51
|
Jin B, Wang Y, Jin C, De Yoreo JJ, Tang R. Revealing Au 13 as Elementary Clusters During the Early Formation of Au Nanocrystals. J Phys Chem Lett 2021; 12:5938-5943. [PMID: 34156865 DOI: 10.1021/acs.jpclett.1c01647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the formation mechanism of nanocrystals in solution is fundamental to the development of materials science. For a metal nanocrystal, the cluster-mediated formation mechanism is still poorly understood. In particular, identifying what types of clusters are dominant and how they evolve into a nanocrystal in the early nucleation stage remains a great challenge. Here, using liquid-cell transmission electron microscopy, we directly observe the formation of ultrasmall Au clusters (∼0.84 nm) in the presence of PAA-Na. These clusters, which correspond to the size of the Au13 cluster, coalesce to form nanocrystals. Our molecular dynamics simulations suggest that Au13 in an aqueous environment has greater stability when compared to other cluster sizes and provide atomistic details of growth by cluster coalescence. Collectively, our demonstration of Au13 as the dominant species with an elaboration of their coalescence kinetics sheds light on nonclassical nanocrystal formation mechanisms and offers useful guidelines for designing innovative pathways for the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yanming Wang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | | |
Collapse
|
52
|
Ryu J, Park SD, Baranov D, Rreza I, Owen JS, Jonas DM. Relations between absorption, emission, and excited state chemical potentials from nanocrystal 2D spectra. SCIENCE ADVANCES 2021; 7:eabf4741. [PMID: 34049871 PMCID: PMC8163088 DOI: 10.1126/sciadv.abf4741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
For quantum-confined nanomaterials, size dispersion causes a static broadening of spectra that has been difficult to measure and invalidates all-optical methods for determining the maximum photovoltage that an excited state can generate. Using femtosecond two-dimensional (2D) spectroscopy to separate size dispersion broadening of absorption and emission spectra allows a test of single-molecule generalized Einstein relations between such spectra for colloidal PbS quantum dots. We show that 2D spectra and these relations determine the thermodynamic standard chemical potential difference between the lowest excited and ground electronic states, which gives the maximum photovoltage. Further, we find that the static line broadening from many slightly different quantum dot structures allows single-molecule generalized Einstein relations to determine the average single-molecule linewidth from Stokes' frequency shift between ensemble absorption and emission spectra.
Collapse
Affiliation(s)
- Jisu Ryu
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA
- General Atomics Electromagnetic Systems Group (GA-EMS), 6685 Gunpark Dr. #230, Boulder, CO 80301, USA
| | - Samuel D Park
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA
- U.S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375, USA
| | - Dmitry Baranov
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA
- Nanochemistry Department, Italian Institute of Technology, via Morego 30, Genova, GE, 16163, Italy
| | - Iva Rreza
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - David M Jonas
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
53
|
Hostaš J, Tchagang A, Lourenço MP, Köster AM, Salahub DR. Global optimization of ~ 1 nm MoS2 and CaCO3 nanoparticles. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02743-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
54
|
Lee J, Jeong C, Yang Y. Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nat Commun 2021; 12:1962. [PMID: 33785754 PMCID: PMC8009920 DOI: 10.1038/s41467-021-22204-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 11/11/2022] Open
Abstract
Functional properties of nanomaterials strongly depend on their surface atomic structures, but they often become largely different from their bulk structures, exhibiting surface reconstructions and relaxations. However, most of the surface characterization methods are either limited to 2D measurements or not reaching to true 3D atomic-scale resolution, and single-atom level determination of the 3D surface atomic structure for general 3D nanomaterials still remains elusive. Here we demonstrate the measurement of 3D atomic structure at 15 pm precision using a Pt nanoparticle as a model system. Aided by a deep learning-based missing data retrieval combined with atomic electron tomography, the surface atomic structure was reliably measured. We found that <\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$100$$\end{document}100> and <\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$111$$\end{document}111> facets contribute differently to the surface strain, resulting in anisotropic strain distribution as well as compressive support boundary effect. The capability of single-atom level surface characterization will not only deepen our understanding of the functional properties of nanomaterials but also open a new door for fine tailoring of their performance. Precise determination of surface atomic structure of metallic nanoparticles is key to unlock their surface/interface properties. Here the authors introduce a neural network-assisted atomic electron tomography approach that provides a three-dimensional reconstruction of metallic nanoparticles at individual atom level.
