51
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
52
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Crean EE, Bilstein-Schloemer M, Maekawa T, Schulze-Lefert P, Saur IML. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5854-5869. [PMID: 37474129 PMCID: PMC10540733 DOI: 10.1093/jxb/erad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) recognize pathogen effectors to mediate plant disease resistance often involving host cell death. Effectors escape NLR recognition through polymorphisms, allowing the pathogen to proliferate on previously resistant host plants. The powdery mildew effector AVRA13-1 is recognized by the barley NLR MLA13 and activates host cell death. We demonstrate here that a virulent form of AVRA13, called AVRA13-V2, escapes MLA13 recognition by substituting a serine for a leucine residue at the C-terminus. Counterintuitively, this substitution in AVRA13-V2 resulted in an enhanced MLA13 association and prevented the detection of AVRA13-1 by MLA13. Therefore, AVRA13-V2 is a dominant-negative form of AVRA13 and has probably contributed to the breakdown of Mla13 resistance. Despite this dominant-negative activity, AVRA13-V2 failed to suppress host cell death mediated by the MLA13 autoactive MHD variant. Neither AVRA13-1 nor AVRA13-V2 interacted with the MLA13 autoactive variant, implying that the binding moiety in MLA13 that mediates association with AVRA13-1 is altered after receptor activation. We also show that mutations in the MLA13 coiled-coil domain, which were thought to impair Ca2+ channel activity and NLR function, instead resulted in MLA13 autoactive cell death. Our results constitute an important step to define intermediate receptor conformations during NLR activation.
Collapse
Affiliation(s)
- Emma E Crean
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | | | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Paul Schulze-Lefert
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
54
|
Khazma T, Grossman A, Guez-Haddad J, Feng C, Dabas H, Sain R, Weitman M, Zalk R, Isupov MN, Hammarlund M, Hons M, Opatowsky Y. Structure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans. Cell Rep 2023; 42:113026. [PMID: 37635352 PMCID: PMC10675840 DOI: 10.1016/j.celrep.2023.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Wallerian axonal degeneration (WD) does not occur in the nematode C. elegans, in contrast to other model animals. However, WD depends on the NADase activity of SARM1, a protein that is also expressed in C. elegans (ceSARM/ceTIR-1). We hypothesized that differences in SARM between species might exist and account for the divergence in WD. We first show that expression of the human (h)SARM1, but not ceTIR-1, in C. elegans neurons is sufficient to confer axon degeneration after nerve injury. Next, we determined the cryoelectron microscopy structure of ceTIR-1 and found that, unlike hSARM1, which exists as an auto-inhibited ring octamer, ceTIR-1 forms a readily active 9-mer. Enzymatically, the NADase activity of ceTIR-1 is substantially weaker (10-fold higher Km) than that of hSARM1, and even when fully active, it falls short of consuming all cellular NAD+. Our experiments provide insight into the molecular mechanisms and evolution of SARM orthologs and WD across species.
Collapse
Affiliation(s)
- Tami Khazma
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Atira Grossman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Chengye Feng
- Departments of Neuroscience and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hadas Dabas
- Departments of Neuroscience and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Radhika Sain
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Weitman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Marc Hammarlund
- Departments of Neuroscience and Genetics, Yale School of Medicine, New Haven, CT, USA.
| | - Michael Hons
- European Molecular Biology Laboratory, Grenoble, France.
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
55
|
Kottur J, Malik R, Aggarwal AK. Nucleic Acid Mediated Activation of a Short Prokaryotic Argonaute Immune System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558117. [PMID: 37745538 PMCID: PMC10516056 DOI: 10.1101/2023.09.17.558117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The continual pressure of invading DNA has led bacteria to develop numerous immune systems, including a short prokaryotic Argonaute (pAgo) TIR-APAZ system (SPARTA) that is activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis. To gain a molecular understanding of this activation process, we resolved a crystal structure of SPARTA heterodimer in the absence of guide RNA/target ssDNA at 2.66Å resolution and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide RNA/target ssDNA at nominal 3.15-3.35Å resolution. The crystal structure provides a high-resolution view of the TIR-APAZ protein and the MID-PIWI domains of short pAgo - wherein, the APAZ domain emerges as equivalent to the N, L1 and L2 regions of long pAgos and the MID domain has a unique insertion (insert57). A comparison to cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure to relieve auto-inhibition to permit nucleic acid binding and transition to an active oligomer. Oligomerization is accompanied by the nucleation of the TIR domains in a parallel-strands arrangement for catalysis. Together, the structures provide a visualization of SPARTA before and after RNA/ssDNA binding and reveal the basis of SPARTA's active assembly leading to NAD(P)+ degradation and abortive infection.
Collapse
Affiliation(s)
- Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Radhika Malik
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aneel K. Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
56
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
57
|
Wang X, Li X, Yu G, Zhang L, Zhang C, Wang Y, Liao F, Wen Y, Yin H, Liu X, Wei Y, Li Z, Deng Z, Zhang H. Structural insights into mechanisms of Argonaute protein-associated NADase activation in bacterial immunity. Cell Res 2023; 33:699-711. [PMID: 37311833 PMCID: PMC10474274 DOI: 10.1038/s41422-023-00839-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolite in cellular processes. Depletion of NAD+ has been demonstrated to be a prevalent theme in both prokaryotic and eukaryotic immune responses. Short prokaryotic Argonaute proteins (Agos) are associated with NADase domain-containing proteins (TIR-APAZ or SIR2-APAZ) encoded in the same operon. They confer immunity against mobile genetic elements, such as bacteriophages and plasmids, by inducing NAD+ depletion upon recognition of target nucleic acids. However, the molecular mechanisms underlying the activation of such prokaryotic NADase/Ago immune systems remain unknown. Here, we report multiple cryo-EM structures of NADase/Ago complexes from two distinct systems (TIR-APAZ/Ago and SIR2-APAZ/Ago). Target DNA binding triggers tetramerization of the TIR-APAZ/Ago complex by a cooperative self-assembly mechanism, while the heterodimeric SIR2-APAZ/Ago complex does not assemble into higher-order oligomers upon target DNA binding. However, the NADase activities of these two systems are unleashed via a similar closed-to-open transition of the catalytic pocket, albeit by different mechanisms. Furthermore, a functionally conserved sensor loop is employed to inspect the guide RNA-target DNA base pairing and facilitate the conformational rearrangement of Ago proteins required for the activation of these two systems. Overall, our study reveals the mechanistic diversity and similarity of Ago protein-associated NADase systems in prokaryotic immune response.
