51
|
Kuruvilla R, Ye H, Ginty DD. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 2000; 27:499-512. [PMID: 11055433 DOI: 10.1016/s0896-6273(00)00061-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NGF is a target-derived growth factor for developing sympathetic neurons. Here, we show that application of NGF exclusively to distal axons of sympathetic neurons leads to an increase in PI3-K signaling in both distal axons and cell bodies. In addition, there is a more critical dependence on PI3-K for survival of neurons supported by NGF acting exclusively on distal axons as compared to neurons supported by NGF acting directly on cell bodies. Interestingly, PI3-K signaling within both cell bodies and distal axons contributes to survival of neurons. The requirement for PI3-K signaling in distal axons for survival may be explained by the finding that inhibition of PI3-K in the distal axons attenuates retrograde signaling. Therefore, a single TrkA effector, PI3-K, has multiple roles within spatially distinct cellular locales during retrograde NGF signaling.
Collapse
Affiliation(s)
- R Kuruvilla
- Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
52
|
Rizzo MA, Shome K, Watkins SC, Romero G. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 2000; 275:23911-8. [PMID: 10801816 DOI: 10.1074/jbc.m001553200] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The serine/threonine kinase Raf-1 is an essential component of the MAPK cascade. Activation of Raf-1 by extracellular signals is initiated by association with intracellular membranes. Recruitment of Raf-1 to membranes has been reported to be mediated by direct association with Ras and by the phospholipase D product phosphatidic acid (PA). Here we report that insulin stimulation of HIRcB fibroblasts leads to accumulation of Ras, Raf-1, phosphorylated MEK, phosphorylated MAPK, and PA on endosomal membranes. Mutations that disrupt Raf-PA interactions prevented recruitment of Raf-1 to membranes, whereas disruption of Ras-Raf interactions did not affect agonist-dependent translocation. Expression of a dominant-negative Ras mutant did not prevent insulin-dependent Raf-1 translocation, but inhibited phosphorylation of MAPK. Finally, the PA-binding region of Raf-1 was sufficient to target green fluorescent protein to membranes, and its overexpression blocked recruitment of Raf-1 to membranes and disrupted insulin-dependent MAPK phosphorylation. These results indicate that agonist-dependent Raf-1 translocation is primarily mediated by a direct interaction with PA and is independent of association with Ras.
Collapse
Affiliation(s)
- Megan A Rizzo
- Departments of Pharmacology and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
53
|
Klingenberg O, Wiedocha A, Citores L, Olsnes S. Requirement of phosphatidylinositol 3-kinase activity for translocation of exogenous aFGF to the cytosol and nucleus. J Biol Chem 2000; 275:11972-80. [PMID: 10766827 DOI: 10.1074/jbc.275.16.11972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.
Collapse
Affiliation(s)
- O Klingenberg
- Department of Biochemistry at The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
54
|
Domin J, Gaidarov I, Smith ME, Keen JH, Waterfield MD. The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 2000; 275:11943-50. [PMID: 10766823 DOI: 10.1074/jbc.275.16.11943] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In recent years, a large family of phosphoinositide 3-kinase (PI3K) isozymes has been characterized and cloned. Several of these PI3K enzymes have overlapping tissue distributions and it remains unclear if and how their 3-phosphoinositide products elicit differential, intracellular effects. One possibility is that the PI3K enzymes display a restricted distribution within the cell to produce their 3-phospholipid products in specific, subcellular compartments. In the present study we characterize the subcellular distribution of the novel class II PI3K isozyme PI3K-C2alpha in several mammalian cell types. Differential centrifugation of COS-1 and U937 cells together with Western blot analysis demonstrated that PI3K-C2alpha is constitutively associated with phospholipid membranes. Centrifugation of rat brain homogenates and Western blotting revealed that in contrast to the class IA PI3K enzymes, PI3K-C2alpha could be co-purified with a population of clathrin-coated vesicles (CCVs). Furthermore, a PI3K activity refractory to wortmannin treatment was detected in CCV preparations consistent with the presence of the PI3K-C2alpha isozyme. These biochemical observations were supported by immunofluorescence analysis that revealed PI3K-C2alpha to have a punctate distribution and an enrichment of immunoreactivity within a perinuclear site consistent with its presence in the endoplasmic reticulum or Golgi apparatus. Dual label immunofluorescence demonstrated that in this region, the distribution of PI3K-C2alpha closely paralleled that of gamma-adaptin, a component of the AP-1 adaptor that is present in the trans-Golgi and the trans-Golgi network (TGN) resident protein TGN-46. Neither the phospholipid association nor the subcellular localization of PI3K-C2alpha was dependent upon either its COOH-terminal PX or C2 domains. Mutants lacking these domains demonstrated a similar distribution to the wild type enzyme when expressed as recombinant proteins. Treatment of cells with brefeldin A disrupted the perinuclear staining pattern of both PI3K-C2alpha and the AP-1 complex demonstrating that the localization of both molecules at the TGN is dependent upon ADP-ribosylation factor GTPase activity.
Collapse
Affiliation(s)
- J Domin
- Ludwig Institute for Cancer Research, University College, London W1P 8BT, United Kingdom.
| | | | | | | | | |
Collapse
|
55
|
Webster CR, Anwer MS. Role of the PI3K/PKB signaling pathway in cAMP-mediated translocation of rat liver Ntcp. Am J Physiol Gastrointest Liver Physiol 2000; 277:G1165-72. [PMID: 10600813 DOI: 10.1152/ajpgi.1999.277.6.g1165] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
cAMP stimulates Na(+)-taurocholate (TC) cotransport by translocating the Na(+)-TC-cotransporting peptide (Ntcp) to the plasma membrane. The present study was undertaken to determine whether the phosphatidylinositol-3-kinase (PI3K)-signaling pathway is involved in cAMP-mediated translocation of Ntcp. The ability of cAMP to stimulate TC uptake declined significantly when hepatocytes were pretreated with PI3K inhibitors wortmannin or LY-294002. Wortmannin inhibited cAMP-mediated translocation of Ntcp to the plasma membrane. cAMP stimulated protein kinase B (PKB) activity by twofold within 5 min, an effect inhibited by wortmannin. Neither basal mitogen-activated protein kinase (MAPK) activity nor cAMP-mediated inhibition of MAPK activity was affected by wortmannin. cAMP also stimulated p70(S6K) activity. However, rapamycin, an inhibitor of p70(S6K), failed to inhibit cAMP-mediated stimulation of TC uptake, indicating that the effect of cAMP is not mediated via p70(S6K). Cytochalasin D, an inhibitor of actin filament formation, inhibited the ability of cAMP to stimulate TC uptake and Ntcp translocation. Together, these results suggest that the stimulation of TC uptake and Ntcp translocation by cAMP may be mediated via the PI3K/PKB signaling pathway and requires intact actin filaments.
Collapse
Affiliation(s)
- C R Webster
- Departments of Biomedical Sciences and Clinical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | |
Collapse
|
56
|
Riedel H, Yousaf N, Zhao Y, Dai H, Deng Y, Wang J. PSM, a mediator of PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis. Oncogene 2000; 19:39-50. [PMID: 10644978 DOI: 10.1038/sj.onc.1203253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PSM/SH2-B has been described as a cellular partner of the FcepsilonRI receptor, insulin receptor (IR), insulin-like growth factor-I (IGF-I) receptor (IGF-IR), and nerve growth factor receptor (TrkA). A function has been proposed in neuronal differentiation and development but its role in other signaling pathways is still unclear. To further elucidate the physiologic role of PSM we have identified additional mitogenic receptor tyrosine kinases as putative PSM partners including platelet-derived growth factor (PDGF) receptor (PDGFR) beta, hepatocyte growth factor receptor (Met), and fibroblast growth factor receptor. We have mapped Y740 as a site of PDGFR beta that is involved in the association with PSM. We have further investigated the putative role of PSM in mitogenesis with three independent experimental strategies and found that all consistently suggested a role as a positive, stimulatory signaling adapter in normal NIH3T3 and baby hamster kidney fibroblasts. (1) PSM expression from cDNA using an ecdysone-regulated transient expression system stimulated PDGF-BB-, IGF-I-, and insulin- but not EGF-induced DNA synthesis in an ecdysone dose-responsive fashion; (2) Microinjection of the (dominant negative) PSM SH2 domain interfered with PDGF-BB- and insulin-induced DNA synthesis; and (3) A peptide mimetic of the PSM Pro-rich putative SH3 domain-binding region interfered with PDGF-BB-, IGF-I-, and insulin- but not with EGF-induced DNA synthesis in NIH3T3 fibroblasts. This experiment was based on cell-permeable fusion peptides with the Drosophila antennapedia homeodomain which effectively traverse the plasma membrane of cultured cells. These experimental strategies independently suggest that PSM functions as a positive, stimulatory, mitogenic signaling mediator in PDGF-BB, IGF-I, and insulin but not in EGF action. This function appears to involve the PSM SH2 domain as well as the Pro-rich putative SH3 domain binding region. Our findings support the model that PSM participates as an adapter in various mitogenic signaling mechanisms by linking an activated (receptor) phospho-tyrosine to the SH3 domain of an unknown cellular partner.
