51
|
Tataroglu O, Emery P. Studying circadian rhythms in Drosophila melanogaster. Methods 2014; 68:140-50. [PMID: 24412370 DOI: 10.1016/j.ymeth.2014.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022] Open
Abstract
Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research.
Collapse
Affiliation(s)
- Ozgur Tataroglu
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States.
| |
Collapse
|
52
|
Li Y, Rosbash M. Accelerated degradation of perS protein provides insight into light-mediated phase shifting. J Biol Rhythms 2013; 28:171-82. [PMID: 23735496 DOI: 10.1177/0748730413489797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phase resetting by light is an important feature of circadian rhythms, and the current Drosophila model focuses on light-mediated degradation of the clock protein TIMELESS (TIM). PERIOD (PER) is the binding partner of TIM and a major repressor of the molecular clock, but direct evidence of PER in phase resetting is lacking. Because light sensitivity of the per(S) short period mutant strain is strongly enhanced compared with wild-type strains, we assayed the importance of PER degradation for light-induced phase shifting. The per(S) protein (PERS) is markedly less stable than wild-type PER, in tissue culture and in flies, and PERS as well as PER is stabilized by TIM in both systems. Consistent with this finding, light-induced TIM degradation appears to trigger PER degradation. Moreover, TIM degradation is similar in the clock neurons of both strains, suggesting that it is not strongly affected by PERS and does not dictate the difference in the light response. In contrast, there is a dramatic quantitative difference between PER and PERS degradation in these neurons, indicating that PER degradation dictates the enhanced amplitude of the light-induced phase response. The data indicate that TIM inhibits PER degradation and that PER degradation follows light-mediated TIM degradation within circadian neurons; PER degradation then dictates qualitative as well as quantitative features of light-mediated phase-resetting.
Collapse
Affiliation(s)
- Yue Li
- Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
53
|
Yadav P, Sharma VK. Environmentally-induced modulations of developmental rates do not affect the selection-mediated changes in pre-adult development time of fruit flies Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:729-737. [PMID: 23685003 DOI: 10.1016/j.jinsphys.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
In a previous study we had shown that 55 generations of selection for faster egg-to-adult development in fruit flies Drosophila melanogaster results in shortening of pre-adult duration by ~29-h (~12.5%) and speeding-up of circadian clock period (τ) by ~0.5-h, implying a positive correlation between development time and τ. In Drosophila, change in ambient temperature is known to alter the rate of pre-adult development but not the speed of circadian clocks whereas 12:12-h warm/cold (WC) cycles are likely to alter both pre-adult development rate and τ (via entrainment). To study the effect of overall speeding-up/slowing-down of pre-adult development and circadian clocks on the selection-mediated difference in pre-adult development time, we subjected developing flies to the following conditions: (i) different ambient temperatures (18, 25 and 29°C) under constant darkness (DD) to alter the rate of pre-adult development, or (ii) cyclic WC conditions (WC1-25:18 or WC2-29:25°C) to alter rate of development and τ. The results revealed that the selected (FD) stocks develop faster than controls (BD) by ~52, 28 and 21-h, at 18, 25 and 29°C, respectively, and by 28 and 26-h under WC1 and WC2, respectively. The τ of activity/rest rhythm decreased considerably at 18°C but it did not differ between the FD and BD flies, which suggests a break-down of correlation between development time and τ, seen under their normal rearing conditions (constant darkness--DD at 25°C). While the absolute difference in development time between FD and BD stocks increased or decreased under cooler or warmer conditions, the relative difference in their pre-adult development time remained largely unaltered. These results suggest that manipulations in ambient conditions independently changes development time and τ, resulting in a break-down of the genetic correlation between them.
Collapse
Affiliation(s)
- Pankaj Yadav
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore, Karnataka, India
| | | |
Collapse
|
54
|
Hardin PE, Panda S. Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol 2013; 23:724-31. [PMID: 23731779 DOI: 10.1016/j.conb.2013.02.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
Daily rhythms in animal behavior, physiology and metabolism are driven by cell-autonomous clocks that are synchronized by environmental cycles, but maintain ∼24 hours rhythms even in the absence of environmental cues. These clocks keep time and control overt rhythms via interlocked transcriptional feedback loops, making it imperative to define the mechanisms that drive rhythmic transcription within these loops and on a genome-wide scale. Recent work identifies novel post-transcriptional and post-translational mechanisms that govern progression through these feedback loops to maintain a period of ∼24 hours. Likewise, new microarray and deep sequencing studies reveal interplay among clock activators, chromatin remodeling and RNA Pol II binding to set the phase of gene transcription and drive post-transcriptional regulatory systems that may greatly increase the proportion of genes that are under clock control. Despite great progress, gaps in our understanding of how feedback loop transcriptional programs maintain ∼24 hours cycles and drive overt rhythms remain.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, United States.
| | | |
Collapse
|
55
|
Abstract
Chronobiological disorders and syndromes include seasonal affective disorder (SAD), total blindness, advanced and delayed sleep phase syndrome, jet lag, and shift work maladaptation. These disorders are treated by adjusting circadian phase, using appropriately timed bright light exposure and melatonin administration (at doses of 0.5 mg or less). In some cases, it may be necessary to measure internal circadían phase, using the time when endogenous melatonin levels rise.
Collapse
Affiliation(s)
- Alfred J Lewy
- Sleep and Mood Disorders Laboratory, Oregon Health Science University, Portland, Ore, USA
| |
Collapse
|
56
|
Kamae Y, Tomioka K. timeless is an essential component of the circadian clock in a primitive insect, the firebrat Thermobia domestica. J Biol Rhythms 2012; 27:126-34. [PMID: 22476773 DOI: 10.1177/0748730411435997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies show that the timeless (tim) gene is not an essential component of the circadian clock in some insects. In the present study, we have investigated whether the tim gene was originally involved in the insect clock or acquired as a clock component later during the course of evolution using an apterygote insect, Thermobia domestica. A cDNA of the clock gene tim (Td'tim) was cloned, and its structural analysis showed that Td'TIM includes 4 defined functional domains, that is, 2 regions for dimerization with PERIOD (PER-1, PER-2), nuclear localization signal (NLS), and cytoplasmic localization domain (CLD), like Drosophila TIM. Td'tim exhibited rhythmic expression in its mRNA levels with a peak during late day to early night in LD, and the rhythm persisted in DD. A single injection of double-stranded RNA (dsRNA) of Td'tim (dstim) into the abdomen of adult firebrats effectively knocked down mRNA levels of Td'tim and abolished its rhythmic expression. Most dsRNA-injected firebrats lost their circadian locomotor rhythm in DD up to 30 days after injection. DsRNA of cycle (cyc) and Clock genes also abolished the rhythmic expression of Td'tim mRNA by knocking down Td'tim mRNA to its basal level of intact firebrats, suggesting that the underlying molecular clock of firebrats resembles that of Drosophila. Interestingly, however, dstim also reduced cyc mRNA to its basal level of intact animals and eliminated its rhythmic expression, suggesting the involvement of Td'tim in the regulation of cyc expression. These results suggest that tim is an essential component of the circadian clock of the primitive insect T. domestica; thus, it might have been involved in the clock machinery from a very early stage of insect evolution, but its role might be different from that in Drosophila.