Collapse
Affiliation(s)
- Juhyeok Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chaehwa Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
55
|
Kang J, Park SJ, Kim JH, Chen P, Sung J. Stochastic Kinetics of Nanocatalytic Systems. PHYSICAL REVIEW LETTERS 2021; 126:126001. [PMID: 33834800 DOI: 10.1103/physrevlett.126.126001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/18/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Catalytic reaction events occurring on the surface of a nanoparticle constitute a complex stochastic process. Although advances in modern single-molecule experiments enable direct measurements of individual catalytic turnover events occurring on a segment of a single nanoparticle, we do not yet know how to measure the number of catalytic sites in each segment or how the catalytic turnover counting statistics and the catalytic turnover time distribution are related to the microscopic dynamics of catalytic reactions. Here, we address these issues by presenting a stochastic kinetics for nanoparticle catalytic systems. We propose a new experimental measure of the number of catalytic sites in terms of the mean and variance of the catalytic event count. By considering three types of nanocatalytic systems, we investigate how the mean, the variance, and the distribution of the catalytic turnover time depend on the catalytic reaction dynamics, the heterogeneity of catalytic activity, and communication among catalytic sites. This work enables accurate quantitative analyses of single-molecule experiments for nanocatalytic systems and enzymes with multiple catalytic sites.
Collapse
Affiliation(s)
- Jingyu Kang
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Seong Jun Park
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Ji-Hyun Kim
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jaeyoung Sung
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
56
|
Cho DH, Shen Z, Ihm Y, Wi DH, Jung C, Nam D, Kim S, Park SY, Kim KS, Sung D, Lee H, Shin JY, Hwang J, Lee SY, Lee SY, Han SW, Noh DY, Loh ND, Song C. High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS NANO 2021; 15:4066-4076. [PMID: 33506675 DOI: 10.1021/acsnano.0c07961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.
Collapse
Affiliation(s)
- Do Hyung Cho
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Zhou Shen
- Department of Physics, National University of Singapore, Singapore 117551
| | - Yungok Ihm
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Dae Han Wi
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Chulho Jung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Kyung Sook Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Daeho Sung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Heemin Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Jae-Yong Shin
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Junha Hwang
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sung Yun Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - N Duane Loh
- Department of Physics, National University of Singapore, Singapore 117551
- Department of Biological Sciences, National University of Singapore, Singapore 117557
| | - Changyong Song
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), POSTECH, Pohang 37673, Korea
| |
Collapse
|
57
|
Jang H, Zhao C, Kong X, Song J, Ding F, Cho S. Homoepitaxial growth of ZnO nanostructures from bulk ZnO. J Colloid Interface Sci 2021; 586:135-141. [PMID: 33183758 DOI: 10.1016/j.jcis.2020.10.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/01/2022]
Abstract
Material formation mechanisms and their selective realization must be well understood for the development of new materials for advanced technologies. Since nanomaterials demonstrate higher specific surface energies compared to their corresponding bulk materials, the homoepitaxial growth of nanomaterials on bulk materials is not thermodynamically favorable. We observed the homoepitaxial growth of nanowires with constant outer diameters on bulk materials in two different, solution-based growth systems. We also suggested potential mechanisms of the spontaneous and homoepitaxial growth of the ZnO nanostructures based on the characterization results. The first key factor for favorable growth was the crystal facet stabilization effect of capping agents during the early stages of growth. The second factor was the change in the dominant growth mode during the reaction in a closed system. The spontaneous, homoepitaxial growth of nanomaterials enables the realization of unprecedented, complex, hierarchical, single-crystalline structures required for future technologies.