Collapse
Affiliation(s)
- H Riedel
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
57
|
Scales SJ, Gomez M, Kreis TE. Coat proteins regulating membrane traffic. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:67-144. [PMID: 10603575 DOI: 10.1016/s0074-7696(08)62704-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review focuses on the roles of coat proteins in regulating the membrane traffic of eukaryotic cells. Coat proteins are recruited to the donor organelle membrane from a cytosolic pool by specific small GTP-binding proteins and are required for the budding of coated vesicles. This review first describes the four types of coat complexes that have been characterized so far: clathrin and its adaptors, the adaptor-related AP-3 complex, COPI, and COPII. It then discusses the ascribed functions of coat proteins in vesicular transport, including the physical deformation of the membrane into a bud, the selection of cargo, and the targeting of the budded vesicle. It also mentions how the coat proteins may function in an alternative model for transport, namely via tubular connections, and how traffic is regulated. Finally, this review outlines the evidence that related coat proteins may regulate other steps of membrane traffic.
Collapse
Affiliation(s)
- S J Scales
- Department of Cell Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
58
|
Sai Y, Nies AT, Arias IM. Bile acid secretion and direct targeting of mdr1-green fluorescent protein from Golgi to the canalicular membrane in polarized WIF-B cells. J Cell Sci 1999; 112 ( Pt 24):4535-45. [PMID: 10574703 DOI: 10.1242/jcs.112.24.4535] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The bile canalicular membrane contains several ATP-dependent transporters that are involved in biliary secretion. Canalicular transporters are synthesized in ER, modified in Golgi and transported to the apical plasma membrane. However, the route and regulation of intracellular trafficking of ATP-dependent transporters have not been elucidated. In the present study, we generated a translational fusion of mdr1 and green fluorescent protein and investigated bile acid secretion and intracellular trafficking of mdr1 in WIF-B cells, a polarized liver derived cell line. Similar to hepatocytes, WIF-B cells secrete bile acids and organic cations (i.e. rhodamine-123) into the bile canaliculi. Canalicular secretion of fluorescein isothiocyanate-glycocholate was stimulated by taurocholate and a decapeptide activator of phosphoinositide 3-kinase and was decreased by wortmannin. WIF-B9 cells were transiently and stably transfected with a mdr1-GFP construct. Fluorescence was observed in the canalicular membrane, pericanalicular punctate structures and Golgi region. Time lapse microscopy revealed that mdr1-GFP is transferred from Golgi as tubular vesicular structures the majority of which traveled directly to the canalicular membrane. Recycling between the canalicular membrane and subapical region was also observed. At no time was mdr1-GFP detected in the basolateral plasma membrane. At 15 degrees C, mdr1-GFP accumulated in Golgi; after a shift to 37 degrees C, fluorescence moved directly to the canalicular membrane. This process was enhanced by taurocholate and blocked by wortmannin. In these studies as well, no mdr1-GFP fluorescence was observed at any time in basolateral membranes or other intracellular organelles. In conclusion, in WIF-B cells, there is a direct route from Golgi to the canalicular membrane for trafficking of mdr1, a bile canalicular ATP-dependent transporter of organic cations. As in normal hepatocytes, phosphoinositide 3-kinase regulates bile acid secretion and intracellular trafficking of mdr1 in WIF-B cells. WIF-B cells stably transfected with mdr1-GFP provide an important model in which to study trafficking and regulation of canalicular transporters. Movies available on-line: http://www.healthsci.tufts.edu/LABS/IMArias+++/Sai_F9.html
Collapse
Affiliation(s)
- Y Sai
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
59
|
Bernard A, Kazlauskas A. Phosphospecific antibodies reveal temporal regulation of platelet-derived growth factor beta receptor signaling. Exp Cell Res 1999; 253:704-12. [PMID: 10585294 DOI: 10.1006/excr.1999.4715] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The platelet-derived growth factor beta receptor (betaPDGFR) is a receptor tyrosine kinase involved in multiple aspects of cell growth and differentiation. Upon activation, betaPDGFR is phosphorylated at up to nine different tyrosine residues. Phosphorylation of the receptor results in at least two different outcomes: recruitment of signaling molecules and activation of intrinsic receptor kinase activity. In order to evaluate the phosphorylation state of the receptor, phosphospecific antibodies were generated against peptides encompassing betaPDGFR phospho-Y751, phospho-Y771, or phospho-Y857. When phosphorylated, these sites enable the receptor to recruit signaling molecules PI3K or RasGAP, or enhance the receptor's kinase activity, respectively. We found that receptors phosphorylated at Y751, Y771, and Y857 display distinct temporal and spatial distribution by immunofluorescence. Subsequent biochemical studies revealed that receptor function corresponding to each of the phosphorylated sites was regulated as a function of time. Within the first 10 min, PDGF enhanced the receptor's kinase activity and initiated recruitment of PI3K and RasGAP. After prolonged exposure to PDGF, PI3K binding persisted to approximately 85% of the amount bound at 10 min, whereas binding of RasGAP and the exogenous kinase activity of the receptor diminished to less than 15% of the levels displayed at 10 min. We conclude that the phosphorylation state of the receptor, as well as its signaling capacity, is dynamic and changes as cells are continuously exposed to PDGF.
Collapse
Affiliation(s)
- A Bernard
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
60
|
Abstract
Antigens internalized through specific membrane receptors are presented to helper CD4(+) T cells at antigen concentrations 10(3) to 10(4) fold lower than antigens internalized by fluid phase. B lymphocyte antigen receptors, mannose receptors and receptors for the Fc region of immunoglobulins, promote both internalization and efficient presentation at low antigen concentrations. Thus, binding to specific membrane receptors concentrate antigens on antigen presenting cells and mediates efficient uptake. Is this 'quantitative' concentration of antigens on antigen presenting cells the end of the story? Or may 'quality', i.e. selective intracellular antigen targeting, somehow influence the efficiency or specificity of MHC class I and class II-restricted antigen presentation?
Collapse
Affiliation(s)
- S Amigorena
- INSERM U520, Institut Curie, 12 rue Lhomond, Paris, 75005, France
| | | |
Collapse
|
61
|
Kamei T, Matozaki T, Sakisaka T, Kodama A, Yokoyama S, Peng YF, Nakano K, Takaishi K, Takai Y. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells--regulation by Rho, Rac and Rab small G proteins. Oncogene 1999; 18:6776-84. [PMID: 10597286 DOI: 10.1038/sj.onc.1203114] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both E-cadherin, a cell-cell adhesion molecule, and c-Met, the hepatocyte growth factor (HGF)/scatter factor (SF) receptor, were colocalized at cell-cell adhesion sites of MDCK cells. HGF/SF or a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), induced disruption of cell-cell adhesion, which was accompanied by endocytosis of both E-cadherin and c-Met. Reduction of medium Ca2+ to a micromolar range showed the same effects. Re-increase in medium Ca2+ to a millimolar range formed cell-cell adhesion, which was accompanied by exocytosis of E-cadherin and c-Met, followed by their re-colocalization at the cell-cell adhesion sites. These results suggest that E-cadherin and c-Met are colocalized at cell-cell adhesion sites and undergo co-endo-exocytosis. We have previously shown that TPA does not induce disruption of cell-cell adhesion and subsequent scattering of MDCK cells stably expressing a dominant active mutant of RhoA or Rac1 small G protein or a dominant negative mutant of Rab5 small G protein. In these cell lines, the HGF- or TPA-induced coendocytosis of E-cadherin and c-Met was inhibited, but the coendocytosis of E-cadherin and c-Met in response to reduction of medium Ca2+ was not affected. Wortmannin, an inhibitor of phosphoinositide (PI) 3-kinase, inhibited the HGF-induced disruption of cell-cell junction and endocytosis of E-cadherin and c-Met, but not the TPA-induced ones. These results suggest that disruption of cell-cell adhesion is involved in the HGF- or TPA-induced coendocytosis of E-cadherin and c-Met in MDCK cells, and that the Rho and Rab family members indirectly regulate this coendocytosis. In addition, coendocytosis of E-cadherin and c-Met in response to HGF is partly mediated by PI 3-kinase. The cross-talk between cell-cell and cell-matrix adherens junctions is discussed.
