51
|
Navas MC, Stoll-Keller F, Pavlovic J. Lack of expression of hepatitis C virus core protein in human monocyte-erived dendritic cells using recombinant semliki forest virus. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus belongs to the Flaviviridae family. One proposed mechanism of HCV persistence in the ability to infect hematopoietic cells, including Dendritic cells (DCs). HCV infection of DCs could impair their functions that represent one of the mechanisms, thus hampering viral clearance by the host immune system. Among HCV-encoded proteins, the highly conserved Core protein has been suggested to be responsible for the immunomodulatory properties of this Hepacivirus. Recombinant viral vectors expressing the HCV Core protein and allowing its transduction and therefore the expression of the protein into DCs could be useful tools for the analysis of the properties of the Core protein. Vaccinia Virus and retrovirus have been used to transduce human DCs. Likewise, gene transfer into DCs using Semliki Forest Virus has been reported. This study aimed to express the HCV Core protein in human monocyte-derived DCs using an SFV vector, in which the subgenomic RNA encoding the structural proteins was replaced by the HCV Core sequence and then analyze the effects of its expression on DCs functions.
Collapse
|
52
|
Dvory-Sobol H, Han B, Lu J, Yu M, Beran RK, Cheng G, Martin R, Svarovskaia E, Mo H. In vitro resistance profile of hepatitis C virus NS5A inhibitor velpatasvir in genotypes 1 to 6. J Viral Hepat 2019; 26:991-1001. [PMID: 31009123 DOI: 10.1111/jvh.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
Velpatasvir is a pan-genotypic hepatitis C virus (HCV) NS5A inhibitor, which is used with sofosbuvir for treatment of infection with HCV genotypes 1-6. In vitro resistance studies were performed to characterize NS5A changes that might confer reduced velpatasvir susceptibility in vivo. Resistance selection studies using HCV replicon cells for subtypes 1a, 1b, 2a, 2b, 3a, 4a, 5a and 6a identified NS5A resistance-associated substitutions (RASs) at nine positions, most often 28M/S/T, 31F/I/M/P/V and 93D/H/N/S. In subtype 1a, RASs were selected at positions 31 and/or 93, while in subtype 1b, replicons with two or more RASs at positions 31, 54 or 93 were selected. Y93H was selected in subtypes 1a, 1b, 2a, 3a and 4a. In subtype 5a or 6a, L31P or P32L/Q was selected, respectively. Velpatasvir susceptibility of 358 replicons from genotypes 1 to 6 containing one or more NS5A RASs was also evaluated. The majority (63%) of subtypes 1a and 1b single RAS-containing replicons retained susceptibility to velpatasvir (<2.5-fold change in EC50 ). High levels of resistance to velpatasvir were observed for six single mutants in subtype 1a, including M28G, A92K, Y93H/N/R/W and for one mutant, A92K, in subtype 1b. Most single mutants in subtypes 2a, 2b, 3a, 4a and 5a displayed low levels of reduced velpatasvir susceptibility. High-level resistance was observed for C92T and Y93H/N in subtype 2b, Y93H/S in 3a, and L31V and P32A/L/Q/R in 6a, and several double mutants in these subtypes. Overall, velpatasvir maintained activity against most common RASs that are known to confer resistance to first-generation NS5A inhibitors.
Collapse
Affiliation(s)
| | - Bin Han
- Gilead Sciences, Foster City, California
| | - Julia Lu
- Gilead Sciences, Foster City, California
| | - Mei Yu
- Gilead Sciences, Foster City, California
| | | | | | | | | | - Hongmei Mo
- Gilead Sciences, Foster City, California
| |
Collapse
|
53
|
Pol S, Lagaye S. The remarkable history of the hepatitis C virus. Microbes Infect 2019; 21:263-270. [PMID: 31295571 DOI: 10.1016/j.micinf.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
The infection with the hepatitis C virus (HCV) is an example of the translational research success. The reciprocal interactions between clinicians and scientists have allowed in 30 years the initiation of empirical treatments by interferon, the discovery of the virus, the development of serological and virological tools for diagnosis but also for prognosis (the non-invasive biochemical or morphological fibrosis tests, the predictors of the specific immune response including genetic IL28B polymorphisms). Finally, well-tolerated and effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved in viral replication have been marketed this last decade, allowing the cure of all infected subjects. HCV chronic infection, which is a public health issue, is a hepatic disease which may lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic inflammation. The HCV infection is the only chronic viral infection which may be cured: the so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the end of the treatment, significantly reduces the risk of morbidity and mortality associated with hepatic and extra-hepatic manifestations which are mainly reversible. The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy to use for 8-12 weeks with one to three pills per day and little problems of tolerance. This explains the short 30 years from the virus discovery to the viral hepatitis elimination policy proposed by the World Health Organization (WHO) in 2016.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, Paris, France; Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France; INSERM UMS-20, Institut Pasteur, Paris, France; Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| | - Sylvie Lagaye
- Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| |
Collapse
|
54
|
Tiwari G, Srivastava AK, Kumar R, Kumar A. Quantum chemical and molecular docking studies on two potential hepatitis C virus inhibitors. MAIN GROUP CHEMISTRY 2019. [DOI: 10.3233/mgc-180699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gargi Tiwari
- Department of Physics, DDU Gorakhpur University, Gorakhpur, India
| | | | - Ratnesh Kumar
- Department of Physics, University of Lucknow, Lucknow, India
| | - Abhishek Kumar
- Department of Physics, University of Lucknow, Lucknow, India
| |
Collapse
|
55
|
Pol S, Lagaye S. The remarkable history of the hepatitis C virus. Genes Immun 2019; 20:436-446. [PMID: 31019253 DOI: 10.1038/s41435-019-0066-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The infection with the hepatitis C virus (HCV) is an example of the translational research success. The reciprocal interactions between clinicians and scientists have allowed in 30 years the initiation of empirical treatments by interferon, the discovery of the virus, the development of serological and virological tools for diagnosis but also for prognosis (the non-invasive biochemical or morphological fibrosis tests, the predictors of the specific immune response including genetic IL28B polymorphisms). Finally, well-tolerated and effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved in viral replication have been marketed this last decade, allowing the cure of all infected subjects. HCV chronic infection, which is a public health issue, is a hepatic disease, which may lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic inflammation. The HCV infection is the only chronic viral infection, which may be cured: the so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the end of the treatment, significantly reduces the risk of morbidity and mortality associated with hepatic and extra-hepatic manifestations, which are mainly reversible. The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy to use for 8-12 weeks with one to three pills per day and little problems of tolerance. This explains the short 30 years from the virus discovery to the viral hepatitis elimination policy proposed by the World Health Organization (WHO) in 2016.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, Paris, France. .,Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France. .,INSERM UMS-20, Institut Pasteur, Paris, France. .,Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France. .,INSERM U1223, Institut Pasteur, Paris, France.
| | - Sylvie Lagaye
- Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France. .,INSERM U1223, Institut Pasteur, Paris, France.
| |
Collapse
|
56
|
Luna JM, Saeed M, Rice CM. Taming a beast: lessons from the domestication of hepatitis C virus. Curr Opin Virol 2019; 35:27-34. [PMID: 30875640 PMCID: PMC6556422 DOI: 10.1016/j.coviro.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the ∼40 year saga that may be applicable to viruses yet unknown and uncultured.