Collapse
Affiliation(s)
- Xiaoshen Wang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guimei Yu
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yong Wang
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fumeng Liao
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Wen
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yong Wei
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Zengqin Deng
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Heng Zhang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
58
|
Huang S, Jia A, Ma S, Sun Y, Chang X, Han Z, Chai J. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem Sci 2023; 48:776-787. [PMID: 37394345 DOI: 10.1016/j.tibs.2023.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.
Collapse
Affiliation(s)
- Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany; School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
59
|
Culbertson EM, Levin TC. Eukaryotic antiviral immune proteins arose via convergence, horizontal transfer, and ancient inheritance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546753. [PMID: 37425898 PMCID: PMC10327000 DOI: 10.1101/2023.06.27.546753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Animals use a variety of cell-autonomous innate immune proteins to detect viral infections and prevent replication. Recent studies have discovered that a subset of mammalian antiviral proteins have homology to anti-phage defense proteins in bacteria, implying that there are aspects of innate immunity that are shared across the Tree of Life. While the majority of these studies have focused on characterizing the diversity and biochemical functions of the bacterial proteins, the evolutionary relationships between animal and bacterial proteins are less clear. This ambiguity is partly due to the long evolutionary distances separating animal and bacterial proteins, which obscures their relationships. Here, we tackle this problem for three innate immune families (CD-NTases [including cGAS], STINGs, and Viperins) by deeply sampling protein diversity across eukaryotes. We find that Viperins and OAS family CD-NTases are truly ancient immune proteins, likely inherited since the last eukaryotic common ancestor and possibly longer. In contrast, we find other immune proteins that arose via at least four independent events of horizontal gene transfer (HGT) from bacteria. Two of these events allowed algae to acquire new bacterial viperins, while two more HGT events gave rise to distinct superfamilies of eukaryotic CD-NTases: the Mab21 superfamily (containing cGAS) which has diversified via a series of animal-specific duplications, and a previously undefined eSMODS superfamily, which more closely resembles bacterial CD-NTases. Finally, we found that cGAS and STING proteins have substantially different histories, with STINGs arising via convergent domain shuffling in bacteria and eukaryotes. Overall, our findings paint a picture of eukaryotic innate immunity as highly dynamic, where eukaryotes build upon their ancient antiviral repertoires through the reuse of protein domains and by repeatedly sampling a rich reservoir of bacterial anti-phage genes.
Collapse
Affiliation(s)
| | - Tera C. Levin
- University of Pittsburgh, Department of Biological Sciences
| |
Collapse
|
60
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
61
|
Nizan S, Amitzur A, Dahan-Meir T, Benichou JIC, Bar-Ziv A, Perl-Treves R. Mutagenesis of the melon Prv gene by CRISPR/Cas9 breaks papaya ringspot virus resistance and generates an autoimmune allele with constitutive defense responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4579-4596. [PMID: 37137337 PMCID: PMC10433930 DOI: 10.1093/jxb/erad156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
The majority of plant disease resistance (R) genes encode nucleotide binding-leucine-rich repeat (NLR) proteins. In melon, two closely linked NLR genes, Fom-1 and Prv, were mapped and identified as candidate genes that control resistance to Fusarium oxysporum f.sp. melonis races 0 and 2, and to papaya ringspot virus (PRSV), respectively. In this study, we validated the function of Prv and showed that it is essential for providing resistance against PRSV infection. We generated CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] mutants using Agrobacterium-mediated transformation of a PRSV-resistant melon genotype, and the T1 progeny proved susceptible to PRSV, showing strong disease symptoms and viral spread upon infection. Three alleles having 144, 154, and ~3 kb deletions, respectively, were obtained, all of which caused loss of resistance. Interestingly, one of the Prv mutant alleles, prvΔ154, encoding a truncated product, caused an extreme dwarf phenotype, accompanied by leaf lesions, high salicylic acid levels, and defense gene expression. The autoimmune phenotype observed at 25 °C proved to be temperature dependent, being suppressed at 32 °C. This is a first report on the successful application of CRISPR/Cas9 to confirm R gene function in melon. Such validation opens up new opportunities for molecular breeding of disease resistance in this important vegetable crop.