Collapse
Affiliation(s)
- T Kamei
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Insulin has diverse effects on cells, including stimulation of glucose transport, gene expression, and alterations of cell morphology. The hormone mediates these effects by activation of signaling pathways which utilize, 1) adaptor molecules such as the insulin receptor substrates (IRS), the Src and collagen homologs (Shc), and the growth factor receptor binding protein 2 (Grb2); 2) lipid kinases such as phosphatidylinositol 3-kinase (PI 3-Kinase); 3) small G proteins; and 4) serine, threonine, and tyrosine kinases. The activation of such signaling molecules by insulin is now well established, but we do not yet fully understand the mechanisms integrating these seemingly diverse pathways. Here, we discuss the involvement of the actin cytoskeleton in the propagation and regulation of insulin signals. In muscle cells in culture, insulin induces a rapid actin filament reorganization that coincides with plasma membrane ruffling and intense accumulation of pinocytotic vesicles. Initiation of these effects of insulin requires an intact actin cytoskeleton and activation of PI 3-kinase. We observed recruitment PI 3-kinase subunits and glucose transporter proteins to regions of reorganized actin. In both muscle and adipose cells, actin disassembly inhibited early insulin-induced events such as recruitment of glucose transporters to the cell surface and enhanced glucose transport. Additionally, actin disassembly inhibited more prolonged effects of insulin, including DNA synthesis and expression of immediate early genes such as c-fos. Intact actin filaments appear to be essential for mediation of early events such as association of Shc with Grb2 in response to insulin, which leads to stimulation of gene expression. Preliminary observations support a role for focal adhesion signaling complexes in insulin action. These observations suggest that the actin cytoskeleton facilitates propagation of the morphological, metabolic, and nuclear effects of insulin by regulating proper subcellular distribution of signaling molecules that participate in the insulin signaling pathway.
Collapse
Affiliation(s)
- T Tsakiridis
- Division of Clinical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
64
|
Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A. Identification of the Receptor-associated Signaling Enzymes That Are Required for Platelet-derived Growth Factor-AA-dependent Chemotaxis and DNA Synthesis. J Biol Chem 1999; 274:28335-43. [PMID: 10497192 DOI: 10.1074/jbc.274.40.28335] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the platelet-derived growth factor (PDGF) alpha receptor (alphaPDGFR) leads to cell migration and DNA synthesis. These events are preceded by the ligand-induced tyrosine phosphorylation of the receptor and its association with SH2-containing signaling enzymes including Src family members (Src), the phosphotyrosine phosphatase SHP-2, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-gamma1 (PLCgamma). In this study, we sought to systematically evaluate the relative roles of the signaling enzymes that are recruited to the alphaPDGFR for DNA synthesis and cell migration. Our approach was to generate and characterize tyrosine to phenylalanine alphaPDGFR mutants that failed to associate with one or more of the above listed signaling enzymes. In a 3T3-like cell line (Ph cells), PDGF-dependent DNA synthesis was strictly dependent on only one of the receptor-associated proteins, PI3K. In contrast, multiple signaling enzymes were required for maximal chemotaxis, as receptors unable to associate with either Src, PI3K, or PLCgamma initiated chemotaxis to 4, 47, or 56% of the wild-type level, respectively. Furthermore, coexpression of mutant receptors revealed that these signaling enzymes do not need to be on the same receptor for a cell to respond chemotactically to PDGF. We conclude that for the alphaPDGFR, PI3K plays a major role in initiating DNA synthesis, whereas PI3K, PLCgamma, and especially Src are required for chemotaxis.
Collapse
Affiliation(s)
- S Rosenkranz
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
65
|
Oki S, Kohsaka T, Azuma M. Augmentation of CTLA-4 expression by wortmannin: involvement of lysosomal sorting properties of CTLA-4. Int Immunol 1999; 11:1563-71. [PMID: 10464177 DOI: 10.1093/intimm/11.9.1563] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CTLA-4 (CD152) is transiently induced on the cell surface of activated T cells and expression is limited at a low level. In this study, we investigated the possibility that phosphatidylinositol 3 kinase (PI 3-K) and other related PI kinases associated with the cytoplasmic domain of CTLA-4 are involved in intracellular trafficking and sorting of CTLA-4 protein. Treatment with micromolar concentrations of wortmannin (WN) for >4 h enhanced both cell-surface and intracellular CTLA-4 without affecting its transcriptional activities in a murine mastocytoma cell line transfected with the human CTLA-4 gene and normal activated CD4(+) T cells. However, a more specific PI 3-K inhibitor, LY294002, failed to affect CTLA-4 expression, indicating that the action of WN is independent of conventional PI 3-K activities. WN down-regulated specific association of CTLA-4 with adaptor proteins and its endocytosis. The fact that lysosomotropic agents, ammonium chloride and monensin, enhanced CTLA-4 expression suggests that WN may also block lysosomal sorting and consequent degradation of CTLA-4. Co-localization of CTLA-4 and lysosome-associated membrane protein-1 detected by immunofluorescence microscopy indicates the actual lysosomal sorting of CTLA-4. Our data suggest the existence of WN-sensitive enzymes, which promote lysosomal sorting of CTLA-4. In addition to rapid endocytosis by clathrin-associated adaptor complex, a prompt sorting of CTLA-4 to lysosomes may be one of the regulatory mechanisms for managing CTLA-4 signals in intracellular trafficking pathways.
Collapse
Affiliation(s)
- S Oki
- Department of Immunology, National Children's Medical Research Center, 3-35-31 Taishido, Setagaya-Ku, Tokyo 154-8509, Japan
| | | | | |
Collapse
|
66
|
Weiss RH, Ramirez A, Joo A. Short-term pravastatin mediates growth inhibition and apoptosis, independently of Ras, via the signaling proteins p27Kip1 and P13 kinase. J Am Soc Nephrol 1999; 10:1880-90. [PMID: 10477139 DOI: 10.1681/asn.v1091880] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Growth factor-stimulated DNA synthesis in a variety of cell lines has been shown to be decreased after overnight (or longer) treatment with the 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, the statins. Although this anti-mitogenic effect had been presumed to be the result of the impairment of Ras lipidation, a stable modification (T1/2 approximately 20 h), this study provides new data demonstrating that brief (approximately 1 h) pretreatment of rat vascular smooth muscle cells with 100 microM pravastatin before platelet-derived growth factor-BB (PDGF-BB) stimulation results in attenuation of DNA synthesis through a Ras-independent mechanism. PDGF-BB-stimulated PDGF-beta receptor tyrosine phosphorylation, Ras activity, and mitogen-activated protein/extracellular signal-regulated kinase activity are unaffected by from 10 min to 1 h of pravastatin incubation, while Raf activity is markedly increased after 1 h of pravastatin. Phosphatidylinositol-3 kinase activity and phosphorylation of its downstream effector Akt are decreased after 1 h pravastatin incubation. Rho is stabilized by pravastatin, and ADP-ribosylation of Rho by C3 exoenzyme decreases PDGF-stimulated phosphatidylinositol-3 kinase activity, mimicking the effect of pravastatin on this signaling protein. Levels of the cyclin-dependent kinase inhibitor p27Kip1 are increased when cells were preincubated with pravastatin for 1 h and then exposed to PDGF, and apoptosis is induced by pravastatin incubation times as short as 1 to 4 h. Thus, short-term, high-dose pravastatin inhibits vascular smooth muscle cell growth and induces apoptosis independently of Ras, likely by means of the drug's effect on p27Kip1, mediated by Rho and/or phosphatidylinositol-3 kinase. This work demonstrates for the first time that the statins may be therapeutically useful when applied for short periods of time such that potential toxicity of long-term statin use (such as chronic Ras inhibition) may be avoided, suggesting future therapeutic directions for statin research.
Collapse
Affiliation(s)
- R H Weiss
- Department of Internal Medicine, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
67
|
Gaidarov I, Keen JH. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J Cell Biol 1999; 146:755-64. [PMID: 10459011 PMCID: PMC2156139 DOI: 10.1083/jcb.146.4.755] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The clathrin-associated AP-2 adaptor protein is a major polyphosphoinositide-binding protein in mammalian cells. A high affinity binding site has previously been localized to the NH(2)-terminal region of the AP-2 alpha subunit (Gaidarov et al. 1996. J. Biol. Chem. 271:20922-20929). Here we used deletion and site- directed mutagenesis to determine that alpha residues 21-80 comprise a discrete folding and inositide-binding domain. Further, positively charged residues located within this region are involved in binding, with a lysine triad at positions 55-57 particularly critical. Mutant peptides and protein in which these residues were changed to glutamine retained wild-type structural and functional characteristics by several criteria including circular dichroism spectra, resistance to limited proteolysis, and clathrin binding activity. When expressed in intact cells, mutated alpha subunit showed defective localization to clathrin-coated pits; at high expression levels, the appearance of endogenous AP-2 in coated pits was also blocked consistent with a dominant-negative phenotype. These results, together with recent work indicating that phosphoinositides are also critical to ligand-dependent recruitment of arrestin-receptor complexes to coated pits (Gaidarov et al. 1999. EMBO (Eur. Mol. Biol. Organ.) J. 18:871-881), suggest that phosphoinositides play a critical and general role in adaptor incorporation into plasma membrane clathrin-coated pits.
