51
|
Uesugi A, Baker DJ, de Silva N, Nurkowski K, Hodgins KA. A lack of genetically compatible mates constrains the spread of an invasive weed. THE NEW PHYTOLOGIST 2020; 226:1864-1872. [PMID: 32083724 DOI: 10.1111/nph.16496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Introduced populations often experience lag times before invasion, but the mechanisms constraining rapid expansions of introduced populations are unclear. Solidago altissima is a North American native plant with highly invasive Japanese populations and introduced Australian populations that are not invasive despite the climatic and ecological suitability of the region. By contrasting Australian with Japanese populations, we tested the hypothesis that Australian population growth is limited by a lack of long-distance dispersal via seeds owing to a limited number of compatible mates. In the field, Australian populations rarely produced viable seeds. A cross-pollination experiment found that Australian plants are fertile, yet lack compatible mates within Australia. Genetic analysis revealed that Australian individuals descend from a small set of self-incompatible genetic clones, which explains the negligible seed set within Australia. Our results show that low genetic diversity, leading to mate incompatibility, inhibits invasiveness of Australian S. altissima, and provides compelling evidence for genetic, rather than ecological, factors constraining invasion in Australia.
Collapse
Affiliation(s)
- Akane Uesugi
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic., 3800, Australia
| | - David J Baker
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic., 3800, Australia
| | - Nissanka de Silva
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic., 3800, Australia
| | - Kristin Nurkowski
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic., 3800, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Building 18, Clayton, Vic., 3800, Australia
| |
Collapse
|
52
|
|
53
|
Simões P, Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M. Beneficial developmental acclimation in reproductive performance under cold but not heat stress. J Therm Biol 2020; 90:102580. [DOI: 10.1016/j.jtherbio.2020.102580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
|
54
|
Liu W, Zhang Y, Chen X, Maung-Douglass K, Strong DR, Pennings SC. Contrasting plant adaptation strategies to latitude in the native and invasive range of Spartina alterniflora. THE NEW PHYTOLOGIST 2020; 226:623-634. [PMID: 31834631 DOI: 10.1111/nph.16371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grass Spartina alterniflora within its invasive and native ranges. We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr. Chinese plants were c. 15% taller, c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven-fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range. Our results are consistent with others showing that introduced plants can evolve rapidly in the new range. S. alterniflora has evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Keith Maung-Douglass
- Coastal Sustainability Studio, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Donald R Strong
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
55
|
|
56
|
Tsai HY, Rubenstein DR, Fan YM, Yuan TN, Chen BF, Tang Y, Chen IC, Shen SF. Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nat Commun 2020; 11:1398. [PMID: 32170152 PMCID: PMC7069978 DOI: 10.1038/s41467-020-15208-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Understanding how phenotypic traits vary among populations inhabiting different environments is critical for predicting a species' vulnerability to climate change. Yet, little is known about the key functional traits that determine the distribution of populations and the main mechanisms-phenotypic plasticity vs. local adaptation-underlying intraspecific functional trait variation. Using the Asian burying beetle Nicrophorus nepalensis, we demonstrate that mountain ranges differing in elevation and latitude offer unique thermal environments in which two functional traits-thermal tolerance and reproductive photoperiodism-interact to shape breeding phenology. We show that populations on different mountain ranges maintain similar thermal tolerances, but differ in reproductive photoperiodism. Through common garden and reciprocal transplant experiments, we confirm that reproductive photoperiodism is locally adapted and not phenotypically plastic. Accordingly, year-round breeding populations on mountains of intermediate elevation are likely to be most susceptible to future warming because maladaptation occurs when beetles try to breed at warmer temperatures.
Collapse
Affiliation(s)
- Hsiang-Yu Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 115, Taiwan
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology and Center for Integrative Animal Behavior, Columbia University, New York, NY, 10027, USA
| | - Yu-Meng Fan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 115, Taiwan
| | - Tzu-Neng Yuan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Bo-Fei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 61004, People's Republic of China
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
57
|
Wesselmann M, Anton A, Duarte CM, Hendriks IE, Agustí S, Savva I, Apostolaki ET, Marbà N. Tropical seagrass Halophila stipulacea shifts thermal tolerance during Mediterranean invasion. Proc Biol Sci 2020; 287:20193001. [PMID: 32156215 PMCID: PMC7126082 DOI: 10.1098/rspb.2019.3001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Exotic species often face new environmental conditions that are different from those that they are adapted to. The tropical seagrass Halophila stipulacea is a Lessepsian migrant that colonized the Mediterranean Sea around 100 years ago, where at present the minimum seawater temperature is cooler than in its native range in the Red Sea. Here, we tested if the temperature range in which H. stipulacea can exist is conserved within the species or if the exotic populations have shifted their thermal breadth and optimum due to the cooler conditions in the Mediterranean. We did so by comparing the thermal niche (e.g. optimal temperatures, and upper and lower thermal limits) of native (Saudi Arabia in the Red Sea) and exotic (Greece and Cyprus in the Mediterranean Sea) populations of H. stipulacea. We exposed plants to 12 temperature treatments ranging from 8 to 40°C for 7 days. At the end of the incubation period, we measured survival, rhizome elongation, shoot recruitment, net population growth and metabolic rates. Upper and lower lethal thermal thresholds (indicated by 50% plant mortality) were conserved across populations, but minimum and optimal temperatures for growth and oxygen production were lower for Mediterranean populations than for the Red Sea one. The displacement of the thermal niche of exotic populations towards the colder Mediterranean Sea regime could have occurred within 175 clonal generations.
Collapse
Affiliation(s)
- Marlene Wesselmann
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Andrea Anton
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Iris E. Hendriks
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Susana Agustí
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ioannis Savva
- Marine and Environmental Research (MER) Lab, Limassol 4533, Cyprus
| | - Eugenia T. Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003 Heraklion, Crete, Greece
| | - Núria Marbà
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| |
Collapse
|
58
|
Gérard M, Martinet B, Maebe K, Marshall L, Smagghe G, Vereecken NJ, Vray S, Rasmont P, Michez D. Shift in size of bumblebee queens over the last century. GLOBAL CHANGE BIOLOGY 2020; 26:1185-1195. [PMID: 31665557 DOI: 10.1111/gcb.14890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Species can respond differently when facing environmental changes, such as by shifting their geographical ranges or through plastic or adaptive modifications to new environmental conditions. Phenotypic modifications related to environmental factors have been mainly explored along latitudinal gradients, but they are relatively understudied through time despite their importance for key ecological interactions. Here we hypothesize that the average bumblebee queen body size has changed in Belgium during the last century. Based on historical and contemporary databases, we first tested if queen body sizes changed during the last century at the intraspecific level among four common bumblebee species and if it could be linked to global warming and/or habitat fragmentation as well as by the replacement by individuals from new populations. Then, we assessed body size changes at the community level, among 22 species, taking into account species population trends (i.e. increasing, stable or decreasing relative abundance). Our results show that the average queen body size of all four bumblebee species increased over the last century. This size increase was significantly correlated to global warming and habitat fragmentation, but not explained by changes in the population genetic structure (i.e. colonization). At the community level, species with stable or increasing relative abundance tend to be larger than declining species. Contrary to theoretical expectations from Bergmann's rule (i.e. increasing body size in colder climates), temperature does not seem to be the main driver of bumblebee body size during the last century as we observed the opposite body size trend. However, agricultural intensification and habitat fragmentation could be alternative mechanisms that shape body size clines. This study stresses the importance of considering alternative global change factors when assessing body size change.