Collapse
Affiliation(s)
- Hyunseok Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chao Zhao
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Xiao Kong
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jaejung Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Feng Ding
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
58
|
Farrag M, Das MK, Moody M, Samy El-Shall M. Ligand-Protected Ultrasmall Pd Nanoclusters Supported on Metal Oxide Surfaces for CO Oxidation: Does the Ligand Activate or Passivate the Pd Nanocatalyst? Chemphyschem 2021; 22:312-322. [PMID: 33277789 DOI: 10.1002/cphc.202000656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Indexed: 11/10/2022]
Abstract
Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L-cysteine [HOCOCH(NH2 )CH2 SH] ligands (Pdn (L-Cys)m ) and supported on the surfaces of CeO2 , TiO2 , Fe3 O4 , and ZnO nanoparticles for CO catalytic oxidation. The Pdn (L-Cys)m nanoclusters supported on the reducible metal oxides CeO2 , TiO2 and Fe3 O4 exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand-protected clusters Pdn (L-Cys)m is observed on the three reducible oxides where 100 % CO conversion occurs at 93-110 °C. The high activity is attributed to the ligand-protected Pd nanoclusters where the L-cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub-2-nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L-cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand-protected clusters. However, for the TiO2 and Fe3 O4 supports, complete removal of the ligands from the Pdn (L-Cys)m clusters leads to a slight decrease in activity where the T100% CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2 and Fe3 O4 supports appears to aid in efficient encapsulation of the bare Pdn nanoclusters within the mesoporous pores of the support.
Collapse
Affiliation(s)
- Mostafa Farrag
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA.,Nanoclusters and Photocatalysis Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Assiut, Egypt
| | - Mrinmoy K Das
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Michael Moody
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| |
Collapse
|
59
|
Korpanty J, Parent LR, Gianneschi NC. Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers. NANO LETTERS 2021; 21:1141-1149. [PMID: 33448858 DOI: 10.1021/acs.nanolett.0c04636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we describe the radiolytic environment experienced by a polymer in water during liquid-cell transmission electron microscopy (LCTEM). We examined the radiolytic environment of aqueous solutions of poly(ethylene glycol) (PEG, 2400 g/mol) in the presence of sensitizing gold nanoparticles (GNPs, 100 nm) or radical scavenging isopropanol (IPA). To quantify polymer damage, we employed post-mortem analysis via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). This approach confirms IPA (1-10% w/v) can significantly mitigate radiolysis-induced damage to polymers in water, while GNPs significantly enhance damage. We couple LCTEM experiments with simulations to provide a generalizable strategy for assessing radiolysis mitigation or enhancement. This study highlights the caution required for LCTEM experiments on inorganic nanoparticles where solution phase properties of surrounding organic materials or the solvent itself are under investigation. Furthermore, we anticipate an increased use of scavengers for LCTEM studies of all kinds.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
60
|
Kim S, Kwag J, Machello C, Kang S, Heo J, Reboul CF, Kang D, Kang S, Shim S, Park SJ, Kim BH, Hyeon T, Ercius P, Elmlund H, Park J. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. NANO LETTERS 2021; 21:1175-1183. [PMID: 33416334 DOI: 10.1021/acs.nanolett.0c04873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.
Collapse
Affiliation(s)
- Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jimin Kwag
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
61
|
Park J, Koo K, Noh N, Chang JH, Cheong JY, Dae KS, Park JS, Ji S, Kim ID, Yuk JM. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS NANO 2021; 15:288-308. [PMID: 33395264 DOI: 10.1021/acsnano.0c10229] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joon Ha Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
62
|
Casar JR, McLellan CA, Siefe C, Dionne JA. Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS PHOTONICS 2021; 8:3-17. [PMID: 34307765 PMCID: PMC8297747 DOI: 10.1021/acsphotonics.0c00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanthanide nanoparticles (LNPs) are promising sensors of chemical, mechanical, and temperature changes; they combine the narrow-spectral emission and long-lived excited states of individual lanthanide ions with the high spatial resolution and controlled energy transfer of nanocrystalline architectures. Despite considerable progress in optimizing LNP brightness and responsiveness for dynamic sensing, detection of stimuli with a spatial resolution approaching that of individual nanoparticles remains an outstanding challenge. Here, we highlight the existing capabilities and outstanding challenges of LNP sensors, en-route to nanometer-scale, single particle sensor resolution. First, we summarize LNP sensor read-outs, including changes in emission wavelength, lifetime, intensity, and spectral ratiometric values that arise from modified energy transfer networks within nanoparticles. Then, we describe the origins of LNP sensor imprecision, including sensitivity to competing conditions, interparticle heterogeneities, such as the concentration and distribution of dopant ions, and measurement noise. Motivated by these sources of signal variance, we describe synthesis characterization feedback loops to inform and improve sensor precision, and introduce noise-equivalent sensitivity as a figure of merit of LNP sensors. Finally, we project the magnitudes of chemical and pressure stimulus resolution achievable with single LNPs at nanoscale resolution. Our perspective provides a roadmap for translating ensemble LNP sensing capabilities to the single particle level, enabling nanometer-scale sensing in biology, medicine, and sustainability.