Collapse
Affiliation(s)
- Ibragim Gaidarov
- Kimmel Cancer Institute and the Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - James H. Keen
- Kimmel Cancer Institute and the Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
68
|
Khaled Z, Ho YY, Benimetskaya L, Deckelbaum RJ, Stein CA. Omega-6 polyunsaturated fatty acid-stimulated cellular internalization of phosphorothioate oligodeoxynucleotides: evidence for protein kinase C-zeta dependency. Biochem Pharmacol 1999; 58:411-23. [PMID: 10424759 DOI: 10.1016/s0006-2952(99)00126-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rate of cellular internalization of phosphorothioate oligodeoxynucleotides is determined predominantly by adsorptive plus fluid-phase endocytosis. Internalization of a 5'-fluoresceinated phosphorothioate 15mer homopolymer of thymidine (FSdT15) in K562 cells in medium containing lipid-depleted albumin was reduced consistently versus nondepleted albumin. Treatment of K562 and several other cell lines with omega-6 polyunsaturated fatty acids (omega-6 PUFAs; e.g. arachidonic and linoleic acids) but not saturated fatty acids dramatically increased FSdT15 internalization in a concentration-dependent manner and over a wide albumin concentration range. The rate of efflux of FSdT15 from K562 cells was not affected by the omega-6 PUFA, implying that an increase of cellular fluorescence was due to an increase in the in-rate. These data were consistent with the observation that the binding of FSdT15 to the cell surface was also increased in the presence of omega-6 PUFAs. Omega-6 PUFAs are stimulators of protein kinase C (PKC) activity. Inhibition of PKC activity in K562 cells by Go6976, an inhibitor of the classical PKC isoforms, did not block the linoleic acid-induced stimulation of FSdT15 internalization. On the other hand, treatment of cells with Ro318220, which has considerably less isoform specificity, almost totally blocked the effect of linoleic acid on FSdT15 internalization, implying the involvement of a nonclassical PKC isoform in the process. Finally, since the only PKC isoform expressed in K562 cells that also is activated by omega-PUFAs is PKC-zeta, we obtained NIH 3T3 cells expressing a doxycycline-repressible dominant negative PKC-zeta mutant. Expression of the mutant blocked the stimulation of FSdT15 internalization by linoleic acid. Stimulated internalization also was blocked by wortmannin and LY 294002, which are relatively specific inhibitors of phosphatidylinositol 3-kinase (PI 3-K). Taken together, our data suggest that omega-6 PUFA stimulation of fluoresceinated phosphorothioate oligomers may be PKC-zeta dependent, and perhaps PI-3K dependent as well.
Collapse
Affiliation(s)
- Z Khaled
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
69
|
Sasaoka T, Wada T, Ishihara H, Takata Y, Haruta T, Usui I, Ishiki M, Kobayashi M. Synergistic role of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase cascade in the regulation of insulin receptor trafficking. Endocrinology 1999; 140:3826-34. [PMID: 10433244 DOI: 10.1210/endo.140.8.6904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To examine the molecular mechanism of insulin receptor trafficking, we investigated the intracellular signaling molecules that regulate this process in Rat1 fibroblasts overexpressing insulin receptors. Cellular localization of insulin receptors was assessed by confocal laser microscopy with indirect immunofluorescence staining. Insulin receptors were visualized diffusely in the basal state. Insulin treatment induced the change of insulin receptor localization to perinuclear compartment. This insulin-induced insulin receptor trafficking was not affected by treatment of the cells with PI3-kinase inhibitor (wortmannin), whereas treatment with MEK [mitogen-activated protein (MAP) kinase-Erk kinase] inhibitor (PD98059) partly inhibited the process in a dose-dependent manner. Interestingly, treatment with both wortmannin and PD98059 almost completely inhibited insulin receptor trafficking. The functional importance of PI3-kinase and MAP kinase in the trafficking process was directly assessed by using single cell microinjection analysis. Microinjection of p85-SH2 and/or catalytically inactive MAP kinase ([K71A]Erk1) GST fusion protein gave the same results as treatment with wortmannin and PD98059. Furthermore, to determine the crucial step for the requirement of PI3-kinase and MAP kinase pathways, the effect of wortmannin and PD98059 on insulin receptor endocytosis was studied. Insulin internalization from the plasma membrane and subsequent insulin degradation were not affected by treatment with wortmannin and PD98059. In contrast, insulin receptor down-regulation from the cell surface and insulin receptor degradation, after prolonged incubation with insulin, were markedly impaired by the treatment. These results suggest that PI3-kinase and MAP kinase pathways synergistically regulate insulin receptor trafficking at a step subsequent to the receptor internalization.
Collapse
Affiliation(s)
- T Sasaoka
- First Department of Medicine, Toyama Medical & Pharmaceutical University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
DeMali KA, Balciunaite E, Kazlauskas A. Integrins enhance platelet-derived growth factor (PDGF)-dependent responses by altering the signal relay enzymes that are recruited to the PDGF beta receptor. J Biol Chem 1999; 274:19551-8. [PMID: 10391888 DOI: 10.1074/jbc.274.28.19551] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the extracellular matrix (ECM) can promote platelet-derived growth factor (PDGF)-dependent responses, we hypothesized that the ECM mediates this effect by preventing the PDGF beta receptor (betaPDGFR) from associating with the negative regulator, RasGAP (the GTPase-activating protein of Ras). We found that binding of RasGAP to the wild-type betaPDGFR was decreased; the activation of Ras and Erk was enhanced, and [3H]thymidine uptake was better in cells cultured on fibronectin than in cells cultured on polylysine. To investigate the mechanism by which culturing cells on fibronectin diminished the recruitment of RasGAP to the betaPDGFR, we focused on SHP-2 since it dephosphorylates the betaPDGFR at the phosphotyrosine required for binding of RasGAP. Culturing cells on fibronectin increased the amount of SHP-2 that associated with the betaPDGFR. Furthermore, cells expressing receptor mutants that failed to associate with SHP-2 were insensitive to fibronectin. The ECM enhances PDGF-dependent responses by increasing the association of SHP-2 with the betaPDGFR, which in turn decreases the time that RasGAP interacts with the receptor. Thus, fibronectin changes PDGF-dependent signaling and biological responses by altering the signal relay enzymes that are recruited to the receptor.
Collapse
Affiliation(s)
- K A DeMali
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
71
|
Reynolds AJ, Heydon K, Bartlett SE, Hendry IA. Evidence for phosphatidylinositol 4-kinase and actin involvement in the regulation of 125I-beta-nerve growth factor retrograde axonal transport. J Neurochem 1999; 73:87-95. [PMID: 10386958 DOI: 10.1046/j.1471-4159.1999.0730087.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The signaling events regulating the retrograde axonal transport of neurotrophins are poorly understood, but a role for phosphatidylinositol kinases has been proposed. In this study, we used phenylarsine oxide (PAO) to examine the participation of phosphatidylinositol 4-kinases in nerve growth factor (NGF) retrograde axonal transport within sympathetic and sensory neurons. The retrograde transport of 125I-labeled betaNGF was inhibited by PAO (0.5-2 nmol/eye), and this effect was diminished by dilution. Coinjection of 2,3-dimercaptopropanol with PAO reduced its ability to inhibit 125I-betaNGF retrograde transport. PAO (20 nM to 200 microM) also inhibited NGF-dependent survival of both sympathetic and sensory neuronal populations. F-actin staining in sympathetic and sensory neuronal growth cones was disrupted by PAO at 10 and 2 nM, respectively, and occurred within 5 min of exposure to the drug. The actin inhibitor latrunculin A also rapidly affected F-actin staining in vitro and reduced 125I-betaNGF retrograde axonal transport in vivo to the same extent as PAO. These results suggest that both phosphatidylinositol 4-kinase isoforms and the actin cytoskeleton play significant roles in the regulation of 125I-betaNGF retrograde axonal transport in vivo.
Collapse
Affiliation(s)
- A J Reynolds
- Developmental Neurobiology Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT
| | | | | | | |
Collapse
|
72
|
Waterman H, Alroy I, Strano S, Seger R, Yarden Y. The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. EMBO J 1999; 18:3348-58. [PMID: 10369675 PMCID: PMC1171415 DOI: 10.1093/emboj/18.12.3348] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Signaling by the epidermal growth factor (EGF) family and the neuregulin group of ligands is mediated by four ErbB receptor tyrosine kinases, that form homo- and heterodimeric complexes. Paradoxically, the neuregulin receptor ErbB-3 is devoid of catalytic activity, but its heterodimerization with other ErbBs, particularly the ligand-less ErbB-2 oncoprotein of carcinomas, reconstitutes superior mitogenic and transforming activities. To understand the underlying mechanism we constructed a chimeric EGF-receptor (ErbB-1) whose autophosphorylation C-terminal domain was replaced by the corresponding portion of ErbB-3. Consistent with the possibility that this domain recruits a relatively potent signaling pathway(s), the mitogenic signals generated by the recombinant fusion protein were superior to those generated by ErbB-1 homodimers and comparable to the proliferative activity of ErbB-2/ErbB-3 heterodimers. Upon ligand binding, the chimeric receptor recruited an ErbB-3-specific repertoire of signaling proteins, including Shc and the phosphatidylinositol 3-kinase, but excluding the ErbB-1-specific substrate, phospholipase Cgamma1. Unlike ErbB-1, which is destined to lysosomal degradation through a mechanism that includes recruitment of c-Cbl and receptor poly-ubiquitination, the C-terminal tail of ErbB-3 shunted the chimeric protein to the ErbB-3-characteristic recycling pathway. These observations attribute the mitogenic superiority of ErbB-3 to its C-terminal tail and imply that the flanking kinase domain has lost catalytic activity in order to restrain the relatively potent signaling capability of the C-terminus.