Collapse
Affiliation(s)
- Shahar Nizan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Arie Amitzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Tal Dahan-Meir
- Plant and Environmental Sciences, Weizmann Institute of Science, Israel
| | | | - Amalia Bar-Ziv
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| |
Collapse
|
62
|
Dodds PN. From Gene-for-Gene to Resistosomes: Flor's Enduring Legacy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:461-467. [PMID: 37697270 DOI: 10.1094/mpmi-06-23-0081-hh] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The gene-for-gene model proposed by H. H. Flor has been one of the fundamental precepts of plant-pathogen interactions that has underpinned decades of research towards our current concepts of plant immunity. The broad validity of this model as an elegant and accurate genetic description of specific recognition events between the products of plant resistance (R) and pathogen avirulence (Avr) genes has been demonstrated many times over in a wide variety of plant disease systems. In recent years detailed molecular and structural analyses have provided a deep understanding of the principles by which plant immune receptors recognize pathogen effectors, including providing molecular descriptions of many of the genetic loci in flax and flax rust characterized by Flor. Recent advances in molecular and structural understanding of immune receptor recognition and activation mechanisms have brought the field to a new level, where rational design of novel receptors through engineering approaches is becoming a realizable goal. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Peter N Dodds
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra 2601, Australia
| |
Collapse
|
63
|
Locci F, Wang J, Parker JE. TIR-domain enzymatic activities at the heart of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102373. [PMID: 37150050 DOI: 10.1016/j.pbi.2023.102373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Toll/interleukin-1/resistance (TIR) domain proteins contribute to innate immunity in all cellular kingdoms. TIR modules are activated by self-association and in plants, mammals and bacteria, some TIRs have enzymatic functions that are crucial for disease resistance and/or cell death. Many plant TIR-only proteins and pathogen effector-activated TIR-domain NLR receptors are NAD+ hydrolysing enzymes. Biochemical, structural and functional studies established that for both plant TIR-protein types, and certain bacterial TIRs, NADase activity generates bioactive signalling intermediates which promote resistance. A set of plant TIR-catalysed nucleotide isomers was discovered which bind to and activate EDS1 complexes, promoting their interactions with co-functioning helper NLRs. Analysis of TIR enzymes across kingdoms fills an important gap in understanding how pathogen disturbance induces TIR-regulated immune responses.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany; Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany.
| |
Collapse
|
64
|
Wu CH, Derevnina L. The battle within: How pathogen effectors suppress NLR-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102396. [PMID: 37295294 DOI: 10.1016/j.pbi.2023.102396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
To successfully colonise plants, pathogens must circumvent the plant immune system. Intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class of proteins are major components of the plant immune system. NLRs function as disease resistance genes by recognising effectors secreted by diverse pathogens, triggering a localised form of programmed cell death known as the hypersensitive response. To evade detection, effectors have evolved to suppress NLR-mediated immunity by targeting NLRs either directly or indirectly. Here, we compile the latest discoveries related to NLR-suppressing effectors and categorise these effectors based on their mode of action. We discuss the diverse strategies pathogens use to perturb NLR-mediated immunity, and how we can use our understanding of effector activity to help guide new approaches for disease resistance breeding.
Collapse
Affiliation(s)
- Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
65
|
Chai J, Song W, Parker JE. New Biochemical Principles for NLR Immunity in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:468-475. [PMID: 37697447 DOI: 10.1094/mpmi-05-23-0073-hh] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His 'gene-for-gene' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Biochemistry, University of Cologne, Cologne 50674, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wen Song
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| |
Collapse
|
66
|
Cadiou L, Brunisholz F, Cesari S, Kroj T. Molecular engineering of plant immune receptors for tailored crop disease resistance. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102381. [PMID: 37192575 DOI: 10.1016/j.pbi.2023.102381] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding and leucine-rich repeat domain receptors (NLRs) is an important component of plant immunity. Creating NLRs with new bespoke recognition specificities is a major goal in molecular plant pathology as it promises to provide unlimited resources for the resistance of crops against diseases. Recent breakthrough discoveries on the structure and molecular activity of NLRs begin to enable their knowledge-guided molecular engineering. First, studies succeeded to extend or change effector recognition specificities by modifying, in a structure-guided manner, the NLR domains that directly bind effectors. By modifying the LRR domain of the singleton NLR Sr35 or the unconventional decoy domains of the helper NLRs RGA5 or Pik-1, receptors that detected other or additional effectors were created.
Collapse
Affiliation(s)
- Lila Cadiou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Francois Brunisholz
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
67
|
Wang L, Zhang L. The arms race between bacteria CBASS and bacteriophages. Front Immunol 2023; 14:1224341. [PMID: 37575224 PMCID: PMC10419184 DOI: 10.3389/fimmu.2023.1224341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
The Bacterial Cyclic oligonucleotide-Based Anti-phage Signaling System (CBASS) is an innate immune system that induces cell suicide to defend against phage infections. This system relies on cGAS/DncV-like nucleotidyltransferases (CD-NTase) to synthesize cyclic oligonucleotides (cOs) and CD-NTase-associated proteins (Caps) to execute cell death through DNA cleavage, membrane damage, and NAD depletion, thereby inhibiting phage replication. Ancillary proteins expressed in CBASS, in combination with CD-NTase, ensure the normal synthesis of cOs and prepare CD-NTase for full activation by binding to phage genomes, proteins, or other unknown products. To counteract cell death induced by CBASS, phage genes encode immune evasion proteins that curb Cap recognition of cOs, allowing for phage replication, assembly, and propagation in bacterial cells. This review provides a comprehensive understanding of CBASS immunity, comparing it with different bacterial immune systems and highlighting the interplay between CBASS and phage. Additionally, it explores similar immune escape methods based on shared proteins and action mechanisms between prokaryotic and eukaryotic viruses.
Collapse
Affiliation(s)
- Lan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
68
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
69
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
70
|
Rao W, Wan L, Wang E. Plant immunity in soybean: progress, strategies, and perspectives. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:52. [PMID: 37323469 PMCID: PMC10267034 DOI: 10.1007/s11032-023-01398-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is one of the most important commercial crops worldwide. Soybean hosts diverse microbes, including pathogens that may cause diseases and symbionts that contribute to nitrogen fixation. Study on soybean-microbe interactions to understand pathogenesis, immunity, and symbiosis represents an important research direction toward plant protection in soybean. In terms of immune mechanisms, current research in soybean lags far behind that in the model plants Arabidopsis and rice. In this review, we summarized the shared and unique mechanisms involved in the two-tiered plant immunity and the virulence function of pathogen effectors between soybean and Arabidopsis, providing a molecular roadmap for future research on soybean immunity. We also discussed disease resistance engineering and future perspectives in soybean.