Collapse
Affiliation(s)
- Yuichi Kamae
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
57
|
Abstract
For 20 years, researchers have thought that circadian clocks are defined by feedback loops of transcription and translation. The rediscovery of posttranslational circadian oscillators in diverse organisms forces us to rethink this paradigm. Meanwhile, the original "basic" feedback loops of canonical circadian clocks have swelled to include dozens of additional proteins acting in interlocked loops. We review several self-sustained clock mechanisms and propose that minimum requirements for diurnal timekeeping might be simpler than those of actual free-running circadian oscillators. Thus, complex mechanisms of circadian timekeeping might have evolved from random connections between unrelated feedback loops with independent but limited time-telling capability.
Collapse
Affiliation(s)
- Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland.
| | | | | |
Collapse
|
58
|
Peppas NA, Leobandung W. Stimuli-sensitive hydrogels: ideal carriers for chronobiology and chronotherapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:125-44. [PMID: 15109093 DOI: 10.1163/156856204322793539] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of solid-phase peptide synthesis in the early 1960s and recombinant DNA technology in the early 1970s boosted the scientific interest of utilizing proteins and peptides as potential therapeutic agents to battle poorly controlled diseases. While there has been rapid progress in the development and synthesis of new proteins and peptides as potential therapeutic agents, the formulation and development of the associated delivery systems is lacking. The development of delivery systems is equally important due to the problems of stability, low bioavailability and short half-life of proteins and peptides. The main problem in this field is that low stability leads to low bioavailability. In this review we draw attention to chrono-pharmacological drug-delivery systems, which can be used to match the delivery of therapeutic agents with the biological rhythm. They are very important especially in endocrinology and in vaccine therapy. We show that the treatment of hypopituitary dwarfism by administration of human growth-hormone-releasing hormone (GHRH) is more effective when GHRH is administered in a pulsatile manner that exhibits a period characteristic of the patient's circadian rhythm. Here we examine how to design novel chrono-pharmacological drug-delivery systems that should be able to release the therapeutic agents at predetermined intervals.
Collapse
Affiliation(s)
- Nicholas A Peppas
- The University of Texas, Departments of Chemical Engineering and Biomedical Engineering and Division of Pharmaceutics, 1 University Station, C0400, CPE 3.466, Austin, TX 78712-0231, USA.
| | | |
Collapse
|
59
|
Özkaya Ö, Rosato E. The Circadian Clock of the Fly: A Neurogenetics Journey Through Time. GENE-ENVIRONMENT INTERPLAY 2012; 77:79-123. [DOI: 10.1016/b978-0-12-387687-4.00004-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Relógio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol 2011; 7:e1002309. [PMID: 22194677 PMCID: PMC3240597 DOI: 10.1371/journal.pcbi.1002309] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/31/2011] [Indexed: 12/11/2022] Open
Abstract
The circadian clock is accountable for the regulation of internal rhythms in most living organisms. It allows the anticipation of environmental changes during the day and a better adaptation of physiological processes. In mammals the main clock is located in the suprachiasmatic nucleus (SCN) and synchronizes secondary clocks throughout the body. Its molecular constituents form an intracellular network which dictates circadian time and regulates clock-controlled genes. These clock-controlled genes are involved in crucial biological processes including metabolism and cell cycle regulation. Its malfunction can lead to disruption of biological rhythms and cause severe damage to the organism. The detailed mechanisms that govern the circadian system are not yet completely understood. Mathematical models can be of great help to exploit the mechanism of the circadian circuitry. We built a mathematical model for the core clock system using available data on phases and amplitudes of clock components obtained from an extensive literature search. This model was used to answer complex questions for example: how does the degradation rate of Per affect the period of the system and what is the role of the ROR/Bmal/REV-ERB (RBR) loop? Our findings indicate that an increase in the RNA degradation rate of the clock gene Period (Per) can contribute to increase or decrease of the period--a consequence of a non-monotonic effect of Per transcript stability on the circadian period identified by our model. Furthermore, we provide theoretical evidence for a potential role of the RBR loop as an independent oscillator. We carried out overexpression experiments on members of the RBR loop which lead to loss of oscillations consistent with our predictions. These findings challenge the role of the RBR loop as a merely auxiliary loop and might change our view of the clock molecular circuitry and of the function of the nuclear receptors (REV-ERB and ROR) as a putative driving force of molecular oscillations.
Collapse
Affiliation(s)
- Angela Relógio
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Current model for circadian rhythms is wrong both theoretically and practically. A new model, called yin yang model, is proposed to explain the mechanism of circadian rhythms. The yin yang model separate circadian activities in a circadian system into yin (night activities) and yang (day activities) and a circadian clock into a day clock and a night clock. The day clock is the product of night activities, but it promotes day activities; the night clock is the product of day activities, but it promotes night activities. The clock maintains redox or energy homeostasis of the internal environment and allows temporal separations between biological processes with opposite impacts on the internal environment of a circadian system.
Collapse
Affiliation(s)
- HONGTAO MIN
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
62
|
King HA, Hoelz A, Crane BR, Young MW. Structure of an enclosed dimer formed by the Drosophila period protein. J Mol Biol 2011; 413:561-72. [PMID: 21907720 DOI: 10.1016/j.jmb.2011.08.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022]
Abstract
Period (PER) is the major transcription inhibitor in metazoan circadian clocks and lies at the center of several feedback loops that regulate gene expression. Dimerization of Drosophila PER influences nuclear translocation, repressor activity, and behavioral rhythms. The structure of a central, 346-residue PER fragment reveals two associated PAS (Per-Arnt-Sim) domains followed by a protruding α-helical extension (αF). A closed, pseudo-symmetric dimer forms from a cross handshake interaction of the N-terminal PAS domain with αF of the opposing subunit. Strikingly, a shift of αF against the PAS β-sheet generates two alternative subunit interfaces in the dimer. Taken together with a previously reported PER structure in which αF extends, these data indicate that αF unlatches to switch association of PER with itself to its partner Timeless. The variable positions of the αF helix provide snapshots of a helix dissociation mechanism that has relevance to other PAS protein systems. Conservation of PER interaction residues among a family of PAS-AB-containing transcription factors suggests that contacts mediating closed PAS-AB dimers serve a general function.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
63
|
Pitman JL, Bonnet DJ, Curtiss LK, Gekakis N. Reduced cholesterol and triglycerides in mice with a mutation in Mia2, a liver protein that localizes to ER exit sites. J Lipid Res 2011; 52:1775-86. [PMID: 21807889 DOI: 10.1194/jlr.m017277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Through forward genetic screening in the mouse, a recessive mutation (couch potato, cpto) has been discovered that dramatically reduces plasma cholesterol levels across all lipoprotein classes. The cpto mutation altered a highly conserved residue in the Src homology domain 3 (SH3) domain of the Mia2 protein. Full-length hepatic Mia2 structurally and functionally resembled the related Mia3 protein. Mia2 localized to endoplasmic reticulum (ER) exit sites, suggesting a role in guiding proteins from the ER to the Golgi. Similarly to the Mia3 protein, Mia2's cytosolic C terminus interacted directly with COPII proteins Sec23 and Sec24, whereas its lumenal SH3 domain may facilitate interactions with secretory cargo. Fractionation of plasma revealed that Mia2(cpto/cpto) mice had lower circulating VLDL, LDL, HDL, and triglycerides. Mia2 is thus a novel, hepatic, ER-to-Golgi trafficking protein that regulates cholesterol metabolism.