Collapse
Affiliation(s)
- Joseph M Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Mohsan Saeed
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
57
|
In Vitro Susceptibility of Hepatitis C Virus Genotype 1 through 6 Clinical Isolates to the Pangenotypic NS3/4A Inhibitor Voxilaprevir. J Clin Microbiol 2019; 57:JCM.01844-18. [PMID: 30728196 DOI: 10.1128/jcm.01844-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Voxilaprevir is a direct-acting antiviral agent (DAA) that targets the NS3/4A protease of hepatitis C virus (HCV). High sequence diversity of HCV and inadequate drug exposure during unsuccessful treatment may lead to the accumulation of variants with reduced susceptibility to DAAs, including NS3/4A protease inhibitors such as voxilaprevir. The voxilaprevir susceptibility of clinical and laboratory strains of HCV was assessed. The NS3 protease regions of viruses belonging to 6 genotypes and 29 subtypes from 345 DAA-naive or -experienced (including protease inhibitor) patients and 344 genotype 1 to 6 replicons bearing engineered NS3 resistance-associated substitutions (RASs) were tested in transient-transfection assays. The median voxilaprevir 50% effective concentration against NS3 from protease inhibitor-naive patient samples ranged from 0.38 nM for genotype 1 to 5.8 nM for genotype 3. Voxilaprevir susceptibilities of HCV replicons with NS3 RASs were dependent on subtype background and the type and number of substitutions introduced. The majority of RASs known to confer resistance to other protease inhibitors had little to no impact on voxilaprevir susceptibility, except A156L, T, or V in genotype 1 to 4 which conferred >100-fold reductions but exhibited low replication capacity in most genotypes. These data support the use of voxilaprevir in combination with other DAAs in DAA-naive and DAA-experienced patients infected with any subtype of HCV.
Collapse
|
58
|
Lohmann V. Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2019; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, INF 344, 1st Floor, 69120, Heidelberg, Germany.
| |
Collapse
|
59
|
Tzarum N, Giang E, Kong L, He L, Prentoe J, Augestad E, Hua Y, Castillo S, Lauer GM, Bukh J, Zhu J, Wilson IA, Law M. Genetic and structural insights into broad neutralization of hepatitis C virus by human V H1-69 antibodies. SCIENCE ADVANCES 2019; 5:eaav1882. [PMID: 30613781 PMCID: PMC6314831 DOI: 10.1126/sciadv.aav1882] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/27/2018] [Indexed: 05/19/2023]
Abstract
An effective vaccine to the antigenically diverse hepatitis C virus (HCV) must target conserved immune epitopes. Here, we investigate cross-neutralization of HCV genotypes by broadly neutralizing antibodies (bNAbs) encoded by the relatively abundant human gene family V H 1-69. We have deciphered the molecular requirements for cross-neutralization by this unique class of human antibodies from crystal structures of HCV E2 in complex with bNAbs. An unusually high binding affinity is found for germ line-reverted versions of VH1-69 precursor antibodies, and neutralization breadth is acquired during affinity maturation. Deep sequencing analysis of an HCV-immune B cell repertoire further demonstrates the importance of the V H 1-69 gene family in the generation of HCV bNAbs. This study therefore provides critical insights into immune recognition of HCV with important implications for rational vaccine design.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elias Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shaun Castillo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Georg M. Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
60
|
Abstract
Hepatitis C virus (HCV) is a peculiar member of the Flaviviridae family, with features in between an enveloped virus and a human lipoprotein and, consequently, unusual biophysical properties that made its production and purification rather challenging.Here we describe methods to generate HCV stocks in cell culture by electroporating in vitro transcribed viral RNA into permissive cell lines as well as downstream concentration and purification strategies.
Collapse
|
61
|
Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV. Methods Mol Biol 2019; 1911:33-45. [PMID: 30593616 DOI: 10.1007/978-1-4939-8976-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.
Collapse
|
62
|
Chen M, Zheng F, Yuan G, Duan X, Rong L, Liu J, Feng S, Wang Z, Wang M, Feng Y, Zhou Q, Li J, Deng K, Li C, Xia J, Rao G, Zhou Y, Fu Y, Li YP. Development of an Infectious Cell Culture System for Hepatitis C Virus Genotype 6a Clinical Isolate Using a Novel Strategy and Its Sensitivity to Direct-Acting Antivirals. Front Microbiol 2018; 9:2950. [PMID: 30564209 PMCID: PMC6288186 DOI: 10.3389/fmicb.2018.02950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is classified into seven major genotypes, and genotype 6 is commonly prevalent in Asia, thus reverse genetic system representing genotype 6 isolates in prevalence is required. Here, we developed an infectious clone for a Chinese HCV 6a isolate (CH6a) using a novel strategy. We determined CH6a consensus sequence from patient serum and assembled a CH6a full-length (CH6aFL) cDNA using overlapped PCR product-derived clones that shared the highest homology with the consensus. CH6aFL was non-infectious in hepatoma Huh7.5 cells. Next, we constructed recombinants containing Core-NS5A or 5′UTR-NS5A from CH6a and the remaining sequences from JFH1 (genotype 2a), and both were engineered with 7 mutations identified previously. However, they replicated inefficiently without virus spread in Huh7.5 cells. Addition of adaptive mutations from CH6a Core-NS2 recombinant, with JFH1 5′UTR and NS3-3′UTR, enhanced the viability of Core-NS5A recombinant and acquired replication-enhancing mutations. Combination of 22 mutations in CH6a recombinant with JFH1 5′UTR and 3′UTR (CH6aORF) enabled virus replication and recovered additional four mutations. Adding these four mutations, we generated two efficient recombinants containing 26 mutations (26m), CH6aORF_26m and CH6aFL_26m (designated “CH6acc”), releasing HCV of 104.3–104.5 focus-forming units (FFU)/ml in Huh7.5.1-VISI-mCherry and Huh7.5 cells. Seven newly identified mutations were important for HCV replication, assembly, and release. The CH6aORF_26m virus was inhibited in a dose- and genotype-dependent manner by direct-acting-antivirals targeting NS3/4A, NS5A, and NS5B. The CH6acc enriches the toolbox of HCV culture systems, and the strategy and mutations applied here will facilitate the culture development of other HCV isolates and related viruses.