Collapse
Affiliation(s)
- Weiwei Rao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
71
|
Wan L. TIR enzymatic functions: signaling molecules and receptor mechanisms. ABIOTECH 2023; 4:172-175. [PMID: 37581018 PMCID: PMC10423176 DOI: 10.1007/s42994-023-00104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/25/2023] [Indexed: 08/16/2023]
Abstract
The evolutionarily conserved Toll/Interleukin-1 Receptor (TIR) domains across kingdoms of prokaryotes, plants, and animals play critical roles in innate immunity. Recent studies have revealed the enzymatic functions of TIRs, the structural bases of TIRs as holoenzymes, and the identity of TIR-generated small signaling molecules and their receptors, which significantly advanced our understanding on TIR-mediated immune signaling pathways. We reviewed the most up-to-date findings in TIR enzymatic functions from the perspectives of signaling molecules and receptor mechanisms.
Collapse
Affiliation(s)
- Li Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
72
|
Gong Y, Tian L, Kontos I, Li J, Li X. Plant immune signaling network mediated by helper NLRs. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102354. [PMID: 37003229 DOI: 10.1016/j.pbi.2023.102354] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/10/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular immune receptors for pathogen recognition and signaling. They include sensor NLRs (sNLRs) that detect pathogens, and helper NLRs, which transduce downstream immune signals. During immune responses, both membrane-localized pattern recognition receptors (PRRs) and sNLRs rely on helper NLRs for signal transduction. The Arabidopsis helper NLRs, ADR1s and NRG1s, along with their interacting lipase-like protein dimers, are differentially required by sNLRs. Recent structural and biochemical analyses suggest that they assemble into oligomeric resistosomes with lipase-like protein dimers upon perception of small molecules produced from enzymatic activities of upstream TIR-type sNLRs. As a result, ADR1s and NRG1s form membrane calcium channels to induce immune responses and cell death. In contrast, Solanaceous NRC clade helper NLRs transduce signals from many sNLRs and some PRRs. Here, we summarize the recent advances in plant helper NLR research, with a focus on their structural and biochemical mechanisms in immune signaling.
Collapse
Affiliation(s)
- Yihan Gong
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Canada
| | - Ilias Kontos
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Canada.
| |
Collapse
|
73
|
Maruta N, Sorbello M, Lim BYJ, McGuinness HY, Shi Y, Ve T, Kobe B. TIR domain-associated nucleotides with functions in plant immunity and beyond. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102364. [PMID: 37086529 DOI: 10.1016/j.pbi.2023.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
TIR (Toll/interlukin-1 receptor) domains are found in archaea, bacteria and eukaryotes, featured in proteins generally associated with immune functions. In plants, they are found in a large group of NLRs (nucleotide-binding leucine-rich repeat receptors), NLR-like proteins and TIR-only proteins. They are also present in effector proteins from phytopathogenic bacteria that are associated with suppression of host immunity. TIR domains from plants and bacteria are enzymes that cleave NAD+ (nicotinamide adenine dinucleotide, oxidized form) and other nucleotides. In dicot plants, TIR-derived signalling molecules activate downstream immune signalling proteins, the EDS1 (enhanced disease susceptibility 1) family proteins, and in turn helper NLRs. Recent work has brought major advances in understanding how TIR domains work, how they produce signalling molecules and how these products signal.
Collapse
Affiliation(s)
- Natsumi Maruta
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Mitchell Sorbello
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Bryan Y J Lim
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Helen Y McGuinness
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia.
| |
Collapse
|
74
|
Jia A, Huang S, Ma S, Chang X, Han Z, Chai J. TIR-catalyzed nucleotide signaling molecules in plant defense. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102334. [PMID: 36702016 DOI: 10.1016/j.pbi.2022.102334] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Toll and interleukin-1 receptor (TIR) domain is a conserved immune module in prokaryotes and eukaryotes. Signaling regulated by TIR-only proteins or TIR domain-containing intracellular immune receptors is critical for plant immunity. Recent studies demonstrated that TIR domains function as enzymes encoding a variety of activities, which manifest different mechanisms for regulation of plant immunity. These enzymatic activities catalyze metabolism of NAD+, ATP and other nucleic acids, generating structurally diversified nucleotide metabolites. Signaling roles have been revealed for some TIR enzymatic products that can act as second messengers to induce plant immunity. Herein, we summarize our current knowledge about catalytic production of these nucleotide metabolites and their roles in plant immune signaling. We also highlight outstanding questions that are likely to be the focus of future investigations about TIR-produced signaling molecules.
Collapse
Affiliation(s)
- Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany.
| |
Collapse
|
75
|
Kibby EM, Conte AN, Burroughs AM, Nagy TA, Vargas JA, Whalen LA, Aravind L, Whiteley AT. Bacterial NLR-related proteins protect against phage. Cell 2023; 186:2410-2424.e18. [PMID: 37160116 PMCID: PMC10294775 DOI: 10.1016/j.cell.2023.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.
Collapse
Affiliation(s)
- Emily M Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Amy N Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Toni A Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jose A Vargas
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lindsay A Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
76
|
Ao K, Rohmann PFW, Huang S, Li L, Lipka V, Chen S, Wiermer M, Li X. Puncta-localized TRAF domain protein TC1b contributes to the autoimmunity of snc1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:591-612. [PMID: 36799433 DOI: 10.1111/tpj.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Immune receptors play important roles in the perception of pathogens and initiation of immune responses in both plants and animals. Intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type receptors constitute a major class of receptors in vascular plants. In the Arabidopsis thaliana mutant suppressor of npr1-1, constitutive 1 (snc1), a gain-of-function mutation in the NLR gene SNC1 leads to SNC1 overaccumulation and constitutive activation of defense responses. From a CRISPR/Cas9-based reverse genetics screen in the snc1 autoimmune background, we identified that mutations in TRAF CANDIDATE 1b (TC1b), a gene encoding a protein with four tumor necrosis factor receptor-associated factor (TRAF) domains, can suppress snc1 phenotypes. TC1b does not appear to be a general immune regulator as it is not required for defense mediated by other tested immune receptors. TC1b also does not physically associate with SNC1, affect SNC1 accumulation, or affect signaling of the downstream helper NLRs represented by ACTIVATED DISEASE RESISTANCE PROTEIN 1-L2 (ADR1-L2), suggesting that TC1b impacts snc1 autoimmunity in a unique way. TC1b can form oligomers and localizes to punctate structures of unknown function. The puncta localization of TC1b strictly requires its coiled-coil (CC) domain, whereas the functionality of TC1b requires the four TRAF domains in addition to the CC. Overall, we uncovered the TRAF domain protein TC1b as a novel positive contributor to plant immunity.