Collapse
Affiliation(s)
- H Waterman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
73
|
Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97:727-41. [PMID: 10380925 DOI: 10.1016/s0092-8674(00)80785-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We sought to explore the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the transcriptional induction of immediate early genes (IEGs). Using global expression monitoring, we identified 66 fibroblast IEGs induced by platelet-derived growth factor beta receptor (PDGFRbeta) signaling. Mutant receptors lacking binding sites for activation of the PLCgamma, PI3K, SHP2, and RasGAP pathways still retain partial ability to induce 64 of these IEGs. Removal of the Grb2-binding site further broadly reduces induction. These results suggest that the diverse pathways exert broadly overlapping effects on IEG induction. Interestingly, a mutant receptor that restores the RasGAP-binding site promotes induction of an independent group of genes, normally induced by interferons. Finally, we compare the PDGFRbeta and fibroblast growth factor receptor 1; each induces essentially identical IEGs in fibroblasts.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cell Line, Transformed
- Fibroblasts/cytology
- Gene Expression Regulation
- Genes, Immediate-Early
- Genes, Overlapping
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Mice
- Mutagenesis
- Phenylalanine/genetics
- Phenylalanine/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptor, Platelet-Derived Growth Factor beta
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- D Fambrough
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
74
|
Tuma PL, Finnegan CM, Yi JH, Hubbard AL. Evidence for apical endocytosis in polarized hepatic cells: phosphoinositide 3-kinase inhibitors lead to the lysosomal accumulation of resident apical plasma membrane proteins. J Cell Biol 1999; 145:1089-102. [PMID: 10352024 PMCID: PMC2133136 DOI: 10.1083/jcb.145.5.1089] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Revised: 04/15/1999] [Indexed: 12/18/2022] Open
Abstract
The architectural complexity of the hepatocyte canalicular surface has prevented examination of apical membrane dynamics with methods used for other epithelial cells. By adopting a pharmacological approach, we have documented for the first time the internalization of membrane proteins from the hepatic apical surface. Treatment of hepatocytes or WIF-B cells with phosphoinositide 3-kinase inhibitors, wortmannin or LY294002, led to accumulation of the apical plasma membrane proteins, 5'-nucleotidase and aminopeptidase N in lysosomal vacuoles. By monitoring the trafficking of antibody-labeled molecules, we determined that the apical proteins in vacuoles came from the apical plasma membrane. Neither newly synthesized nor transcytosing apical proteins accumulated in vacuoles. In wortmannin-treated cells, transcytosing apical proteins traversed the subapical compartment (SAC), suggesting that this intermediate in the basolateral-to-apical transcytotic pathway remained functional. Ultrastructural analysis confirmed these results. However, apically internalized proteins did not travel through SAC en route to lysosomal vacuoles, indicating that SAC is not an intermediate in the apical endocytic pathway. Basolateral membrane protein distributions did not change in treated cells, uncovering another difference in endocytosis from the two domains. Similar effects were observed in polarized MDCK cells, suggesting conserved patterns of phosphoinositide 3-kinase regulation among epithelial cells. These results confirm a long-held but unproven assumption that lysosomes are the final destination of apical membrane proteins in hepatocytes. Significantly, they also confirm our hypothesis that SAC is not an apical endosome.
Collapse
Affiliation(s)
- P L Tuma
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
75
|
Luton F, Mostov KE. Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. Mol Biol Cell 1999; 10:1409-27. [PMID: 10233153 PMCID: PMC25293 DOI: 10.1091/mbc.10.5.1409] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transcytosis of the polymeric immunoglobulin receptor (pIgR) is stimulated by binding of its ligand, dimeric IgA (dIgA). During this process, dIgA binding at the basolateral surface of the epithelial cell transmits a signal to the apical region of the cell, which in turn stimulates the transport of dIgA-pIgR complex from a postmicrotubule compartment to the apical surface. We have previously reported that the signal of stimulation was controlled by a protein-tyrosine kinase (PTK) activated upon dIgA binding. We now show that this signal of stimulation moves across the cell independently of pIgR movement or microtubules and acts through the tyrosine kinase activity by releasing Ca++ from inositol trisphosphate-sensitive intracellular stores. Surprisingly we have found that a second independent signal is required to achieve dIgA-stimulated transcytosis of pIgR. This second signal depends on dIgA binding to the pIgR solely at the basolateral surface and the ability of pIgR to dimerize. This enables pIgR molecules that have bound dIgA at the basolateral surface to respond to the signal of stimulation once they reach the postmicrotubule compartment. We propose that the use of two signals may be a general mechanism by which signaling receptors maintain specificity along their signaling and trafficking pathways.
Collapse
Affiliation(s)
- F Luton
- Departments of Anatomy and Biochemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
76
|
Kim YH, Chang SH, Kwon JH, Rhee SS. HIV-1 Nef plays an essential role in two independent processes in CD4 down-regulation: dissociation of the CD4-p56(lck) complex and targeting of CD4 to lysosomes. Virology 1999; 257:208-19. [PMID: 10208934 DOI: 10.1006/viro.1999.9642] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef down-regulates CD4 by triggering rapid endocytosis of cell surface CD4. To better understand how Nef induces CD4 down-regulation, we generated a series of Nef mutants with small in-frame deletions in the coding region. Three classes of mutants were obtained. The first class produces neither CD4 down-regulation nor dissociation of the CD4-p56(lck) complex. The second class induces CD4 down-regulation in cells lacking p56(lck) expression, but not in cells with p56(lck);these mutants fail to dissociate CD4 from p56lck. These results show that Nef-mediated CD4 dissociation from p56(lck) is important for CD4 down-regulation. The third class of mutants is able to dissociate the CD4-p56(lck) complex but fails to down-regulate surface CD4; internalized CD4 molecules are recycled back to the cell surface. This result suggests that Nef diverts the CD4 recycling pathway to a degradative pathway. We also demonstrate that Nef associates with phosphatidylinositol-3-kinase (PI3K) activity, which is known to be involved in several aspects of membrane trafficking. However, Nef mutants that cause internalized CD4 to be recycled do not associate with PI3K activity; thus Nef-associated PI3K activity might be involved in the latter process of targeting CD4 to a degradative pathway. We conclude that HIV-1 Nef plays a critical role in multiple processes in CD4 down-regulation: (i) disrupting the CD4-p56(lck) complex on the cell surface to allow CD4 internalization and (ii) diverting the internalized CD4 to a lysosomal pathway for its degradation, likely through a PI3K activity.
Collapse
Affiliation(s)
- Y H Kim
- Laboratory of Molecular Virology, Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | |
Collapse
|
77
|
Wurmser AE, Gary JD, Emr SD. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem 1999; 274:9129-32. [PMID: 10092582 DOI: 10.1074/jbc.274.14.9129] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- A E Wurmser
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668, USA
| | | | | |
Collapse
|
78
|
Yamamoto M, Toya Y, Jensen RA, Ishikawa Y. Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp Cell Res 1999; 247:380-8. [PMID: 10066366 DOI: 10.1006/excr.1998.4379] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolin is a major structural component of caveolae and has been implicated in the regulation of the function of several caveolae-associated signaling molecules. Platelet-derived growth factor (PDGF) receptors and caveolin were colocalized in the same subcellular fraction after sucrose density gradient fractionation of fibroblasts. Additionally, we found that the PDGF receptors interacted with caveolin in NIH3T3 fibroblast cells. We then examined whether caveolin directly binds to PDGF receptors and inhibits kinase activity using a recombinant PDGF receptor overexpressed in insect cells and peptides derived from the scaffolding domain of caveolin subtypes. We found the peptide from caveolin-1 and -3, but not -2, inhibited the autophosphorylation of PDGF receptors in a dose-dependent manner. Similarly, caveolin-1 and -3 peptides directly bound to PDGF receptors. Mutational analysis using a series of truncated caveolin-3 peptides (20-, 17-, 14-, and 11-mer peptides) revealed that at least 17 amino acid residues of the peptide were required to inhibit and directly bind to PDGF receptors. Thus, our findings suggest that PDGF receptors directly interact with caveolin subtypes, leading to the inhibition of kinase activity. Caveolin may be another regulating factor of PDGF-mediated tyrosine kinase signaling.