Collapse
Affiliation(s)
- Mingxiao Chen
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Fuxiang Zheng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guosheng Yuan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobing Duan
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Liang Rong
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Junwei Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Feng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ziting Wang
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, China
| | - Yetong Feng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qing Zhou
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jinqian Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Jinyu Xia
- Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Guirong Rao
- Key Laboratory of Liver Disease, Center of Infectious Diseases, PLA 458 Hospital, Guangzhou, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
63
|
Schlottau K, Fereidouni S, Beer M, Hoffmann B. Molecular identification and characterization of nonprimate hepaciviruses in equines. Arch Virol 2018; 164:391-400. [PMID: 30361815 DOI: 10.1007/s00705-018-4077-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a positive-sense RNA virus belonging to the genus Hepacivirus, family Flaviviridae. Its genome has a length of 9.6 kb and encodes a single polyprotein flanked by two untranslated regions. HCV can cause liver cirrhosis and hepatocellular carcinoma, and approximately 2% of the world's population is chronically infected. The investigation of pathogenesis is complicated due to the lack of an animal model. The origin of this virus remains unclear, but in the last few years, relatives of HCV were initially identified in dogs and later in horses, rodents, bats and Old World monkeys. Non-primate hepacivirus (NPHV), which infects dogs and horses, is the closest relative to HCV. We established a pan-reactive "panHepaci"-RT-qPCR assay, which is able to detect human HCV as well as equine NPHV, and additionally, an equine-specific "equHepaci"-RT-qPCR for confirmation of positive results. Serum samples from 1158 clinically inconspicuous horses from Germany and several samples from other mammalian species were screened. We found 2.4% of the horses positive for hepacivirus RNA, and furthermore, the "panHepaci"-RT-qPCR assay also detected a hepacivirus in a donkey from Egypt. This virus had only 78% sequence identity in the E2 gene when compared to other known NPHVs. The established method could be useful for screening purposes, since it is likely that related hepaciviruses also occur in other species.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
64
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
65
|
Aicher S, Kakkanas A, Cohen L, Blumen B, Oprisan G, Njouom R, Meurs EF, Mavromara P, Martin A. Differential regulation of the Wnt/β-catenin pathway by hepatitis C virus recombinants expressing core from various genotypes. Sci Rep 2018; 8:11185. [PMID: 30046100 PMCID: PMC6060129 DOI: 10.1038/s41598-018-29078-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have suggested association of some hepatitis C virus (HCV) subtypes or isolates with progression toward hepatocellular carcinoma (HCC). HCV core protein has been reported to interfere with host Wnt/β-catenin pathway, a cell fate-determining pathway, which plays a major role in HCC. Here, we investigated the impact of HCV core genetic variability in the dysregulation of Wnt/β-catenin pathway. We used both transient expression of core proteins from clinical isolates of HCV subtypes 1a (Cambodia), 4a (Romania) and 4f (Cameroon) and infection systems based on a set of engineered intergenotypic recombinant viruses encoding core from these various clinical strains. We found that TCF transcription factor-dependent reporter activity was upregulated by core in a strain-specific manner. We documented core sequence-specific transcriptional upregulation of several β-catenin downstream target genes associated with cell proliferation and malignant transformation, fibrogenesis or fat accumulation. The extent of β-catenin nuclear translocation varied in accordance with β-catenin downstream gene upregulation in infected cells. Pairwise comparisons of subgenotypic core recombinants and mutated core variants unveiled the critical role of core residues 64 and 71 in these dysregulations. In conclusion, this work identified natural core polymorphisms involved in HCV strain-specific activation of Wnt/β-catenin pathway in relevant infection systems.
Collapse
Affiliation(s)
- Stephanie Aicher
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, Paris, France.,CNRS UMR3569, Paris, France.,Université Paris Diderot-Sorbonne Paris Cité, Paris, France.,Hellenic Pasteur Institute, Athens, Greece.,University of Patras, School of Health Sciences, Department of Pharmacy, Patras, Greece
| | | | - Lisette Cohen
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, Paris, France.,CNRS UMR3569, Paris, France.,Université Paris Diderot-Sorbonne Paris Cité, Paris, France
| | - Brigitte Blumen
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, Paris, France.,CNRS UMR3569, Paris, France.,Université Paris Diderot-Sorbonne Paris Cité, Paris, France
| | - Gabriela Oprisan
- Cantacuzino National Medical-Military Institute of Research and Development, Molecular Epidemiology Laboratory, Bucharest, Romania.,Titu Maiorescu University, Faculty of Pharmacy, Bucharest, Romania
| | | | - Eliane F Meurs
- CNRS UMR3569, Paris, France.,Institut Pasteur, Unit of Hepacivirus and Innate Immunity, Paris, France
| | - Penelope Mavromara
- Hellenic Pasteur Institute, Athens, Greece.,Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Annette Martin
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, Paris, France. .,CNRS UMR3569, Paris, France. .,Université Paris Diderot-Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
66
|
Mutational Analysis of the Bovine Hepacivirus Internal Ribosome Entry Site. J Virol 2018; 92:JVI.01974-17. [PMID: 29769341 DOI: 10.1128/jvi.01974-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
In recent years, hepatitis C virus (HCV)-related viruses were identified in several species, including dogs, horses, bats, and rodents. In addition, a novel virus of the genus Hepacivirus has been discovered in bovine samples and was termed bovine hepacivirus (BovHepV). Prediction of the BovHepV internal ribosome entry site (IRES) structure revealed strong similarities to the HCV IRES structure comprising domains II, IIIabcde, pseudoknot IIIf, and IV with the initiation codon AUG. Unlike HCV, only one microRNA-122 (miR-122) binding site could be identified in the BovHepV 5' nontranslated region. In this study, we analyzed the necessity of BovHepV IRES domains to initiate translation and investigated possible interactions between the IRES and core coding sequences by using a dual luciferase reporter assay. Our results suggest that such long-range interactions within the viral genome can affect IRES-driven translation. Moreover, the significance of a possible miR-122 binding to the BovHepV IRES was investigated. When analyzing translation in human Huh-7 cells with large amounts of endogenous miR-122, introduction of point mutations to the miR-122 binding site resulted in reduced translation efficiency. Similar results were observed in HeLa cells after substitution of miR-122. Nevertheless, the absence of pronounced effects in a bovine hepatocyte cell line expressing hardly any miR-122 as well suggests additional functions of this host factor in virus replication.IMPORTANCE Several members of the family Flaviviridae, including HCV, have adapted cap-independent translation strategies to overcome canonical eukaryotic translation pathways and use cis-acting RNA-elements, designated viral internal ribosome entry sites (IRES), to initiate translation. Although novel hepaciviruses have been identified in different animal species, only limited information is available on their biology on molecular level. Therefore, our aim was a fundamental analysis of BovHepV IRES functions. The findings which show that functional IRES elements are also crucial for BovHepV translation expand our knowledge on molecular mechanism of hepacivirus propagation. We also studied the possible effects of one major host factor implicated in HCV pathogenesis, miR-122. The results of mutational analyses suggested that miR-122 enhances virus translation mediated by BovHepV IRES.
Collapse
|
67
|
Döring M, Büch J, Friedrich G, Pironti A, Kalaghatgi P, Knops E, Heger E, Obermeier M, Däumer M, Thielen A, Kaiser R, Lengauer T, Pfeifer N. geno2pheno[ngs-freq]: a genotypic interpretation system for identifying viral drug resistance using next-generation sequencing data. Nucleic Acids Res 2018; 46:W271-W277. [PMID: 29718426 PMCID: PMC6031006 DOI: 10.1093/nar/gky349] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Identifying resistance to antiretroviral drugs is crucial for ensuring the successful treatment of patients infected with viruses such as human immunodeficiency virus (HIV) or hepatitis C virus (HCV). In contrast to Sanger sequencing, next-generation sequencing (NGS) can detect resistance mutations in minority populations. Thus, genotypic resistance testing based on NGS data can offer novel, treatment-relevant insights. Since existing web services for analyzing resistance in NGS samples are subject to long processing times and follow strictly rules-based approaches, we developed geno2pheno[ngs-freq], a web service for rapidly identifying drug resistance in HIV-1 and HCV samples. By relying on frequency files that provide the read counts of nucleotides or codons along a viral genome, the time-intensive step of processing raw NGS data is eliminated. Once a frequency file has been uploaded, consensus sequences are generated for a set of user-defined prevalence cutoffs, such that the constructed sequences contain only those nucleotides whose codon prevalence exceeds a given cutoff. After locally aligning the sequences to a set of references, resistance is predicted using the well-established approaches of geno2pheno[resistance] and geno2pheno[hcv]. geno2pheno[ngs-freq] can assist clinical decision making by enabling users to explore resistance in viral populations with different abundances and is freely available at http://ngs.geno2pheno.org.