Collapse
Affiliation(s)
- Maxence Gérard
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Kevin Maebe
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leon Marshall
- Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Guy Smagghe
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Sarah Vray
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Pierre Rasmont
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Denis Michez
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
59
|
Tourneur J, Meunier J. Variations in seasonal (not mean) temperatures drive rapid adaptations to novel environments at a continent scale. Ecology 2020; 101:e02973. [DOI: 10.1002/ecy.2973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/24/2019] [Accepted: 12/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Jean‐Claude Tourneur
- Département des Sciences Biologiques Université du Québec à Montréal 141 Avenue du Président‐Kennedy Montréal Québec H2X 1Y4 Canada
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI) UMR 7261 CNRS Université de Tours Tours France
| |
Collapse
|
60
|
Malerba ME, Marshall DJ. Testing the drivers of the temperature-size covariance using artificial selection. Evolution 2019; 74:169-178. [PMID: 31815291 DOI: 10.1111/evo.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Body size often declines with increasing temperature. Although there is ample evidence for this effect to be adaptive, it remains unclear whether size shrinking at warmer temperatures is driven by specific properties of being smaller (e.g., surface to volume ratio) or by traits that are correlated with size (e.g., metabolism, growth). We used 290 generations (22 months) of artificial selection on a unicellular phytoplankton species to evolve a 13-fold difference in volume between small-selected and large-selected cells and tested their performance at 22°C (usual temperature), 18°C (-4), and 26°C (+4). Warmer temperatures increased fitness in small-selected individuals and reduced fitness in large-selected ones, indicating changes in size alone are sufficient to mediate temperature-dependent performance. Our results are incompatible with the often-cited geometric argument of warmer temperature intensifying resource limitation. Instead, we find evidence that is consistent with larger cells being more vulnerable to reactive oxygen species. By engineering cells of different sizes, our results suggest that smaller-celled species are pre-adapted for higher temperatures. We discuss the potential repercussions for global carbon cycles and the biological pump under climate warming.
Collapse
Affiliation(s)
- Martino E Malerba
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Dustin J Marshall
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
61
|
Hierro JL, Eren Ö, Montesinos D, Andonian K, Kethsuriani L, Özcan R, Diaconu A, Török K, Cavieres L, French K. Increments in weed seed size track global range expansion and contribute to colonization in a non-native region. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02137-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
62
|
Allen PE, Laforest L, Diyaljee SI, Smith HM, Tran DX, Winsor AM, Dale AG. Long-term changes in mole cricket body size associated with enemy-free space and a novel range. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Li D, Chen F, Han J. A study of the treatment of high-salt chromium-containing wastewater by the photocatalysis-constructed wetland combination method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1956-1966. [PMID: 32144227 DOI: 10.2166/wst.2020.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, iron ore slag as the photocatalyst was introduced into a constructed wetland simulation system. A comparative experiment of the constructed wetland method and photocatalysis-constructed wetland combination method that treats the high-salt chromium-containing wastewater was carried out. The best hydraulic retention time (HRT) of the photocatalysis-constructed wetland combination system was studied. The effects of these two methods on biochemical oxygen demand (BOD5), chemical oxygen demand (COD) removal and Cr(VI) reduction rate of the high-salt chromium-containing wastewater were analysed after 14 periods. The results showed that under the optimal HRT of 4 hours, the COD and BOD5 of the wastewater reduced by 47% and 31%, and the reduction rate of Cr(VI) was 83% separately in the constructed wetland system. The COD and BOD5 of the wastewater reduced by 83% and 42%, and the reduction rate of Cr(VI) was 96% separately in the photocatalysis-constructed wetland combination method system. At the same time, the changes in plant parameters under these two systems were studied, and the results showed that the addition of photocatalyst and hydrogen peroxide to constructed wetlands did not affect the normal indicators of plant growth. The results showed that the photocatalysis-constructed wetland combination method not only reduced the treatment time greatly, but also improved the quality of the treated wastewater significantly.
Collapse
Affiliation(s)
- Dandan Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, 201418 Shanghai, China E-mail:
| | | | - Jianqiu Han
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, 201418 Shanghai, China E-mail:
| |
Collapse
|
64
|
Rate of change for the thermal adapted inversions in Drosophila subobscura. Genetica 2019; 147:401-409. [PMID: 31625005 DOI: 10.1007/s10709-019-00078-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
The changes of chromosomal inversion polymorphism composition of Drosophila subobscura in samples from Apatin (Serbia) were studied in a 24-years interval (1994-2018). The variation was significant for all autosomes and directional, increasing the inversions considered as 'warm', whereas those reported as 'cold' decreased. Furthermore, the Chromosomal Thermal Index (CTI), which allows studying the thermal adaptation of the whole karyotype increased significantly in that period of time. These results were in agreement with the indicators of global warming in Apatin: a trend to increase of the mean, maximum and minimum (this latter even significant) temperatures, and an erratic pattern of rainfall (also usual in global warming). The deviations from the Wright-Fisher model of genetic drift were used to consider the possible effect of migration or selection as evolutionary factors responsible for the change in inversion frequencies. To quantify approximately the rate of change in the frequencies, for each kind of inversions ('cold', 'warm' and 'non-thermal adapted'), the difference in frequency between the Apatin samples obtained in 1994 and 2018 was computed and then it was divided by the number of years elapsed. This rate was always higher (from twice as many as thirty times more depending on the autosome) for thermal adapted inversions ('cold' or 'warm') than the 'non-thermal' adapted. From this study, it could be concluded that the chromosomal inversions of D. subobscura could change (in composition and frequencies) in a predictable direction and a rather 'rapid' rhythm to adapt to the global warming scenario.
Collapse
|
65
|
The Role of Mutation Bias in Adaptive Evolution. Trends Ecol Evol 2019; 34:422-434. [PMID: 31003616 DOI: 10.1016/j.tree.2019.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
Mutational input is the ultimate source of genetic variation, but mutations are not thought to affect the direction of adaptive evolution. Recently, critics of standard evolutionary theory have questioned the random and non-directional nature of mutations, claiming that the mutational process can be adaptive in its own right. We discuss here mutation bias in adaptive evolution. We find little support for mutation bias as an independent force in adaptive evolution, although it can interact with selection under conditions of small population size and when standing genetic variation is limited, entirely consistent with standard evolutionary theory. We further emphasize that natural selection can shape the phenotypic effects of mutations, giving the false impression that directed mutations are driving adaptive evolution.