Collapse
Affiliation(s)
- M Yamamoto
- Cardiovascular and Pulmonary Research Institute, Allegheny University of the Health Sciences, Pittsburgh, Pennsylvania, 15212, USA
| | | | | | | |
Collapse
|
79
|
Deletion of a Critical Internalization Domain in the G-CSFR in Acute Myelogenous Leukemia Preceded by Severe Congenital Neutropenia. Blood 1999. [DOI: 10.1182/blood.v93.2.440.402k23_440_446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acquired mutations in the granulocyte colony-stimulating factor receptor (G-CSFR) occur in a subset of patients with severe congenital neutropenia (SCN) who develop acute myelogenous leukemia (AML). These mutations affect one allele and result in hyperproliferative responses to G-CSF, presumably through a dominant-negative mechanism. Here we show that a critical domain in the G-CSFR that mediates ligand internalization is deleted in mutant G-CSFR forms from patients with SCN/AML. Deletion of this domain results in impaired ligand internalization, defective receptor downmodulation, and enhanced growth signaling. These results explain the molecular basis for G-CSFR mutations in the pathogenesis of the dominant-negative phenotype and hypersensitivity to G-CSF in SCN/AML.
Collapse
|
80
|
Deletion of a Critical Internalization Domain in the G-CSFR in Acute Myelogenous Leukemia Preceded by Severe Congenital Neutropenia. Blood 1999. [DOI: 10.1182/blood.v93.2.440] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AbstractAcquired mutations in the granulocyte colony-stimulating factor receptor (G-CSFR) occur in a subset of patients with severe congenital neutropenia (SCN) who develop acute myelogenous leukemia (AML). These mutations affect one allele and result in hyperproliferative responses to G-CSF, presumably through a dominant-negative mechanism. Here we show that a critical domain in the G-CSFR that mediates ligand internalization is deleted in mutant G-CSFR forms from patients with SCN/AML. Deletion of this domain results in impaired ligand internalization, defective receptor downmodulation, and enhanced growth signaling. These results explain the molecular basis for G-CSFR mutations in the pathogenesis of the dominant-negative phenotype and hypersensitivity to G-CSF in SCN/AML.
Collapse
|
81
|
Abstract
Homotypic fusion between early endosomes can be reconstituted in vitro. By using wortmannin and LY294002, inhibitors of phosphatidylinositol (Pl) 3-kinase, a requirement for this activity has been established in order for fusion to proceed efficiently. It has been shown that Pl 3-kinase activity is required downstream of rab5 activation, although a large excess of activated rab5 can overcome wortmannin inhibition. A series of experiments have also been performed which indicate a role for early endosomal autoantigen 1 (EEA1) in determining fusion efficiency. EEA1 dissociates from membranes following wortmannin treatment. It is proposed that the requirement of endosome fusion for Pl 3-kinase activity is to promote the association of EEA1 with endosomes.
Collapse
Affiliation(s)
- I G Mills
- Physiological Laboratory, University of Liverpool, UK
| | | | | |
Collapse
|
82
|
Zhang Y, Willson T, Metcalf D, Cary D, Hilton DJ, Clark R, Nicola NA. The box-1 region of the leukemia inhibitory factor receptor alpha-chain cytoplasmic domain is sufficient for hemopoietic cell proliferation and differentiation. J Biol Chem 1998; 273:34370-83. [PMID: 9852103 DOI: 10.1074/jbc.273.51.34370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that acts on a variety of cell types and regulates cell proliferation and differentiation. The functional receptor for LIF is composed of LIFR alpha-chain (LIFRalpha) and gp130 both of which are shared in the functional receptors for oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1. By using stable transfection of wild-type or cytoplasmic deletion mutants of LIFRalpha together with full-length gp130 into Ba/F3 cells, we found that cells expressing gp130 and an extensively deleted mutant LIFRalpha containing only the box-1 region were capable of proliferating in response to LIF, although LIF-dependent long term growth of these cells was seriously impaired. Using a similar strategy to generate WEHI-3BD+ cells expressing gp130 and wild-type or truncation mutants of LIFRalpha, studies revealed that the box-1 region of the LIFRalpha was also sufficient for LIF-dependent induction of different aspects of differentiation, including up-regulation of macrophage surface marker expression, morphological change, and cell migration in agar culture. However, the C-terminal region of the LIFRalpha, although not essential for intracellular signaling, was important for efficient receptor-mediated ligand internalization. In summary, the membrane-proximal box-1 region plays a dominant role in LIF-induced signal transduction of both proliferation and differentiation.
Collapse
Affiliation(s)
- Y Zhang
- Walter and Eliza Hall Institute for Medical Research and the Cooperative Research Centre for Cellular Growth Factors, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
83
|
Siddhanta U, McIlroy J, Shah A, Zhang Y, Backer JM. Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3'-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol 1998; 143:1647-59. [PMID: 9852157 PMCID: PMC2132989 DOI: 10.1083/jcb.143.6.1647] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1998] [Revised: 10/27/1998] [Indexed: 11/22/2022] Open
Abstract
We have examined the roles of the p85/ p110alpha and hVPS34 phosphatidylinositol (PI) 3'-kinases in cellular signaling using inhibitory isoform-specific antibodies. We raised anti-hVPS34 and anti-p110alpha antibodies that specifically inhibit recombinant hVPS34 and p110alpha, respectively, in vitro. We used the antibodies to study cellular processes that are sensitive to low-dose wortmannin. The antibodies had distinct effects on the actin cytoskeleton; microinjection of anti-p110alpha antibodies blocked insulin-stimulated ruffling, whereas anti-hVPS34 antibodies had no effect. The antibodies also had different effects on vesicular trafficking. Microinjection of inhibitory anti-hVPS34 antibodies, but not anti-p110alpha antibodies, blocked the transit of internalized PDGF receptors to a perinuclear compartment, and disrupted the localization of the early endosomal protein EEA1. Microinjection of anti-p110alpha antibodies, and to a lesser extent anti-hVPS34 antibodies, reduced the rate of transferrin recycling in CHO cells. Surprisingly, both antibodies inhibited insulin-stimulated DNA synthesis by 80%. Injection of cells with antisense oligonucleotides derived from the hVPS34 sequence also blocked insulin-stimulated DNA synthesis, whereas scrambled oligonucleotides had no effect. Interestingly, the requirement for p110alpha and hVPS34 occurred at different times during the G1-S transition. Our data suggest that different PI 3'-kinases play distinct regulatory roles in the cell, and document an unexpected role for hVPS34 during insulin-stimulated mitogenesis.
Collapse
Affiliation(s)
- U Siddhanta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
84
|
Guilherme A, Czech MP. Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J Biol Chem 1998; 273:33119-22. [PMID: 9837876 DOI: 10.1074/jbc.273.50.33119] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transduction pathway by which insulin stimulates glucose transport is not understood, but a role for complexes of insulin receptor substrate (IRS) proteins and phosphatidylinositol (PI) 3-kinase as well as for Akt/protein kinase B (PKB) has been proposed. Here, we present evidence suggesting that formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation are insufficient to stimulate glucose transport in rat adipocytes. Cross-linking of beta1-integrin on the surface of rat adipocytes by anti-beta1-integrin antibody and fibronectin was found to cause greater IRS-1 tyrosine phosphorylation, IRS-1-associated PI 3-kinase activity, and Akt/PKB activation, detected by anti-serine 473 antibody, than did 1 nM insulin. Clustering of beta1-integrin also significantly potentiated stimulation of insulin receptor and IRS-1 tyrosine phosphorylation, IRS-associated PI 3-kinase activity, and Akt/PKB activation caused by submaximal concentrations of insulin. In contrast, beta1-integrin clustering caused neither a change in deoxyglucose transport nor an effect on the ability of insulin to stimulate deoxyglucose uptake at any concentration along the entire dose-response relationship range. The data suggest that (i) beta1-integrins can engage tyrosine kinase signaling pathways in isolated fat cells, potentially regulating fat cell functions and (ii) either formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation is not necessary for regulation of glucose transport in fat cells or an additional signaling pathway is required.