Collapse
Affiliation(s)
- Matthias Döring
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Joachim Büch
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Georg Friedrich
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Alejandro Pironti
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Prabhav Kalaghatgi
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Elena Knops
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | - Eva Heger
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | - Martin Obermeier
- MVZ Medizinisches Infektiologiezentrum Berlin (MIB), Oudenarder Str. 16, 13353 Berlin, Germany
| | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | - Thomas Lengauer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Medical Faculty, University of Tübingen, Geissweg 5, 72076 Tübingen, Germany
| |
Collapse
|
68
|
Borgia SM, Hedskog C, Parhy B, Hyland RH, Stamm LM, Brainard DM, Subramanian MG, McHutchison JG, Mo H, Svarovskaia E, Shafran SD. Identification of a Novel Hepatitis C Virus Genotype From Punjab, India: Expanding Classification of Hepatitis C Virus Into 8 Genotypes. J Infect Dis 2018; 218:1722-1729. [DOI: 10.1093/infdis/jiy401] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sergio M Borgia
- William Osler Health System, Brampton Civic Hospital, Ontario, Canada
| | | | | | | | | | | | | | | | - Hongmei Mo
- Gilead Sciences, Foster City, California
| | | | | |
Collapse
|
69
|
McNaughton AL, Sreenu VB, Wilkie G, Gunson R, Templeton K, Leitch ECM. Prevalence of mixed genotype hepatitis C virus infections in the UK as determined by genotype-specific PCR and deep sequencing. J Viral Hepat 2018; 25:524-534. [PMID: 29274184 PMCID: PMC5947153 DOI: 10.1111/jvh.12849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
The incidence of mixed genotype hepatitis C virus (HCV) infections in the UK is largely unknown. As the efficacy of direct-acting antivirals is variable across different genotypes, treatment regimens are tailored to the infecting genotype, which may pose issues for the treatment of underlying genotypes within undiagnosed mixed genotype HCV infections. There is therefore a need to accurately diagnose mixed genotype infections prior to treatment. PCR-based diagnostic tools were developed to screen for the occurrence of mixed genotype infections caused by the most common UK genotypes, 1a and 3, in a cohort of 506 individuals diagnosed with either of these genotypes. The overall prevalence rate of mixed infection was 3.8%; however, this rate was unevenly distributed, with 6.7% of individuals diagnosed with genotype 3 harbouring genotype 1a strains and only 0.8% of samples from genotype 1a patients harbouring genotype 3 (P < .05). Mixed infection samples consisted of a major and a minor genotype, with the latter constituting less than 21% of the total viral load and, in 67% of cases, less than 1% of the viral load. Analysis of a subset of the cohort by Illumina PCR next-generation sequencing resulted in a much greater incidence rate than obtained by PCR. This may have occurred due to the nonquantitative nature of the technique and despite the designation of false-positive thresholds based on negative controls.
Collapse
Affiliation(s)
- A. L. McNaughton
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK,Present address:
Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - V. B. Sreenu
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - G. Wilkie
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - R. Gunson
- West of Scotland Specialist Virology CentreRoyal Infirmary of GlasgowGlasgowUK
| | | | - E. C. M. Leitch
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| |
Collapse
|
70
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
71
|
Kitrinos KM, Corsa AC, Worth A, Hedskog C, Brainard DM, Miller MD, Mo H. Nonstructural protein 5A resistance profile in patients with chronic hepatitis C treated with ledipasvir-containing regimens without sofosbuvir. J Viral Hepat 2018; 25:126-133. [PMID: 28833932 DOI: 10.1111/jvh.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 01/16/2023]
Abstract
The study aimed to evaluate the effects of baseline hepatitis C virus (HCV) nonstructural protein 5A (NS5A) resistance-associated substitutions (RASs) on sustained virologic response to ledipasvir (LDV)-containing regimens in the absence of sofosbuvir (SOF) in patients with HCV genotype (GT) 1 infection across 6 phase 2 clinical studies. We analysed data from 1103 patients who received either LDV + vedroprevir (NS3 protease inhibitor) + tegobuvir (NS5B inhibitor) ± ribavirin or LDV + ribavirin + pegylated interferon. Population sequencing of HCV NS5A was performed at baseline and at virologic failure from patient plasma samples. Of 1045 patients with available baseline sequences, 747 (67.7%) had GT1a, and 298 (26.9%) had GT1b infection. The overall prevalence of NS5A RASs at baseline was 9.4%; 7.6% (57/747) and 13.8% (41/298) of patients with GT1a and GT1b infection, respectively. The majority of GT1a-infected patients with NS5A RASs at baseline had a single NS5A RAS (78.9%) at NS5A positions K24R, M28T, Q30H/L, L31M and Y93H/N/C/S. The spectrum of NS5A RASs detected in GT1b patients was much less diverse compared to GT1a patients, with all patients harbouring a single NS5A RAS either L31M or Y93H/C. For patients treated with LDV-containing regimens in the absence of SOF, the presence of baseline NS5A RASs was associated with low SVR rates. In patients with virologic failure, nearly all had either pre-existing and/or emergent NS5A RASs: 287/287 (100%) and 40/42 (95.2%) patients with GT1a and GT1b infection, respectively. Three novel NS5A substitutions were identified as emergent NS5A RASs: K26E and S38F in GT1a; and L31I in GT1b. In conclusion, the presence of NS5A RASs at baseline reduced the SVR rate in patients treated with LDV in combination vedroprevir + tegobuvir ± ribavirin or ribavirin + pegylated interferon. Virologic failure was associated with the detection of NS5A RASs in nearly all patients. These results suggest that the resistance barrier may differ depending on HCV drug combination and may be more important than that of the individual DAAs.
Collapse
Affiliation(s)
| | - A C Corsa
- Gilead Sciences, Inc., Foster City, CA, USA
| | - A Worth
- Gilead Sciences, Inc., Foster City, CA, USA
| | - C Hedskog
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - M D Miller
- Gilead Sciences, Inc., Foster City, CA, USA
| | - H Mo
- Gilead Sciences, Inc., Foster City, CA, USA
| |
Collapse
|
72
|
Calisher CH, Higgs S. The Discovery of Arthropod-Specific Viruses in Hematophagous Arthropods: An Open Door to Understanding the Mechanisms of Arbovirus and Arthropod Evolution? ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:87-103. [PMID: 29324047 DOI: 10.1146/annurev-ento-020117-043033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of an odd virus from hematophagous arthropods 40 years ago by Stollar and Thomas described cell fusing agent virus in cells derived from Aedes aegypti mosquitoes. Then came the report of Kamiti River virus from Ae. macintoshi in 1999, followed by worldwide reports of the discovery of other viruses of mosquitoes, ticks, and midges that replicate only in arthropods and not in vertebrates or in vertebrate cells. These viruses (now totaling at least 64 published) have genomes analogous to viruses in various families that include arboviruses and nonarboviruses. It is likely that some of these viruses have been insufficiently studied and may yet be shown to infect vertebrates. However, there is no doubt that the vast majority are restricted to arthropods alone and that they represent a recently recognized clade. Their biology, modes of transmission, worldwide distribution (some have been detected in wild-caught mosquitoes in both Asia and the United States, for example), molecular characteristics of their genomes, and potential for becoming vertebrate pathogens, or at least serving as virus reservoirs, are fascinating and may provide evidence useful in understanding virus evolution. Because metagenomics studies of arthropods have shown that arthropod genomes are the sources of arthropod virus genomes, further studies may also provide insights into the evolution of arthropods. More recently, others have published excellent papers that briefly review discoveries of arthropod viruses and that characterize certain genomic peculiarities, but, to now, there have been no reviews that encompass all these facets. We therefore anticipate that this review is published at a time and in a manner that is helpful for both virologists and entomologists to make more sense and understanding of this recently recognized and obviously important virus group. This review focuses specifically on arthropod viruses in hematophagous arthropods.