Collapse
|
66
|
Gibert P, Debat V, Ghalambor CK. Phenotypic plasticity, global change, and the speed of adaptive evolution. CURRENT OPINION IN INSECT SCIENCE 2019; 35:34-40. [PMID: 31325807 DOI: 10.1016/j.cois.2019.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The role phenotypic plasticity might play in adaptation to the ongoing climate changes is unclear. Plasticity allows for the production of a diversity of intra-generational responses, whose inter-generational evolutionary consequences are difficult to predict. In this article, we review theory and empirical studies addressing this question in insects by considering three scenarios. The first scenario corresponds to adaptive plasticity that should lead to slow or no evolution. The second scenario is the case of non-adaptive phenotypic plasticity to new environmental conditions that should lead either to extinction or, on the contrary, to rapid evolutionary change. The third scenario deals with how plasticity alters the variance selection acts upon. These scenarios are then discussed by highlighting examples of empirical studies on insects. We conclude that more studies are needed to better understand the relationship between phenotypic plasticity and evolutionary processes in insects.
Collapse
Affiliation(s)
- Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France.
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
67
|
Heuring C, Barber D, Rains N, Erxleben D, Martin C, Williams D, McElroy EJ. Genetics, morphology and diet of introduced populations of the ant-eating Texas Horned Lizard (Phrynosoma cornutum). Sci Rep 2019; 9:11470. [PMID: 31391496 PMCID: PMC6685972 DOI: 10.1038/s41598-019-47856-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Introduced species can diverge from their source population when they become established in a new ecosystem. The Texas Horned Lizard (Phrynosoma cornutum) is native to the western United States (US) and was historically introduced to several locations in the southeastern US. We studied three introduced populations in South Carolina, US to determine if they exhibit dietary, morphological and genetic divergence from the native western US populations. We expected little divergence from western populations because P. cornutum is a specialist whose biology is largely shaped by its diet of Pogonomyrmex harvester ants. We show that the introduced populations have mixed ancestry between south Texas and more northern areas and experienced founder effects and genetic bottlenecks resulting in decreased genetic diversity. South Carolina lizards primarily consume ants (94%), but surprisingly, they did not eat harvester ants. Introduced lizards primarily eat Dorymyrmex ants, but each introduced population complements Dorymyrmex with significantly different amounts of other species of ants, insects and plant matter. Introduced populations have smaller body size and have different limb and head shapes compared to western populations. This study demonstrates successful persistence of an introduced vertebrate that may be attributed to phenotypic change, even in the face of reduced genetic diversity.
Collapse
Affiliation(s)
- Courtney Heuring
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412, USA
| | | | - Nathan Rains
- Texas Parks and Wildlife Department, Austin, Texas, 78744, USA
| | - Devin Erxleben
- Texas Parks and Wildlife Department, Austin, Texas, 78744, USA
| | - Cameron Martin
- Texas Parks and Wildlife Department, Austin, Texas, 78744, USA
| | - Dean Williams
- Department of Biology, Texas Christian University, Fort Worth, Texas, 76129, USA
| | - Eric J McElroy
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412, USA.
| |
Collapse
|
68
|
Fischer S, De Majo MS, Di Battista CM, Montini P, Loetti V, Campos RE. Adaptation to temperate climates: Evidence of photoperiod-induced embryonic dormancy in Aedes aegypti in South America. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103887. [PMID: 31125550 DOI: 10.1016/j.jinsphys.2019.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Dormancy is a developmental arrest in arthropods, in response to unfavorable conditions in temporally varying environments. In Aedes aegypti, the supposed inability of eggs to inhibit hatching has been used to explain the restriction of this species to tropical and subtropical regions. However, the geographic range of Ae. aegypti is constantly expanding towards temperate regions. Thus, the aim of the present study was to assess the ability of Ae. aegypti individuals from a temperate region (Buenos Aires City, Argentina) to enter photoperiod induced dormancy. To this end, we exposed both the parental generation and the eggs to short-day (SD: 10L:14D) and long-day (LD: 14L:10D) photoperiods, and studied the temporal variation in egg hatching. The experiment consisted of 28 treatment combinations of three factors: parental photoperiod (SD or LD), egg storage photoperiod (SD or LD), and age of eggs (14, 28, 42, 56, 70, 91, and 112 days). The results showed a lower hatching response with the SD parental photoperiod, and a trend to higher hatching with longer egg storage time in all photoperiod treatment combinations. The egg storage photoperiod showed no effect on egg hatching. In both parental photoperiod treatments, egg replicates of most ages from different females showed a large variability, with some replicates with lowest hatching response and others with highest hatching response. Our results show the ability of Ae. aegypti to inhibit egg hatching in response to a short-day photoperiod, which could allow the further expansion of this species to regions with colder winters.
Collapse
Affiliation(s)
- Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Cristian M Di Battista
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata - CONICET, CCT La Plata, Boulevard 120 and 62, La Plata, Buenos Aires, Argentina
| | - Pedro Montini
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Verónica Loetti
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata - CONICET, CCT La Plata, Boulevard 120 and 62, La Plata, Buenos Aires, Argentina
| |
Collapse
|
69
|
Vila JCC, Jones ML, Patel M, Bell T, Rosindell J. Uncovering the rules of microbial community invasions. Nat Ecol Evol 2019; 3:1162-1171. [PMID: 31358951 DOI: 10.1038/s41559-019-0952-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Understanding the ecological and evolutionary processes determining the outcome of biological invasions has been the subject of decades of research with most work focusing on macro-organisms. In the context of microbes, invasions remain poorly understood despite being increasingly recognized as important. To shed light on the factors affecting the success of microbial community invasions, we perform simulations using an individual-based nearly neutral model that combines ecological and evolutionary processes. Our simulations qualitatively recreate many empirical patterns and lead to a description of five general rules of invasion: (1) larger communities evolve better invaders and better defenders; (2) where invader and resident fitness difference is large, invasion success is essentially deterministic; (3) propagule pressure contributes to invasion success, if and only if, invaders and residents are competitively similar; (4) increasing the diversity of invaders has a similar effect to increasing the number of invaders; and (5) more diverse communities more successfully resist invasion.
Collapse
Affiliation(s)
- Jean C C Vila
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK. .,Microbial Sciences Institute, West Campus, Yale University, West Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Matt L Jones
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Matishalin Patel
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Tom Bell
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - James Rosindell
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
70
|
Siepielski AM, Morrissey MB, Carlson SM, Francis CD, Kingsolver JG, Whitney KD, Kruuk LEB. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc Biol Sci 2019; 286:20191332. [PMID: 31337312 DOI: 10.1098/rspb.2019.1332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reductions in animal body size over recent decades are often interpreted as an adaptive evolutionary response to climate warming. However, for reductions in size to reflect adaptive evolution, directional selection on body size within populations must have become negative, or where already negative, to have become more so, as temperatures increased. To test this hypothesis, we performed traditional and phylogenetic meta-analyses of the association between annual estimates of directional selection on body size from wild populations and annual mean temperatures from 39 longitudinal studies. We found no evidence that warmer environments were associated with selection for smaller size. Instead, selection consistently favoured larger individuals, and was invariant to temperature. These patterns were similar in ectotherms and endotherms. An analysis using year rather than temperature revealed similar patterns, suggesting no evidence that selection has changed over time, and also indicating that the lack of association with annual temperature was not an artefact of choosing an erroneous time window for aggregating the temperature data. Although phenotypic trends in size will be driven by a combination of genetic and environmental factors, our results suggest little evidence for a necessary ingredient-negative directional selection-for declines in body size to be considered an adaptive evolutionary response to changing selection pressures.