Collapse
Affiliation(s)
- Jeffrey L Pitman
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
64
|
Koštál V. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? JOURNAL OF INSECT PHYSIOLOGY 2011; 57:538-556. [PMID: 21029738 DOI: 10.1016/j.jinsphys.2010.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The photoperiodic calendar is a seasonal time measurement system which allows insects to cope with annual cycles of environmental conditions. Seasonal timing of entry into diapause is the most often studied photoperiodic response of insects. Research on insect photoperiodism has an approximately 80-year-old tradition. Despite that long history, the physiological mechanisms underlying functionality of the photoperiodic calendar remain poorly understood. Thus far, a consensus has not been reached on the role of another time measurement system, the biological circadian clock, in the photoperiodic calendar. Are the two systems physically separated and functionally independent, or do they cooperate, or is it a single system with dual output? The relationship between calendar and clock functions are the focus of this review, with particular emphasis on the potential roles of circadian clock genes, and the circadian clock system as a whole, in the transduction pathway for photoperiodic token stimulus to the overt expression of facultative diapause.
Collapse
Affiliation(s)
- Vladimír Koštál
- Institute of Entomology, Academy of Sciences of the Czech Republic, Department of Ecophysiology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
65
|
Hogenesch JB, Herzog ED. Intracellular and intercellular processes determine robustness of the circadian clock. FEBS Lett 2011; 585:1427-34. [PMID: 21536033 DOI: 10.1016/j.febslet.2011.04.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022]
Abstract
Circadian clocks are present in most organisms and provide an adaptive mechanism to coordinate physiology and behavior with predictable changes in the environment. Genetic, biochemical, and cellular experiments have identified more than a dozen component genes and a signal transduction pathway that support cell-autonomous, circadian clock function. One of the hallmarks of biological clocks is their ability to reset to relevant stimuli while ignoring most others. We review recent results showing intracellular and intercellular mechanisms that convey this robust timekeeping to a variety of circadian cell types.
Collapse
Affiliation(s)
- John B Hogenesch
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
66
|
|
67
|
Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. ADVANCES IN GENETICS 2011; 74:141-73. [PMID: 21924977 DOI: 10.1016/b978-0-12-387690-4.00005-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene-the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail and provide an in-depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shifts to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here, I review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24-h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&MUniversity, College Station, USA
| |
Collapse
|
68
|
Affiliation(s)
- Fred W Turek
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|
69
|
Danbara Y, Sakamoto T, Uryu O, Tomioka K. RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1738-1745. [PMID: 20637213 DOI: 10.1016/j.jinsphys.2010.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
Molecular studies revealed that autoregulatory negative feedback loops consisting of so-called "clock genes" constitute the circadian clock in Drosophila. However, this hypothesis is not fully supported in other insects and is thus to be examined. In the cricket Gryllus bimaculatus, we have previously shown that period (per) plays an essential role in the rhythm generation. In the present study, we cloned cDNA of the clock gene timeless (tim) and investigated its role in the cricket circadian oscillatory mechanism using RNA interference. Molecular structure of the cricket tim has rather high similarity to those of other insect species. Real-time RT-PCR analysis revealed that tim mRNA showed rhythmic expression in both LD and DD similar to that of per, peaking during the (subjective) night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in DD, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.
Collapse
Affiliation(s)
- Yoshiki Danbara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
70
|
Bechtel W, Abrahamsen A. Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2010; 41:321-333. [PMID: 21466124 DOI: 10.1016/j.shpsa.2010.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We consider computational modeling in two fields: chronobiology and cognitive science. In circadian rhythm models, variables generally correspond to properties of parts and operations of the responsible mechanism. A computational model of this complex mechanism is grounded in empirical discoveries and contributes a more refined understanding of the dynamics of its behavior. In cognitive science, on the other hand, computational modelers typically advance de novo proposals for mechanisms to account for behavior. They offer indirect evidence that a proposed mechanism is adequate to produce particular behavioral data, but typically there is no direct empirical evidence for the hypothesized parts and operations. Models in these two fields differ in the extent of their empirical grounding, but they share the goal of achieving dynamic mechanistic explanation. That is, they augment a proposed mechanistic explanation with a computational model that enables exploration of the mechanism's dynamics. Using exemplars from circadian rhythm research, we extract six specific contributions provided by computational models. We then examine cognitive science models to determine how well they make the same types of contributions. We suggest that the modeling approach used in circadian research may prove useful in cognitive science as researchers develop procedures for experimentally decomposing cognitive mechanisms into parts and operations and begin to understand their nonlinear interactions.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, the Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
71
|
Fathallah-Shaykh HM, Bona JL, Kadener S. Mathematical model of the Drosophila circadian clock: loop regulation and transcriptional integration. Biophys J 2010; 97:2399-408. [PMID: 19883582 DOI: 10.1016/j.bpj.2009.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 08/03/2009] [Accepted: 08/12/2009] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic circadian clocks include interconnected positive and negative feedback loops. The clock-cycle dimer (CLK-CYC) and its homolog, CLK-BMAL1, are key transcriptional activators of central components of the Drosophila and mammalian circadian networks, respectively. In Drosophila, negative loops include period-timeless and vrille; positive loops include par domain protein 1. Clockwork orange (CWO) is a recently discovered negative transcription factor with unusual effects on period, timeless, vrille, and par domain protein 1. To understand the actions of this protein, we introduced a new system of ordinary differential equations to model regulatory networks. The model is faithful in the sense that it replicates biological observations. CWO loop actions elevate CLK-CYC; the transcription of direct targets responds by integrating opposing signals from CWO and CLK-CYC. Loop regulation and integration of opposite transcriptional signals appear to be central mechanisms as they also explain paradoxical effects of period gain-of-function and null mutations.