Collapse
Affiliation(s)
- Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1690;
| | - Stephen Higgs
- Kansas State University, Manhattan, Kansas 66506-7600;
| |
Collapse
|
73
|
Lanford RE, Walker CM, Lemon SM. The Chimpanzee Model of Viral Hepatitis: Advances in Understanding the Immune Response and Treatment of Viral Hepatitis. ILAR J 2017; 58:172-189. [PMID: 29045731 PMCID: PMC5886334 DOI: 10.1093/ilar/ilx028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Chimpanzees (Pan troglodytes) have contributed to diverse fields of biomedical research due to their close genetic relationship to humans and in many instances due to the lack of any other animal model. This review focuses on the contributions of the chimpanzee model to research on hepatitis viruses where chimpanzees represented the only animal model (hepatitis B and C) or the most appropriate animal model (hepatitis A). Research with chimpanzees led to the development of vaccines for HAV and HBV that are used worldwide to protect hundreds of millions from these diseases and, where fully implemented, have provided immunity for entire generations. More recently, chimpanzee research was instrumental in the development of curative therapies for hepatitis C virus infections. Over a span of 40 years, this research would identify the causative agent of NonA,NonB hepatitis, validate the molecular tools for drug discovery, and provide safety and efficacy data on the therapies that now provide a rapid and complete cure of HCV chronic infections. Several cocktails of antivirals are FDA approved that eliminate the virus following 12 weeks of once-per-day oral therapy. This represents the first cure of a chronic viral disease and, once broadly implemented, will dramatically reduce the occurrence of cirrhosis and liver cancer. The recent contributions of chimpanzees to our current understanding of T cell immunity for HCV, development of novel therapeutics for HBV, and the biology of HAV are reviewed. Finally, a perspective is provided on the events leading to the cessation of the use of chimpanzees in research and the future of the chimpanzees previously used to bring about these amazing breakthroughs in human healthcare.
Collapse
Affiliation(s)
- Robert E Lanford
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Christopher M Walker
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Stanley M Lemon
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| |
Collapse
|
74
|
Kranawetter C, Brady S, Sun L, Schroeder M, Chen SJ, Heng X. Nuclear Magnetic Resonance Study of RNA Structures at the 3'-End of the Hepatitis C Virus Genome. Biochemistry 2017; 56:4972-4984. [PMID: 28829576 DOI: 10.1021/acs.biochem.7b00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 3'-end of the genomic RNA of the hepatitis C virus (HCV) embeds conserved elements that regulate viral RNA synthesis and protein translation by mechanisms that have yet to be elucidated. Previous studies with oligo-RNA fragments have led to multiple, mutually exclusive secondary structure predictions, indicating that HCV RNA structure may be context-dependent. Here we employed a nuclear magnetic resonance (NMR) approach that involves long-range adenosine interaction detection, coupled with site-specific 2H labeling, to probe the structure of the intact 3'-end of the HCV genome (385 nucleotides). Our data reveal that the 3'-end exists as an equilibrium mixture of two conformations: an open conformation in which the 98 nucleotides of the 3'-tail (3'X) form a two-stem-loop structure with the kissing-loop residues sequestered and a closed conformation in which the 3'X rearranges its structure and forms a long-range kissing-loop interaction with an upstream cis-acting element 5BSL3.2. The long-range kissing species is favored under high-Mg2+ conditions, and the intervening sequences do not affect the equilibrium as their secondary structures remain unchanged. The open and closed conformations are consistent with the reported function regulation of viral RNA synthesis and protein translation, respectively. Our NMR detection of these RNA conformations and the structural equilibrium in the 3'-end of the HCV genome support its roles in coordinating various steps of HCV replication.
Collapse
Affiliation(s)
- Clayton Kranawetter
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Samantha Brady
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Lizhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Mark Schroeder
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
75
|
Feng Y, Feng YM, Lu C, Han Y, Liu L, Sun X, Dai J, Xia X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J Gen Virol 2017; 98:2069-2078. [PMID: 28758632 PMCID: PMC5656785 DOI: 10.1099/jgv.0.000869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tree shrew (Tupaia belangeri chinensis), a small animal widely distributed in Southeast Asia and southwest China, has the potential to be developed as an animal model for hepatitis C. To determine the susceptibility of the tree shrew to hepatitis C virus (HCV) infection in vitro and in vivo, a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, was used to infect cultured primary tupaia hepatocytes (PTHs) and tree shrews. The in vitro results showed that HCV genomic RNA and HCV-specific nonstructural protein 5A (NS5A) could be detected in the PTH cell culture from days 3-15 post-infection, although the viral load was lower than that observed in Huh7.5.1 cell culture. The occurrence of five sense mutations [S391A, G397A, L402F and M405T in the hypervariable region 1 (HVR1) of envelope glycoprotein 2 and I2750M in NS5B] suggested that HCV undergoes genetic evolution during culture. Fourteen of the 30 experimental tree shrews (46.7 %) were found to be infected, although the HCV viremia was intermittent in vivo. A positive test for HCV RNA in liver tissue provided stronger evidence for HCV infection and replication in tree shrews. The results of an immunohistochemistry assay also demonstrated the presence of four HCV-specific proteins (Core, E2, NS3/4 and NS5A) in the hepatocytes of infected tree shrews. The pathological changes observed in the liver tissue of infected tree shrews could be considered to be representative symptoms of mild hepatitis. These results revealed that the tree shrew can be used as an animal model supporting the infection and replication of HCV in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Feng
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yue-Mei Feng
- Academy of Public Health, Kunming Medical University, Kunming, Yunnan 650500, PR China
| | - Caixia Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Li Liu
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiaomei Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| |
Collapse
|
76
|
Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R. mBio 2017; 8:mBio.00121-17. [PMID: 28442604 PMCID: PMC5405228 DOI: 10.1128/mbio.00121-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV), a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells) have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated ablation of double-stranded RNA (dsRNA)-activated protein kinase R (PKR) restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo. These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis. Chronic infection with hepatitis C virus (HCV) is the leading cause of liver cancer in most developed nations. However, the mechanisms whereby HCV infection promotes carcinogenesis remain unclear. Here, we demonstrate that HCV infection inhibits the activation of p53 following DNA damage. Contrary to previous reports, HCV protein expression is insufficient to inhibit p53. Rather, p53 inhibition is mediated by cellular protein kinase R (PKR), which is activated by HCV RNA replication and subsequently suppresses global protein synthesis. These results redefine our understanding of how HCV infection influences p53 function. We speculate that persistent disruption of p53-mediated DNA damage responses may contribute to hepatocellular carcinogenesis in chronically infected individuals.
Collapse
|
77
|
Ni Y. Hepatitis C: a successful story of cure. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
78
|
Liang TJ. Hepatitis C Virus: From Obscurity to the Lasker. Gastroenterology 2016; 151:1052-1053. [PMID: 27765691 PMCID: PMC5585077 DOI: 10.1053/j.gastro.2016.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, Maryland
| |
Collapse
|
79
|
Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. Review HCV Antiviral Resistance: The Impact of in vitro Studies on the Development of Antiviral Agents Targeting the Viral NS5B Polymerase. ACTA ACUST UNITED AC 2016; 16:225-45. [PMID: 16130521 DOI: 10.1177/095632020501600403] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The high prevalence of the disease caused by hepatitis C virus (HCV) and the limited efficacy of interferon-based therapies have stimulated the search for safer and more effective drugs. The development of inhibitors of the HCV NS5B RNA polymerase represents a promising strategy for identifying novel anti-HCV therapeutics. However, the high genetic diversity, mutation rate and turnover of HCV are expected to favour the emergence of drug resistance, limiting the clinical usefulness of polymerase inhibitors. Thus, the characterization of the drug-resistance profile of these antiviral agents is considered crucial for identifying the inhibitors with a higher probability of clinical success. In the absence of an efficient in vitro infection system, HCV sub-genomic replicons have been used to study viral resistance to both nucleoside and non-nucleoside NS5B inhibitors. While these studies suggest that drug-resistant viruses are likely to evolve in vivo, they provide a wealth of information that should help in the identification of inhibitors with improved and distinct resistance profiles that might be used for combination therapy.