Collapse
Affiliation(s)
- Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, SCEN 601, 850 W. Dickson Street, Fayetteville, AR 72701, USA
| | | | - Stephanie M Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Clinton D Francis
- Department of Biological Sciences, Cal Poly State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth D Whitney
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM, USA
| | - Loeske E B Kruuk
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
71
|
Castañeda LE, Romero‐Soriano V, Mesas A, Roff DA, Santos M. Evolutionary potential of thermal preference and heat tolerance in
Drosophila subobscura. J Evol Biol 2019; 32:818-824. [DOI: 10.1111/jeb.13483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Luis E. Castañeda
- Programa de Genética Humana Facultad de Medicina Instituto de Ciencias Biomédicas Universidad de Chile Santiago Chile
| | | | - Andrés Mesas
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Valdivia Chile
| | - Derek A. Roff
- Department of Evolution, Ecology and Organismal Biology University of California Riverside California
| | - Mauro Santos
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE) Departament de Genètica i de Microbiologia Universitat Autònoma de Barcelona Barcelona Spain
| |
Collapse
|
72
|
Pereira-da-Conceicoa LL, Benítez HA, Barber-James HM. Disentangling wing shape evolution in the African mayfly, Teloganodidae (Ephemeroptera). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Santangelo JS, Johnson MTJ, Ness RW. Modern spandrels: the roles of genetic drift, gene flow and natural selection in the evolution of parallel clines. Proc Biol Sci 2019; 285:rspb.2018.0230. [PMID: 29743253 DOI: 10.1098/rspb.2018.0230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 11/12/2022] Open
Abstract
Urban environments offer the opportunity to study the role of adaptive and non-adaptive evolutionary processes on an unprecedented scale. While the presence of parallel clines in heritable phenotypic traits is often considered strong evidence for the role of natural selection, non-adaptive evolutionary processes can also generate clines, and this may be more likely when traits have a non-additive genetic basis due to epistasis. In this paper, we use spatially explicit simulations modelled according to the cyanogenesis (hydrogen cyanide, HCN) polymorphism in white clover (Trifolium repens) to examine the formation of phenotypic clines along urbanization gradients under varying levels of drift, gene flow and selection. HCN results from an epistatic interaction between two Mendelian-inherited loci. Our results demonstrate that the genetic architecture of this trait makes natural populations susceptible to decreases in HCN frequencies via drift. Gradients in the strength of drift across a landscape resulted in phenotypic clines with lower frequencies of HCN in strongly drifting populations, giving the misleading appearance of deterministic adaptive changes in the phenotype. Studies of heritable phenotypic change in urban populations should generate null models of phenotypic evolution based on the genetic architecture underlying focal traits prior to invoking selection's role in generating adaptive differentiation.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6 .,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
74
|
Angilletta MJ, Condon C, Youngblood JP. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis. J Therm Biol 2019; 81:25-32. [DOI: 10.1016/j.jtherbio.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022]
|
75
|
van Boheemen LA, Atwater DZ, Hodgins KA. Rapid and repeated local adaptation to climate in an invasive plant. THE NEW PHYTOLOGIST 2019; 222:614-627. [PMID: 30367474 DOI: 10.1111/nph.15564] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Biological invasions provide opportunities to study evolutionary processes occurring over contemporary timescales. To explore the speed and repeatability of adaptation, we examined the divergence of life-history traits to climate, using latitude as a proxy, in the native North American and introduced European and Australian ranges of the annual plant Ambrosia artemisiifolia. We explored niche changes following introductions using climate niche dynamic models. In a common garden, we examined trait divergence by growing seeds collected across three ranges with highly distinct demographic histories. Heterozygosity-fitness associations were used to explore the effect of invasion history on potential success. We accounted for nonadaptive population differentiation using 11 598 single nucleotide polymorphisms. We revealed a centroid shift to warmer, wetter climates in the introduced ranges. We identified repeated latitudinal divergence in life-history traits, with European and Australian populations positioned at either end of the native clines. Our data indicate rapid and repeated adaptation to local climates despite the recent introductions and a bottleneck limiting genetic variation in Australia. Centroid shifts in the introduced ranges suggest adaptation to more productive environments, potentially contributing to trait divergence between the ranges.
Collapse
Affiliation(s)
- Lotte A van Boheemen
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | - Daniel Z Atwater
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| |
Collapse
|
76
|
Karageorgiou C, Gámez-Visairas V, Tarrío R, Rodríguez-Trelles F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 2019; 20:223. [PMID: 30885123 PMCID: PMC6423853 DOI: 10.1186/s12864-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Drosophila subobscura has long been a central model in evolutionary genetics. Presently, its use is hindered by the lack of a reference genome. To bridge this gap, here we used PacBio long-read technology, together with the available wealth of genetic marker information, to assemble and annotate a high-quality nuclear and complete mitochondrial genome for the species. With the obtained assembly, we performed the first synteny analysis of genome structure evolution in the subobscura subgroup. RESULTS We generated a highly-contiguous ~ 129 Mb-long nuclear genome, consisting of six pseudochromosomes corresponding to the six chromosomes of a female haploid set, and a complete 15,764 bp-long mitogenome, and provide an account of their numbers and distributions of codifying and repetitive content. All 12 identified paracentric inversion differences in the subobscura subgroup would have originated by chromosomal breakage and repair, with some associated duplications, but no evidence of direct gene disruptions by the breakpoints. Between lineages, inversion fixation rates were 10 times higher in continental D. subobscura than in the two small oceanic-island endemics D. guanche and D. madeirensis. Within D. subobscura, we found contrasting ratios of chromosomal divergence to polymorphism between the A sex chromosome and the autosomes. CONCLUSIONS We present the first high-quality, long-read sequencing of a D. subobscura genome. Our findings generally support genome structure evolution in this species being driven indirectly, through the inversions' recombination-suppression effects in maintaining sets of adaptive alleles together in the face of gene flow. The resources developed will serve to further establish the subobscura subgroup as model for comparative genomics and evolutionary indicator of global change.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Víctor Gámez-Visairas
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Rosa Tarrío
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco Rodríguez-Trelles
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
77
|
Andrade-Restrepo M, Champagnat N, Ferrière R. Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion. Ecol Lett 2019; 22:767-777. [PMID: 30887688 DOI: 10.1111/ele.13234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single-species population model along a one-dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco-evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave-like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco-evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco-evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.
