51
|
Ma Q, Zhang YN, Zheng X, Luan F, Han P, Zhang X, Yin Y, Wang X, Gao X. A Newly Isolated Strain Lysobacter brunescens YQ20 and Its Performance on Wool Waste Biodegradation. Front Microbiol 2022; 13:794738. [PMID: 35359724 PMCID: PMC8964289 DOI: 10.3389/fmicb.2022.794738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Wool keratin is difficult to degrade as comparing to feathers because of its tough secondary structure. In order to develop an approach for high-value utilization of wool fiber waste by keratinolytic microorganisms, which is produced from shearing, weaving, and industrial processing of wool, screening of wool-degrading bacterium with high degradation efficiency were performed in this study. To this end, Lysobacter brunescens YQ20 was identified and characterized. The optimized conditions for wool degradation were pH 9.0 and 37°C with 20% liquid volume of Erlenmeyer flask. After fermentation, 15 essential amino acids were detected when wool fiber waste was fermented. The total amino acids produced from 1% wool per hour were 13.7 mg/L. The concentration was 8.6-fold higher than that produced by the strain Stenotrophomonas maltophilia BBE11-1, which had previously been reported to have the highest wool-degrading capacity. Our study reports the first Lysobacter strain that exhibits efficient wool degradation and yields higher concentrations of amino acids than previously reported strains. Whole-genome sequencing indicated that there were 18 keratinase-like genes in the genome of YQ20, which exhibited a long evolutionary distance from those of Bacillus. Therefore, L. brunescens YQ20 may have applications in the environmentally friendly management of wool waste as fertilizer in agriculture.
Collapse
Affiliation(s)
- Qinyuan Ma
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ya Ning Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xue Zheng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Fang Luan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ping Han
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xianghe Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yanmiao Yin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiaoxiao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiuzhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
52
|
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, Aganezov S, Hoyt SJ, Diekhans M, Logsdon GA, Alonge M, Antonarakis SE, Borchers M, Bouffard GG, Brooks SY, Caldas GV, Chen NC, Cheng H, Chin CS, Chow W, de Lima LG, Dishuck PC, Durbin R, Dvorkina T, Fiddes IT, Formenti G, Fulton RS, Fungtammasan A, Garrison E, Grady PG, Graves-Lindsay TA, Hall IM, Hansen NF, Hartley GA, Haukness M, Howe K, Hunkapiller MW, Jain C, Jain M, Jarvis ED, Kerpedjiev P, Kirsche M, Kolmogorov M, Korlach J, Kremitzki M, Li H, Maduro VV, Marschall T, McCartney AM, McDaniel J, Miller DE, Mullikin JC, Myers EW, Olson ND, Paten B, Peluso P, Pevzner PA, Porubsky D, Potapova T, Rogaev EI, Rosenfeld JA, Salzberg SL, Schneider VA, Sedlazeck FJ, Shafin K, Shew CJ, Shumate A, Sims Y, Smit AFA, Soto DC, Sović I, Storer JM, Streets A, Sullivan BA, Thibaud-Nissen F, Torrance J, Wagner J, Walenz BP, Wenger A, Wood JMD, Xiao C, Yan SM, Young AC, Zarate S, Surti U, McCoy RC, Dennis MY, Alexandrov IA, Gerton JL, O’Neill RJ, Timp W, Zook JM, Schatz MC, Eichler EE, Miga KH, Phillippy AM. The complete sequence of a human genome. Science 2022; 376:44-53. [PMID: 35357919 PMCID: PMC9186530 DOI: 10.1126/science.abj6987] [Citation(s) in RCA: 1532] [Impact Index Per Article: 510.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.
Collapse
Affiliation(s)
- Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| | - Andrey V. Bzikadze
- Graduate Program in Bioinformatics and Systems Biology, University of California, San Diego; La Jolla, CA, USA
| | - Alla Mikheenko
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University; Saint Petersburg, Russia
| | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA
| | - Nicolas Altemose
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA, USA
| | - Lev Uralsky
- Sirius University of Science and Technology; Sochi, Russia
- Vavilov Institute of General Genetics; Moscow, Russia
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University; Baltimore, MD, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut; Storrs, CT, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
| | | | | | - Gerard G. Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
| | - Shelise Y. Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
| | - Gina V. Caldas
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA
| | | | | | | | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA
| | - Richard Durbin
- Wellcome Sanger Institute; Cambridge, UK
- Department of Genetics, University of Cambridge; Cambridge, UK
| | - Tatiana Dvorkina
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University; Saint Petersburg, Russia
| | | | - Giulio Formenti
- Laboratory of Neurogenetics of Language and The Vertebrate Genome Lab, The Rockefeller University; New York, NY, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Robert S. Fulton
- Department of Genetics, Washington University School of Medicine; St. Louis, MO, USA
| | | | - Erik Garrison
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
- University of Tennessee Health Science Center; Memphis, TN, USA
| | - Patrick G.S. Grady
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut; Storrs, CT, USA
| | | | - Ira M. Hall
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
| | - Nancy F. Hansen
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
| | - Gabrielle A. Hartley
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut; Storrs, CT, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
| | | | | | - Chirag Jain
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
- Department of Computational and Data Sciences, Indian Institute of Science; Bangalore KA, India
| | - Miten Jain
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language and The Vertebrate Genome Lab, The Rockefeller University; New York, NY, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | | | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA, USA
| | | | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University in St. Louis; St. Louis, MO, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA
| | - Valerie V. Maduro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
| | - Tobias Marschall
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute for Medical Biometry and Bioinformatics; Düsseldorf, Germany
| | - Ann M. McCartney
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| | - Jennifer McDaniel
- Biosystems and Biomaterials Division, National Institute of Standards and Technology; Gaithersburg, MD, USA
| | - Danny E. Miller
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital; Seattle, WA, USA
| | - James C. Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
| | - Eugene W. Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics; Dresden, Germany
| | - Nathan D. Olson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology; Gaithersburg, MD, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
| | | | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research; Kansas City, MO, USA
| | - Evgeny I. Rogaev
- Sirius University of Science and Technology; Sochi, Russia
- Vavilov Institute of General Genetics; Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School; Worcester, MA, USA
- Faculty of Biology, Lomonosov Moscow State University; Moscow, Russia
| | | | - Steven L. Salzberg
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD, USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine; Houston TX, USA
| | - Kishwar Shafin
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, Department of Biochemistry and Molecular Medicine, University of California, Davis; CA, USA
| | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD, USA
| | - Ying Sims
- Wellcome Sanger Institute; Cambridge, UK
| | | | - Daniela C. Soto
- Genome Center, MIND Institute, Department of Biochemistry and Molecular Medicine, University of California, Davis; CA, USA
| | - Ivan Sović
- Pacific Biosciences; Menlo Park, CA, USA
- Digital BioLogic d.o.o.; Ivanić-Grad, Croatia
| | | | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Beth A. Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD, USA
| | | | - Justin Wagner
- Biosystems and Biomaterials Division, National Institute of Standards and Technology; Gaithersburg, MD, USA
| | - Brian P. Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| | | | | | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD, USA
| | - Stephanie M. Yan
- Department of Biology, Johns Hopkins University; Baltimore, MD, USA
| | - Alice C. Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD, USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh; Pittsburgh, PA, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University; Baltimore, MD, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, Department of Biochemistry and Molecular Medicine, University of California, Davis; CA, USA
| | - Ivan A. Alexandrov
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University; Saint Petersburg, Russia
- Vavilov Institute of General Genetics; Moscow, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences; Moscow, Russia
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research; Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical School; Kansas City, MO, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut; Storrs, CT, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University; Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD, USA
| | - Justin M. Zook
- Biosystems and Biomaterials Division, National Institute of Standards and Technology; Gaithersburg, MD, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University; Baltimore, MD, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz; Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
53
|
Transfer of Human Microbiome to Drosophila Gut Model. Microorganisms 2022; 10:microorganisms10030553. [PMID: 35336128 PMCID: PMC8948740 DOI: 10.3390/microorganisms10030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Laboratory animals with human microbiome have increasingly been used to study the role of bacteria and host interaction. Drosophila melanogaster, as a model of microbiota-host interaction with high reproductive efficiency and high availability, has always been lacking studies of interaction with human gut microbiome. In this study, we attempted to use antibiotic therapy and human fecal exposure strategy to transfer the human microbiome to the drosophila. The method includes depleting the original intestinal bacteria using a broad-spectrum antibiotic and then introducing human microorganisms by a diet supplemented with donor’s fecal samples. The sequencing results showed that 80–87.5% of the OTUs (Operational Taxonomic Units) from donor feces were adopted by the recipient drosophila following 30 days of observation. In comparison to females, the male recipient drosophila inherited more microbiota from the donor feces and had significantly increased lifespan as well as improved vertical climbing ability. Furthermore, distinctly differential expression patterns for age and insulin-like signaling-related genes were obtained for the male vs. female recipients. Only the male drosophila offspring acquired the characteristics of the donor fecal microbiota.