Collapse
Affiliation(s)
- A Guilherme
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
85
|
Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:127-50. [PMID: 9838078 DOI: 10.1016/s0005-2760(98)00139-8] [Citation(s) in RCA: 484] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphoinositide kinases (PI3Ks) play an important role in mitogenic signaling and cell survival, cytoskeletal remodeling, metabolic control and vesicular trafficking. Here we summarize the structure-function relationships delineating the activation process of class I PI3Ks involving various domains of adapter subunits, Ras, and interacting proteins. The resulting product, PtdIns(3,4,5)P3, targets Akt/protein kinase B (PKB), Bruton's tyrosine kinase (Btk), phosphoinositide-dependent kinases (PDK), integrin-linked kinase (ILK), atypical protein kinases C (PKC), phospholipase Cgamma and more. Surface receptor-activated PI3Ks function in mammals, insects, nematodes and slime mold, but not yeast. While many members of the class II family have been identified and characterized biochemically, it is presently unknown how these C2-domain containing PI3Ks are activated, and which PI substrate they phosphorylate in vivo. PtdIns 3-P is produced by Vps34p/class III PI3Ks and operates via the PtdIns 3-P-binding proteins early endosomal antigen (EEA1), yeast Vac1p, Vps27p, Pip1p in lysosomal protein targeting. Besides the production of D3 phosphorylated lipids, PI3Ks have an intrinsic protein kinase activity. For trimeric GTP-binding protein-activated PI3Kgamma, protein kinase activity seems to be sufficient to trigger mitogen-activated protein kinase (MAPK). Recent disruption of PI3K genes in slime mold, Caenorhabditis elegans, Drosophila melanogaster and mice further underlines the importance of PI3K signaling systems and elucidates the role of PI3K signaling in multicellular organisms.
Collapse
Affiliation(s)
- M P Wymann
- Institute of Biochemistry, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
86
|
Abstract
Observation of the flow of material along the endocytic pathway has lead to the description of the basic architecture of the pathway and provided insight into the relationship between compartments. Significant advances have been made in the study of endocytic transport steps at the molecular level, of which studies of cargo selection, vesicle budding and membrane fusion events comprise the major part. Progress in this area has been driven by two approaches, yeast genetics and in vitro or cell-free assays, which reconstitute particular transport steps and allow biochemical manipulation. The complex protein machineries that control vesicle budding and fusion are significantly conserved between the secretory and endocytic pathways such that proteins that regulate particular steps are often part of a larger family of proteins which exercise a conserved function at other locations within the cell. Well characterized examples include vesicle coat proteins, rabs (small GTPases) and soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs). Intracompartmental pH, lipid composition and cytoskeletal organization have also been identified as important determinants of the orderly flow of material within the endocytic pathway.
Collapse
Affiliation(s)
- M J Clague
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K.
| |
Collapse
|
87
|
Sarbassov DD, Peterson CA. Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -independent signaling pathways during myogenic differentiation. Mol Endocrinol 1998; 12:1870-8. [PMID: 9849961 DOI: 10.1210/mend.12.12.0205] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the insulin-like growth factor (IGF) autocrine loop is required for myogenic differentiation and results in sustained activation of extracellular signal-regulated kinases-1 and -2 (ERK-1 and -2). We show here that insulin receptor substrate-1 (IRS-1) phosphorylation on tyrosine and serine residues and association with phosphatidylinositol 3-kinase (PI 3-kinase) are also associated with IGF-dependent myogenic differentiation. Down-regulation of IRS-1 is linked to its serine phosphorylation dependent on PI 3-kinase activity and appears required for differentiation to occur, as IRS-1 is not modified and continues to accumulate in a nondifferentiating myoblast cell line. Furthermore, inhibition of PI 3-kinase activity with LY294002 blocks differentiation, as demonstrated by inhibition of myogenin and myosin heavy chain expression and ERK activation. Blocking the Raf/MEK/ERK cascade with PD98059 does not block myogenic differentiation; however, myotubes do not survive. Thus, PI 3-kinase, in association with IRS-1, is involved in an ERK-independent signaling pathway in myoblasts required for IGF-dependent myogenic differentiation and in inducing sustained activation of ERKs necessary for later stages of differentiation.
Collapse
Affiliation(s)
- D D Sarbassov
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences and The Geriatric Research, Education, and Clinical Center, McClellan Veterans Hospital, Little Rock 72205, USA
| | | |
Collapse
|
88
|
Exton JH. Phospholipid‐Derived Second Messengers. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
89
|
VanRenterghem B, Morin M, Czech MP, Heller-Harrison RA. Interaction of insulin receptor substrate-1 with the sigma3A subunit of the adaptor protein complex-3 in cultured adipocytes. J Biol Chem 1998; 273:29942-9. [PMID: 9792713 DOI: 10.1074/jbc.273.45.29942] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling through the insulin receptor tyrosine kinase involves its autophosphorylation in response to insulin and the subsequent tyrosine phosphorylation of substrate proteins such as insulin receptor substrate-1 (IRS-1). In basal 3T3-L1 adipocytes, IRS-1 is predominantly membrane-bound, and this localization may be important in targeting downstream signaling elements that mediate insulin action. Since IRS-1 localization to membranes may occur through its association with specific membrane proteins, a 3T3-F442A adipocyte cDNA expression library was screened with non-tyrosine-phosphorylated, baculovirus-expressed IRS-1 in order to identify potential IRS-1 receptors. A cDNA clone that encodes sigma3A, a small subunit of the AP-3 adaptor protein complex, was demonstrated to bind IRS-1 utilizing this cloning strategy. The specific interaction between IRS-1 and sigma3A was further verified by in vitro binding studies employing baculovirus-expressed IRS-1 and a glutathione S-transferase (GST)-sigma3A fusion protein. IRS-1 and sigma3A were found to co-fractionate in a detergent-resistant population of low density membranes isolated from basal 3T3-L1 adipocytes. Importantly, the addition of exogenous purified GST-sigma3A to low density membranes caused the release of virtually all of the IRS-1 bound to these membranes, while GST alone had no effect. These results are consistent with the hypothesis that sigma3A serves as an IRS-1 receptor that may dictate the subcellular localization and the signaling functions of IRS-1.
Collapse
Affiliation(s)
- B VanRenterghem
- Program in Molecular Medicine and the Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
90
|
Misra S, Ujházy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J Biol Chem 1998; 273:26638-44. [PMID: 9756904 DOI: 10.1074/jbc.273.41.26638] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies indicate that wortmannin, a potent inhibitor of phosphatidylinositol (PI) 3-kinase, interferes with bile acid secretion in rat liver; taurocholate induces recruitment of ATP-dependent transporters to the bile canalicular membrane, and PI 3-kinase products are important in intracellular trafficking. We investigated the role of PI 3-kinase in bile acid secretion by studying the in vivo effect of taurocholate, colchicine, and wortmannin on bile acid secretion, kinase activity, and protein levels in canalicular membrane vesicle (CMV) and sinusoidal membrane vesicle (SMV) fractions from rat liver. Treatment of rats or perfusion of isolated liver with taurocholate significantly increased PI 3-kinase activity in both membrane fractions. Taurocholate increased protein content of ATP-dependent transporters, which were detected only in CMVs, whereas increased levels of p85 and a cell adhesion molecule, cCAM 105, were observed in both fractions. Colchicine prevented taurocholate-induced changes in all proteins studied, as well as the increase in PI 3-kinase activity in CMVs, but it resulted in further accumulation of PI 3-kinase activity, p85, and cCAM 105 in SMVs. These results indicate that taurocholate-mediated changes involve a microtubular system. Wortmannin blocked taurocholate-induced bile acid secretion. The effect was more profound when wortmannin was administered prior to treatment with taurocholate. When wortmannin was given after taurocholate, the protein levels of each ATP-dependent transporter were maintained in CMVs, whereas the levels of p85 and cCAM decreased in both membrane fractions. Perfusion of liver with wortmannin before taurocholate administration blocked accumulation of all proteins studied in CMVs and SMVs. These results indicate that PI 3-kinase is required for intracellular trafficking of itself, as well as of ATP-dependent canalicular transporters.
Collapse
Affiliation(s)
- S Misra
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
91
|
Bolander FF. Transduction pathways involved in rapid hormone receptor regulation in the mammary epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E553-7. [PMID: 9755072 DOI: 10.1152/ajpendo.1998.275.4.e553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that the envelope protein of the mouse mammary tumor virus (MMTV) rapidly upregulates prolactin (PRL) receptors by shifting them from internal pools to the cell surface and downregulates epidermal growth factor (EGF) receptors by inducing their internalization and degradation. This study shows that the effect on PRL receptors is mediated by the nitric oxide (NO)/cGMP pathway, since it can be mimicked by an NO donor or 8-bromo-cGMP and can be blocked by an NO synthase inhibitor. In contrast, the effect on EGF receptors is mediated by tyrosine phosphorylation and phosphatidylinositol 3-kinase (PI3K), since it can be blocked by either a tyrosine kinase inhibitor or by a PI3K inhibitor. Both of these pathways can be activated by a calcium ionophore and inhibited by calcium chelation. Therefore, it appears that the mouse mammary tumor virus envelope protein, like other retroviral envelope proteins, initially elevates cytoplasmic calcium, which can then stimulate both the NO/cGMP and the tyrosine phosphorylation/PI3K pathways, leading to PRL receptor upregulation and EGF receptor downregulation, respectively.