Collapse
Affiliation(s)
- Martín Andrade-Restrepo
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris Cité Sorbonne, F-750205, Paris, France
| | - Nicolas Champagnat
- IECL, CNRS UMR 7502, Université de Lorraine, Vandœuvre-lès-Nancy, F-54506, Lorraine, France.,Inria, TOSCA team, Villers-lès-Nancy, F-54600, France
| | - Régis Ferrière
- Institut de Biologie de l'ENS, CNRS UMR 8197, INSERM U 1043, Ecole Normale Supérieure, Paris Sciences & Lettres University, Paris, F-75005, France.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, UMI 3157, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
78
|
Zeender V, Roy J, Wegmann A, Schäfer MA, Gourgoulianni N, Blanckenhorn WU, Rohner PT. Comparative reproductive dormancy differentiation in European black scavenger flies (Diptera: Sepsidae). Oecologia 2019; 189:905-917. [PMID: 30877577 DOI: 10.1007/s00442-019-04378-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
Seasonality is a key environmental factor that regularly promotes life history adaptation. Insects invading cold-temperate climates need to overwinter in a dormant state. We compared the role of temperature and photoperiod in dormancy induction in the laboratory, as well as winter survival and reproduction in the field and the laboratory, of 5 widespread European dung fly species (Diptera: Sepsidae) to investigate their extent of ecological differentiation and thermal adaptation. Unexpectedly, cold temperature is the primary environmental factor inducing winter dormancy, with short photoperiod playing an additional role mainly in species common at high altitudes and latitudes (Sepsis cynipsea, neocynipsea, fulgens), but not in those species also thriving in southern Europe (thoracica, punctum). All species hibernate as adults rather than juveniles. S. thoracica had very low adult winter survivorship under both (benign) laboratory and (harsh) field conditions, suggesting flexible quiescence rather than genetically fixed winter diapause, restricting their distribution towards the pole. All other species appear well suited for surviving cold, Nordic winters. Females born early in the season reproduce before winter while late-born females reproduce after winter, fulgens transitioning earliest before winter and thoracica and punctum latest; a bet-hedging strategy of reproduction during both seasons occurs rarely but is possible physiologically. Fertility patterns indicate that females can store sperm over winter. Winter dormancy induction mechanisms of European sepsids are congruent with their geographic distribution, co-defining their thermal niches. Flexible adult winter quiescence appears the easiest route for insects spreading towards the poles to evolve the necessary overwinter survival.
Collapse
Affiliation(s)
- Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alexandra Wegmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
79
|
Marshall MM, Batten LC, Remington DL, Lacey EP. Natural selection contributes to geographic patterns of thermal plasticity in Plantago lanceolata. Ecol Evol 2019; 9:2945-2963. [PMID: 30891228 PMCID: PMC6405498 DOI: 10.1002/ece3.4977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
A long-standing debate in evolutionary biology concerns the relative importance of different evolutionary forces in explaining phenotypic diversification at large geographic scales. For example, natural selection is typically assumed to underlie divergence along environmental gradients. However, neutral evolutionary processes can produce similar patterns. We collected molecular genetic data from 14 European populations of Plantago lanceolata to test the contributions of natural selection versus neutral evolution to population divergence in temperature-sensitive phenotypic plasticity of floral reflectance. In P. lanceolata, reflectance plasticity is positively correlated with latitude/altitude. We used population pairwise comparisons between neutral genetic differentiation (F ST and Jost's D) and phenotypic differentiation (P ST) to assess the contributions of geographic distance and environmental parameters of the reproductive season in driving population divergence. Data are consistent with selection having shaped large-scale geographic patterns in thermal plasticity. The aggregate pattern of P ST versus F ST was consistent with divergent selection. F ST explained thermal plasticity differences only when geographic distance was not included in the model. Differences in the extent of cool reproductive season temperatures, and not overall temperature variation, explained plasticity differences independent of distance. Results are consistent with the hypothesis that thermal plasticity is adaptive where growing seasons are shorter and cooler, that is, at high latitude/altitude.
Collapse
Affiliation(s)
- Matthew M. Marshall
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Leslie C. Batten
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - David L. Remington
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Elizabeth P. Lacey
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| |
Collapse
|
80
|
Ogden NH, Wilson JRU, Richardson DM, Hui C, Davies SJ, Kumschick S, Le Roux JJ, Measey J, Saul WC, Pulliam JRC. Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181577. [PMID: 31032015 PMCID: PMC6458372 DOI: 10.1098/rsos.181577] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/18/2019] [Indexed: 05/11/2023]
Abstract
The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept-the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial.
Collapse
Affiliation(s)
- Nick H. Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Canada
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, Cape Town, South Africa
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences (AIMS), Muizenberg 7945, South Africa
| | - Sarah J. Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, Cape Town, South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Wolf-Christian Saul
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Juliet R. C. Pulliam
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| |
Collapse
|
81
|
Thawley CJ, Goldy-Brown M, McCormick GL, Graham SP, Langkilde T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. GLOBAL CHANGE BIOLOGY 2019; 25:620-628. [PMID: 30488524 DOI: 10.1111/gcb.14510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non-native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness-relevant traits-morphology, physiological stress responsiveness, and antipredator behavior-in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species' full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress-relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant-invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.