Collapse
|
54
|
Francés-Cuesta C, Ansari I, Fernández-Garayzábal JF, Gibello A, González-Candelas F. Comparative genomics and evolutionary analysis of Lactococcus garvieae isolated from human endocarditis. Microb Genom 2022; 8. [PMID: 35196218 PMCID: PMC8942021 DOI: 10.1099/mgen.0.000771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lactococcus garvieae is a well-known pathogen of fish, but is rarely involved in infections in humans and other mammals. In humans, the main clinical manifestation of L. garvieae infections is endocarditis usually related to the ingestion of contaminated food, such as undercooked fish and shellfish. This study presents the first complete genomic sequence of a clinical L. garvieae strain isolated from a patient with endocarditis and its comparative analysis with other genomes. This human isolate contains a circular chromosome of 2 099 060 bp and one plasmid of 50 557 bp. In comparison with other fully sequenced L. garvieae strains, the chromosomal DNA of L. garvieae Lg-Granada carries a low proportion of insertion sequence elements and a higher number of putative prophages. Our results show that, in general, L. garvieae is a highly recombinogenic species with an open pangenome in which almost 30 % of its genome has undergone horizontal transfers. Within the genus Lactococcus, L. lactis is the main donor of genetic components to L. garvieae but, taking Lg-Granada as a representative, this bacterium tends to import more genes from Bacilli taxa than from other Lactococcus species.
Collapse
Affiliation(s)
- Carlos Francés-Cuesta
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio, UV-CSIC) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Iván Ansari
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio, UV-CSIC) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - José Francisco Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,VISAVET Animal Health Surveillance Center, Complutense University, Madrid, Spain
| | - Alicia Gibello
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio, UV-CSIC) and CIBER in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
55
|
Chaves G, Derst C, Jardin C, Franzen A, Musset B. Voltage-gated proton channels in polyneopteran insects. FEBS Open Bio 2022; 12:523-537. [PMID: 34986517 PMCID: PMC8804609 DOI: 10.1002/2211-5463.13361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage‐gated proton channels (HV1) are expressed in eukaryotes, including basal hexapods and polyneopteran insects. However, currently, there is little known about HV1 channels in insects. A characteristic aspartate (Asp) that functions as the proton selectivity filter (SF) and the RxWRxxR voltage‐sensor motif are conserved structural elements in HV1 channels. By analysing Transcriptome Shotgun Assembly (TSA) databases, we found 33 polyneopteran species meeting these structural requirements. Unexpectedly, an unusual natural variation Asp to glutamate (Glu) at SF was found in Phasmatodea and Mantophasmatodea. Additionally, we analysed the expression and function of HV1 in the phasmatodean stick insect Extatosoma tiaratum (Et). EtHV1 is strongly expressed in nervous tissue and shows pronounced inward proton conduction. This is the first study of a natural occurring Glu within the SF of a functional HV1 and might be instrumental in uncovering the physiological function of HV1 in insects.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany.,Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
56
|
Genome assembly and annotation. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
57
|
Parra-Rincón E, Velandia-Huerto CA, Gittenberger A, Fallmann J, Gatter T, Brown FD, Stadler PF, Bermúdez-Santana CI. The Genome of the "Sea Vomit" Didemnum vexillum. Life (Basel) 2021; 11:1377. [PMID: 34947908 PMCID: PMC8704543 DOI: 10.3390/life11121377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Tunicates are the sister group of vertebrates and thus occupy a key position for investigations into vertebrate innovations as well as into the consequences of the vertebrate-specific genome duplications. Nevertheless, tunicate genomes have not been studied extensively in the past, and comparative studies of tunicate genomes have remained scarce. The carpet sea squirt Didemnum vexillum, commonly known as "sea vomit", is a colonial tunicate considered an invasive species with substantial ecological and economical risk. We report the assembly of the D. vexillum genome using a hybrid approach that combines 28.5 Gb Illumina and 12.35 Gb of PacBio data. The new hybrid scaffolded assembly has a total size of 517.55 Mb that increases contig length about eightfold compared to previous, Illumina-only assembly. As a consequence of an unusually high genetic diversity of the colonies and the moderate length of the PacBio reads, presumably caused by the unusually acidic milieu of the tunic, the assembly is highly fragmented (L50 = 25,284, N50 = 6539). It is sufficient, however, for comprehensive annotations of both protein-coding genes and non-coding RNAs. Despite its shortcomings, the draft assembly of the "sea vomit" genome provides a valuable resource for comparative tunicate genomics and for the study of the specific properties of colonial ascidians.
Collapse
Affiliation(s)
- Ernesto Parra-Rincón
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
| | - Cristian A. Velandia-Huerto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Adriaan Gittenberger
- GiMaRIS, Rijksstraatweg 75, 2171 AK Sassenheim, The Netherlands;
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Thomas Gatter
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Federico D. Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Tr. 14 no. 101, São Paulo 05508-090, Brazil;
- Centro de Biologia Marinha, Universidade de São Paulo, Rod. Manuel Hypólito do Rego km. 131.5, São Sebastião 11612-109, Brazil
| | - Peter F. Stadler
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, NM 87506, USA
| | - Clara I. Bermúdez-Santana
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
| |
Collapse
|
58
|
Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, Zhang L. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 2021; 19:6301-6314. [PMID: 34900140 PMCID: PMC8640167 DOI: 10.1016/j.csbj.2021.11.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic sequencing provides a culture-independent avenue to investigate the complex microbial communities by constructing metagenome-assembled genomes (MAGs). A MAG represents a microbial genome by a group of sequences from genome assembly with similar characteristics. It enables us to identify novel species and understand their potential functions in a dynamic ecosystem. Many computational tools have been developed to construct and annotate MAGs from metagenomic sequencing, however, there is a prominent gap to comprehensively introduce their background and practical performance. In this paper, we have thoroughly investigated the computational tools designed for both upstream and downstream analyses, including metagenome assembly, metagenome binning, gene prediction, functional annotation, taxonomic classification, and profiling. We have categorized the commonly used tools into unique groups based on their functional background and introduced the underlying core algorithms and associated information to demonstrate a comparative outlook. Furthermore, we have emphasized the computational requisition and offered guidance to the users to select the most efficient tools. Finally, we have indicated current limitations, potential solutions, and future perspectives for further improving the tools of MAG construction and annotation. We believe that our work provides a consolidated resource for the current stage of MAG studies and shed light on the future development of more effective MAG analysis tools on metagenomic sequencing.
Collapse
Key Words
- CNN, convolutional neural network
- DBG, De Bruijn graph
- GTDB, Genome Taxonomy Database
- Gene functional annotation
- Gene prediction
- Genome assembly
- HMM, Hidden Markov Model
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LCA, lowest common ancestor
- LPA, label propagation algorithm
- MAGs, metagenome-assembled genomes
- Metagenome binning
- Metagenome-assembled genomes
- Metagenomic sequencing
- Microbial abundance profiling
- OLC, overlap-layout consensus
- ONT, Oxford Nanopore Technologies
- ORFs, open reading frames
- PacBio, Pacific Biosciences
- QC, quality control
- SLR, synthetic long reads
- TNFs, tetranucleotide frequencies
- Taxonomic classification
Collapse
Affiliation(s)
- Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Debajyoti Chowdhury
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhenmiao Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - William K. Cheung
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Aiping Lu
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhaoxiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
| |
Collapse
|
59
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
60
|
Papaioannou IA, Dutreux F, Peltier FA, Maekawa H, Delhomme N, Bardhan A, Friedrich A, Schacherer J, Knop M. Sex without crossing over in the yeast Saccharomycodes ludwigii. Genome Biol 2021; 22:303. [PMID: 34732243 PMCID: PMC8567612 DOI: 10.1186/s13059-021-02521-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intermixing of genomes through meiotic reassortment and recombination of homologous chromosomes is a unifying theme of sexual reproduction in eukaryotic organisms and is considered crucial for their adaptive evolution. Previous studies of the budding yeast species Saccharomycodes ludwigii suggested that meiotic crossing over might be absent from its sexual life cycle, which is predominated by fertilization within the meiotic tetrad. RESULTS We demonstrate that recombination is extremely suppressed during meiosis in Sd. ludwigii. DNA double-strand break formation by the conserved transesterase Spo11, processing and repair involving interhomolog interactions are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers in its genome. A strong AT bias of spontaneous mutations and the absence of recombination are likely responsible for its unusually low genomic GC level. CONCLUSIONS Sd. ludwigii has followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent mating between products of the same meiotic event with the extreme suppression of meiotic recombination. This life style ensures preservation of heterozygosity throughout its genome and may enable the species to adapt to its environment and survive with only minimal levels of rare meiotic recombination. We propose Sd. ludwigii as an excellent natural forum for the study of genome evolution and recombination rates.