Collapse
Affiliation(s)
- Hassan M Fathallah-Shaykh
- The University of Alabama at Birmingham, Department of Neurology, The UAB Comprehensive Neuroscience Center, Birmingham, Alabama, USA.
| | | | | |
Collapse
|
72
|
|
73
|
CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 2009; 106:15744-9. [PMID: 19805222 DOI: 10.1073/pnas.0908733106] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A striking feature of the circadian clock is its flexible yet robust response to various environmental conditions. To analyze the biochemical processes underlying this flexible-yet-robust characteristic, we examined the effects of 1,260 pharmacologically active compounds in mouse and human clock cell lines. Compounds that markedly (>10 s.d.) lengthened the period in both cell lines, also lengthened it in central clock tissues and peripheral clock cells. Most compounds inhibited casein kinase Iepsilon (CKIepsilon) or CKIdelta phosphorylation of the PER2 protein. Manipulation of CKIepsilon/delta-dependent phosphorylation by these compounds lengthened the period of the mammalian clock from circadian (24 h) to circabidian (48 h), revealing its high sensitivity to chemical perturbation. The degradation rate of PER2, which is regulated by CKIepsilon/delta-dependent phosphorylation, was temperature-insensitive in living clock cells, yet sensitive to chemical perturbations. This temperature-insensitivity was preserved in the CKIepsilon/delta-dependent phosphorylation of a synthetic peptide in vitro. Thus, CKIepsilon/delta-dependent phosphorylation is likely a temperature-insensitive period-determining process in the mammalian circadian clock.
Collapse
|
74
|
Hennig S, Strauss HM, Vanselow K, Yildiz Ö, Schulze S, Arens J, Kramer A, Wolf E. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol 2009; 7:e94. [PMID: 19402751 PMCID: PMC2671562 DOI: 10.1371/journal.pbio.1000094] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/13/2009] [Indexed: 01/17/2023] Open
Abstract
PERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal α-helices (αE and αF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix αF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the αF helix. Moreover, we have solved the crystal structure of a PAS domain fragment of the mouse PERIOD homologue mPER2. The mPER2 structure shows a different dimer interface than dPER, which is stabilized by interactions of the PAS-B β-sheet surface including tryptophane 419 (equivalent to Trp482dPER). We have validated and quantitatively analysed the homodimer interactions of dPER and mPER2 by site-directed mutagenesis using analytical gel filtration, analytical ultracentrifugation, and co-immunoprecipitation experiments. Furthermore we show, by yeast-two-hybrid experiments, that the PAS-B β-sheet surface of dPER mediates interactions with TIMELESS (dTIM). Our study reveals quantitative and qualitative differences between the homodimeric PAS domain interactions of dPER and its mammalian homologue mPER2. In addition, we identify the PAS-B β-sheet surface as a versatile interaction site mediating mPER2 homodimerization in the mammalian system and dPER-dTIM heterodimer formation in the Drosophila system. Most organisms have daily activity cycles (circadian rhythms), which are generated by circadian clocks. Circadian periodicity is produced by specific clock protein interactions and posttranslational modifications as well as changes in their cellular localization, expression, and stability. To learn more about the molecular processes underlying circadian clock operation in fruit flies and mouse, we analysed the homo- and heterodimeric interactions of the clock proteins Drosophila PERIOD (dPER) and mouse PERIOD2 (mPER2). We show that dPER and mPER2 use different interaction surfaces for homodimer formation, which are associated with different dimerization affinities. In addition, we present a structure-based biochemical analysis of the heterodimeric interaction of dPER with its partner Drosophila TIMELESS (dTIM). We identify a versatile molecular surface of the PERIOD proteins, which mediates homodimer formation of mPER2 but is used for dPER-dTIM heterodimer formation in Drosophila. Our results reveal quantitative and qualitative differences in the molecular interactions of PERIOD clock proteins in flies and mammals, allowing them to adjust to their different binding partners and regulatory functions in these different organisms. Crystal structures and structure-based biochemical studies ofDrosophila PERIOD and mouse PERIOD2 circadian clock proteins reveal different homodimer interactions and identify a versatile molecular surface that mediates homodimerization of mouse PERIOD2 but is involved in heterodimeric interactions ofDrosophila PERIOD with TIMELESS.
Collapse
Affiliation(s)
- Sven Hennig
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Holger M Strauss
- Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | - Katja Vanselow
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Özkan Yildiz
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Sabrina Schulze
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Julia Arens
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Wolf
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
75
|
A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol 2009; 7:e3. [PMID: 19402744 PMCID: PMC2671555 DOI: 10.1371/journal.pbio.1000003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/12/2008] [Indexed: 01/13/2023] Open
Abstract
Circadian clocks in eukaryotes rely on transcriptional feedback loops, in which clock genes repress their own transcription resulting in molecular oscillations with a period of ∼24 h. In Drosophila, the clock proteins Period (PER) and Timeless (TIM) operate in such a feedback loop, whereby they first accumulate in the cytoplasm of clock cells as a heterodimer. Nuclear translocation of the complex or the individual PER and TIM proteins is followed by repression of per and tim transcription, whereby PER seems to act as the prime repressor. We found that in addition to PER:TIM complexes, functional PER:PER homodimers exist in flies. Specific disruption of PER homodimers results in drastically impaired behavioral and molecular rhythmicity, pointing the biological importance of this clock protein complex. Analysis of PER subcellular distribution and repressor competence in the PER dimer mutant revealed defects in PER nuclear translocation and a disruption of rhythmic period transcription. The striking similarity of these phenotypes with that of reduced CKII activity suggests that the formation or function of the PER dimer is closely linked to this kinase. Our results confirm a previous structural model for PER and provide strong evidence that PER homodimers are important for circadian clock function. The current models of circadian clocks in flies and mammals involve the formation of complexes between clock proteins in the cytoplasm. These complexes are usually heterodimers (that is, made up of two different clock proteins) and appear to enter the nucleus at certain times of the circadian day in order to shut down their own gene expression by deactivating specific transcription factors. After progressive phosphorylation the repressor proteins eventually are degraded so that a new cycle of transcription can begin. Here we present evidence that in addition to heterodimeric complexes, the clock protein PERIOD (PER) also forms homodimers (pairs of identical proteins). Based on a structural model a PER mutant was designed, which is not able to form homodimers but can still bind to its partner TIMELESS (TIM). Flies expressing this mutant PER protein show abnormal clock function in regard to PER nuclear translocation, repressor activity, and behavioral rhythms. The circadian clock model in flies therefore needs to be extended by adding the PER:PER homodimer as a functional unit. Recent structural studies with mammalian PER proteins suggest that homodimers between clock proteins are an important general feature of eukaryotic clocks. The circadian molecular clock model needs to be extended by adding the PERIOD:PERIOD homodimer as a functional unit in rhythm generation in Drosophila. Blocking this dimerization leads to faulty nuclear localization, reduced repressor activity, and impaired behavioral rhythms.