Collapse
Affiliation(s)
- Christopher J Thawley
- Department of Biological Sciences, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Goldy-Brown
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gail L McCormick
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Sean P Graham
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
82
|
Helliwell EE, Faber‐Hammond J, Lopez ZC, Garoutte A, Wettberg E, Friesen ML, Porter SS. Rapid establishment of a flowering cline in
Medicago polymorpha
after invasion of North America. Mol Ecol 2018; 27:4758-4774. [DOI: 10.1111/mec.14898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Emily E. Helliwell
- School of Biological Sciences Washington State University Vancouver Washington
| | | | - Zoie C. Lopez
- School of Biological Sciences Washington State University Vancouver Washington
| | - Aaron Garoutte
- Department of Plant Biology Michigan State University East Lansing Michigan
| | - Eric Wettberg
- Department of Plant and Soil Science The University of Vermont Burlington Vermont
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University East Lansing Michigan
- Department of Plant Pathology Washington State University Pullman Washington
- Department of Crop and Soil Sciences Washington State University Pullman Washington
| | - Stephanie S. Porter
- School of Biological Sciences Washington State University Vancouver Washington
| |
Collapse
|
83
|
Prates I, Penna A, Rodrigues MT, Carnaval AC. Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecol Evol 2018; 8:11932-11944. [PMID: 30598788 PMCID: PMC6303772 DOI: 10.1002/ece3.4650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Environmental gradients constrain physiological performance and thus species' ranges, suggesting that species occurrence in diverse environments may be associated with local adaptation. Genome-environment association analyses (GEAA) have become central for studies of local adaptation, yet they are sensitive to the spatial orientation of historical range expansions relative to landscape gradients. To test whether potentially adaptive genotypes occur in varied climates in wide-ranged species, we implemented GEAA on the basis of genomewide data from the anole lizards Anolis ortonii and Anolis punctatus, which expanded from Amazonia, presently dominated by warm and wet settings, into the cooler and less rainy Atlantic Forest. To examine whether local adaptation has been constrained by population structure and history, we estimated effective population sizes, divergence times, and gene flow under a coalescent framework. In both species, divergence between Amazonian and Atlantic Forest populations dates back to the mid-Pleistocene, with subsequent gene flow. We recovered eleven candidate genes involved with metabolism, immunity, development, and cell signaling in A. punctatus and found no loci whose frequency is associated with environmental gradients in A. ortonii. Distinct signatures of adaptation between these species are not associated with historical constraints or distinct climatic space occupancies. Similar patterns of spatial structure between selected and neutral SNPs along the climatic gradient, as supported by patterns of genetic clustering in A. punctatus, may have led to conservative GEAA performance. This study illustrates how tests of local adaptation can benefit from knowledge about species histories to support hypothesis formulation, sampling design, and landscape gradient characterization.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Vertebrate ZoologyNational Museum of Natural History, Smithsonian InstitutionWashingtonDistrict of Columbia
- Department of Biology, City College of New York and Graduate CenterCity University of New YorkNew YorkNew York
| | - Anna Penna
- Department of AnthropologyUniversity of Texas at San AntonioSan AntonioTexas
| | | | - Ana Carolina Carnaval
- Department of Biology, City College of New York and Graduate CenterCity University of New YorkNew YorkNew York
| |
Collapse
|
84
|
Shuai F, Yu S, Lek S, Li X. Habitat effects on intra-species variation in functional morphology: Evidence from freshwater fish. Ecol Evol 2018; 8:10902-10913. [PMID: 30519416 PMCID: PMC6262925 DOI: 10.1002/ece3.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022] Open
Abstract
Biotic-environment interactions have long been considered an important factor in functional phenotype differentiation in organisms. The differentiation processes determining functional phenotypes can reveal important mechanisms yielding differences in specific functions of animal traits in the ecosystem. In the present study, we examined functional morphological variations in relation to increasing geographic altitude. Six fish species were examined for how environment factors affect intra-specific functional morphology in the subtropical Pearl River in southern China. Functional morphology traits revealed variable effects due to geographic elevation, although spatial autocorrelation existed among the species tested. The results showed that high-elevation individuals had a more narrow-bodied morphology, with more flexible maneuvrability when swimming, and more evenly distributed musculature than low-elevation individuals. Low-elevation individuals preyed upon larger food sources than high-elevation individuals in some species. Fish functional morphology was strongly affected by regional environmental factors (such as elevation and water temperature) and physical characteristics of local rivers (such as flow velocity, river fractals, and coefficients of fluvial facies). In addition, the effects of the regional factors were stronger than those of the local factors in the Pearl River. Furthermore, it was found that morphological traits associated with locomotion were primarily effected by the river's physical characteristics. While morphological traits associated with food acquisition were primarily affected by water chemical factors (such as DO, water clarity, NH 4-N concentration, and TDS). These results demonstrated that habitat has an influence on the biological morphology of fish species, which further affects the functioning of the organism within the ecosystem.
Collapse
Affiliation(s)
- Fangmin Shuai
- Pearl River Fisheries Research InstituteCAFSGuangzhouChina
- Ministry of AgricultureExperimental Station for Scientific Observation on Fishery Resources and Environment in the Middle and Lower Reaches of Pearl RiverGuangdongChina
| | - Shixiao Yu
- State Key Laboratory of BiocontrolDepartment of EcologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Sovan Lek
- Université de Toulouse ‐ Paul SabatierToulouse CedexFrance
| | - Xinhui Li
- Pearl River Fisheries Research InstituteCAFSGuangzhouChina
- Ministry of AgricultureExperimental Station for Scientific Observation on Fishery Resources and Environment in the Middle and Lower Reaches of Pearl RiverGuangdongChina
| |
Collapse
|
85
|
Bauerfeind SS, Schäfer MA, Berger D, Blanckenhorn WU, Fox CW. Replicated latitudinal clines in reproductive traits of European and North American yellow dung flies. OIKOS 2018. [DOI: 10.1111/oik.05421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Martin A. Schäfer
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
| | - David Berger
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
- Dept of Ecology and Genetics, Univ. of Uppsala; Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
| | - Charles W. Fox
- Dept of Entomology, Univ. of Kentucky; S225 Ag Science Center North Lexington KY 40546-0091 USA
| |
Collapse
|
86
|
Dick C, Hinh J, Hayashi CY, Reznick DN. Convergent evolution of coloration in experimental introductions of the guppy ( Poecilia reticulata). Ecol Evol 2018; 8:8999-9006. [PMID: 30271561 PMCID: PMC6157698 DOI: 10.1002/ece3.4418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the multitude of examples of evolution in action, relatively fewer studies have taken a replicated approach to understand the repeatability of evolution. Here, we examine the convergent evolution of adaptive coloration in experimental introductions of guppies from a high-predation (HP) environment into four low-predation (LP) environments. LP introductions were replicated across 2 years and in two different forest canopy cover types. We take a complementary approach by examining both phenotypes and genetics. For phenotypes, we categorize the whole color pattern on the tail fin of male guppies and analyze evolution using a correspondence analysis. We find that coloration in the introduction sites diverged from the founding Guanapo HP site. Sites group together based on canopy cover, indicating convergence in response to light environment. However, the axis that explains the most variation indicates a lack of convergence. Therefore, evolution may proceed along similar phenotypic trajectories, but still maintain unique variation within sites. For the genetics underlying the divergent phenotypes, we examine expression levels of color genes. We find no evidence for differential expression, indicating that the genetic basis for the color changes remains undetermined.
Collapse
Affiliation(s)
- Cynthia Dick
- Department of Evolution, Ecology and Organismal BiologyUniversity of California‐RiversideRiversideCalifornia
| | - Jasmine Hinh
- Department of Evolution, Ecology and Organismal BiologyUniversity of California‐RiversideRiversideCalifornia
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew York
| | - David N. Reznick
- Department of Evolution, Ecology and Organismal BiologyUniversity of California‐RiversideRiversideCalifornia
| |
Collapse
|
87
|
Fraimout A, Jacquemart P, Villarroel B, Aponte DJ, Decamps T, Herrel A, Cornette R, Debat V. Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight. ACTA ACUST UNITED AC 2018; 221:221/13/jeb166868. [PMID: 29987053 DOI: 10.1242/jeb.166868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Phenotypic plasticity has been proposed as a mechanism that facilitates the success of biological invasions. In order to test the hypothesis of an adaptive role for plasticity in invasions, particular attention should be paid to the relationship between the focal plastic trait, the environmental stimulus and the functional importance of the trait. The Drosophila wing is particularly amenable to experimental studies of phenotypic plasticity. Wing morphology is known for its plastic variation under different experimental temperatures, but this plasticity has rarely been investigated in a functional context of flight. Here, we investigate the effect of temperature on wing morphology and flight in the invasive pest species Drosophila suzukii Although the rapid invasion of both Europe and North America was most likely facilitated by human activities, D. suzukii is also expected to disperse actively. By quantifying wing morphology and individual flight trajectories of flies raised under different temperatures, we tested whether (1) invasive populations of D. suzukii show higher phenotypic plasticity than their native counterparts, and (2) wing plasticity affects flight parameters. Developmental temperature was found to affect both wing morphology and flight parameters (in particular speed and acceleration), leaving open the possibility of an adaptive value for wing plasticity. Our results show no difference in phenotypic plasticity between invasive and native populations, rejecting a role for wing plasticity in the invasion success.