Collapse
Affiliation(s)
- Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering and Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
63
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
64
|
Reboul CF, Heo J, Machello C, Kiesewetter S, Kim BH, Kim S, Elmlund D, Ercius P, Park J, Elmlund H. SINGLE: Atomic-resolution structure identification of nanocrystals by graphene liquid cell EM. SCIENCE ADVANCES 2021; 7:7/5/eabe6679. [PMID: 33514557 PMCID: PMC7846166 DOI: 10.1126/sciadv.abe6679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron microscopy is beginning to reveal their unique physiochemical properties. We developed a "one-particle Brownian 3D reconstruction method" based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and averaging that differ from those used in biological cryo-electron microscopy. Our developments are made available through the open-source software package SINGLE.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, South Korea
| | - Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
65
|
Ilton ES, Kovarik L, Nakouzi E, Mergelsberg ST, McBriarty ME, Bylaska EJ. Using Atom Dynamics to Map the Defect Structure Around an Impurity in Nano-Hematite. J Phys Chem Lett 2020; 11:10396-10400. [PMID: 33238102 DOI: 10.1021/acs.jpclett.0c02798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The bulk behavior of materials is often controlled by minor impurities that create nonperiodic localized defect structures due to ionic size, symmetry, and charge balance mismatches. Here, we used transmission electron microscopy (TEM) of atom-resolved dynamics to directly map the topology of Fe vacancy clusters surrounding structurally incorporated U6+ in nanohematite (α-Fe2O3). Ab initio molecular dynamic simulations provided additional independent constraints on coupled U, Fe, and vacancy mobility in the solid. A clearer understanding of how such an apparently incompatible element can be accommodated by hematite emerged. The results were readily interpretable without the need for sophisticated data reconstruction methods, model structures, or ultrathin samples, and with the proliferation of aberration-corrected TEM facilities, the approach is accessible. Given sufficient z-contrast, the ability to observe impurity-vacancy structures by means of atom hopping can be used to directly probe the association of impurities and such defects in other materials, with promising applications across a broad range of disciplines.
Collapse
Affiliation(s)
- Eugene S Ilton
- Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Libor Kovarik
- Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Elias Nakouzi
- Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | | | - Martin E McBriarty
- Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Eric J Bylaska
- Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
66
|
Kim BH, Heo J, Park J. Determination of the 3D Atomic Structures of Nanoparticles. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Byung Hyo Kim
- Department of Fiber Engineering and Organic Materials Soongsil University Seoul 06978 Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Process Seoul National University Seoul 08826 Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Process Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
67
|
Bak J, Heo Y, Yun TG, Chung SY. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS NANO 2020; 14:14323-14354. [PMID: 33151068 DOI: 10.1021/acsnano.0c06411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As chemical reactions and charge-transfer simultaneously occur on the catalyst surface during electrocatalysis, numerous studies have been carried out to attain an in-depth understanding on the correlation among the surface structure and composition, the electrical transport, and the overall catalytic activity. Compared with other catalysis reactions, a relatively larger activation barrier for oxygen evolution/reduction reactions (OER/ORR), where multiple electron transfers are involved, is noted. Many works over the past decade thus have been focused on the atomic-scale control of the surface structure and the precise identification of surface composition change in catalyst materials to achieve better conversion efficiency. In particular, recent advances in various analytical tools have enabled noteworthy findings of unexpected catalytic features at atomic resolution, providing significant insights toward reducing the activation barriers and subsequently improving the catalytic performance. In addition to summarizing important surface issues, including lattice defects, related to the OER and ORR in this Review, we present the current status and discuss future perspectives of oxide- and alloy-based catalysts in terms of atomic-scale observation and manipulation.