Collapse
Affiliation(s)
- Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Shuai Huang
- Department of Molecular Genetics, College of Arts and Sciences, Ohio State University, Columbus, Ohio, 43210, USA
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, D-37077, Goettingen, Germany
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
77
|
Banfield MJ. Manipulation of plant immunity via an mRNA decapping pathogen effector. THE NEW PHYTOLOGIST 2023. [PMID: 37096655 DOI: 10.1111/nph.18921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Mark J Banfield
- Department of Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
78
|
Li S, Manik MK, Shi Y, Kobe B, Ve T. Toll/interleukin-1 receptor domains in bacterial and plant immunity. Curr Opin Microbiol 2023; 74:102316. [PMID: 37084552 DOI: 10.1016/j.mib.2023.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/23/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is found in animal, plant, and bacterial immune systems. It was first described as a protein-protein interaction module mediating signalling downstream of the Toll-like receptor and interleukin-1 receptor families in animals. However, studies of the pro-neurodegenerative protein sterile alpha and TIR motif containing 1, plant immune receptors, and many bacterial TIR domain-containing proteins revealed that TIR domains have enzymatic activities and can produce diverse nucleotide products using nicotinamide adenine dinucleotide (NAD+) or nucleic acids as substrates. Recent work has led to key advances in understanding how TIR domain enzymes work in bacterial and plant immune systems as well as the function of their signalling molecules.
Collapse
Affiliation(s)
- Sulin Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammad K Manik
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
79
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
80
|
Morehouse BR. Phage defense origin of animal immunity. Curr Opin Microbiol 2023; 73:102295. [PMID: 37011504 DOI: 10.1016/j.mib.2023.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The innate immune system is the first line of defense against microbial pathogens. Many of the features of eukaryotic innate immunity have long been viewed as lineage-specific innovations, evolved to deal with the challenges and peculiarities of multicellular life. However, it has become increasingly apparent that in addition to evolving their own unique antiviral immune strategies, all lifeforms have some shared defense strategies in common. Indeed, critical fixtures of animal innate immunity bear striking resemblance in both structure and function to the multitude of diverse bacteriophage (phage) defense pathways discovered hidden in plain sight within the genomes of bacteria and archaea. This review will highlight many surprising examples of the recently revealed connections between prokaryotic and eukaryotic antiviral immune systems.
Collapse
Affiliation(s)
- Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
81
|
Bernoux M, Chen J, Zhang X, Newell K, Hu J, Deslandes L, Dodds P. Subcellular localization requirements and specificities for plant immune receptor Toll-interleukin-1 receptor signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36932864 DOI: 10.1111/tpj.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/02/2023]
Abstract
Recent work shed light on how plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) family are activated upon pathogen effector recognition to trigger immune responses. Activation of Toll-interleukin-1 receptor (TIR) domain-containing NLRs (TNLs) induces receptor oligomerization and close proximity of the TIR domain, which is required for TIR enzymatic activity. TIR-catalyzed small signaling molecules bind to EDS1 family heterodimers and subsequently activate downstream helper NLRs, which function as Ca2+ permeable channel to activate immune responses eventually leading to cell death. Subcellular localization requirements of TNLs and signaling partners are not well understood, although they are required to understand fully the mechanisms underlying NLR early signaling. TNLs show diverse subcellular localization while EDS1 shows nucleocytosolic localization. Here, we studied the impact of TIR and EDS1 mislocalization on the signaling activation of different TNLs. In Nicotiana benthamiana, our results suggest that close proximity of TIR domains isolated from flax L6 and Arabidopsis RPS4 and SNC1 TNLs drives signaling activation from different cell compartments. Nevertheless, both Golgi-membrane anchored L6 and nucleocytosolic RPS4 have the same requirements for EDS1 subcellular localization in Arabidopsis thaliana. By using mislocalized variants of EDS1, we found that autoimmune L6 and RPS4 TIR domain can induce seedling cell death when EDS1 is present in the cytosol. However, when EDS1 is restricted to the nucleus, both induce a stunting phenotype but no cell death. Our data point out the importance of thoroughly investigating the dynamics of TNLs and signaling partners subcellular localization to understand TNL signaling fully.
Collapse
Affiliation(s)
- Maud Bernoux
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), UMR 2594/441 CNRS, INRAE, 31326, Castanet-Tolosan, France
| | - Jian Chen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Xiaoxiao Zhang
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Kim Newell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, People's Republic of China
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), UMR 2594/441 CNRS, INRAE, 31326, Castanet-Tolosan, France
| | - Peter Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| |
Collapse
|
82
|
Bayless AM, Chen S, Ogden SC, Xu X, Sidda JD, Manik MK, Li S, Kobe B, Ve T, Song L, Grant M, Wan L, Nishimura MT. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. SCIENCE ADVANCES 2023; 9:eade8487. [PMID: 36930706 PMCID: PMC10022894 DOI: 10.1126/sciadv.ade8487] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sisi Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sam C. Ogden
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - John D. Sidda
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Mohammad K. Manik
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Sulin Li
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Lijiang Song
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
83
|
Achi SC, Karimilangi S, Lie D, Sayed IM, Das S. The WxxxE proteins in microbial pathogenesis. Crit Rev Microbiol 2023; 49:197-213. [PMID: 35287539 PMCID: PMC9737147 DOI: 10.1080/1040841x.2022.2046546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Effector proteins secreted by pathogens modulate various host cellular processes and help in bacterial pathogenesis. Some of these proteins, injected by enteric pathogens via Type Three Secretion System (T3SS) were grouped together based on a conserved signature motif (WxxxE) present in them. The presence of WxxxE motif is not limited to effectors released by enteric pathogens or the T3SS but has been detected in non-enteric pathogens, plant pathogens and in association with Type II and Type IV secretion systems. WxxxE effectors are involved in actin organization, inflammation regulation, vacuole or tubule formation, endolysosomal signalling regulation, tight junction disruption, and apoptosis. The WxxxE sequence has also been identified in TIR [Toll/interleukin-1 (IL-1) receptor] domains of bacteria and host. In the present review, we have focussed on the established and predicted functions of WxxxE effectors secreted by several pathogens, including enteric, non-enteric, and plant pathogens.