Collapse
Affiliation(s)
- Antoine Fraimout
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Pauline Jacquemart
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Bruno Villarroel
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - David J Aponte
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Department of Cell Biology & Anatomy, University of Calgary, Calgary AB, Canada
| | - Thierry Decamps
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
88
|
Schäfer MA, Berger D, Rohner PT, Kjaersgaard A, Bauerfeind SS, Guillaume F, Fox CW, Blanckenhorn WU. Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies. Evolution 2018; 72:1629-1644. [PMID: 29911337 DOI: 10.1111/evo.13517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/23/2018] [Indexed: 01/05/2023]
Abstract
Geographic clines offer insights about putative targets and agents of natural selection as well as tempo and mode of adaptation. However, demographic processes can lead to clines that are indistinguishable from adaptive divergence. Using the widespread yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), we examine quantitative genetic differentiation (QST ) of wing shape across North America, Europe, and Japan, and compare this differentiation with that of ten microsatellites (FST ). Morphometric analyses of 28 populations reared at three temperatures revealed significant thermal plasticity, sexual dimorphism, and geographic differentiation in wing shape. In North America morphological differentiation followed the decline in microsatellite variability along the presumed route of recent colonization from the southeast to the northwest. Across Europe, where S. stercoraria presumably existed for much longer time and where no molecular pattern of isolation by distance was evident, clinal variation was less pronounced despite significant morphological differentiation (QST >FST ). Shape vector comparisons further indicate that thermal plasticity (hot-to-cold) does not mirror patterns of latitudinal divergence (south-to-north), as might have been expected under a scenario with temperature as the major agent of selection. Our findings illustrate the importance of detailed phylogeographic information when interpreting geographic clines of dispersal traits in an adaptive evolutionary framework.
Collapse
Affiliation(s)
- Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Animal Ecology at Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d, SE-75236 Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anders Kjaersgaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Charles W Fox
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40506
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
89
|
Largely flat latitudinal life history clines in the dung fly Sepsis fulgens across Europe (Diptera: Sepsidae). Oecologia 2018; 187:851-862. [DOI: 10.1007/s00442-018-4166-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
90
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
91
|
Moiroux J, van Baaren J, Poyet M, Couty A, Eslin P, Prévost G, Séguin J, Le Roux V. Response of life-history traits to artificial and natural selection for virulence and nonvirulence in a Drosophila parastitoid, Asobara tabida. INSECT SCIENCE 2018; 25:317-327. [PMID: 27943577 DOI: 10.1111/1744-7917.12428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Co-evolution of host-parasitoid interactions is determined by the costs of host resistance, which received empirical evidence, and the costs of parasitoid virulence, which have been mostly hypothesized. Asobara tabida is a parasitoid, which mainly parasitizes Drosophila melanogaster and D. subobscura, the first species being able to resist to the parasitoid development while the second species is not. To parasitize resistant hosts, including D. melanogaster, A. tabida develops sticky eggs, which prevent encapsulation, but this virulence mechanism may be costly. Interindividual and interpopulation variation in the proportion of sticky eggs respectively allowed us to (i) artificially select and compare life-history traits of a virulent and a nonvirulent laboratory strain, and (ii) compare a virulent and a nonvirulent field strain, to investigate the hypothetical costs of virulence. We observed strong differences between the 2 laboratory strains. The nonvirulent strain invested fewer resources in reproduction and walked less than the virulent one but lived longer. Concerning the field strains, we observed that the nonvirulent strain had larger wings while the virulent one walked more and faster. All together, our results suggest that virulence may not always be costly, but rather that different life histories associated with different levels of virulence may coexist at both intra- and interpopulation levels.
Collapse
Affiliation(s)
- Joffrey Moiroux
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
- UMR 6553 ECOBIO, CNRS-Université Rennes 1, Campus de Beaulieu, avenue du Général Leclerc, Rennes, Cedex, France
- UMR 7263 IMBE, AMU - CNRS - IRD - UAPV, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, 84916, Avignon Cedex 09, France
| | - Joan van Baaren
- UMR 6553 ECOBIO, CNRS-Université Rennes 1, Campus de Beaulieu, avenue du Général Leclerc, Rennes, Cedex, France
| | - Mathilde Poyet
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
| | - Aude Couty
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
| | - Patrice Eslin
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
| | - Geneviève Prévost
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
| | - Jérémy Séguin
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
| | - Vincent Le Roux
- FRE 3498 EDYSAN, CNRS-Université de Picardie Jules Verne, 33 rue St Leu, Amiens, Cedex, France
| |
Collapse
|
92
|
O'Neill EM, Beard KH, Fox CW. Body Size and Life History Traits in Native and Introduced Populations of Coqui Frogs. COPEIA 2018. [DOI: 10.1643/ce-17-642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
93
|
Lu H, Xu C, Jin Y, Hero J, Du W. Proximate causes of altitudinal differences in body size in an agamid lizard. Ecol Evol 2018; 8:645-654. [PMID: 29321901 PMCID: PMC5756846 DOI: 10.1002/ece3.3686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
Body size is directly linked to key life history traits such as growth, fecundity, and survivorship. Identifying the causes of body size variation is a critical task in ecological and evolutionary research. Body size variation along altitudinal gradients has received considerable attention; however, the underlying mechanisms are poorly understood. Here, we compared the growth rate and age structure of toad-headed lizards (Phrynocephalus vlangalii) from two populations found at different elevations in the Qinghai-Tibetan Plateau. We used mark-recapture and skeletochronological analysis to identify the potential proximate causes of altitudinal variation in body size. Lizards from the high-elevation site had higher growth rates and attained slightly larger adult body sizes than lizards from the low-elevation site. However, newborns produced by high-elevation females were smaller than those by low-elevation females. Von Bertalanffy growth estimates predicted high-elevation individuals would reach sexual maturity at an earlier age and have a lower mean age than low-elevation individuals. Relatively lower mean age for the high-elevation population was confirmed using the skeletochronological analysis. These results support the prediction that a larger adult body size of high-elevation P. vlangalii results from higher growth rates, associated with higher resource availability.