Collapse
Affiliation(s)
- Licia Tomei
- Istituto di Ricerche di Biologia Molecolare P Angeletti, Pomezia-Roma, Italy
| | | | | | | | | |
Collapse
|
80
|
Profile of Charles M. Rice, Ralf F. W. Bartenschlager, and Michael J. Sofia, 2016 Lasker-DeBakey Clinical Medical Research Awardees. Proc Natl Acad Sci U S A 2016; 113:13934-13937. [PMID: 27864510 DOI: 10.1073/pnas.1616592113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
81
|
The 2016 Lasker-DeBakey Clinical Medical Research Award: Innovative hepatitis C virus (HCV) replicons leading to drug development for hepatitis C cure. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1198-1201. [PMID: 27785725 DOI: 10.1007/s11427-016-0313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 01/25/2023]
|
82
|
Williams CL. Ralf Bartenschlager, Charles Rice, and Michael Sofia are honored with the 2016 Lasker~DeBakey Clinical Medical Research Award. J Clin Invest 2016; 126:3639-3644. [PMID: 27620536 PMCID: PMC5096798 DOI: 10.1172/jci90179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
83
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
84
|
Moradpour D, Grakoui A, Manns MP. Future landscape of hepatitis C research - Basic, translational and clinical perspectives. J Hepatol 2016; 65:S143-S155. [PMID: 27641984 DOI: 10.1016/j.jhep.2016.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022]
Abstract
With the latest all-oral interferon- and ribavirin-free regimens based on direct acting antivirals against the hepatitis C virus (HCV), sustained virological response rates of >90% are achieved, which is equivalent to cure. This has become possible for all genotypes and all subgroups of patients, including many of the most difficult-to-treat populations so far. Since a prophylactic HCV vaccine is not yet available, control of HCV infection will for the time being have to rely on the use of effective and safe antiviral treatments as well as their accessibility and affordability. Different approaches may apply to different parts of the world, eradication of HCV representing a major long-term goal. Whether hepatitis C becomes the first chronic viral infection to be eradicated without a prophylactic vaccine remains to be shown. Here, we briefly summarize advances in the molecular virology of hepatitis C, highlight lessons of biological relevance that were learned through the study of HCV, and its translational and clinical implications. We have also listed selected unsolved challenges, emphasizing that HCV is a unique model and that advances in this direction may yield knowledge of broad biological significance, novel technologies and insights into related important human pathogens.
Collapse
Affiliation(s)
- Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland.
| | - Arash Grakoui
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine and Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, GA, USA.
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany.
| |
Collapse
|
85
|
Smith DB, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 2016; 97:2894-2907. [PMID: 27692039 PMCID: PMC5770844 DOI: 10.1099/jgv.0.000612] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proposals are described for the assignment of recently reported viruses, infecting rodents, bats and other mammalian species, to new species within the Hepacivirus and Pegivirus genera (family Flaviviridae). Assignments into 14 Hepacivirus species (Hepacivirus A–N) and 11 Pegivirus species (Pegivirus A–K) are based on phylogenetic relationships and sequence distances between conserved regions extracted from complete coding sequences for members of each proposed taxon. We propose that the species Hepatitis C virus is renamed Hepacivirus C in order to acknowledge its unique historical position and so as to minimize confusion. Despite the newly documented genetic diversity of hepaciviruses and pegiviruses, members of these genera remain phylogenetically distinct, and differ in hepatotropism and the possession of a basic core protein; pegiviruses in general lack these features. However, other characteristics that were originally used to support their division into separate genera are no longer definitive; there is overlap between the two genera in the type of internal ribosomal entry site and the presence of miR-122 sites in the 5′ UTR, the predicted number of N-linked glycosylation sites in the envelope E1 and E2 proteins, the presence of poly U tracts in the 3′ UTR and the propensity of viruses to establish a persistent infection. While all classified hepaciviruses and pegiviruses have mammalian hosts, the recent description of a hepaci-/pegi-like virus from a shark and the likely existence of further homologues in other non-mammalian species indicate that further species or genera remain to be defined in the future.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ernest A Gould
- EHESP French School of Public Health, French Institute of Research for Development (IRD), Aix Marseille Université, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Monath
- Hookipa Biotech AG, Vienna, Austria.,PaxVax Inc., Menlo Park and Redwood City, CA, USA
| | - A Scott Muerhoff
- Abbott Diagnostics Research and Development, Abbott Park, IL, USA
| | - Alexander Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack T Stapleton
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
86
|
Abstract
This year's Lasker∼Debakey Clinical Medical Research Award honors Ralf Bartenschlager, Charles Rice, and Michael Sofia, pioneers in the development of curative and safe therapies for the 170 million people with hepatitis C virus infection.
Collapse
Affiliation(s)
- Silvia Vilarinho
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
87
|
Schwartz RE, Bram Y, Frankel A. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: A Tool to Study Infectious Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:147-156. [PMID: 29910973 DOI: 10.1007/s40139-016-0113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Liver disease is an important clinical and global problem and is the 16th leading cause of death worldwide and responsible for 1 million deaths worldwide each year. Infectious disease is a major cause of liver disease specifically and overall is even a greater cause of patient morbidity and mortality. Tools to study human liver disease and infectious disease have been lacking which has significantly hampered the study of liver disease generally and hepatotropic pathogens more specifically. Historically, hepatoma cell lines have been used for in vitro cell culture models to study infectious disease. Significant differences between human hepatoma cell lines and the human hepatocyte has hampered our understanding of hepatocyte pathogen infection and hepatocyte--pathogen interactions. Recent Findings Despite these limitations, great progress was made in the understanding of specific aspects of the life cycle of the canonical hepatocyte viral pathogen, Hepatitis C Virus. Over time various specific drugs targeting various proteins of the HCV virion or aspects of the HCV viral life cycle have been created that enable almost complete elimination of the virus in vitro and clinically. These drugs, direct-acting antivirals have enabled achieving sustained virologic response in over 90-95 percent of patients. Summary Despite the development of direct-acting antivirals and the extreme success in achieving sustained virologic response, there has only been limited success elucidating host-pathogen interactions largely due to the poor nature of the hepatoma platform. Alternative approaches are needed. Pluripotent stem cells are renewable, can be derived from a single donor and can be efficiently and reproducibly differentiated towards many cell types including ectodermal-, endodermal-, and mesodermal-derived lineages. The development of pluripotent stem cell-derived hepatocyte-like cells (iHLCS) changes the paradigm as robust cells with the phenotype and function of hepatocytes can be readily created on demand with a variety of genetic background or alterations. iHLCs are readily used as models to study human drug metabolism, human liver disease, and human hepatotropic infectious disease. In this review, we discuss the biology of the HCV virus, the use of iHLCs as models to study human liver disease, and review the current work on using iHLCs to study HCV infection.
Collapse
Affiliation(s)
| | - Yaron Bram
- Weill Cornell School of Medicine, New York, NY, USA
| | | |
Collapse
|
88
|
Triyatni M, Berger EA, Saunier B. Assembly and release of infectious hepatitis C virus involving unusual organization of the secretory pathway. World J Hepatol 2016; 8:796-814. [PMID: 27429716 PMCID: PMC4937168 DOI: 10.4254/wjh.v8.i19.796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/30/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if calnexin (CANX), RAB1 and alpha-tubulin were involved in the production of hepatitis C virus (HCV) particles by baby hamster kidney-West Nile virus (BHK-WNV) cells.
METHODS: Using a siRNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observed in thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model.
RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome.
CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.