Collapse
Affiliation(s)
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - France A. Peltier
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Hiromi Maekawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Current affiliation: Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Amit Bardhan
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
61
|
Reconstruction of evolving gene variants and fitness from short sequencing reads. Nat Chem Biol 2021; 17:1188-1198. [PMID: 34635842 PMCID: PMC8551035 DOI: 10.1038/s41589-021-00876-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Directed evolution can generate proteins with tailor-made activities. However, full-length genotypes, their frequencies and fitnesses are difficult to measure for evolving gene-length biomolecules using most high-throughput DNA sequencing methods, as short read lengths can lose mutation linkages in haplotypes. Here we present Evoracle, a machine learning method that accurately reconstructs full-length genotypes (R2 = 0.94) and fitness using short-read data from directed evolution experiments, with substantial improvements over related methods. We validate Evoracle on phage-assisted continuous evolution (PACE) and phage-assisted non-continuous evolution (PANCE) of adenine base editors and OrthoRep evolution of drug-resistant enzymes. Evoracle retains strong performance (R2 = 0.86) on data with complete linkage loss between neighboring nucleotides and large measurement noise, such as pooled Sanger sequencing data (~US$10 per timepoint), and broadens the accessibility of training machine learning models on gene variant fitnesses. Evoracle can also identify high-fitness variants, including low-frequency 'rising stars', well before they are identifiable from consensus mutations.
Collapse
|
62
|
Filho JAF, Rosolen RR, Almeida DA, de Azevedo PHC, Motta MLL, Aono AH, dos Santos CA, Horta MAC, de Souza AP. Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech 2021; 11:475. [PMID: 34777932 PMCID: PMC8548487 DOI: 10.1007/s13205-021-03032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.
Collapse
Affiliation(s)
- Jaire A. Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Rafaela R. Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Deborah A. Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Paulo Henrique C. de Azevedo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria Lorenza L. Motta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Alexandre H. Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Clelton A. dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Maria Augusta C. Horta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Department of Plant Biology, Institute of Biology, UNICAMP, Universidade Estadual de Campinas, Campinas, SP 13083-875 Brazil
| |
Collapse
|
63
|
Genomic Studies of White-Rot Fungus Cerrena unicolor SP02 Provide Insights into Food Safety Value-Added Utilization of Non-Food Lignocellulosic Biomass. J Fungi (Basel) 2021; 7:jof7100835. [PMID: 34682256 PMCID: PMC8541250 DOI: 10.3390/jof7100835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cerrena unicolor is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by Cerrena unicolor. In this study, we reported the genome sequence of C. unicolor SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of C. unicolor species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the C. unicolor SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The C. unicolor SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of C. unicolor SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.
Collapse
|
64
|
Miyata Y, Fuse H, Tokumoto S, Hiki Y, Deviatiiarov R, Yoshida Y, Yamada TG, Cornette R, Gusev O, Shagimardanova E, Funahashi A, Kikawada T. Cas9-mediated genome editing reveals a significant contribution of calcium signaling pathways to anhydrobiosis in Pv11 cells. Sci Rep 2021; 11:19698. [PMID: 34611198 PMCID: PMC8492635 DOI: 10.1038/s41598-021-98905-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Pv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis. Using the Cas9-mediated gene knock-in system, we established Pv11 cells that stably expressed GCaMP3 to monitor intracellular Ca2+ mobilization. Intriguingly, trehalose treatment evoked a transient increase in cytosolic Ca2+ concentration, and further experiments revealed that the calmodulin-calcineurin-NFAT pathway contributes to tolerance of trehalose treatment as well as desiccation tolerance, while the calmodulin-calmodulin kinase-CREB pathway conferred only desiccation tolerance on Pv11 cells. Thus, our results show a critical contribution of the trehalose-induced Ca2+ surge to anhydrobiosis and demonstrate temporally different roles for each signaling pathway.
Collapse
Affiliation(s)
- Yugo Miyata
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoko Tokumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Ruslan Deviatiiarov
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg Gusev
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Elena Shagimardanova
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takahiro Kikawada
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
65
|
Reynolds CJ, Turin DR, Romero MF. Transporters and tubule crystals in the insect Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:82-89. [PMID: 34044181 PMCID: PMC8487917 DOI: 10.1016/j.cois.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel R Turin
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; University of Minnesota-Rochester, 111 South Broadway, Suite 300, Rochester, MN 55904, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
66
|
Llorens-Giralt P, Camilleri-Robles C, Corominas M, Climent-Cantó P. Chromatin Organization and Function in Drosophila. Cells 2021; 10:cells10092362. [PMID: 34572010 PMCID: PMC8465611 DOI: 10.3390/cells10092362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic genomes are packaged into high-order chromatin structures organized in discrete territories inside the cell nucleus, which is surrounded by the nuclear envelope acting as a barrier. This chromatin organization is complex and dynamic and, thus, determining the spatial and temporal distribution and folding of chromosomes within the nucleus is critical for understanding the role of chromatin topology in genome function. Primarily focusing on the regulation of gene expression, we review here how the genome of Drosophila melanogaster is organized into the cell nucleus, from small scale histone–DNA interactions to chromosome and lamina interactions in the nuclear space.
Collapse
|
67
|
Complete Genome Sequence of Lactobacillus helveticus JCM 1004, an Aminopeptidase-Producing Lactic Acid Bacterium. Microbiol Resour Announc 2021; 10:e0064121. [PMID: 34410159 PMCID: PMC8375482 DOI: 10.1128/mra.00641-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence of Lactobacillus helveticus JCM 1004, an aminopeptidase-producing lactic acid bacterium. The genome consists of a circular chromosome which comprises 2,261,280 bp, with a G+C content of 37.56%. The genome was predicted to harbor 13 rRNA genes, 64 tRNA genes, and 2,462 protein-coding sequences.
Collapse
|
68
|
Ayling M, Clark MD, Leggett RM. New approaches for metagenome assembly with short reads. Brief Bioinform 2021; 21:584-594. [PMID: 30815668 PMCID: PMC7299287 DOI: 10.1093/bib/bbz020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the use of longer range read data combined with advances in assembly algorithms has stimulated big improvements in the contiguity and quality of genome assemblies. However, these advances have not directly transferred to metagenomic data sets, as assumptions made by the single genome assembly algorithms do not apply when assembling multiple genomes at varying levels of abundance. The development of dedicated assemblers for metagenomic data was a relatively late innovation and for many years, researchers had to make do using tools designed for single genomes. This has changed in the last few years and we have seen the emergence of a new type of tool built using different principles. In this review, we describe the challenges inherent in metagenomic assemblies and compare the different approaches taken by these novel assembly tools.
Collapse
Affiliation(s)
- Martin Ayling
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | |
Collapse
|
69
|
Zhao YH, Li H, Zhao H, Sun WK, Wang Q, Li WW. An ancient interleukin-16-like molecule regulates hemocyte proliferation via integrin β1 in invertebrates. J Biol Chem 2021; 297:100943. [PMID: 34245782 PMCID: PMC8326423 DOI: 10.1016/j.jbc.2021.100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Interleukins (ILs) are cytokines with crucial functions in innate and adaptive immunity. IL genes are only found in vertebrates, except for IL-16, which has been cloned in some arthropod species. However, the function of this gene in invertebrates is unknown. In the present study, an IL-16-like gene (EsIL-16) was identified from the Chinese mitten crab Eriocheir sinensis. EsIL-16 was predicted to encode a precursor (proEsIL-16) that shares similarities with pro-IL-16 proteins from insects and vertebrates. We show that caspase-3 processes proEsIL-16 into an approximately 144-kDa N-terminal prodomain with nuclear import activity and an approximately 34-kDa mature peptide that might be secreted into the extracellular region. EsIL-16 mRNA could be detected in all analyzed tissues and was significantly upregulated after immune challenge both in vitro and in vivo. T7 phage display library screening suggested potential binding activity between EsIL-16 and integrin, which was confirmed by coimmunoprecipitation assay. Interestingly, EsIL-16 promoted cell proliferation via integrin β1 in primary cultured crab hemocytes and Drosophila S2 cells. Furthermore, the interaction between EsIL-16 and integrin β1 was necessary to efficiently protect the host from bacterial infection. To our knowledge, this study revealed integrin β1 as a receptor for IL-16 and the function of this interaction in hemocyte proliferation in invertebrates for the first time. These results provide new insights into the regulation of innate immune responses in invertebrates and shed the light on the evolution of ILs within the animal kingdom.