Collapse
Affiliation(s)
- Hong‐Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and RestorationSchool of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Chun‐Xia Xu
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yuan‐Ting Jin
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Jean‐Marc Hero
- Environmental Futures Research InstituteSchool of EnvironmentGriffith UniversityGold CoastQldAustralia
| | - Wei‐Guo Du
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
94
|
Feiner N, Rago A, While GM, Uller T. Signatures of selection in embryonic transcriptomes of lizards adapting in parallel to cool climate. Evolution 2017; 72:67-81. [DOI: 10.1111/evo.13397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Nathalie Feiner
- Department of Biology; Lund University; Sölvegatan 37 223 62 Lund Sweden
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
| | - Alfredo Rago
- Department of Biology; Lund University; Sölvegatan 37 223 62 Lund Sweden
| | - Geoffrey M. While
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
- School of Biological Sciences; University of Tasmania; Hobart Tasmania 7005 Australia
| | - Tobias Uller
- Department of Biology; Lund University; Sölvegatan 37 223 62 Lund Sweden
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
| |
Collapse
|
95
|
Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc Natl Acad Sci U S A 2017; 114:13501-13506. [PMID: 29183976 DOI: 10.1073/pnas.1712934114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colonization and expansion into novel landscapes determine the distribution and abundance of species in our rapidly changing ecosystems worldwide. Colonization events are crucibles for rapid evolution, but it is not known whether evolutionary changes arise mainly after successful colonization has occurred, or if evolution plays an immediate role, governing the growth and expansion speed of colonizing populations. There is evidence that spatial evolutionary processes can speed range expansion within a few generations because dispersal tendencies may evolve upwards at range edges. Additionally, rapid adaptation to a novel environment can increase population growth rates, which also promotes spread. However, the role of adaptive evolution and the relative contributions of spatial evolution and adaptation to expansion are unclear. Using a model system, red flour beetles (Tribolium castaneum), we either allowed or constrained evolution of populations colonizing a novel environment and measured population growth and spread. At the end of the experiment we assessed the fitness and dispersal tendency of individuals originating either from the core or edge of evolving populations or from nonevolving populations in a common garden. Within six generations, evolving populations grew three times larger and spread 46% faster than populations in which evolution was constrained. Increased size and expansion speed were strongly driven by adaptation, whereas spatial evolutionary processes acting on edge subpopulations contributed less. This experimental evidence demonstrates that rapid evolution drives both population growth and expansion speed and is thus crucial to consider for managing biological invasions and successfully introducing or reintroducing species for management and conservation.
Collapse
|
96
|
Muir CD, Angert AL. Grow with the flow: a latitudinal cline in physiology is associated with more variable precipitation in Erythranthe cardinalis. J Evol Biol 2017; 30:2189-2203. [PMID: 28977720 DOI: 10.1111/jeb.13184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Abstract
Local adaptation is commonly observed in nature: organisms perform well in their natal environment, but poorly outside it. Correlations between traits and latitude, or latitudinal clines, are among the most common pieces of evidence for local adaptation, but identifying the traits under selection and the selective agents is challenging. Here, we investigated a latitudinal cline in growth and photosynthesis across 16 populations of the perennial herb Erythranthe cardinalis (Phrymaceae). Using machine learning methods, we identify interannual variation in precipitation as a likely selective agent: southern populations from more variable environments had higher photosynthetic rates and grew faster. We hypothesize that selection may favour a more annualized life history - grow now rather than save for next year - in environments where severe droughts occur more often. Thus, our study provides insight into how species may adapt if Mediterranean climates become more variable due to climate change.
Collapse
Affiliation(s)
- C D Muir
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - A L Angert
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
97
|
Seabra SG, Fragata I, Antunes MA, Faria GS, Santos MA, Sousa VC, Simões P, Matos M. Different Genomic Changes Underlie Adaptive Evolution in Populations of Contrasting History. Mol Biol Evol 2017; 35:549-563. [PMID: 29029198 DOI: 10.1093/molbev/msx247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experimental evolution is a powerful tool to understand the adaptive potential of populations under environmental change. Here, we study the importance of the historical genetic background in the outcome of evolution at the genome-wide level. Using the natural clinal variation of Drosophila subobscura, we sampled populations from two contrasting latitudes (Adraga, Portugal and Groningen, Netherlands) and introduced them in a new common environment in the laboratory. We characterized the genome-wide temporal changes underlying the evolutionary dynamics of these populations, which had previously shown fast convergence at the phenotypic level, but not at chromosomal inversion frequencies. We found that initially differentiated populations did not converge either at genome-wide level or at candidate SNPs with signs of selection. In contrast, populations from Portugal showed convergence to the control population that derived from the same geographical origin and had been long-established in the laboratory. Candidate SNPs showed a variety of different allele frequency change patterns across generations, indicative of an underlying polygenic basis. We did not detect strong linkage around candidate SNPs, but rather a small but long-ranging effect. In conclusion, we found that history played a major role in genomic variation and evolution, with initially differentiated populations reaching the same adaptive outcome through different genetic routes.
Collapse
Affiliation(s)
- Sofia G Seabra
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo S Faria
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,CEDOC - Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vitor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
98
|
Can acclimation of thermal tolerance, in adults and across generations, act as a buffer against climate change in tropical marine ectotherms? J Therm Biol 2017; 68:195-199. [DOI: 10.1016/j.jtherbio.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022]
|
99
|
Romiti F, Redolfi De Zan L, Rossi de Gasperis S, Tini M, Scaccini D, Anaclerio M, Carpaneto GM. Latitudinal cline in weapon allometry and phenology of the European stag beetle. NATURE CONSERVATION 2017. [DOI: 10.3897/natureconservation.19.12681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
100
|
Wijethunga U, Greenlees M, Shine R. Moving south: effects of water temperatures on the larval development of invasive cane toads ( Rhinella marina) in cool-temperate Australia. Ecol Evol 2017; 6:6993-7003. [PMID: 28725376 PMCID: PMC5513214 DOI: 10.1002/ece3.2405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 11/21/2022] Open
Abstract
The distributional limits of many ectothermic species are set by thermal tolerances of early‐developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond‐breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestrial niches. Invasive species provide robust model systems for exploring these questions, because we can quantify thermal challenges at the expanding range edge (from field surveys) and larval responses to thermal conditions (in the laboratory). Our studies on invasive cane toads (Rhinella marina) at the southern (cool‐climate) edge of their expanding range in Australia show that available ponds often average around 20°C during the breeding period, 10°C lower than in many areas of the toads’ native range, or in the Australian tropics. Our laboratory experiments showed that cane toad eggs and larvae cannot develop successfully at 16°C, but hatching success and larval survival rates were higher at 20°C than in warmer conditions. Lower temperatures slowed growth rates, increasing the duration of tadpole life, but also increased metamorph body mass. Water temperature also influenced metamorph body shape (high temperatures reduced relative limb length, head width, and body mass) and locomotor performance (increased speed from intermediate temperatures, longer hops from high temperatures). In combination with previous studies, our data suggest that lower water temperatures may enhance rather than reduce recruitment of cane toads, at least in areas where pond temperatures reach or exceed 20°C. That condition is fulfilled over a wide area of southern Australia, suggesting that the continuing expansion of this invasive species is unlikely to be curtailed by the impacts of relatively low water temperatures on the viability of early life‐history stages.
Collapse
Affiliation(s)
- Uditha Wijethunga
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - Matthew Greenlees
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|