/2023] Open
Abstract
Tumour heterogeneity is increasingly recognized as a major obstacle to therapeutic success across neuro-oncology. Gliomas are characterized by distinct combinations of genetic and epigenetic alterations, resulting in complex interactions across multiple molecular pathways. Predicting disease evolution and prescribing individually optimal treatment requires statistical models complex enough to capture the intricate (epi)genetic structure underpinning oncogenesis. Here, we formalize this task as the inference of distinct patterns of connectivity within hierarchical latent representations of genetic networks. Evaluating multi-institutional clinical, genetic and outcome data from 4023 glioma patients over 14 years, across 12 countries, we employ Bayesian generative stochastic block modelling to reveal a hierarchical network structure of tumour genetics spanning molecularly confirmed glioblastoma, IDH-wildtype; oligodendroglioma, IDH-mutant and 1p/19q codeleted; and astrocytoma, IDH-mutant. Our findings illuminate the complex dependence between features across the genetic landscape of brain tumours and show that generative network models reveal distinct signatures of survival with better prognostic fidelity than current gold standard diagnostic categories.
Collapse
Affiliation(s)
- James K Ruffle
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Samia Mohinta
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Guilherme Pombo
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert Gray
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Valeriya Kopanitsa
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faith Lee
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Harpreet Hyare
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
95
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
96
|
Delobel T, Ayala-Hernández LE, Bosque JJ, Pérez-Beteta J, Chulián S, García-Ferrer M, Piñero P, Schucht P, Murek M, Pérez-García VM. Overcoming chemotherapy resistance in low-grade gliomas: A computational approach. PLoS Comput Biol 2023; 19:e1011208. [PMID: 37983271 PMCID: PMC10695391 DOI: 10.1371/journal.pcbi.1011208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/04/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Low-grade gliomas are primary brain tumors that arise from glial cells and are usually treated with temozolomide (TMZ) as a chemotherapeutic option. They are often incurable, but patients have a prolonged survival. One of the shortcomings of the treatment is that patients eventually develop drug resistance. Recent findings show that persisters, cells that enter a dormancy state to resist treatment, play an important role in the development of resistance to TMZ. In this study we constructed a mathematical model of low-grade glioma response to TMZ incorporating a persister population. The model was able to describe the volumetric longitudinal dynamics, observed in routine FLAIR 3D sequences, of low-grade glioma patients acquiring TMZ resistance. We used the model to explore different TMZ administration protocols, first on virtual clones of real patients and afterwards on virtual patients preserving the relationships between parameters of real patients. In silico clinical trials showed that resistance development was deferred by protocols in which individual doses are administered after rest periods, rather than the 28-days cycle standard protocol. This led to median survival gains in virtual patients of more than 15 months when using resting periods between two and three weeks and agreed with recent experimental observations in animal models. Additionally, we tested adaptive variations of these new protocols, what showed a potential reduction in toxicity, but no survival gain. Our computational results highlight the need of further clinical trials that could obtain better results from treatment with TMZ in low grade gliomas.
Collapse
Affiliation(s)
- Thibault Delobel
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Sorbonne Université, Paris, France
| | - Luis E. Ayala-Hernández
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Departamento de Ciencias Exactas y Tecnología Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | - Jesús J. Bosque
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Julián Pérez-Beteta
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Salvador Chulián
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Mathematics, Universidad de Cádiz, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | - Pilar Piñero
- Department of Radiology, Virgen del Rocío University Hospital, Seville, Spain
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital Bern and University Hospital, Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery, Inselspital Bern and University Hospital, Bern, Switzerland
| | - Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
97
|