Collapse
Affiliation(s)
- Yue-Hong Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hui Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Kang Sun
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
70
|
Brashear WA, Bredemeyer KR, Murphy WJ. Genomic architecture constrained placental mammal X Chromosome evolution. Genome Res 2021; 31:1353-1365. [PMID: 34301625 PMCID: PMC8327908 DOI: 10.1101/gr.275274.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Susumu Ohno proposed that the gene content of the mammalian X Chromosome should remain highly conserved due to dosage compensation. X Chromosome linkage (gene order) conservation is widespread in placental mammals but does not fall within the scope of Ohno's prediction and may be an indirect result of selection on gene content or selection against rearrangements that might disrupt X-Chromosome inactivation (XCI). Previous comparisons between the human and mouse X Chromosome sequences have suggested that although single-copy X Chromosome genes are conserved between species, most ampliconic genes were independently acquired. To better understand the evolutionary and functional constraints on X-linked gene content and linkage conservation in placental mammals, we aligned a new, high-quality, long-read X Chromosome reference assembly from the domestic cat (incorporating 19.3 Mb of targeted BAC clone sequence) to the pig, human, and mouse assemblies. A comprehensive analysis of annotated X-linked orthologs in public databases demonstrated that the majority of ampliconic gene families were present on the ancestral placental X Chromosome. We generated a domestic cat Hi-C contact map from an F1 domestic cat/Asian leopard cat hybrid and demonstrated the formation of the bipartite structure found in primate and rodent inactivated X Chromosomes. Conservation of gene order and recombination patterns is attributable to strong selective constraints on three-dimensional genomic architecture necessary for superloop formation. Species with rearranged X Chromosomes retain the ancestral order and relative spacing of loci critical for superloop formation during XCI, with compensatory inversions evolving to maintain these long-range physical interactions.
Collapse
Affiliation(s)
- Wesley A Brashear
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Kevin R Bredemeyer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
71
|
Dida F, Yi G. Empirical evaluation of methods for de novo genome assembly. PeerJ Comput Sci 2021; 7:e636. [PMID: 34307867 PMCID: PMC8279138 DOI: 10.7717/peerj-cs.636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
Technologies for next-generation sequencing (NGS) have stimulated an exponential rise in high-throughput sequencing projects and resulted in the development of new read-assembly algorithms. A drastic reduction in the costs of generating short reads on the genomes of new organisms is attributable to recent advances in NGS technologies such as Ion Torrent, Illumina, and PacBio. Genome research has led to the creation of high-quality reference genomes for several organisms, and de novo assembly is a key initiative that has facilitated gene discovery and other studies. More powerful analytical algorithms are needed to work on the increasing amount of sequence data. We make a thorough comparison of the de novo assembly algorithms to allow new users to clearly understand the assembly algorithms: overlap-layout-consensus and de-Bruijn-graph, string-graph based assembly, and hybrid approach. We also address the computational efficacy of each algorithm's performance, challenges faced by the assem- bly tools used, and the impact of repeats. Our results compare the relative performance of the different assemblers and other related assembly differences with and without the reference genome. We hope that this analysis will contribute to further the application of de novo sequences and help the future growth of assembly algorithms.
Collapse
Affiliation(s)
- Firaol Dida
- Department of Multimedia Engineering, Dongguk University, Seoul, South Korea
| | - Gangman Yi
- Department of Multimedia Engineering, Dongguk University, Seoul, South Korea
| |
Collapse
|
72
|
Applications of CRISPR-Cas9 as an Advanced Genome Editing System in Life Sciences. BIOTECH 2021; 10:biotech10030014. [PMID: 35822768 PMCID: PMC9245484 DOI: 10.3390/biotech10030014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Targeted nucleases are powerful genomic tools to precisely change the target genome of living cells, controlling functional genes with high exactness. The clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) genome editing system has been identified as one of the most useful biological tools in genetic engineering that is taken from adaptive immune strategies for bacteria. In recent years, this system has made significant progress and it has been widely used in genome editing to create gene knock-ins, knock-outs, and point mutations. This paper summarizes the application of this system in various biological sciences, including medicine, plant science, and animal breeding.
Collapse
|
73
|
Xu P, Wang H, Qin C, Li Z, Lin C, Liu W, Miao W. Analysis of the Taxonomy and Pathogenic Factors of Pectobacterium aroidearum L6 Using Whole-Genome Sequencing and Comparative Genomics. Front Microbiol 2021; 12:679102. [PMID: 34276610 PMCID: PMC8282894 DOI: 10.3389/fmicb.2021.679102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Soft rot pectobacteria are devastating plant pathogens with a global distribution and a broad host range. Pectobacterium aroidearum L6, previously isolated from leaves of Syngonium podophyllum, is a pectolytic bacterial pathogen that causes typical soft rot on S. podophyllum. There is a shortage for genome data of P. aroidearum, which seriously hinders research on classification and pathogenesis of Pectobacterium. We present here the complete genome sequence of P. aroidearum L6. The L6 strain carries a single 4,995,896-bp chromosome with 53.10% G + C content and harbors 4,306 predicted protein-coding genes. We estimated in silico DNA-DNA hybridization and average nucleotide identity values in combination with the whole-genome-based phylogeny from 19 Pectobacterium strains including P. aroidearum L6. The results showed that L6 and PC1 formed a population distinct from other populations of the Pectobacterium genus. Phylogenetic analysis based on 16S rRNA and genome sequences showed a close evolutionary relationship among Pectobacterium species. Overall, evolutionary analysis showed that L6 was in the same branch with PC1. In comparison with 18 Pectobacterium spp. reference pathogens, strain L6 had 2,712 gene families, among which 1,632 gene families were identified as orthologous to those strains, as well as 1 putative unique gene family. We discovered 478 genes, 10.4% of the total of predicted genes, that were potentially related to pathogenesis using the Virulence Factors of Pathogenic Bacteria database. A total of 25 genes were related to toxins, 35 encoded plant cell-wall degrading enzymes, and 122 were involved in secretion systems. This study provides a foundation for a better understanding of the genomic structure of P. aroidearum and particularly offers information for the discovery of potential pathogenic factors and the development of more effective strategies against this pathogen.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Huanwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Zengping Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunhua Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
74
|
Hulse-Kemp AM, Bostan H, Chen S, Ashrafi H, Stoffel K, Sanseverino W, Li L, Cheng S, Schatz MC, Garvin T, du Toit LJ, Tseng E, Chin J, Iorizzo M, Van Deynze A. An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. THE PLANT GENOME 2021; 14:e20101. [PMID: 34109759 DOI: 10.1002/tpg2.20101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work.
Collapse
Affiliation(s)
- Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, USA
- USDA, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Raleigh, NC, USA
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Shiyu Chen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Ashrafi
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Kevin Stoffel
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | | - Shifeng Cheng
- BGI-Shenzhen, Shenzhen, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, P. R. China
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building 1121, Cold Spring Harbor, NY, 11724, USA
- Departments of Computer Science and Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Tyler Garvin
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building 1121, Cold Spring Harbor, NY, 11724, USA
| | - Lindsey J du Toit
- Washington State University, SU Mount Vernon Northwestern Washington Research & Extension Center (NWREC), Mount Vernon, WA, 98273, USA
| | | | - Jason Chin
- Pacific Biosciences, Menlo Park, CA, USA
- DNAnexus Inc, 1975 W El Camino Real #204, Mountain View, CA, 94040, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
75
|
Tsvetkov N, MacPhail VJ, Colla SR, Zayed A. Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola. Mol Ecol 2021; 30:4220-4230. [PMID: 34181797 PMCID: PMC8457087 DOI: 10.1111/mec.16049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many pollinators have experienced large population declines, which threaten food security and the stability of natural ecosystems. Bumble bees are particularly important because their ability to “buzz” pollinate and tolerate cooler conditions make them critical pollinators for certain plants and regions. Here, we apply a conservation genomics approach to study the vulnerable Bombus terricola. We sequenced RNA from 30 worker abdomens, 18 of which were collected from agricultural sites and 12 of which were collected from nonagricultural sites. We found transcriptional signatures associated with exposure to insecticides, with gene expression patterns suggesting that bumble bees were exposed to neonicotinoids and/or fipronil—two compounds known to negatively impact bees. We also found transcriptional signatures associated with pathogen infections. In addition to the transcriptomic analysis, we carried out a metatranscriptomic analysis and detected five pathogens in the abdomens of workers, three of which are common in managed honey bee and bumble bee colonies. Our conservation genomics study provides functional support for the role of pesticides and pathogen spillover in the decline of B. terricola. We demonstrate that conservation genomics is an invaluable tool which allows researchers to quantify the effects of multiple stressors that impact pollinator populations in the wild.
Collapse
Affiliation(s)
| | - Victoria J MacPhail
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Sheila R Colla
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
76
|
Boev AS, Rakitko AS, Usmanov SR, Kobzeva AN, Popov IV, Ilinsky VV, Kiktenko EO, Fedorov AK. Genome assembly using quantum and quantum-inspired annealing. Sci Rep 2021; 11:13183. [PMID: 34162895 PMCID: PMC8222255 DOI: 10.1038/s41598-021-88321-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Recent advances in DNA sequencing open prospects to make whole-genome analysis rapid and reliable, which is promising for various applications including personalized medicine. However, existing techniques for de novo genome assembly, which is used for the analysis of genomic rearrangements, chromosome phasing, and reconstructing genomes without a reference, require solving tasks of high computational complexity. Here we demonstrate a method for solving genome assembly tasks with the use of quantum and quantum-inspired optimization techniques. Within this method, we present experimental results on genome assembly using quantum annealers both for simulated data and the [Formula: see text]X 174 bacteriophage. Our results pave a way for a significant increase in the efficiency of solving bioinformatics problems with the use of quantum computing technologies and, in particular, quantum annealing might be an effective method. We expect that the new generation of quantum annealing devices would outperform existing techniques for de novo genome assembly. To the best of our knowledge, this is the first experimental study of de novo genome assembly problems both for real and synthetic data on quantum annealing devices and quantum-inspired techniques.