Collapse
Affiliation(s)
- Jumi Bak
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yoon Heo
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
68
|
Zhao J, Chen B, Wang F. Shedding Light on the Role of Misfit Strain in Controlling Core-Shell Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004142. [PMID: 33051904 DOI: 10.1002/adma.202004142] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Indexed: 05/17/2023]
Abstract
Heteroepitaxial modification of nanomaterials has become a powerful means to create novel functionalities for various applications. One of the most elementary factors in heteroepitaxial nanostructures is the misfit strain arising from mismatched lattices of the constituent parts. Misfit strain not only dictates epitaxy kinetics for diversifying nanocrystal morphologies but also provides rational control over materials properties. In recent years, advances in chemical synthesis along with the rapid development of electron microscopy and X-ray diffraction techniques have enabled a substantial understanding of strain-related processes, which offers theoretical foundation and experimental guidance for researchers to refine heteroepitaxial nanostructures and their properties. Herein, recent investigations on heterogeneous core-shell nanocrystals containing misfit strains are summarized, with a focus on the mechanistic understanding of strain and strain-induced effects such as tuning the epitaxial habit, modulating the optical emission, and enhancing the catalytic activity and magnetic coercivity.
Collapse
Affiliation(s)
- Jianxiong Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
69
|
Chen IY, Cimada daSilva J, Balazs DM, Smeaton MA, Kourkoutis LF, Hanrath T, Clancy P. The Role of Dimer Formation in the Nucleation of Superlattice Transformations and Its Impact on Disorder. ACS NANO 2020; 14:11431-11441. [PMID: 32804472 DOI: 10.1021/acsnano.0c03800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The formation of defect-free two-dimensional nanocrystal (NC) superstructures remains a challenge as persistent defects hinder charge delocalization and related device performance. Understanding defect formation is an important step toward developing strategies to mitigate their formation. However, specific mechanisms of defect formation are difficult to determine, as superlattice phase transformations that occur during fabrication are quite complex and there are a variety of factors influencing the disorder in the final structure. Here, we use Molecular Dynamics (MD) and electron microscopy in concert to investigate the nucleation of the epitaxial attachment of lead chalcogenide (PbX, where X = S, Se) NC assemblies. We use an updated implementation of an existing reactive force field in an MD framework to investigate how initial orientational (mis)alignment of the constituent building blocks impacts the final structure of the epitaxially connected superlattice. This Simple Molecular Reactive Force Field (SMRFF) captures both short-range covalent forces and long-range electrostatic forces and allows us to follow orientational and translational changes of NCs during superlattice transformation. Our simulations reveal how robust the oriented attachment is with regard to the initial configuration of the NCs, measuring its sensitivity to both in-plane and out-of-plane misorientation. We show that oriented attachment nucleates through the initial formation of dimers, which corroborate experimentally observed structures. We present high-resolution structural analysis of dimers at early stages of the superlattice transformation and rationalize their contribution to the formation of defects in the final superlattice. Collectively, the simulations and experiments presented in this paper provide insights into the nucleation of NC oriented attachment, the impact of the initial configuration of NCs on the structural fidelity of the final epitaxially connected superlattice, and the propensity to form commonly observed defects, such as missing bridges and atomic misalignment in the superlattice due to the formation of dimers. We present potential strategies to mitigate the formation of superlattice defects.