Kinslow CJ, Rae AI, Taparra K, Kumar P, Siegelin MD, Grinband J, Gill BJA, McKhann GM, Sisti MB, Bruce JN, Canoll PD, Iwamoto FM, Horowitz DP, Kachnic LA, Neugut AI, Yu JB, Cheng SK, Wang TJC. MGMT Promoter Methylation Predicts Overall Survival after Chemotherapy for 1p/19q-Codeleted Gliomas. Clin Cancer Res 2023; 29:4399-4407. [PMID: 37611077 PMCID: PMC10872921 DOI: 10.1158/1078-0432.ccr-23-1295] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE While MGMT promoter methylation (mMGMT) is predictive of response to alkylating chemotherapy and guides treatment decisions in glioblastoma, its role in grade 2 and 3 glioma remains unclear. Recent data suggest that mMGMT is prognostic of progression-free survival in 1p/19q-codeleted oligodendrogliomas, but an effect on overall survival (OS) has not been demonstrated. EXPERIMENTAL DESIGN We identified patients with newly diagnosed 1p/19q-codeleted gliomas and known MGMT promoter status in the National Cancer Database from 2010 to 2019. Multivariable Cox proportional hazards regression modeling was used to assess the effect of mMGMT on OS after adjusting for age, sex, race, comorbidity, grade, extent of resection, chemotherapy, and radiotherapy. RESULTS We identified 1,297 eligible patients, 938 (72.3%) of whom received chemotherapy in their initial course of treatment. The MGMT promoter was methylated in 1,009 (77.8%) patients. Unmethylated MGMT (uMGMT) was associated with worse survival compared with mMGMT [70% {95% confidence interval (CI), 64%-77%} vs. 81% (95% CI, 78%-85%); P < 0.001; adjusted HR (aHR), 2.35 (95% CI, 1.77-3.14)]. uMGMT was associated with worse survival in patients who received chemotherapy [63% (95% CI, 55-73%) vs. 80% (95% CI, 76%-84%); P < 0.001; aHR, 2.61 (95% CI, 1.89-3.60)] but not in patients who did not receive chemotherapy [P = 0.38; HR, 1.31 (95% CI, 0.71-2.42)]. Similar results were observed regardless of World Health Organization grade and after single- or multiagent chemotherapy. CONCLUSIONS Our study demonstrates an association between mMGMT and OS in 1p/19q-codeleted gliomas. MGMT promoter status should be considered as a stratification factor in future clinical trials of 1p/19q-codeleted gliomas that use OS as an endpoint.
Collapse
Affiliation(s)
- Connor J. Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Ali I. Rae
- Department of Neurological Surgery, Oregon Health & Sciences University, 3181 SW Sam Jackson Pkwy, Portland, OR 97239
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305
| | - Prashanth Kumar
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
| | - Markus D. Siegelin
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Departments of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St. Nicholas Ave Rm. 1001 New York, NY 10032
| | - Jack Grinband
- Program in Imaging and Cognitive Sciences, Columbia University, New York, New York 10032, USA
- David Mahoney Center for Brain and Behavior Research, Columbia University, New York, New York 10032, USA
| | - Brian J. A. Gill
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Guy M. McKhann
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Michael B. Sisti
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Jeffrey N. Bruce
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Peter D. Canoll
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305
| | - Fabio M. Iwamoto
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - David P. Horowitz
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Lisa A. Kachnic
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Alfred I. Neugut
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY 10032
| | - James B. Yu
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Simon K. Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Tony J. C. Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| |
Collapse
|
98
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562506. [PMID: 37905107 PMCID: PMC10614844 DOI: 10.1101/2023.10.16.562506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
99
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-2367368. [PMID: 37886584 PMCID: PMC10602147 DOI: 10.21203/rs.3.rs-2367368/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
100
|
Mu Q, Chai R, Pang B, Yang Y, Liu H, Zhao Z, Bao Z, Song D, Zhu Z, Yan M, Jiang B, Mo Z, Tang J, Sa JK, Cho HJ, Chang Y, Chan KHY, Loi DSC, Tam SST, Chan AKY, Wu AR, Liu Z, Poon WS, Ng HK, Chan DTM, Iavarone A, Nam DH, Jiang T, Wang J. Identifying predictors of glioma evolution from longitudinal sequencing. Sci Transl Med 2023; 15:eadh4181. [PMID: 37792958 DOI: 10.1126/scitranslmed.adh4181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that CDKN2A deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, MYC gain or MYC-target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by MYC gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.
Collapse
Affiliation(s)
- Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518045, China
| | - Ruichao Chai
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Hanjie Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhaoshi Bao
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dong Song
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zhihan Zhu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Mengli Yan
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Biaobin Jiang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
| | - Yuzhou Chang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kaitlin Hao Yi Chan
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Danson Shek Chun Loi
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Sindy Sing Ting Tam
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Aden Ka Yin Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wai Sang Poon
- CUHK Otto Wong Brain Tumour Centre, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ho Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Danny Tat Ming Chan
- CUHK Otto Wong Brain Tumour Centre, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 110745, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 110745, Korea
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing 100070, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518045, China
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, SAR 999077, China
| |
Collapse
|