Collapse
Affiliation(s)
| | - Sareh Karimilangi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Dominique Lie
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ibrahim M. Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
84
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
85
|
Wang Z, Yang L, Hua J. The intracellular immune receptor like gene SNC1 is an enhancer of effector-triggered immunity in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:874-884. [PMID: 36449532 PMCID: PMC9922396 DOI: 10.1093/plphys/kiac543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Plants contain many nucleotide-binding leucine-rich repeat (NLR) proteins that are postulated to function as intracellular immune receptors but do not yet have an identified function during plant-pathogen interactions. SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1) is one such NLR protein of the Toll-interleukin 1 receptor (TIR) type, despite its well-characterized gain-of-function activity and its involvement in autoimmunity in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of SNC1 in natural plant-pathogen interactions and genetically tested the importance of the enzymatic activities of its TIR domain for its function. The SNC1 loss-of-function mutants were more susceptible to avirulent bacterial pathogen strains of Pseudomonas syringae containing specific effectors, especially under constant light growth condition. The mutants also had reduced defense gene expression induction and hypersensitive responses upon infection by avirulent pathogens under constant light growth condition. In addition, genetic and biochemical studies supported that the TIR enzymatic activity of SNC1 is required for its gain-of-function activity. In sum, our study uncovers the role of SNC1 as an amplifier of plant defense responses during natural plant-pathogen interactions and indicates its use of enzymatic activity and intermolecular interactions for triggering autoimmune responses.
Collapse
Affiliation(s)
- Zhixue Wang
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Leiyun Yang
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jian Hua
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
86
|
Affiliation(s)
- Minhang Yuan
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Boying Cai
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
87
|
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. Int J Mol Sci 2023; 24:ijms24032800. [PMID: 36769110 PMCID: PMC9917363 DOI: 10.3390/ijms24032800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host's immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system's role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area.
Collapse
|
88
|
Wang Y, Tang M, Zhang Y, Huang M, Wei L, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Li B, Yu X. Coordinated regulation of plant defense and autoimmunity by paired trihelix transcription factors ASR3/AITF1 in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:914-929. [PMID: 36266950 DOI: 10.1111/nph.18562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plants perceive pathogens and induce robust transcriptional reprogramming to rapidly achieve immunity. The mechanisms of how immune-related genes are transcriptionally regulated remain largely unknown. Previously, the trihelix transcriptional factor ARABIDOPSIS SH4-RELATED 3 (ASR3) was shown to negatively regulate pattern-triggered immunity (PTI) in Arabidopsis thaliana. Here, we identified another trihelix family member ASR3-Interacting Transcriptional Factor 1 (AITF1) as an interacting protein of ASR3. ASR3-Interacting Transcriptional Factor 1 and ASR3 form heterogenous and homogenous dimers in planta. Both aitf1 and asr3 single mutants exhibited increased resistance against the bacterial pathogen Pseudomonas syringae, but the double mutant showed reduced resistance, suggesting AITF1 and ASR3 interdependently regulate immune gene expression and resistance. Overexpression of AITF1 triggered autoimmunity dependently on its DNA-binding ability and the presence of ASR3. Notably, autoimmunity caused by overexpression of AITF1 was dependent on a TIR-NBS-LRR (TNL) protein suppressor of AITF1-induced autoimmunity 1 (SAA1), as well as enhanced disease susceptibility 1 (EDS1), the central regulator of TNL signaling. ASR3-Interacting Transcriptional Factor 1 and ASR3 directly activated SAA1 expression through binding to the GT-boxes in SAA1 promoter. Collectively, our results revealed a mechanism of trihelix transcription factor complex in regulating immune gene expression, thereby modulating plant disease resistance and autoimmunity.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Meng Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Lan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
89
|
Roy A, Sahu PK, Das C, Bhattacharyya S, Raina A, Mondal S. Conventional and new-breeding technologies for improving disease resistance in lentil ( Lens culinaris Medik). FRONTIERS IN PLANT SCIENCE 2023; 13:1001682. [PMID: 36743558 PMCID: PMC9896981 DOI: 10.3389/fpls.2022.1001682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/02/2022] [Indexed: 06/02/2023]
Abstract
Lentil, an important cool season food legume, is a rich source of easily digestible protein, folic acid, bio-available iron, and zinc nutrients. Lentil grows mainly as a sole crop in the winter after harvesting rice in South Asia. However, the annual productivity is low due to its slow growth during the early phase, competitive weed infestation, and disease outbreaks during the crop growth period. Disease resistance breeding has been practiced for a long time to enhance resistance to various diseases. Often the sources of resistance are available in wild crop relatives. Thus, wide hybridization and the ovule rescue technique have helped to introgress the resistance trait into cultivated lentils. Besides hybridization, induced mutagenesis contributed immensely in creating variability for disease tolerance, and several disease-resistant mutant lines have been developed. However, to overcome the limitations of traditional breeding approaches, advancement in molecular marker technologies, and genomics has helped to develop disease-resistant and climate-resilient lentil varieties with more precision and efficiency. This review describes types of diseases, disease screening methods, the role of conventional and new breeding technologies in alleviating disease-incurred damage and progress toward making lentil varieties more resilient to disease outbreaks under the shadow of climate change.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur West Bengal, India
- Department of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Ramkrishna Mission Ashrama, Kolkata, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Viswavidyalaya, Raipur, Chhattisgarh, India
| | - Camellia Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur West Bengal, India
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur West Bengal, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
90
|
Johanndrees O, Baggs EL, Uhlmann C, Locci F, Läßle HL, Melkonian K, Käufer K, Dongus JA, Nakagami H, Krasileva KV, Parker JE, Lapin D. Variation in plant Toll/Interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. PLANT PHYSIOLOGY 2023; 191:626-642. [PMID: 36227084 PMCID: PMC9806590 DOI: 10.1093/plphys/kiac480] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 05/07/2023]
Abstract
Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.