Collapse
|
89
|
Deriabin PG. [Natural reservoirs of viruses of the genus Hepacivirus, Flaviviridae]. Vopr Virusol 2016; 61:101-106. [PMID: 36494942 DOI: 10.18821/0507-4088-2016-61-3-101-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
HCV is a cause of acute and chronic liver diseases, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Under natural conditions, HCV is able to infect only humans, and only chimpanzees are sensitive to experimental infection. In recent years, viruses genetically related to HCV were discovered in wild mammals (rodents, bats, rabbits), as well as in domestic animals living in close contact with humans (dogs, horses, cows). The hepacivirus genus of the family Flaviviridae, previously represented only by HCV and, presumably, by GBV-B, now includes new related viruses of animals. The results of the study of molecular-genetic and biological properties of the hepaciviruses provide an opportunity to understand the history, evolution, and the origin of HCV. It also opens up the prospect of using HCV homologues of non-primates as a laboratory model for preclinical medical and prophylactic drugs against hepatitis c. It was found that the hepacivirus of horses is the most closely related to HCV among currently known HCV homologues.
Collapse
Affiliation(s)
- P G Deriabin
- D.I. Ivanovsky Institute of Virology «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| |
Collapse
|
90
|
Klebl BM, Kurtenbach A, Salassidis K, Daub H, Herget T. Host Cell Targets in HCV Therapy: Novel Strategy or Proven Practice? ACTA ACUST UNITED AC 2016; 16:69-90. [PMID: 15889531 DOI: 10.1177/095632020501600201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel antiviral drugs against hepatitis C is a challenging and competitive area of research. Progress of this research has been hampered due to the quasispecies nature of the hepatitis C virus, the absence of cellular infection models and the lack of easily accessible and highly representative animal models. The current combination therapy consisting of interferon-α and ribavirin mainly acts by supporting host cell defence. These therapeutics are the prototypic representatives of indirect antiviral agents as they act on cellular targets. However, the therapy is not a cure, when considered from the long-term perspective, for almost half of the chronically infected patients. This draws attention to the urgent need for more efficient treatments. Novel anti-hepatitis C treatments under study are directed against a number of so-called direct antiviral targets such as polymerases and proteases, which are encoded by the virus. Although such direct antiviral approaches have proven to be successful in several viral indications, there is a risk of resistant viruses developing. In order to avoid resistance, the development of indirect antiviral compounds has to be intensified. These act on host cell targets either by boosting the immune response or by blocking the virus host cell interaction. A particularly interesting approach is the development of inhibitors that interfere with signal transduction, such as protein kinase inhibitors. The purpose of this review is to stress the importance of developing indirect antiviral agents that act on host cell targets. In doing so, a large source of potential targets and mechanisms can be exploited, thus increasing the likelihood of success. Ultimately, combination therapies consisting of drugs against direct and indirect viral targets will most probably provide the solution to fighting and eradicating hepatitis C virus in patients.
Collapse
|
91
|
Thomas E, Liang TJ. Experimental models of hepatitis B and C - new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13:362-74. [PMID: 27075261 PMCID: PMC5578419 DOI: 10.1038/nrgastro.2016.37] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases and Sylvester Cancer Center, Room
PAP514, Papanicolaou Building, 1550 NW 10th Avenue, Miami, Florida 33136, USA
| | - T. Jake Liang
- Liver Diseases Branch, NIH, Building 10-9B16, Bethesda, Maryland
20892–1800, USA
| |
Collapse
|
92
|
Ortega-Prieto AM, Dorner M. The expanding toolbox for hepatitis C virus research. J Viral Hepat 2016; 23:320-9. [PMID: 26762605 DOI: 10.1111/jvh.12500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
Hepatitis C virus is a major global health concern with 170 million people chronically infected. Despite the availability of potent antiviral agents targeting multiple HCV proteins and cure rates above 90%, global treatment availability, the likelihood of emerging drug-resistant viral variants and the unavailability of a protective vaccine underline the many unresolved questions remaining to be answered. Model systems allowing the dissection of individual HCV life cycle steps have previously been developed and span noninfectious and infectious means of assessing HCV entry and replication, multiple cellular systems enabling host/pathogen interaction studies as well as in vivo model systems for basic as well as translational HCV research. This review provides an overview of available systems and a comparative summary of assays and models.
Collapse
Affiliation(s)
- A M Ortega-Prieto
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - M Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
93
|
Kolesanova EF, Sobolev BN, Moysa AA, Egorova EA, Archakov AI. [Way to the peptide vaccine against hepatitis C]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:254-64. [PMID: 25978391 DOI: 10.18097/pbmc20156102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to surpass the problem of genetic variability of hepatitis C virus envelope proteins during vaccine development, we used the so-called "reverse vaccinology"approach--"from genome to vaccine". Database of HCV protein sequences was designed, viral genome analysis was performed, and several highly conserved sites were revealed in HCV envelope proteins in the framework of this approach. These sites demonstrated low antigenic activity in full-size proteins and HCV virions: antibodies against these sites were not found in all hepatitis C patients. However, two sites, which contained a wide set of potential T-helper epitope motifs, were revealed among these highly conserved ones. We constructed and prepared by solid-phase peptide synthesis several artificial peptide constructs composed of two linker-connected highly conserved HCV envelope E2 protein sites; one of these sites contained a set of T-helper epitope motifs. Experiments on laboratory animals demonstrated that the developed peptide constructs manifested immunogenicity compared with one of protein molecules and were able to raise antibodies, which specifically bound HCV envelope proteins. We succeeded in obtaining antibodies reactive with HCV from hepatitis C patient plasma upon the immunization with some constructs. An original preparation of a peptide vaccine against hepatitis C is under development on the basis of these peptide constructs.
Collapse
Affiliation(s)
| | - B N Sobolev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E A Egorova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
94
|
Pybus OG, Thézé J. Hepacivirus cross-species transmission and the origins of the hepatitis C virus. Curr Opin Virol 2015; 16:1-7. [PMID: 26517843 DOI: 10.1016/j.coviro.2015.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022]
Abstract
Just 5 years ago the hepatitis C virus (HCV) - a major cause of liver disease infecting >3% of people worldwide - was the sole confirmed member of the Hepacivirus genus. Since then, genetically-diverse hepaciviruses have been isolated from bats, dogs, cows, horses, primates and rodents. Here we review current information on the hepaciviruses and speculate on the zoonotic origins of the viruses in humans, horses and dogs. Recent and direct cross-species transmission from horses to dogs appears plausible, but the zoonotic origins of HCV in humans remain opaque. Mechanical transmission by biting insects, notably tabanids, could, in theory, connect all three host species. Much further work is needed to understand the transmission and zoonotic potential of hepaciviruses in natural populations.