Collapse
|
76
|
Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM. CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. PLANT PHYSIOLOGY 2009; 150:834-43. [PMID: 19218364 PMCID: PMC2689956 DOI: 10.1104/pp.108.133272] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/05/2009] [Indexed: 05/18/2023]
Abstract
The circadian clock is an endogenous mechanism that coordinates biological processes with daily and seasonal changes in the environment. Heterodimerization of central clock components is an important way of controlling clock function in several different circadian systems. CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are Myb-related proteins that function in or close to the central oscillator in Arabidopsis (Arabidopsis thaliana). Single mutants of cca1 and lhy have a phenotype of short-period rhythms. cca1 lhy double mutants show an even shorter period phenotype than the cca1 single mutant, suggesting that CCA1 and LHY are only partially functionally redundant. To determine whether CCA1 and LHY act in parallel or synergistically in the circadian clock, we examined their expression in both light-grown and etiolated seedlings. We have shown that LHY and CCA1 bind to the same region of the promoter of a Light-harvesting chlorophyll a/b protein (Lhcb, also known as CAB). CCA1 and LHY can form homodimers, and they also colocalize in the nucleus and heterodimerize in vitro and in vivo. In Arabidopsis, CCA1 and LHY physically interact in a manner independent of photoperiod. Moreover, results from gel filtration chromatography indicate that CCA1 and LHY are present in the same large complex in plants. Taken together, these results imply that CCA1 and LHY function synergistically in regulating circadian rhythms of Arabidopsis.
Collapse
Affiliation(s)
- Sheen X Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | | | | | | | | |
Collapse
|
77
|
Wu Y, Cao G, Pavlicek B, Luo X, Nitabach MN. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol 2009; 6:e273. [PMID: 18986214 PMCID: PMC2577701 DOI: 10.1371/journal.pbio.0060273] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/25/2008] [Indexed: 11/19/2022] Open
Abstract
Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular communication in the circadian network is signaling between a subset of clock neurons that secrete the neuropeptide pigment dispersing factor (PDF) and clock neurons that possess its G protein-coupled receptor (PDFR). Furthermore, the specific hypothesis has been proposed that PDF-secreting clock neurons entrain the phase of organismal rhythms, and the cellular oscillations of other clock neurons, via the temporal patterning of secreted PDF signals. In order to test this hypothesis, we have devised a novel technique for altering the phase relationship between circadian transcriptional feedback oscillation and PDF secretion by using an ion channel-directed spider toxin to modify voltage-gated Na(+) channel inactivation in vivo. This technique relies on the previously reported "tethered-toxin" technology for cell-autonomous modulation of ionic conductances via heterologous expression of subtype-specific peptide ion channel toxins as chimeric fusion proteins tethered to the plasma membrane with a glycosylphosphatidylinositol (GPI) anchor. We demonstrate for the first time, to our knowledge, the utility of the tethered-toxin technology in a transgenic animal, validating four different tethered spider toxin ion channel modifiers for use in Drosophila. Focusing on one of these toxins, we show that GPI-tethered Australian funnel-web spider toxin delta-ACTX-Hv1a inhibits Drosophila para voltage-gated Na(+) channel inactivation when coexpressed in Xenopus oocytes. Transgenic expression of membrane-tethered delta-ACTX-Hv1a in vivo in the PDF-secreting subset of clock neurons induces rhythmic action potential bursts and depolarized plateau potentials. These in vitro and in vivo electrophysiological effects of membrane-tethered delta-ACTX-Hv1a are consistent with the effects of soluble delta-ACTX-Hv1a purified from venom on Na(+) channel physiological and biophysical properties in cockroach neurons. Membrane-tethered delta-ACTX-Hv1a expression in the PDF-secreting subset of clock neurons induces an approximately 4-h phase advance of the rhythm of PDF accumulation in their terminals relative to both the phase of the day:night cycle and the phase of the circadian transcriptional feedback loops. As a consequence, the morning anticipatory peak of locomotor activity preceding dawn, which has been shown to be driven by the clocks of the PDF-secreting subset of clock neurons, phase advances coordinately with the phase of the PDF rhythm of the PDF-secreting clock neurons, rather than maintaining its phase relationship with the day:night cycle and circadian transcriptional feedback loops. These results (1) validate the tethered-toxin technology for cell-autonomous modulation of ion channel biophysical properties in vivo in transgenic Drosophila, (2) demonstrate that the kinetics of para Na(+) channel inactivation is a key parameter for determining the phase relationship between circadian transcriptional feedback oscillation and PDF secretion, and (3) provide experimental support for the hypothesis that PDF-secreting clock neurons entrain the phase of organismal rhythms via the temporal patterning of secreted PDF signals.
Collapse
Affiliation(s)
- Ying Wu
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Guan Cao
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Beth Pavlicek
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xuan Luo
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Michael N Nitabach
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
78
|
Lauten E, Peppas N. Intelligent drug release using molecular imprinting methods Recognitive systems for angiotensin II. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50082-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
79
|
Tyson JJ, Hong CI, Thron CD, Novak B. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys J 2008; 77:2411-7. [PMID: 20540926 DOI: 10.1016/s0006-3495(99)77078-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1999] [Accepted: 08/10/1999] [Indexed: 11/30/2022] Open
Abstract
Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms persist with a period close to 1 day ("circadian"), but it is usually not exactly 24h. Recent discoveries have uncovered stunning similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the per(L) mutant phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more primitive, light-activated switch.