Collapse
Affiliation(s)
- Isaiah Y Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | | | | | | | | | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
70
|
Abstract
Nanocrystals are a state-of-matter in the border area between molecules and bulk materials. Unlike bulk materials, nanocrystals have size-dependent properties, yet the question remains whether nanocrystal properties can be analyzed, understood, and controlled with atomic precision, a key characteristic of molecules. Acknowledging the inclination of nanocrystals to form defect structures, we first outline the prospects of atomically precise analysis. A broad spectrum of analytical methods has become available over the last five years, such that for heterogeneous nanocrystal ensembles, a single, atomically precise representative structure can be determined to explore structure-property relations. Atomically precise synthesis, on the other hand, remains an outstanding challenge that may well face fundamental limitations. However, to amplify properties and prepare nanocrystals for specific applications, full atomic precision may not be needed. Examples of an atomic precision light approach, focusing on exact thickness or facet control, exist and can inspire scientists to explore atomic precision in nanocrystal research further.
Collapse
Affiliation(s)
- Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium.,Center for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
71
|
Chen L, Ren G, Liu L, Guo P, Wang E, Zhou L, Zhu Z, Zhang J, Yang B, Zhang W, Li Y, Zhang W, Gao Y, Zhao H, Han J. Terahertz Signatures of Hydrate Formation in Alkali Halide Solutions. J Phys Chem Lett 2020; 11:7146-7152. [PMID: 32787323 DOI: 10.1021/acs.jpclett.0c02046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We systematically studied the ability of 20 alkali halides to form solid hydrates in the frozen state from their aqueous solutions by terahertz time-domain spectroscopy combined with density functional theory (DFT) calculations. We experimentally observed the rise of new terahertz absorption peaks in the spectral range of 0.3-3.5 THz in frozen alkali halide solutions. The DFT calculations prove that the rise of observed new peaks in solutions containing Li+, Na+, or F- ions indicates the formation of salt hydrates, while that in other alkali halide solutions is caused by the splitting phonon modes of the imperfectly crystallized salts in ice. As a simple empirical rule, the correlation between the terahertz signatures and the ability of 20 alkali halides to form a hydrate has been established.
Collapse
Affiliation(s)
- Ligang Chen
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Shanghai Advanced Research Institute Zhangjiang Lab, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanhua Ren
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Shanghai Advanced Research Institute Zhangjiang Lab, Chinese Academy of Sciences, Shanghai 201210, China
| | - Liyuan Liu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Pan Guo
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Endong Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lu Zhou
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhongjie Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jianbing Zhang
- Shanghai Advanced Research Institute Zhangjiang Lab, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bin Yang
- Faculty of Science and Engineering, University of Chester, Thornton Science Park, Chester, U.K. CH2 4NU
| | - Wentao Zhang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yanfeng Li
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Weili Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yi Gao
- Shanghai Advanced Research Institute Zhangjiang Lab, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute Zhangjiang Lab, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
72
|
Rivero-Crespo M, Oliver-Meseguer J, Kapłońska K, Kuśtrowski P, Pardo E, Cerón-Carrasco JP, Leyva-Pérez A. Cyclic metal(oid) clusters control platinum-catalysed hydrosilylation reactions: from soluble to zeolite and MOF catalysts. Chem Sci 2020; 11:8113-8124. [PMID: 34123084 PMCID: PMC8163423 DOI: 10.1039/d0sc02391d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022] Open
Abstract
The Pt-catalysed addition of silanes to functional groups such as alkenes, alkynes, carbonyls and alcohols, i.e. the hydrosilylation reaction, is a fundamental transformation in industrial and academic chemistry, often claimed as the most important application of Pt catalysts in solution. However, the exact nature of the Pt active species and its mechanism of action is not well understood yet, particularly regarding regioselectivity. Here, experimental and computational studies together with an ad hoc graphical method show that the hydroaddition of alkynes proceeds through Pt-Si-H clusters of 3-5 atoms (metal(oid) association) in parts per million amounts (ppm), which decrease the energy of the transition state and direct the regioselectivity of the reaction. Based on these findings, new extremely-active (ppm) microporous solid catalysts for the hydrosilylation of alkynes, alkenes and alcohols have been developed, paving the way for more environmentally-benign industrial applications.
Collapse
Affiliation(s)
- Miguel Rivero-Crespo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34963877809 +34963877800
| | - Judit Oliver-Meseguer
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34963877809 +34963877800
| | - Klaudia Kapłońska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia 46980 Paterna Valencia Spain
| | | | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34963877809 +34963877800
| |
Collapse
|