Collapse
Affiliation(s)
- A S Boev
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia
| | | | - S R Usmanov
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia
| | - A N Kobzeva
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia
| | - I V Popov
- Genotek ltd., Moscow, 105120, Russia
| | | | - E O Kiktenko
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - A K Fedorov
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| |
Collapse
|
77
|
Berger B, Waterman MS, Yu YW. Levenshtein Distance, Sequence Comparison and Biological Database Search. IEEE TRANSACTIONS ON INFORMATION THEORY 2021; 67:3287-3294. [PMID: 34257466 PMCID: PMC8274556 DOI: 10.1109/tit.2020.2996543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Levenshtein edit distance has played a central role-both past and present-in sequence alignment in particular and biological database similarity search in general. We start our review with a history of dynamic programming algorithms for computing Levenshtein distance and sequence alignments. Following, we describe how those algorithms led to heuristics employed in the most widely used software in bioinformatics, BLAST, a program to search DNA and protein databases for evolutionarily relevant similarities. More recently, the advent of modern genomic sequencing and the volume of data it generates has resulted in a return to the problem of local alignment. We conclude with how the mathematical formulation of Levenshtein distance as a metric made possible additional optimizations to similarity search in biological contexts. These modern optimizations are built around the low metric entropy and fractional dimensionality of biological databases, enabling orders of magnitude acceleration of biological similarity search.
Collapse
Affiliation(s)
- Bonnie Berger
- Department of Mathematics and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, and also with the Department of Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Michael S Waterman
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada, and also with the Department of Computer and Mathematical Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
78
|
Lui LM, Nielsen TN, Arkin AP. A method for achieving complete microbial genomes and improving bins from metagenomics data. PLoS Comput Biol 2021; 17:e1008972. [PMID: 33961626 PMCID: PMC8172020 DOI: 10.1371/journal.pcbi.1008972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/02/2021] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.
Collapse
Affiliation(s)
- Lauren M. Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Torben N. Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, CA, United States of America
| |
Collapse
|
79
|
Complete Genome Sequence of Anaerostipes caccae Strain L1-92 T, a Butyrate-Producing Bacterium Isolated from Human Feces. Microbiol Resour Announc 2021; 10:10/16/e00056-21. [PMID: 33888495 PMCID: PMC8063638 DOI: 10.1128/mra.00056-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Anaerostipes caccae strain L1-92T is a well-known butyrate-producing bacterium that has been isolated from human feces. In this announcement, we present the complete genome sequence of A. caccae strain L1-92T, which comprises 3,590,719 bp with a G+C content of 44.30%. The genome harbors 3,369 predicted protein-coding genes.
Collapse
|
80
|
Zhang H, Wang H, Ma Z, Liu Y, Wu Z, Xu H, Qiao M. Characterization of Proteus vulgaris Strain P3M, a Foodborne Multidrug-Resistant Bacterium Isolated from Penaeus vannamei in China. Microb Drug Resist 2021; 27:1360-1370. [PMID: 33877915 DOI: 10.1089/mdr.2020.0502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteus vulgaris is an important foodborne opportunistic pathogen, both environmentally and clinically. The use of appropriate antibiotics has significant therapeutic effects, but has led to the emergence and spread of drug-resistant strains. In this study, a P. vulgaris strain, designated "P3M," was isolated from Penaeus vannamei in Tianjin, China. The whole genome of P3M was sequenced, generating detailed information, including the key genes involved in important metabolic pathways and their physiological functions. A total of 218 antibiotic resistance genes (ARGs) were predicted in the genome. The determination of various minimum inhibitory concentrations indicated that P3M is a multidrug-resistant (MDR) bacterium, with significant resistance to 16 antibiotics in seven categories. Determination of fractional inhibitory concentration index showed that the combination of ciprofloxacin plus tetracycline exhibited synergistic antimicrobial activity. Bioinformatics and phylogenetic analyses detected the presence of two two-component systems that mediate multidrug resistance and several mobile genetic elements involved in the horizontal transfer of ARGs in P3M. P. vulgaris strains represent a serious challenge to clinicians and infection control teams for its ubiquity worldwide and close relevance with human life. To the best of our knowledge, we report the first isolation and characterization of an important foodborne MDR P. vulgaris strain, and this study will provide necessary theoretical basis for the selection and clinical use of the appropriate antibiotics.
Collapse
Affiliation(s)
- Hongyang Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hesuiyuan Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
81
|
Gavrielatos M, Kyriakidis K, Spandidos DA, Michalopoulos I. Benchmarking of next and third generation sequencing technologies and their associated algorithms for de novo genome assembly. Mol Med Rep 2021; 23:251. [PMID: 33537807 PMCID: PMC7893683 DOI: 10.3892/mmr.2021.11890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Genome assemblers are computational tools for de novo genome assembly, based on a plenitude of primary sequencing data. The quality of genome assemblies is estimated by their contiguity and the occurrences of misassemblies (duplications, deletions, translocations or inversions). The rapid development of sequencing technologies has enabled the rise of novel de novo genome assembly strategies. The ultimate goal of such strategies is to utilise the features of each sequencing platform in order to address the existing weaknesses of each sequencing type and compose a complete and correct genome map. In the present study, the hybrid strategy, which is based on Illumina short paired‑end reads and Nanopore long reads, was benchmarked using MaSuRCA and Wengan assemblers. Moreover, the long‑read assembly strategy, which is based on Nanopore reads, was benchmarked using Canu or PacBio HiFi reads were benchmarked using Hifiasm and HiCanu. The assemblies were performed on a computational cluster with limited computational resources. Their outputs were evaluated in terms of accuracy and computational performance. PacBio HiFi assembly strategy outperforms the other ones, while Hi‑C scaffolding, which is based on chromatin 3D structure, is required in order to increase continuity, accuracy and completeness when large and complex genomes, such as the human one, are assembled. The use of Hi‑C data is also necessary while using the hybrid assembly strategy. The results revealed that HiFi sequencing enabled the rise of novel algorithms which require less genome coverage than that of the other strategies making the assembly a less computationally demanding task. Taken together, these developments may lead to the democratisation of genome assembly projects which are now approachable by smaller labs with limited technical and financial resources.
Collapse
Affiliation(s)
- Marios Gavrielatos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Konstantinos Kyriakidis
- School of Pharmacy, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Centre for Interdisciplinary Research and Innovation, 57001 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
82
|
Di Genova A, Buena-Atienza E, Ossowski S, Sagot MF. Efficient hybrid de novo assembly of human genomes with WENGAN. Nat Biotechnol 2021; 39:422-430. [PMID: 33318652 PMCID: PMC8041623 DOI: 10.1038/s41587-020-00747-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Generating accurate genome assemblies of large, repeat-rich human genomes has proved difficult using only long, error-prone reads, and most human genomes assembled from long reads add accurate short reads to polish the consensus sequence. Here we report an algorithm for hybrid assembly, WENGAN, that provides very high quality at low computational cost. We demonstrate de novo assembly of four human genomes using a combination of sequencing data generated on ONT PromethION, PacBio Sequel, Illumina and MGI technology. WENGAN implements efficient algorithms to improve assembly contiguity as well as consensus quality. The resulting genome assemblies have high contiguity (contig NG50: 17.24-80.64 Mb), few assembly errors (contig NGA50: 11.8-59.59 Mb), good consensus quality (QV: 27.84-42.88) and high gene completeness (BUSCO complete: 94.6-95.2%), while consuming low computational resources (CPU hours: 187-1,200). In particular, the WENGAN assembly of the haploid CHM13 sample achieved a contig NG50 of 80.64 Mb (NGA50: 59.59 Mb), which surpasses the contiguity of the current human reference genome (GRCh38 contig NG50: 57.88 Mb).
Collapse
Affiliation(s)
- Alex Di Genova
- Inria Grenoble Rhône-Alpes, Montbonnot, France.
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France.
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, Montbonnot, France.