Collapse
Affiliation(s)
- J J Tyson
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
80
|
SADAKANE Y, HATANAKA Y. Development of New Method for Molecular Biology Using the Photophore, Diazirine. YAKUGAKU ZASSHI 2008; 128:1615-22. [DOI: 10.1248/yakushi.128.1615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yutaka SADAKANE
- School of Pharmaceutical Sceinces, Kyushu University of Health and Welfare
| | | |
Collapse
|
81
|
Moriyama Y, Sakamoto T, Karpova SG, Matsumoto A, Noji S, Tomioka K. RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus. J Biol Rhythms 2008; 23:308-18. [PMID: 18663238 DOI: 10.1177/0748730408320486] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Periodic expression of so-called clock genes is an essential part of the circadian clock. In Drosophila melanogaster the cyclic expression of per and tim through an autoregulatory feedback loop is believed to play a central role in circadian rhythm generation. However, it is still elusive whether this hypothesis is applicable to other insect species. Here it is shown that per gene plays a key role in the rhythm generation in the cricket Gryllus bimaculatus. Measurement of per mRNA levels in the optic lobe revealed the rhythmic expression of per in light cycles with a peak in the late day to early night, persisting in constant darkness. A single injection of per double-stranded RNA (dsRNA) into the abdomen of the final instar nymphs effectively knocked down the mRNA levels as adult to about 50% of control animals. Most of the per dsRNA-injected crickets completely lost the circadian locomotor activity rhythm in constant darkness up to 50 days after the injection, whereas those injected with DsRed2 dsRNA as a negative control clearly maintained it. The electrical activity of optic lobe efferents also became arrhythmic in the per dsRNA-injected crickets. These results not only suggest that per plays an important role in the circadian rhythm generation also in the cricket but also show that RNA interference is a powerful tool to dissect the molecular machinery of the cricket circadian clock.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Sandrelli F, Costa R, Kyriacou CP, Rosato E. Comparative analysis of circadian clock genes in insects. INSECT MOLECULAR BIOLOGY 2008; 17:447-463. [PMID: 18828836 DOI: 10.1111/j.1365-2583.2008.00832.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
After a slow start, the comparative analysis of clock genes in insects has developed into a mature area of study in recent years. Brain transplant or surgical interventions in larger insects defined much of the early work in this area, before the cloning of clock genes became possible. We discuss the evolution of clock genes, their key sequence differences, and their likely modes of regulation in several different insect orders. We also present their expression patterns in the brain, focusing particularly on Diptera, Lepidoptera, and Orthoptera, the most common non-genetic model insects studied. We also highlight the adaptive involvement of clock molecules in other complex phenotypes which require biological timing, such as social behaviour, diapause and migration.
Collapse
Affiliation(s)
- F Sandrelli
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | | | | |
Collapse
|
83
|
Dubruille R, Emery P. A Plastic Clock: How Circadian Rhythms Respond to Environmental Cues in Drosophila. Mol Neurobiol 2008; 38:129-45. [DOI: 10.1007/s12035-008-8035-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/27/2008] [Indexed: 11/24/2022]
|
84
|
Albrecht U, Bordon A, Schmutz I, Ripperger J. The multiple facets of Per2. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:95-104. [PMID: 18419266 DOI: 10.1101/sqb.2007.72.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Period 2 (Per2) gene is an important component of the circadian system. It appears to be not only part of the core oscillator mechanism, but also part of the input and output pathways of the clock. Because of its involvement at multiple levels of the circadian system, Per2 needs to meet a variety of different demands. We discuss how Per2 might be able to fulfill multiple functions by reviewing known facts and combine this with speculations based on these facts. This might provide new views about Per2 function and help to better understand diseases that are rooted in the circadian system.
Collapse
Affiliation(s)
- U Albrecht
- Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
85
|
Saez L, Meyer P, Young MW. A PER/TIM/DBT interval timer for Drosophila's circadian clock. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:69-74. [PMID: 18419263 DOI: 10.1101/sqb.2007.72.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian rhythms in Drosophila are supported by a negative feedback loop, in which PERIOD (PER) and Timeless (TIM) shut down their own transcription as they translocate once a day from the cytoplasm of clock-containing cells to the nucleus. Period length is partially determined by an interval of cytoplasmic retention of the TIM and PER proteins. To study this process, we examined PER/TIM/Doubletime (DBT) physical interactions and nuclear translocation by imaging individual cultured Drosophila cells. Using live cell video microscopy and green fluorescent protein (GFP) tags, we observed dynamic patterns of stability and localization for DBT, PER, and TIM that resembled those previously found in vivo. These studies suggest that a cytoplasmic interval timer regulates nuclear translocation of these proteins. The cultured cell assay provides a potent system to study interactions among new and known genes involved in the generation of circadian behavior.
Collapse
Affiliation(s)
- L Saez
- Laboratory of Genetics, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
86
|
Taylor P, Hardin PE. Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications. Mol Cell Biol 2008; 28:4642-52. [PMID: 18474612 PMCID: PMC2447118 DOI: 10.1128/mcb.01612-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/29/2007] [Accepted: 05/05/2008] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster circadian oscillator comprises interlocked per/tim and Clk transcriptional feedback loops. In the per/tim loop, CLK-CYC-dependent transcriptional activation is rhythmically repressed by PER or PER-TIM to control circadian gene expression that peaks around dusk. Here we show that rhythmic transcription of per and tim involves time-of-day-specific binding of CLK-CYC and associated cycles in chromatin modifications. Activation of per and tim transcription occurs in concert with CLK-CYC binding to upstream and/or intronic E-boxes, acetylation of histone H3-K9, and trimethylation of histone H3-K4. These events are associated with RNA polymerase II (Pol II) binding to the tim promoter and transcriptional elongation by Pol II that is constitutively bound to the per promoter. Repression of per and tim transcription is associated with PER-dependent reversal of these events. Rhythms in H3-K9 acetylation and H3-K4 trimethylation are also associated with CLOCK-BMAL1-dependent transcription in mammals, indicating that the mechanism that controls rhythmic transcription is a conserved feature of the circadian clock even though feedback repression is mediated by different proteins.
Collapse
Affiliation(s)
- Pete Taylor
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, College Station, Texas 77845-3258, USA
| | | |
Collapse
|
87
|
Wu Y, Cao G, Nitabach MN. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila. J Biol Rhythms 2008; 23:117-28. [PMID: 18375861 DOI: 10.1177/0748730407312984] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drosophila clock neurons exhibit self-sustaining cellular oscillations that rely in part on rhythmic transcriptional feedback loops. We have previously determined that electrical silencing of the pigment dispersing factor (PDF)-expressing lateral-ventral (LN(V)) pacemaker subset of fly clock neurons via expression of an inward-rectifier K(+) channel (Kir2.1) severely disrupts free-running rhythms of locomotor activity-most flies are arrhythmic and those that are not exhibit weak short-period rhythms-and abolishes LN(V) molecular oscillation in constant darkness. PDF is known to be an important LN(V) output signal. Here we examine the effects of electrical silencing of the LN(V) pacemakers on molecular rhythms in other, nonsilenced, subsets of clock neurons. In contrast to previously described cell-autonomous abolition of free-running molecular rhythms, we find that electrical silencing of the LN(V) pacemakers via Kir2.1 expression does not impair molecular rhythms in LN(D), DN1, and DN2 subsets of clock neurons. However, free-running molecular rhythms in these non-LN(V) clock neurons occur with advanced phase. Electrical silencing of LN(V)s phenocopies PDF null mutation (pdf (01) ) at both behavioral and molecular levels except for the complete abolition of free-running cellular oscillation in the LN(V)s themselves. LN(V) electrically silenced or pdf 01 flies exhibit weak free-running behavioral rhythms with short period, and the molecular oscillation in non-LN(V) neurons phase advances in constant darkness. That LN( V) electrical silencing leads to the same behavioral and non-LN( V) molecular phenotypes as pdf 01 suggests that persistence of LN(V) molecular oscillation in pdf 01 flies has no functional effect, either on behavioral rhythms or on non-LN(V) molecular rhythms. We thus conclude that functionally relevant signals from LN(V)s to non-LN(V) clock neurons and other downstream targets rely both on PDF signaling and LN(V) electrical activity, and that LN( V)s do not ordinarily send functionally relevant signals via PDF-independent mechanisms.