Collapse
Affiliation(s)
| | | | - Charles Uhlmann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federica Locci
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Henriette L Läßle
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katharina Melkonian
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kiara Käufer
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Jane E Parker
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| | - Dmitry Lapin
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| |
Collapse
|
91
|
Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs. MOLECULAR PLANT 2023; 16:75-95. [PMID: 36415130 DOI: 10.1016/j.molp.2022.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To counter pathogen invasion, plants have evolved a large number of immune receptors, including membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat receptors (NLRs). Our knowledge about PRR and NLR signaling mechanisms has expanded significantly over the past few years. Plant NLRs form multi-protein complexes called resistosomes in response to pathogen effectors, and the signaling mediated by NLR resistosomes converges on Ca2+-permeable channels. Ca2+-permeable channels important for PRR signaling have also been identified. These findings highlight a crucial role of Ca2+ in triggering plant immune signaling. In this review, we first discuss the structural and biochemical mechanisms of non-canonical NLR Ca2+ channels and then summarize our knowledge about immune-related Ca2+-permeable channels and their roles in PRR and NLR signaling. We also discuss the potential role of Ca2+ in the intricate interaction between PRR and NLR signaling.
Collapse
Affiliation(s)
- Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| | - Wen Song
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | - Jijie Chai
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
92
|
Li W, He J, Wang X, Ashline M, Wu Z, Liu F, Fu ZQ, Chang M. PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:414-422. [PMID: 36263689 DOI: 10.1111/nph.18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiuzhuo Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Matthew Ashline
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Zirui Wu
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
93
|
dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere T, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL. Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cassiane Gomes dos Santos
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariele Freitas Sousa
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - João Inácio Gomes Vieira
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Luana Rafaela de Morais
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Cristina Moreira Bonafé
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | - Lucas Lima Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
94
|
Guo J, Ma Z, Deng C, Ding J, Chang Y. A comprehensive dynamic immune acetylproteomics profiling induced by Puccinia polysora in maize. BMC PLANT BIOLOGY 2022; 22:610. [PMID: 36564751 PMCID: PMC9789614 DOI: 10.1186/s12870-022-03964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Lysine-ε-acetylation (Kac) is a reversible post-translational modification that plays important roles during plant-pathogen interactions. Some pathogens can deliver secreted effectors encoding acetyltransferases or deacetylases into host cell to directly modify acetylation of host proteins. However, the function of these acetylated host proteins in plant-pathogen defense remains to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein abundance and lysine acetylation changes in maize infected with Puccinia polysora (P. polysora) at 0 h, 12 h, 24 h, 48 h and 72 h. A total of 7412 Kac sites from 4697 proteins were identified, and 1732 Kac sites from 1006 proteins were quantified. Analyzed the features of lysine acetylation, we found that Kac is ubiquitous in cellular compartments and preferentially targets lysine residues in the -F/W/Y-X-X-K (ac)-N/S/T/P/Y/G- motif of the protein, this Kac motif contained proteins enriched in basic metabolism and defense-associated pathways during fungal infection. Further analysis of acetylproteomics data indicated that maize regulates cellular processes in response to P. polysora infection by altering Kac levels of histones and non-histones. In addition, acetylation of pathogen defense-related proteins presented converse patterns in signaling transduction, defense response, cell wall fortification, ROS scavenging, redox reaction and proteostasis. Our results provide informative resources for studying protein acetylation in plant-pathogen interactions, not only greatly extending the understanding on the roles of acetylation in vivo, but also providing a comprehensive dynamic pattern of Kac modifications in the process of plant immune response.
Collapse
Affiliation(s)
- Jianfei Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhigang Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Ce Deng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
95
|
Khazma T, Golan-Vaishenker Y, Guez-Haddad J, Grossman A, Sain R, Weitman M, Plotnikov A, Zalk R, Yaron A, Hons M, Opatowsky Y. A duplex structure of SARM1 octamers stabilized by a new inhibitor. Cell Mol Life Sci 2022; 80:16. [PMID: 36564647 PMCID: PMC11072711 DOI: 10.1007/s00018-022-04641-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022]
Abstract
In recent years, there has been growing interest in SARM1 as a potential breakthrough drug target for treating various pathologies of axon degeneration. SARM1-mediated axon degeneration relies on its TIR domain NADase activity, but recent structural data suggest that the non-catalytic ARM domain could also serve as a pharmacological site as it has an allosteric inhibitory function. Here, we screened for synthetic small molecules that inhibit SARM1, and tested a selected set of these compounds in a DRG axon degeneration assay. Using cryo-EM, we found that one of the newly discovered inhibitors, a calmidazolium designated TK106, not only stabilizes the previously reported inhibited conformation of the octamer, but also a meta-stable structure: a duplex of octamers (16 protomers), which we have now determined to 4.0 Å resolution. In the duplex, each ARM domain protomer is engaged in lateral interactions with neighboring protomers, and is further stabilized by contralateral contacts with the opposing octamer ring. Mutagenesis of the duplex contact sites leads to a moderate increase in SARM1 activation in cultured cells. Based on our data we propose that the duplex assembly constitutes an additional auto-inhibition mechanism that tightly prevents pre-mature activation and axon degeneration.