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France.
| |
Collapse
|
83
|
Zhu Q, Cheng W, Song Y, He Q, Ju J, Li Q. Complete genome sequence of the deep South China Sea-derived Streptomyces niveus SCSIO 3406, the producer of cytotoxic and antibacterial marfuraquinocins. PLoS One 2021; 16:e0248404. [PMID: 33755698 PMCID: PMC7987185 DOI: 10.1371/journal.pone.0248404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Streptomyces niveus SCSIO 3406 was isolated from a sediment sample collected from South China Sea at a depth of 3536 m. Four new sesquiterpenoid naphthoquinones, marfuraquinocins A-D, and two new geranylated phenazines, i. e. phenaziterpenes A and B, were isolated from the fermentation broth of the strain. Here, we present its genome sequence, which contains 7,990,492 bp with a G+C content of 70.46% and harbors 7088 protein-encoding genes. The genome sequence analysis revealed the presence of a 28,787 bp gene cluster encoding for 24 open reading frames including 1,3,6,8-tetrahydroxynaphthalene synthase and monooxygenase, seven phenazine biosynthesis proteins, two prenyltransferases and a squalene-hopene cyclase. These genes are known to be necessary for the biosynthesis of both marfuraquinocins and phenaziterpenes. Outside the gene cluster (and scattered around the genome), there are seven genes belonging to the methylerythritol phosphate pathway for the biosynthesis of the essential primary metabolite, isopentenyl diphosphate, as well as six geranyl diphosphate/farnesyl diphosphate synthase genes. The strain S. niveus SCSIO 3406 showed type I PKS, type III PKS and nonribosomal peptide synthetase cluster. The sequence will provide the genetic basis for better understanding of biosynthesis mechanism of the above mentioned six compounds and for the construction of improved strain for the industrial production of antimicrobial agents.
Collapse
Affiliation(s)
- Qinghua Zhu
- College of Life Science, Dezhou University, Dezhou, China
| | - Weige Cheng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qing He
- College of Life Science, Dezhou University, Dezhou, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (QL); (JJ)
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (QL); (JJ)
| |
Collapse
|
84
|
Li XF, Li ZK, Zhu JC, Zheng BY, Tang P, Chen XX. The mitochondrial genome of Telenomus remus (Hymenoptera: Platygastridae). Mitochondrial DNA B Resour 2021; 6:844-845. [PMID: 33796651 PMCID: PMC7971337 DOI: 10.1080/23802359.2021.1884028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Telenomus remus Nixon, 1937 is an important parasitoid of lepidopterans. We sequenced the mitochondrial genome of T. remus, 15,500 bp in size, and possessed all 37 typical mitochondrial genes. A few tRNAs show gene arrangements compared with the ancestral gene order, mainly involving in the four tRNA clusters (E-C-Y-Q-I-A, D-K, N-F-S1-R, and M-V). The nucleotide sequences of 13 protein-coding genes of this sequence and another seven species from Platygastridae were used for phylogenetic analysis by MrBayes, with two species from Cynipoidea as an outgroup. The topology demonstrated that T. remus was most closely related to Telenomus sp.
Collapse
Affiliation(s)
- Xiao-fei Li
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ze-kai Li
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia-chen Zhu
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bo-ying Zheng
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Pu Tang
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xue-xin Chen
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| |
Collapse
|
85
|
Complete genome sequencing of Bacillus sp. TK-2, analysis of its cold evolution adaptability. Sci Rep 2021; 11:4836. [PMID: 33649356 PMCID: PMC7921382 DOI: 10.1038/s41598-021-84286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
To date, a large number of Bacillus species from different sources have been identified. However, there are few investigations on genome information and evolutionary insights of Bacillus species from cold environments. Bacillus sp. TK-2, isolated from the soil of Changbai Mountain, is a gram-positive bacterium with cold adaptation characteristics. In this study, we present the annotated complete genome sequence of Bacillus sp. TK-2. The genome comprised 5,286,177 bp with a GC content of 35.88%, 5293 protein-encoding genes, 32 rRNA, and 77 tRNA. Numerous genes related to cold adaptation were detected in the genome of Bacillus sp. TK-2, mainly involving in energy supply, regulation of cell membrane fluidity, antioxidant, and molecular chaperones. In addition, the strain TK-2 classified in the Bacillus groups was distributed on a terminal branch with Bacillus cereus A1 by Blastn and phylogenetic analysis in NCBI database. Complete genome sequences of the strain TK-2 and Bacillus cereus A1 were compared by the online tool "Average Nucleotide Identity", showing that the average nucleotide identity of these two strains was 98.26%. In parallel, A comparative analysis of the genomes of both Bacillus sp. TK-2 and Bacillus cereus A1 was conducted. Through the analysis of core and specific genes with cd-hit, it was found that the two strains had 5691 pan gene, 4524 core gene, and 1167 specific gene clusters. Among the 624 specific gene clusters of Bacillus sp. TK-2, some cold tolerance genes were detected, which implied the unique adaptability of Bacillus sp. TK-2 in long-term low temperature environments. Importantly, enzyme-encoding genes related to the degradation of polysaccharides such as cellulose and hemicellulose were detected in the 477 CAZyme genes of this genome. This work on sequencing and bioinformatics analysis of the complete sequence of Bacillus sp. TK-2 promote the application and in-depth research of low-temperature biotechnology.
Collapse
|
86
|
Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:958-972. [PMID: 33631428 PMCID: PMC9402790 DOI: 10.1016/j.gpb.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022]
Abstract
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.
Collapse
|
87
|
Fang N, Wang K, Tong D. An Algorithm for Gene Fragment Reconstruction. Interdiscip Sci 2021; 13:118-127. [PMID: 33609237 PMCID: PMC7896547 DOI: 10.1007/s12539-021-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Gene sequencing technology has been playing an important role in many aspects, such as life science, disease medicine and health medicine, particularly in the extremely tough process of fighting against 2019-novel coronavirus. Drawing DNA restriction map is a particularly important technology in genetic biology. The simplified partial digestion method (SPDP), a biological method, has been widely used to cut DNA molecules into DNA fragments and obtain the biological information of each fragment. In this work, we propose an algorithm based on 0–1 planning for the location of restriction sites on a DNA molecule, which is able to solve the problem of DNA fragment reconstruction just based on data of fragments’ length. Two specific examples are presented in detail. Furthermore, based on 1000 groups of original DNA sequences randomly generated, we define the coincidence rate and unique coincidence rate between the reconstructed DNA sequence and the original DNA sequence, and then analyze separately the effect of the number of fragments and the maximum length of DNA fragments on the coincidence rate and unique coincidence rate as defined. The effectiveness of the algorithm is proved. Besides, based on the existing optimization solution obtained, we simulate and discuss the influence of the error by computation method. It turns out that the error of position of one restriction site does not affect other restriction sites and errors of most restriction sites may lead to the failure of sequence reconstruction. Matlab 7.1 program is used to solve feasible solutions of the location of restriction sites, derive DNA fragment sequence and carry out the statistical analysis and error analysis. This paper focuses on basic computer algorithm implementation of rearrangement and sequencing rather than biochemical technology. The innovative application of the mathematical idea of 0–1 planning to DNA sequence mapping construction, to a certain extent, greatly simplifies the difficulty and complexity of calculation and accelerates the process of 'jigsaw' of DNA fragments.
Collapse
Affiliation(s)
- Ningyuan Fang
- School of Sciences, Southwest Petroleum University, Chengdu, 610500, Sichuan, People's Republic of China
| | - Kaifa Wang
- School of Mathematics and Statistics, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
88
|
Brown CL, Keenum IM, Dai D, Zhang L, Vikesland PJ, Pruden A. Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Sci Rep 2021; 11:3753. [PMID: 33580146 PMCID: PMC7881036 DOI: 10.1038/s41598-021-83081-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
In the fight to limit the global spread of antibiotic resistance, the assembly of environmental metagenomes has the potential to provide rich contextual information (e.g., taxonomic hosts, carriage on mobile genetic elements) about antibiotic resistance genes (ARG) in the environment. However, computational challenges associated with assembly can impact the accuracy of downstream analyses. This work critically evaluates the impact of assembly leveraging short reads, nanopore MinION long-reads, and a combination of the two (hybrid) on ARG contextualization for ten environmental metagenomes using seven prominent assemblers (IDBA-UD, MEGAHIT, Canu, Flye, Opera-MS, metaSpades and HybridSpades). While short-read and hybrid assemblies produced similar patterns of ARG contextualization, raw or assembled long nanopore reads produced distinct patterns. Based on an in-silico spike-in experiment using real and simulated reads, we show that low to intermediate coverage species are more likely to be incorporated into chimeric contigs across all assemblers and sequencing technologies, while more abundant species produce assemblies with a greater frequency of inversions and insertion/deletions (indels). In sum, our analyses support hybrid assembly as a valuable technique for boosting the reliability and accuracy of assembly-based analyses of ARGs and neighboring genes at environmentally-relevant coverages, provided that sufficient short-read sequencing depth is achieved.