Collapse
Affiliation(s)
- Ying Wu
- Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
88
|
Schomerus C, Korf HW, Laedtke E, Moret F, Zhang Q, Wicht H. Nocturnal Behavior and RhythmicPeriodGene Expression in a Lancelet,Branchiostoma lanceolatum. J Biol Rhythms 2008; 23:170-81. [DOI: 10.1177/0748730407313363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors here present the first anatomical, molecular biological, and ethological data on the organization of the circadian system of a lancelet, Branchiostoma lanceolatum, a close invertebrate relative of vertebrates. B. lanceolatum was found to be a nocturnal animal and, since its rhythmic activity persisted under constant darkness, it also appears to possess an endogenous, circadian oscillator. The authors cloned a homolog of the clock gene Period ( Per), which plays a central (inhibitory) role in the biochemical machinery of the circadian oscillators of both vertebrates and protostomians. This gene from B. lanceolatum was designated as amphiPer. Both the sequence of its cDNA and that of the predicted protein are more similar to those of the Per paralogs of vertebrates than to those of the single protostomian Per gene. A strong expression of amphiPer was found in a small cell group in the anterior neural tube. The amphiPer mRNA levels fluctuated in a rhythmic manner, being high early in the day and low late at night. The authors' data suggest a homology of the amphiPer expessing cells to the suprachiasmatic nucleus of vertebrates.
Collapse
Affiliation(s)
- Christof Schomerus
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany,
| | - Horst-Werner Korf
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| | - Elke Laedtke
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| | | | - Qian Zhang
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| | - Helmut Wicht
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| |
Collapse
|
89
|
Abstract
Circadian ( approximately 24 hr) rhythms of behavior and physiology are driven by molecular clocks that are endogenous to most organisms. The mechanisms underlying these clocks are remarkably conserved across evolution and typically consist of auto-regulatory loops in which specific proteins (clock proteins) rhythmically repress expression of their own genes. Such regulation maintains 24-hr cycles of RNA and protein expression. Despite the conservation of these mechanisms, however, questions are now being raised about the relevance of different molecular oscillations. Indeed, several studies have demonstrated that oscillations of some critical clock genes can be eliminated without loss of basic clock function. Here, we describe the multiple levels at which clock gene/protein expression and function can be rhythmically regulated-transcription, protein expression, post-translational modification, and localization-and speculate as to which aspect of this regulation is most critical. While the review is focused on Drosophila, we include some discussion of mammalian clocks to indicate the extent to which the questions concerning clock mechanisms are similar, regardless of the organism under study.
Collapse
Affiliation(s)
- Xiangzhong Zheng
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
90
|
Ko HW, DiMassa S, Kim EY, Bae K, Edery I. Cis-combination of the classic per(S) and per(L) mutations results in arrhythmic Drosophila with ectopic accumulation of hyperphosphorylated PERIOD protein. J Biol Rhythms 2008; 22:488-501. [PMID: 18057324 DOI: 10.1177/0748730407306929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 1st circadian "clock" gene identified was the X-linked period (per) gene in Drosophila melanogaster. In the pioneering initial report, Konopka and Benzer (1971) characterized 3 alleles of per that shortened (per (S); approximately 19 h), lengthened (per (L); approximately 29 h), or abolished (per (0)) circadian behavioral rhythms. They also showed that transheterozygotes carrying the per (S) and per (L) mutations exhibit robust behavioral rhythms with nearly normal periods of approximately 23 h, highlighting the semidominant nature of many clock mutants. In this study, per (0) flies bearing a doubly mutated per transgene that carries both the per (S) and per (L) alleles (per (0); per (S/L)) were analyzed for behavioral and molecular rhythms. Unlike singly mutated versions, the per (0);per ( S/L) transgenic flies are arrhythmic in constant dark conditions and exhibit little, if any, entrainment to daily light-dark cycles. In a wildtype per (+) background, expression of per ( S/L) abolishes behavioral rhythms, indicating that it functions in a transdominant negative fashion. Biochemical analysis of head extracts revealed that only hyperphosphorylated isoforms of the PERS/L protein are detected throughout a daily cycle, and the levels remain constant. Intriguingly, little if any PERS/L is observed in key pacemaker neurons that control daily activity rhythms, consistent with the notion that hyperphosphorylated isoforms of PER are unstable. Nonetheless, PERS/L is detected in ectopic cells in the brain, in which it exhibits an unusual localization, mainly staining the periphery of the nucleus. These results suggest that posttranslational mechanisms play a key role in limiting the accumulation of PER to specific cells. On a broader scope, our results indicate that the semidominant effects of period-altering alleles observed in trans are not necessarily preserved in the cis-configuration and that novel phenotypes can emerge.
Collapse
Affiliation(s)
- Hyuk Wan Ko
- Graduate Program in Physiology and Neurobiology, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
91
|
Kim EY, Ko HW, Yu W, Hardin PE, Edery I. A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function. Mol Cell Biol 2007; 27:5014-28. [PMID: 17452449 PMCID: PMC1951477 DOI: 10.1128/mcb.02339-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/02/2007] [Accepted: 04/11/2007] [Indexed: 01/17/2023] Open
Abstract
A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins from hypo- to hyperphosphorylated species, events that are highly dependent on casein kinase 1 epsilon (termed DOUBLETIME [DBT] in Drosophila melanogaster) and necessary for normal clock progression. Drosophila PER (dPER) functions in the negative limb of the clockworks by presumably binding to the transcription factor CLOCK (CLK) and inhibiting its transactivation activity. Here, we identify a small region on dPER that is conserved with mammalian PERs and contains the major in vivo DBT binding domain, termed dPDBD (for dPER DBT binding domain). This domain is required for the manifestation of molecular and behavioral rhythms in vivo. In the absence of the dPDBD, the dPER protein is present at constant high levels throughout a daily cycle, undergoes little phosphorylation, and is severely impaired in its ability to function as a transcriptional repressor. Our findings indicate that the binding of dPER to CLK is not sufficient for transcriptional inhibition, implicating a more indirect mode of action whereby dPER acts as a molecular bridge to "deliver" DBT and/or other factors that directly repress CLK-dependent gene expression.