Collapse
Affiliation(s)
- F F Bolander
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
92
|
Abstract
The 120-kDa protein product of the c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic protein that is especially abundant in the thymus, indicating an important role for Cbl in thymic signalling. c-Cbl possesses a highly conserved N-terminal phosphotyrosine binding domain, a C3HC4 RING finger motif, multiple proline-rich motifs, and a number of potential tyrosine phosphorylation sites. Cbl is an early and prominent substrate of protein tyrosine kinases following stimulation of a variety of cell surface receptors, and forms constitutive and inducible associations with a wide range of signalling intermediates. Genetic studies of the Cbl homologue Sli-1 in Caenorhabitis elegans predicted a role for Cbl as a negative regulator of protein tyrosine kinase-mediated signalling pathways. Numerous studies have now shown that expression of Cbl and its oncogenic variants can indeed modulate signalling from activated protein tyrosine kinases. The present review highlights some of the recent developments in our understanding of Cbl function, with particular reference to its participation and possible roles in TCR-mediated signalling.
Collapse
Affiliation(s)
- C B Thien
- Department of Pathology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
93
|
Kim HS, Chen Y, Lonai P. Complex regulation of multiple cytohesin-like genes in murine tissues and cells. FEBS Lett 1998; 433:312-6. [PMID: 9744817 DOI: 10.1016/s0014-5793(98)00937-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Three cytohesin-like cDNA molecules were isolated from murine ES cell derived embryoid bodies. The genomic structure of one of the three, CLM2, has been determined and transcriptional variants of each were isolated from a mouse brain cDNA library. The relative expression patterns of CLM1, 2, 3 and their transcriptional alternatives were determined by RT-PCR, nucleotide sequencing and RNA blotting. Their broad distribution and cell and tissue specific expression patterns suggest complex regulation during development and in the adult.
Collapse
Affiliation(s)
- H S Kim
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
94
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
95
|
Abstract
The chemokines are a complex superfamily of small, secreted proteins that were initially characterized through their chemotactic effects on a variety of leucocytes. The superfamily is divided into families based on structural and genetic considerations and have been termed the CXC, CC, C and CX3C families. Chemokines from these families have a key role in the recruitment and function of T lymphocytes. Moreover, T lymphocytes have also been identified as a source of a number of chemokines. T lymphocytes also express most of the known CXC and CC chemokine receptors to an extent that depends on their state of activation/differentiation and/or the activating stimuli. The expression of two chemokine receptors, namely CXCR4 and CCR5, together with the regulated production of their respective ligands, appears to be extremely important in determining sensitivity of T cells to HIV-1 infection. The intracellular events which mediate the effects of chemokines, particularly those elicited by the CC chemokine RANTES, include activation of both G-protein- and protein tyrosine kinase-coupled signalling pathways. The present review describes our current understanding of the structure and expression of chemokines and their receptors, the effects of chemokines on T-cell function(s), the intracellular signalling pathways activated by chemokines and the role of certain chemokines and chemokine receptors in determining sensitivity to HIV-1 infection.
Collapse
Affiliation(s)
- S G Ward
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | |
Collapse
|
96
|
Miyake S, Lupher ML, Druker B, Band H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc Natl Acad Sci U S A 1998; 95:7927-32. [PMID: 9653117 PMCID: PMC20906 DOI: 10.1073/pnas.95.14.7927] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1998] [Accepted: 05/06/1998] [Indexed: 02/08/2023] Open
Abstract
The Cbl protooncogene product has emerged as a negative regulator of receptor and nonreceptor tyrosine kinases. We recently demonstrated that oncogenic Cbl mutants upregulate the endogenous tyrosine kinase signaling machinery when expressed in the NIH 3T3 cells, and identified the platelet-derived growth factor receptor-alpha (PDGFRalpha) as one of the tyrosine kinases targeted by these oncogenes. These findings suggested a role for the normal Cbl protein in negative regulation of the PDGFRalpha. However, the mechanism of such negative regulation remained to be determined. Here we show that overexpression of the wild-type Cbl enhances the ligand-induced ubiquitination of the PDGFRalpha. Concomitantly, the PDGFRalpha in Cbl-overexpressing cells undergoes a faster ligand-induced degradation compared with that in the control cells. These results identify a role for Cbl in the regulation of ligand-induced ubiquitination and degradation of receptor tyrosine kinases and suggest one potential mechanism for evolutionarily conserved negative regulatory influence of Cbl on tyrosine kinases.
Collapse
Affiliation(s)
- S Miyake
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
97
|
Reynolds AJ, Bartlett SE, Hendry IA. Signalling events regulating the retrograde axonal transport of 125I-beta nerve growth factor in vivo. Brain Res 1998; 798:67-74. [PMID: 9666080 DOI: 10.1016/s0006-8993(98)00396-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The molecular mechanisms regulating the retrograde axonal transport of nerve growth factor (NGF) are currently unknown. This study identifies some of the signalling events involved. The phosphoinositide 3-kinase (PI3-kinase) inhibitor wortmannin (1 nmol/eye) irreversibly inhibits the amount of 125I-betaNGF retrogradely transported in both sensory and sympathetic neurons. Another PI3-kinase inhibitor LY294002 (100 nmol/eye) also inhibited 125I-betaNGF retrograde transport in sensory neurons. The pp70S6K inhibitor rapamycin (1 micromol/eye) had the same effect, inhibiting 125I-betaNGF transport only in sensory neurons. The cPLA2 inhibitor AACOCF3 (10 nmol/eye) had no effect on 125I-betaNGF transport in either sensory or sympathetic neurons. The TrkA receptor tyrosine kinase inhibitor AG-879 (10 nmol/eye) reduced 125I-betaNGF transport by approximately 50% in both sensory and sympathetic neurons. Cytochalasin D (2 nmol/eye), a disruptor of actin filaments and the dynein ATPase inhibitor erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA) both inhibited 125I-betaNGF retrograde transport. These results demonstrate that in vivo TrkA tyrosine kinase activity, actin filaments and dynein are involved in the retrograde transport of NGF. In addition, different PI3-kinase isoforms may be recruited within different neuronal populations to regulate the retrograde transport of NGF. Potentially, these isoforms could activate alternative signalling pathways, such as pp70S6K in sensory neurons.
Collapse
Affiliation(s)
- A J Reynolds
- Developmental Neurobiology, Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
98
|
Baxter RM, Secrist JP, Vaillancourt RR, Kazlauskas A. Full activation of the platelet-derived growth factor beta-receptor kinase involves multiple events. J Biol Chem 1998; 273:17050-5. [PMID: 9642269 DOI: 10.1074/jbc.273.27.17050] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of receptor tyrosine kinases is thought to involve ligand-induced dimerization, which promotes receptor transphosphorylation and thereby increases the receptor's phosphotransferase activity. We used two platelet-derived growth factor beta-receptor (beta-PDGFR) mutants to identify events that are required for full engagement (autophosphorylation and activation of the kinase activity) of the beta-PDGFR kinase. The F79/81 receptor (Tyr to Phe substitution at 579 and 581 in the juxtamembrane domain of the receptor) was capable of only very modest ligand-dependent autophosphorylation and also failed to associate with numerous SH2 domain-containing proteins. Furthermore, stimulation with platelet-derived growth factor (PDGF) did not increase the kinase activity of the F79/81 mutant toward exogenous substrates. However, the F79/81 receptor had basal kinase activity and could be artificially stimulated by incubation with ATP. Because the low kinase activity of the F857 mutant (Tyr to Phe substitution at 857 in the putative activation loop) could not be increased by incubation with ATP, failure to phosphorylate Tyr-857 may be the reason why the F79/81 mutant has low kinase activity. Surprisingly, the F857 mutant underwent efficient PDGF-dependent autophosphorylation. Thus the PDGF-dependent increase in the kinase activity of the receptor is not required for autophosphorylation. We conclude that full activation of the beta-PDGFR kinase requires at least two, apparently distinct events.
Collapse
Affiliation(s)
- R M Baxter
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
99
|
Affiliation(s)
- S G Ward
- Department of Pharmacy and Pharmacology, Bath University, Claverton Down, United Kingdom.
| | | | | |
Collapse
|
100
|
Abstract
Chbl, a 120-kDa proto-oncogene product, whose gene was first identified as part of a transforming gene of a murine retrovirus and whose expression is predominant in haematopoietic cells, consists of an amino-terminal transforming region, a zinc Ring finger, multiple proline-rich stretches, and several potential phosphotyrosine-containing motifs. Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signalling molecules such as protein tyrosine kinases, phosphatidylinositol 3-kinase, Crk, and 14-3-3 proteins through different protein-interacting modules, leading to the formation of multimolecular signalling complexes. Cbl and its transforming mutants have been shown to display both negative and positive regulatory activities in protein tyrosine kinase- and Ras-mediated signalling pathways. Nevertheless, the exact biological function of this adaptor protein remains largely unknown. The present review summarizes recent progress in our understanding of the structure, regulation and biological function of Chl and defines open questions for future research.
Collapse
Affiliation(s)
- Y C Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | |
Collapse
|