Collapse
Affiliation(s)
- Connor L Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Ishi M Keenum
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Dongjuan Dai
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Liqing Zhang
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, 24060, USA.
| | - Peter J Vikesland
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
89
|
|
90
|
Gene Sequence Assembly Algorithm Model Based on the DBG Strategy and Its Application. JOURNAL OF HEALTHCARE ENGINEERING 2021. [DOI: 10.1155/2021/6676194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the continuous development of sequencing technology, the amount of bioinformatics data has increased geometrically, and the massive amount of bioinformatics data puts forward more stringent requirements for sequence assembly problems. The sequence assembly algorithm based on DBG (De Bruijn graph) strategy is a key algorithm in bioinformatics, which is widely used in the domain of gene sequence assembly. Current research on the domain of sequence assembly always focuses on optimization of specific steps to a specific algorithm and lack of research on domain-level high-abstract algorithm frameworks. To some extent, it leads to the redundancy of the sequence assembly algorithm, and some problems may be caused by the artificial selection algorithm. This paper analyzes the domain of DBGSA and establishes a feature model of this domain. Based on the production programming method, the DBGSA algorithm component is interactively designed. With the support of the PAR platform, the DBGSA algorithm component library is formally implemented, and furthermore, the DBGSA component library is used to assemble the specific algorithm. This research adds domain-level research to the domain of sequence assembly and implements the DBGSA component library, which can assemble specific sequence assembly algorithms, ensuring the efficiency of algorithm development and the reliability of assembly generation algorithms. At the same time, it also provides a valuable reference for solving problems in the domain of sequence assembly.
Collapse
|
91
|
Swat S, Laskowski A, Badura J, Frohmberg W, Wojciechowski P, Swiercz A, Kasprzak M, Blazewicz J. Genome-scale de novo assembly using ALGA. Bioinformatics 2021; 37:1644-1651. [PMID: 33471088 PMCID: PMC8289375 DOI: 10.1093/bioinformatics/btab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Motivation There are very few methods for de novo genome assembly based on the overlap graph approach. It is considered as giving more exact results than the so-called de Bruijn graph approach but in much greater time and of much higher memory usage. It is not uncommon that assembly methods involving the overlap graph model are not able to successfully compute greater datasets, mainly due to memory limitation of a computer. This was the reason for developing in last decades mainly de Bruijn-based assembly methods, fast and fairly accurate. However, the latter methods can fail for longer or more repetitive genomes, as they decompose reads to shorter fragments and lose a part of information. An efficient assembler for processing big datasets and using the overlap graph model is still looked out. Results We propose a new genome-scale de novo assembler based on the overlap graph approach, designed for short-read sequencing data. The method, ALGA, incorporates several new ideas resulting in more exact contigs produced in short time. Among these ideas, we have creation of a sparse but quite informative graph, reduction of the graph including a procedure referring to the problem of minimum spanning tree of a local subgraph, and graph traversal connected with simultaneous analysis of contigs stored so far. What is rare in genome assembly, the algorithm is almost parameter-free, with only one optional parameter to be set by a user. ALGA was compared with nine state-of-the-art assemblers in tests on genome-scale sequencing data obtained from real experiments on six organisms, differing in size, coverage, GC content and repetition rate. ALGA produced best results in the sense of overall quality of genome reconstruction, understood as a good balance between genome coverage, accuracy and length of resulting sequences. The algorithm is one of tools involved in processing data in currently realized national project Genomic Map of Poland. Availability and implementation ALGA is available at http://alga.put.poznan.pl. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylwester Swat
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan
| | - Artur Laskowski
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan
| | - Jan Badura
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan
| | - Wojciech Frohmberg
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan
| | - Pawel Wojciechowski
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan.,Poland, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan
| | - Aleksandra Swiercz
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan.,Poland, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan
| | - Marta Kasprzak
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan
| | - Jacek Blazewicz
- Poland, Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznan.,Poland, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan
| |
Collapse
|
92
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
93
|
Baeza JA. Yes, we can use it: a formal test on the accuracy of low-pass nanopore long-read sequencing for mitophylogenomics and barcoding research using the Caribbean spiny lobster Panulirus argus. BMC Genomics 2020; 21:882. [PMID: 33297960 PMCID: PMC7726883 DOI: 10.1186/s12864-020-07292-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Whole mitogenomes or short fragments (i.e., 300–700 bp of the cox1 gene) are the markers of choice for revealing within- and among-species genealogies. Protocols for sequencing and assembling mitogenomes include ‘primer walking’ or ‘long PCR’ followed by Sanger sequencing or Illumina short-read low-coverage whole genome (LC-WGS) sequencing with or without prior enrichment of mitochondrial DNA. The aforementioned strategies assemble complete and accurate mitochondrial genomes but are time consuming and/or expensive. In this study, I first tested whether mitogenomes can be sequenced from long-read nanopore sequencing data exclusively. Second, I explored the accuracy of the long-read assembled genomes by comparing them to a ‘gold’ standard reference mitogenome retrieved from the same individual using Illumina sequencing. Third and lastly, I tested if the long-read assemblies are useful for mitophylogenomics and barcoding research. To accomplish these goals, I used the Caribbean spiny lobster Panulirus argus, an ecologically relevant species in shallow water coral reefs and target of the most lucrative fishery in the greater Caribbean region. Results LC-WGS using a MinION ONT device and various de-novo and reference-based assembly pipelines retrieved a complete and highly accurate mitogenome for the Caribbean spiny lobster Panulirus argus. Discordance between each of the long-read assemblies and the reference mitogenome was mostly due to indels at the flanks of homopolymer regions. Although not ‘perfect’, phylogenetic analyses using entire mitogenomes or a fragment of the cox1 gene demonstrated that mitogenomes assembled using long reads reliably identify the sequenced specimen as belonging to P. argus and distinguish it from other related species in the same genus, family, and superorder. Conclusions This study serves as a proof-of-concept for the future implementation of in-situ surveillance protocols using the MinION to detect mislabeling in P. argus across its supply chain. Mislabeling detection will improve fishery management in this overexploited lobster. This study will additionally aid in decreasing costs for exploring meta-population connectivity in the Caribbean spiny lobster and will aid with the transfer of genomics technology to low-income countries.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA. .,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA. .,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
94
|
Steyaert A, Audenaert P, Fostier J. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields. BMC Bioinformatics 2020; 21:402. [PMID: 32928110 PMCID: PMC7491180 DOI: 10.1186/s12859-020-03740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022] Open
Abstract
Background De Bruijn graphs are key data structures for the analysis of next-generation sequencing data. They efficiently represent the overlap between reads and hence, also the underlying genome sequence. However, sequencing errors and repeated subsequences render the identification of the true underlying sequence difficult. A key step in this process is the inference of the multiplicities of nodes and arcs in the graph. These multiplicities correspond to the number of times each k-mer (resp. k+1-mer) implied by a node (resp. arc) is present in the genomic sequence. Determining multiplicities thus reveals the repeat structure and presence of sequencing errors. Multiplicities of nodes/arcs in the de Bruijn graph are reflected in their coverage, however, coverage variability and coverage biases render their determination ambiguous. Current methods to determine node/arc multiplicities base their decisions solely on the information in nodes and arcs individually, under-utilising the information present in the sequencing data. Results To improve the accuracy with which node and arc multiplicities in a de Bruijn graph are inferred, we developed a conditional random field (CRF) model to efficiently combine the coverage information within each node/arc individually with the information of surrounding nodes and arcs. Multiplicities are thus collectively assigned in a more consistent manner. Conclusions We demonstrate that the CRF model yields significant improvements in accuracy and a more robust expectation-maximisation parameter estimation. True k-mers can be distinguished from erroneous k-mers with a higher F1 score than existing methods. A C++11 implementation is available at https://github.com/biointec/detoxunder the GNU AGPL v3.0 license.
Collapse
|
95
|
Korol CB, Shallom SJ, Arora K, Boshoff HI, Freeman AF, King A, Agrawal S, Daugherty SC, Jancel T, Kabat J, Ganesan S, Torrero MN, Sampaio EP, Barry C, Holland SM, Tettelin H, Rosenzweig SD, Zelazny AM. Tissue specific diversification, virulence and immune response to Mycobacterium bovis BCG in a patient with an IFN-γ R1 deficiency. Virulence 2020; 11:1656-1673. [PMID: 33356838 PMCID: PMC7781554 DOI: 10.1080/21505594.2020.1848108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Summary: We characterized Mycobacterium bovis BCG isolates found in lung and brain samples from a previously vaccinated patient with IFNγR1 deficiency. The isolates collected displayed distinct genomic and phenotypic features consistent with host adaptation and associated changes in antibiotic susceptibility and virulence traits. Background: We report a case of a patient with partial recessive IFNγR1 deficiency who developed disseminated BCG infection after neonatal vaccination (BCG-vaccine). Distinct M. bovis BCG-vaccine derived clinical strains were recovered from the patient's lungs and brain. Methods: BCG strains were phenotypically (growth, antibiotic susceptibility, lipid) and genetically (whole genome sequencing) characterized. Mycobacteria cell infection models were used to assess apoptosis, necrosis, cytokine release, autophagy, and JAK-STAT signaling. Results: Clinical isolates BCG-brain and BCG-lung showed distinct Rv0667 rpoB mutations conferring high- and low-level rifampin resistance; the latter displayed clofazimine resistance through Rv0678 gene (MarR-like transcriptional regulator) mutations. BCG-brain and BCG-lung showed mutations in fadA2, fadE5, and mymA operon genes, respectively. Lipid profiles revealed reduced levels of PDIM in BCG-brain and BCG-lung and increased TAGs and Mycolic acid components in BCG-lung, compared to parent BCG-vaccine. In vitro infected cells showed that the BCG-lung induced a higher cytokine release, necrosis, and cell-associated bacterial load effect when compared to BCG-brain; conversely, both strains inhibited apoptosis and altered JAK-STAT signaling. Conclusions: During a chronic-disseminated BCG infection, BCG strains can evolve independently at different sites likely due to particular microenvironment features leading to differential antibiotic resistance, virulence traits resulting in dissimilar responses in different host tissues.