Collapse
Affiliation(s)
- Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Julien Thézé
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
95
|
Dondog B, Schnitzler P, Michael KM, Clifford G, Franceschi S, Pawlita M, Waterboer T. Hepatitis C Virus Seroprevalence in Mongolian Women Assessed by a Novel Multiplex Antibody Detection Assay. Cancer Epidemiol Biomarkers Prev 2015; 24:1360-5. [PMID: 26169147 DOI: 10.1158/1055-9965.epi-15-0351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/01/2015] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection causes hepatocellular carcinoma and is an important cause of mortality in both industrialized and developing countries. We developed a single-step high-throughput multiplex serology assay for HCV antibody detection and determined HCV prevalence in a highly endemic country. METHODS Five proteins (Core, NS3, NS4A, NS5A, NS5B) each from the three most common subtypes of HCV (1a, 1b, 2a) were recombinantly expressed and used as antigens in a multiplexed antibody detection assay. Multiplex HCV serology was validated with 432 reference sera whose HCV status was established by commercial ELISA, Western blot, and RNA assays. HCV antibodies were determined in 1,023 sera representative for the adult female population of Mongolia. RESULTS In reference sera, detection of HCV (mostly Core and NS3) antibodies by multiplex serology showed 100% sensitivity and 99.6% specificity, and was in very good agreement with the commercial diagnostic assays (kappa, 0.96; 95% confidence interval, 0.92-0.99). The role of antibodies to NS4 and NS5 remains to be evaluated. In Mongolia, overall HCV antibody prevalence was 18.9% (17.8% when age-standardized to the world population). HCV seroprevalence increased with age from 10% in women <30 years to 32% in women ≥50 years, but was not related to sexual risk factors. CONCLUSIONS The single-step high-throughput multiplex HCV serology assay performs similarly to conventional HCV antibody screening followed by secondary confirmation assays. A very high HCV seroprevalence was confirmed across all socio-economic groups in the female population of Mongolia. IMPACT Multiplex HCV serology facilitates large seroepidemiologic studies of HCV infection.
Collapse
Affiliation(s)
- Bolormaa Dondog
- Infection and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany. International Agency for Research on Cancer, Lyon, France
| | - Paul Schnitzler
- Department of Infectious Diseases, Institute of Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Kristina M Michael
- Infection and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gary Clifford
- International Agency for Research on Cancer, Lyon, France
| | | | - Michael Pawlita
- Infection and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Infection and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
96
|
Dietz J, Susser S, Berkowski C, Perner D, Zeuzem S, Sarrazin C. Consideration of Viral Resistance for Optimization of Direct Antiviral Therapy of Hepatitis C Virus Genotype 1-Infected Patients. PLoS One 2015; 10:e0134395. [PMID: 26317755 PMCID: PMC4552686 DOI: 10.1371/journal.pone.0134395] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV) infection are currently available. Pre-existence of resistance associated variants (RAVs) to direct antiviral agents (DAAs) reduces sustained virologic response (SVR) rates by 3-53% in hepatitis C virus (HCV) genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3), 11.9% (NS5A), and 22.1% (NS5B) with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%). Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.
Collapse
Affiliation(s)
- Julia Dietz
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | - Simone Susser
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | | | - Dany Perner
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | - Stefan Zeuzem
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | | |
Collapse
|
97
|
Feeney ER, Chung RT. The Polymerase Chain Reaction: Essential for the Development of Curative Therapy for Hepatitis C. Dig Dis Sci 2015; 60:2232-5. [PMID: 26072321 PMCID: PMC4499479 DOI: 10.1007/s10620-015-3748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eoin R Feeney
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
98
|
Scull MA, Shi C, de Jong YP, Gerold G, Ries M, von Schaewen M, Donovan BM, Labitt RN, Horwitz JA, Gaska JM, Hrebikova G, Xiao JW, Flatley B, Fung C, Chiriboga L, Walker CM, Evans DT, Rice CM, Ploss A. Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology 2015; 62:57-67. [PMID: 25820364 PMCID: PMC4482775 DOI: 10.1002/hep.27773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED At least 170 million people are chronically infected with hepatitis C virus (HCV). Owing to the narrow host range of HCV and restricted use of chimpanzees, there is currently no suitable animal model for HCV pathogenesis studies or the development of a HCV vaccine. To identify cellular determinants of interspecies transmission and establish a novel immunocompetent model system, we examined the ability of HCV to infect hepatocytes from a small nonhuman primate, the rhesus macaque (Macaca mulatta). We show that the rhesus orthologs of critical HCV entry factors support viral glycoprotein-dependent virion uptake. Primary hepatocytes from rhesus macaques are also permissive for HCV-RNA replication and particle production, which is enhanced when antiviral signaling is suppressed. We demonstrate that this may be owing to the diminished capacity of HCV to antagonize mitochondrial antiviral-signaling protein-dependent innate cellular defenses. To test the ability of HCV to establish persistent replication in vivo, we engrafted primary rhesus macaque hepatocytes into immunocompromised xenorecipients. Inoculation of resulting simian liver chimeric mice with either HCV genotype 1a or 2a resulted in HCV serum viremia for up to 10 weeks. CONCLUSION Together, these data indicate that rhesus macaques may be a viable model for HCV and implicate host immunity as a potential species-specific barrier to HCV infection. We conclude that suppression of host immunity or further viral adaptation may allow robust HCV infection in rhesus macaques and creation of a new animal model for studies of HCV pathogenesis, lentivirus coinfection, and vaccine development.
Collapse
Affiliation(s)
- Margaret A. Scull
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Chao Shi
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Ype P. de Jong
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA,Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, New York 10065, USA
| | - Gisa Gerold
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Moritz Ries
- AIDS Vaccine Research Laboratory, Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Bridget M. Donovan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Rachael N. Labitt
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Joshua A. Horwitz
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Jenna M. Gaska
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jing W. Xiao
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Brenna Flatley
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Canny Fung
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, New York, USA
| | | | - David T. Evans
- AIDS Vaccine Research Laboratory, Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Charles M. Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Alexander Ploss
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065, USA,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA,Correspondence to: Alexander Ploss, Ph.D., Department of Molecular Biology, Princeton University, Washington Road, LTL 110, Princeton, NJ 08544, Phone: (609) 258-7128, Fax: (609) 258-1701,
| |
Collapse
|
99
|
de Jong YP, Dorner M, Mommersteeg MC, Xiao JW, Balazs AB, Robbins JB, Winer BY, Gerges S, Vega K, Labitt RN, Donovan BM, Giang E, Krishnan A, Chiriboga L, Charlton MR, Burton DR, Baltimore D, Law M, Rice CM, Ploss A. Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 2015; 6:254ra129. [PMID: 25232181 DOI: 10.1126/scitranslmed.3009512] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs-AR3A, AR3B, and AR4A-delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection.
Collapse
Affiliation(s)
- Ype P de Jong
- Center for the Study of Hepatitis C, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA. Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Marcus Dorner
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michiel C Mommersteeg
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jing W Xiao
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Justin B Robbins
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sherif Gerges
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kevin Vega
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Rachael N Labitt
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Bridget M Donovan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Erick Giang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - Michael R Charlton
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alexander Ploss
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA. Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
100
|
Catanese MT, Dorner M. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology 2015; 479-480:221-33. [PMID: 25847726 DOI: 10.1016/j.virol.2015.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) represents a global health concern affecting over 185 million people worldwide. Chronic HCV infection causes liver fibrosis and cirrhosis and is the leading indication for liver transplantation. Recent advances in the field of direct-acting antiviral drugs (DAAs) promise a cure for HCV in over 90% of cases that will get access to these expensive treatments. Nevertheless, the lack of a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. With chimpanzees being for a long time the only non-human in vivo model of HCV infection, strong efforts were put into establishing in vitro experimental systems. The initial models only enabled to study specific aspects of the HCV life cycle, such as viral replication with the subgenomic replicon and entry using HCV pseudotyped particles (HCVpp). Subsequent development of protocols to grow infectious HCV particles in cell-culture (HCVcc) ignited investigations on the full cycle of HCV infection and the virus-host interactions required for virus propagation. More recently, small animal models permissive to HCV were generated that allowed in vivo testing of novel antiviral therapies as well as vaccine candidates. This review provides an overview of the currently available in vitro and in vivo experimental systems to study HCV biology. Particular emphasis is given to how these model systems furthered our understanding of virus-host interactions, viral pathogenesis and immunological responses to HCV infection, as well as drug and vaccine development.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Imperial College London, London, United Kingdom; Section of Hepatology, Imperial College London, London, United Kingdom.
| |
Collapse
|