Collapse
Affiliation(s)
- Tami Khazma
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Julia Guez-Haddad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Atira Grossman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Radhika Sain
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Weitman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ran Zalk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Hons
- European Molecular Biology Laboratory, Grenoble, France.
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
96
|
A conformation-specific nanobody targeting the nicotinamide mononucleotide-activated state of SARM1. Nat Commun 2022; 13:7898. [PMID: 36550129 PMCID: PMC9780360 DOI: 10.1038/s41467-022-35581-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Sterile alpha (SAM) and Toll/interleukin-1 receptor (TIR) motif containing 1 (SARM1) is an autoinhibitory NAD-consuming enzyme that is activated by the accumulation of nicotinamide mononucleotide (NMN) during axonal injury. Its activation mechanism is not fully understood. Here, we generate a nanobody, Nb-C6, that specifically recognizes NMN-activated SARM1. Nb-C6 stains only the activated SARM1 in cells stimulated with CZ-48, a permeant mimetic of NMN, and partially activates SARM1 in vitro and in cells. Cryo-EM of NMN/SARM1/Nb-C6 complex shows an octameric structure with ARM domains bending significantly inward and swinging out together with TIR domains. Nb-C6 binds to SAM domain of the activated SARM1 and stabilized its ARM domain. Mass spectrometry analyses indicate that the activated SARM1 in solution is highly dynamic and that the neighboring TIRs form transient dimers via the surface close to one BB loop. We show that Nb-C6 is a valuable tool for studies of SARM1 activation.
Collapse
|
97
|
Marchal C, Pai H, Kamoun S, Kourelis J. Emerging principles in the design of bioengineered made-to-order plant immune receptors. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102311. [PMID: 36379872 DOI: 10.1016/j.pbi.2022.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Crop yield and global food security are under constant threat from plant pathogens with the potential to cause epidemics. Traditional breeding for disease resistance can be too slow to counteract these emerging threats, resulting in the need to retool the plant immune system using bioengineered made-to-order immune receptors. Efforts to engineer immune receptors have focused primarily on nucleotide-binding domain and leucine-rich repeat (NLR) immune receptors and proof-of-principles studies. Based upon a near-exhaustive literature search of previously engineered plant immune systems we distil five emerging principles in the design of bioengineered made-to-order plant NLRs and describe approaches based on other components. These emerging principles are anticipated to assist the functional understanding of plant immune receptors, as well as bioengineering novel disease resistance specificities.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK.
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK.
| |
Collapse
|
98
|
Waheed A, Haxim Y, Islam W, Kahar G, Liu X, Zhang D. Role of pathogen's effectors in understanding host-pathogen interaction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119347. [PMID: 36055522 DOI: 10.1016/j.bbamcr.2022.119347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogens can pose challenges to plant growth and development at various stages of their life cycle. Two interconnected defense strategies prevent the growth of pathogens in plants, i.e., molecular patterns triggered immunity (PTI) and pathogenic effector-triggered immunity (ETI) that often provides resistance when PTI no longer functions as a result of pathogenic effectors. Plants may trigger an ETI defense response by directly or indirectly detecting pathogen effectors via their resistance proteins. A typical resistance protein is a nucleotide-binding receptor with leucine-rich sequences (NLRs) that undergo structural changes as they recognize their effectors and form associations with other NLRs. As a result of dimerization or oligomerization, downstream components activate "helper" NLRs, resulting in a response to ETI. It was thought that ETI is highly dependent on PTI. However, recent studies have found that ETI and PTI have symbiotic crosstalk, and both work together to create a robust system of plant defense. In this article, we have summarized the recent advances in understanding the plant's early immune response, its components, and how they cooperate in innate defense mechanisms. Moreover, we have provided the current perspective on engineering strategies for crop protection based on up-to-date knowledge.
Collapse
Affiliation(s)
- Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
| |
Collapse
|
99
|
Zönnchen J, Gantner J, Lapin D, Barthel K, Eschen-Lippold L, Erickson JL, Villanueva SL, Zantop S, Kretschmer C, Joosten MHAJ, Parker JE, Guerois R, Stuttmann J. EDS1 complexes are not required for PRR responses and execute TNL-ETI from the nucleus in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2022; 236:2249-2264. [PMID: 36151929 DOI: 10.1111/nph.18511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Heterodimeric complexes incorporating the lipase-like proteins EDS1 with PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in Arabidopsis thaliana, bolstering of signaling and resistance mediated by cell-surface pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in Nicotiana benthamiana. We did not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad could abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation was sufficient for N. benthamiana TNL (Roq1) immunity. Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-forming RNLs remains unknown.
Collapse
Affiliation(s)
- Josua Zönnchen
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Johannes Gantner
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Dmitry Lapin
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Department of Biology, Plant-Microbe Interactions, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Karen Barthel
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Lennart Eschen-Lippold
- Department of Crop Physiology, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Jessica L Erickson
- Department of Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Stefan Zantop
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Carola Kretschmer
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence in Plant Sciences (CEPLAS), D-40225, Düsseldorf, Germany
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Johannes Stuttmann
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| |
Collapse
|
100
|
Tian L, Lu J, Li X. Differential requirement of TIR enzymatic activities in TIR-type immune receptor SNC1-mediated immunity. PLANT PHYSIOLOGY 2022; 190:2094-2098. [PMID: 36149306 PMCID: PMC9706416 DOI: 10.1093/plphys/kiac452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana TIR-type immune receptor SNC1 (Suppressor of npr1-1, constitutive 1) requires NADase, but not the 2′,3′-cAMP/cGMP synthetase activity to trigger in planta immune responses.
Collapse
Affiliation(s)
- Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xin Li
- Author for correspondence:
| |
Collapse
|