Collapse
Affiliation(s)
- Cecilia B. Korol
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | | | - Kriti Arora
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Helena I. Boshoff
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alejandra King
- Department of Pediatric Immunology, Hospital Luis Calvo MacKenna, Universidad De, Chile, Chile
| | - Sonia Agrawal
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean C. Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Timothy Jancel
- Department of Pharmacy, Clinical Center, NIH, Bethesda, USA
| | - Juraj Kabat
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Sundar Ganesan
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Marina N. Torrero
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Clifton Barry
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Steve M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| |
Collapse
|
96
|
Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism. BMC Genomics 2020; 21:834. [PMID: 33243144 PMCID: PMC7690147 DOI: 10.1186/s12864-020-07244-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Background Rhodotorula glutinis is recognized as a biotechnologically important oleaginous red yeast, which synthesizes numerous meritorious compounds with wide industrial usages. One of the most notable properties of R. glutinis is the formation of intracellular lipid droplets full of carotenoids. However, the basic genomic features that underlie the biosynthesis of these valuable compounds in R. glutinis have not been fully documented. To reveal the biotechnological potential of R. glutinis, the genomics and lipidomics analysis was performed through the Next-Generation Sequencing and HPLC-MS-based metabolomics technologies. Results Here, we firstly assemble the genome of R. glutinis ZHK into 21.8 Mb, containing 30 scaffolds and 6774 predicted genes with a N50 length of 14, 66,672 bp and GC content of 67.8%. Genome completeness assessment (BUSCO alignment: 95.3%) indicated the genome assembly with a high-quality features. According to the functional annotation of the genome, we predicted several key genes involved in lipids and carotenoids metabolism as well as certain industrial enzymes biosynthesis. Comparative genomics results suggested that most of orthologous genes have underwent the strong purifying selection within the five Rhodotorula species, especially genes responsible for carotenoids biosynthesis. Furthermore, a total of 982 lipids were identified using the lipidomics approaches, mainly including triacylglycerols, diacylglyceryltrimethylhomo-ser and phosphatidylethanolamine. Conclusion Using whole genome shotgun sequencing, we comprehensively analyzed the genome of R. glutinis and predicted several key genes involved in lipids and carotenoids metabolism. By performing comparative genomic analysis, we show that most of the ortholog genes have undergone strong purifying selection within the five Rhodotorula species. Furthermore, we identified 982 lipid species using lipidomic approaches. These results provided valuable resources to further advance biotechnological applications of R .glutinis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07244-z.
Collapse
|
97
|
Gwee CY, Lee QL, Mahood SP, Hung Le Manh, Tizard R, Eiamampai K, Round PD, Rheindt FE. The interplay of colour and bioacoustic traits in the differentiation of a Southeast Asian songbird complex. Mol Ecol 2020; 30:297-309. [PMID: 33135269 DOI: 10.1111/mec.15718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022]
Abstract
Morphological traits have served generations of biologists as a taxonomic indicator, and have been the main basis for defining and classifying species diversity for centuries. A quantitative integration of behavioural characters, such as vocalizations, in studies on biotic differentiation has arisen more recently, and the relative importance of these different traits in the diversification process remains poorly understood. To provide a framework within which to interpret the evolutionary interplay between morphological and behavioural traits, we generated a draft genome of a cryptic Southeast Asian songbird, the limestone wren-babbler Napothera crispifrons. We resequenced whole genomes of multiple individuals of all three traditional subspecies and of a distinct leucistic population. We demonstrate strong genomic and mitochondrial divergence among all three taxa, pointing to the existence of three species-level lineages. Despite its great phenotypic distinctness, the leucistic population was characterized by shallow genomic differentiation from its neighbour, with only a few localized regions emerging as highly diverged. Quantitative bioacoustic analysis across multiple traits revealed deep differences especially between the two taxa characterized by limited plumage differentiation. Our study demonstrates that differentiation in these furtive songbirds has resulted in a complex mosaic of colour-based and bioacoustic differences among populations. Extreme colour differences can be anchored in few genomic loci and may therefore arise and subside rapidly.
Collapse
Affiliation(s)
- Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qiao Le Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Simon P Mahood
- Wildlife Conservation Society Cambodia Program, Sangkat Tonle Bassac, Phnom Penh, Cambodia.,Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Hung Le Manh
- Institute of Ecology and Biological Resources, Graduated University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Caugiay, Hanoi, Vietnam
| | - Robert Tizard
- Global Conservation Program, Wildlife Conservation Society, Bronx, NY, USA
| | - Krairat Eiamampai
- Wildlife Research Division, Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok, Thailand
| | - Philip D Round
- Department of Biology, Faculty of Science, Mahidol University, Rachadhavi, Bangkok, Thailand
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
98
|
Matschiner M, Böhne A, Ronco F, Salzburger W. The genomic timeline of cichlid fish diversification across continents. Nat Commun 2020; 11:5895. [PMID: 33208747 PMCID: PMC7674422 DOI: 10.1038/s41467-020-17827-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022] Open
Abstract
Cichlid fishes are celebrated for their vast taxonomic, phenotypic, and ecological diversity; however, a central aspect of their evolution - the timeline of their diversification - remains contentious. Here, we generate draft genome assemblies of 14 species representing the global cichlid diversity and integrate these into a new phylogenomic hypothesis of cichlid and teleost evolution that we time-calibrate with 58 re-evaluated fossil constraints and a new Bayesian model accounting for fossil-assignment uncertainty. Our results support cichlid diversification long after the breakup of the supercontinent Gondwana and lay the foundation for precise temporal reconstructions of the exceptional continental cichlid adaptive radiations.
Collapse
Affiliation(s)
- Michael Matschiner
- Zoological Institute, University of Basel, Basel, Switzerland.
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Fabrizia Ronco
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
99
|
Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 2020; 589:76-81. [DOI: 10.1038/s41586-020-2930-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022]
|
100
|
Xu P, Xie S, Liu W, Jin P, Wei D, Yaseen DG, Wang Y, Miao W. Comparative Genomics Analysis Provides New Strategies for Bacteriostatic Ability of Bacillus velezensis HAB-2. Front Microbiol 2020; 11:594079. [PMID: 33281792 PMCID: PMC7705179 DOI: 10.3389/fmicb.2020.594079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
Biocontrol formulations prepared from biocontrol bacteria are increasingly applied in sustainable agriculture. Notably, inoculants prepared from Bacillus strains have been proven efficient and environmentally friendly alternatives to chemical bactericides. The bacterium Bacillus velezensis HAB-2 (formerly classified as B. amyloliquefaciens HAB-2) is used as a biological control agent in agricultural fields. In this study, we reported a high-quality genome sequence of HAB-2 using third-generation sequencing technology (PacBio RS II). The 3.89 Mb genome encoded 3,820 predicted genes. Comparative analysis among the genome sequences of reference strains B. velezensis FZB42, B. amyloliquefaciens DSM7 and B. subtilis 168 with the HAB-2 genome revealed obvious differences in the variable part of the genomes, while the core genome shared by FZB42 and HAB-2 was similar (96.14%). However, there were differences in the prophage region among the four strains. The numbers of prophage regions and coding genes in HAB-2 and FZB42 were smaller than the other two strains. The HAB-2 genome showed superior ability to produce secondary metabolites and harbored 13 gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Furthermore, there were two unique clusters: one cluster which encoded lanthipeptide was involved in mersacidin synthesis and another cluster which encoded ladderane was shown to direct an unknown compound. Multidomain enzymes, such as non-ribosomal peptide synthetase and polyketide synthase, control the biosynthesis of secondary metabolites and rely on 4'-phosphopantetheinyl transferases (PPTases). Key genes lpaH2 and a encoded PPTases in HAB-2 encoded 224 and 120 amino acids, respectively. The genomic features revealed that HAB-2 possesses immense potential to synthesize antimicrobial acting secondary metabolites by regulating and controlling gene clusters. The prophage regions and genes encoding PPTases may provide novel insight for the bacteriostatic mechanism of Bacillus in the biological control of plant diseases.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shangqian Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- College of Forestry, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Pengfei Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dandan Wei
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dahar Ghulam Yaseen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yu Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|