Collapse
Affiliation(s)
- Eun Young Kim
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
92
|
Boughner JC, Hallgrímsson B. Biological spacetime and the temporal integration of functional modules: A case study of dento–gnathic developmental timing. Dev Dyn 2007; 237:1-17. [DOI: 10.1002/dvdy.21383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
93
|
Somers DE, Fujiwara S, Kim WY, Suh SS. Posttranslational photomodulation of circadian amplitude. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:193-200. [PMID: 18419277 DOI: 10.1101/sqb.2007.72.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transcription-translation feedback loops that form our current view of how the core mechanism of the clock operates is being challenged, as more and more posttranslational events are seen as essential to a full understanding of oscillator function. But in addition to phosphorylation, other processes may be involved. Here, a novel mechanism of posttranslational photomodulation of circadian amplitude is described that uniquely ties together light perception, protein stabilization, and proteolysis. In the process, the waveform of a core clock component is sharpened or "sculpted," resulting in appropriately high amplitude and proper phasing to obtain normal clock function.
Collapse
Affiliation(s)
- D E Somers
- Department of Plant Cellular and Molecular Biology, Ohio State University Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
94
|
Rosbash M, Bradley S, Kadener S, Li Y, Luo W, Menet JS, Nagoshi E, Palm K, Schoer R, Shang Y, Tang CHA. Transcriptional feedback and definition of the circadian pacemaker in Drosophila and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:75-83. [PMID: 18419264 DOI: 10.1101/sqb.2007.72.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modern era of Drosophila circadian rhythms began with the landmark Benzer and Konopka paper and its definition of the period gene. The recombinant DNA revolution then led to the cloning and sequencing of this gene. This work did not result in a coherent view of circadian rhythm biochemistry, but experiments eventually gave rise to a transcription-centric view of circadian rhythm generation. Although these circadian transcription-translation feedback loops are still important, their contribution to core timekeeping is under challenge. Indeed, kinases and posttranslational regulation may be more important, based in part on recent in vitro work from cyanobacteria. In addition, kinase mutants or suspected kinase substrate mutants have unusually large period effects in Drosophila. This chapter discusses our recent experiments, which indicate that circadian transcription does indeed contribute to period determination in this system. We propose that cyanobacteria and animal clocks reflect two independent origins of circadian rhythms.
Collapse
Affiliation(s)
- M Rosbash
- Biology Department, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genes Dev 2006; 16:1352-65. [PMID: 17065608 PMCID: PMC1626637 DOI: 10.1101/gr.5094806] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/18/2006] [Indexed: 12/30/2022]
Abstract
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Collapse
Affiliation(s)
- Elad B. Rubin
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yair Shemesh
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mira Cohen
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sharona Elgavish
- The Bioinformatics Unit, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Guy Bloch
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
96
|
SAKAI T, KITAMOTO T. Clock, love and memory: Circadian and non-circadian regulation of Drosophila mating behavior by clock genes. Sleep Biol Rhythms 2006. [DOI: 10.1111/j.1479-8425.2006.00224.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Hardin PE. Essential and expendable features of the circadian timekeeping mechanism. Curr Opin Neurobiol 2006; 16:686-92. [PMID: 17011182 DOI: 10.1016/j.conb.2006.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/07/2006] [Accepted: 09/15/2006] [Indexed: 11/16/2022]
Abstract
Circadian clocks control behavioral, physiological and metabolic rhythms via one or more transcriptional feedback loops. In animals, two conserved feedback loops are thought to keep circadian time by mediating rhythmic transcription in opposite phases of the circadian cycle. Recent work in cyanobacteria nevertheless demonstrates that rhythmic transcription is dispensable for circadian timekeeping, raising the possibility that some features of the transcriptional feedback loops in animals are also expendable. Indeed, one of the two feedback loops is not necessary for circadian timekeeping in animals, but rhythmic transcription and post-translational modifications are both essential for keeping circadian time. These results not only confirm additional requirements within the animal circadian timekeeping mechanism, but also raise important questions about the function of conserved, yet expendable, features of the circadian timekeeping mechanism in animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology, Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
98
|
Abstract
The circadian clock percolates through every aspect of behaviour and physiology, and has wide implications for human and animal health. The molecular basis of the Drosophila circadian clock provides a model system that has remarkable similarities to that of mammals. The various cardinal clock molecules in the fly are outlined, and compared to those of their actual and 'functional' homologues in the mammal. We also focus on the evolutionary tinkering of these clock genes and compare and contrast the neuronal basis for behavioural rhythms between the two phyla.
Collapse
Affiliation(s)
- Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
99
|
Meyer P, Saez L, Young MW. PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 2006; 311:226-9. [PMID: 16410523 DOI: 10.1126/science.1118126] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In contrast to current models, fluorescence resonance energy transfer measurements using a single-cell imaging assay with fluorescent forms of PER and TIM showed that these proteins bind rapidly and persist in the cytoplasm while gradually accumulating in discrete foci. After approximately 6 hours, complexes abruptly dissociated, as PER and TIM independently moved to the nucleus in a narrow time frame. The per(L) mutation delayed nuclear accumulation in vivo and in our cultured cell system, but without affecting rates of PER/TIM assembly or dissociation. This finding points to a previously unrecognized form of temporal regulation that underlies the periodicity of the circadian clock.
Collapse
Affiliation(s)
- Pablo Meyer
- Laboratory of Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
100
|
Reddy KL, Rovani MK, Wohlwill A, Katzen A, Storti RV. The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Dev Biol 2006; 289:100-14. [PMID: 16313897 DOI: 10.1016/j.ydbio.2005.10.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 12/17/2022]
Abstract
PDP1 is a basic leucine zipper (bZip) transcription factor that is expressed at high levels in the muscle, epidermis, gut and fat body of the developing Drosophila embryo. We have identified three mutant alleles of Pdp1, each having a similar phenotype. Here, we describe in detail the Pdp1 mutant allele, Pdp1(p205), which is null for both Pdp1 RNA and protein. Interestingly, homozygous Pdp1(p205) embryos develop normally, hatch and become viable larvae. Analyses of Pdp1 null mutant embryos reveal that the overall muscle pattern is normal as is the patterning of the gut and fat body. Pdp1(p205) larvae also appear to have normal muscle and gut function and respond to ecdysone. These larvae, however, are severely growth delayed and arrested. Furthermore, although Pdp1 null larvae live a normal life span, they do not form pupae and thus do not give rise to eclosed flies. The stunted growth of Pdp1(p205) larvae is accompanied by defects in mitosis and endoreplication similar to that associated with nutritional deprivation. The cellular defects resulting from the Pdp1(p205) mutation are not cell autonomous. Moreover, PDP1 expression is sensitive to nutritional conditions, suggesting a link between nutrition, PDP1 isotype expression and growth. These results indicate that Pdp1 has a critical role in coordinating growth and DNA replication.
Collapse
Affiliation(s)
- Karen L Reddy
- Department of Biochemistry and Molecular Genetics M/C 669, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | |
Collapse
|