51
|
Wylie T, Garg R, Ridley AJ, Conte MR. Analysis of the interaction of Plexin-B1 and Plexin-B2 with Rnd family proteins. PLoS One 2017; 12:e0185899. [PMID: 29040270 PMCID: PMC5645086 DOI: 10.1371/journal.pone.0185899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
The Rnd family of proteins, Rnd1, Rnd2 and Rnd3, are atypical Rho family GTPases, which bind to but do not hydrolyse GTP. They interact with plexins, which are receptors for semaphorins, and are hypothesised to regulate plexin signalling. We recently showed that each Rnd protein has a distinct profile of interaction with three plexins, Plexin-B1, Plexin-B2 and Plexin-B3, in mammalian cells, although it is unclear which region(s) of these plexins contribute to this specificity. Here we characterise the binary interactions of the Rnd proteins with the Rho-binding domain (RBD) of Plexin-B1 and Plexin-B2 using biophysical approaches. Isothermal titration calorimetry (ITC) experiments for each of the Rnd proteins with Plexin-B1-RBD and Plexin-B2-RBD showed similar association constants for all six interactions, although Rnd1 displayed a small preference for Plexin-B1-RBD and Rnd3 for Plexin-B2-RBD. Furthermore, mutagenic analysis of Rnd3 suggested similarities in its interaction with both Plexin-B1-RBD and Plexin-B2-RBD. These results suggest that Rnd proteins do not have a clear-cut specificity for different Plexin-B-RBDs, possibly implying the contribution of additional regions of Plexin-B proteins in conferring functional substrate selection.
Collapse
Affiliation(s)
- Thomas Wylie
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| |
Collapse
|
52
|
Feinstein J, Ramkhelawon B. Netrins & Semaphorins: Novel regulators of the immune response. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3183-3189. [PMID: 28918114 DOI: 10.1016/j.bbadis.2017.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
Netrins and semaphorins, members of the neuronal guidance cue family, exhibit a rich biology with significant roles that extend beyond chemotactic guidance of the axons to build the neuronal patterns of the body. Screening of adult tissues and specific cellular subsets have illuminated that these proteins are also abundantly expressed under both steady state and pathological scenarios. This observation suggests that, in addition to their role in the development of the axonal tree, these proteins possess additional novel functions in adult physiopathology. Notably, a series of striking evidence has emerged in the literature describing their roles as potent regulators of both innate and adaptive immunity, providing extra dimension to our knowledge of neuronal guidance cues. In this review, we summarize the key complex roles of netrins and semaphorins outside the central nervous system (CNS) with focus on their immunomodulatory functions that impact pathophysiological conditions.
Collapse
Affiliation(s)
- Jordyn Feinstein
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
53
|
Zeng M, Bai G, Zhang M. Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. Small GTPases 2017; 10:296-304. [PMID: 28524815 DOI: 10.1080/21541248.2017.1320350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SynGAP, encoded by SYNGAP1, is a Ras/Rap GTPase activator specifically expressed in the nervous systems. SynGAP is one of the most abundant proteins in the postsynaptic densities (PSDs) of excitatory synapses and acts as a critical synaptic activity brake by tuning down synaptic GTPase activities. Mutations of SYNGAP1 have been frequently linked to brain disorders including intellectual disability, autisms, and seizure. SynGAP has been shown to undergo fast dispersions from synapses in response to stimulations, a strategy that neurons use to control the specific activities of the enzyme within the tiny, semi-open compartments in dendritic spines. However, the mechanism governing the activity-dependent synaptic localization modulations of SynGAP is poorly understood. It has been shown recently that SynGAP α1, via specifically binding to PSD-95, can undergo liquid-liquid phase separation forming membraneless, condensed protein-rich sub-compartments. This phase transition-mediated, PSD-95-dependent synaptic enrichment of SynGAP α1 not only suggests a dynamic anchoring mechanism of the protein within the PSD, but also implies a new model for the PSD formation in living neurons.
Collapse
Affiliation(s)
- Menglong Zeng
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| | - Guanhua Bai
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| | - Mingjie Zhang
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China.,b Center of Systems Biology and Human Health , Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| |
Collapse
|
54
|
Genova T, Grolez GP, Camillo C, Bernardini M, Bokhobza A, Richard E, Scianna M, Lemonnier L, Valdembri D, Munaron L, Philips MR, Mattot V, Serini G, Prevarskaya N, Gkika D, Pla AF. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1. J Cell Biol 2017; 216:2107-2130. [PMID: 28550110 PMCID: PMC5496606 DOI: 10.1083/jcb.201506024] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/26/2016] [Accepted: 04/12/2017] [Indexed: 01/30/2023] Open
Abstract
Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein-protein interaction, thus preventing its cytoplasm-plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Department of Surgical Sciences, C.I.R. Dental School, University of Torino, Torino, Italy
| | - Guillaume P Grolez
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Chiara Camillo
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Michela Bernardini
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Alexandre Bokhobza
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Elodie Richard
- BICeL Campus Lille1, FR3688 FRABio, Université de Lille, Villeneuve d'Ascq, France
| | - Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Loic Lemonnier
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Donatella Valdembri
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy
| | - Mark R Philips
- Cancer Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Virginie Mattot
- Centre National de la Recherche Scientifique, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, Universite de Lille, Lille, France
| | - Guido Serini
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Natalia Prevarskaya
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Dimitra Gkika
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy .,Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy.,Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| |
Collapse
|
55
|
Shang G, Brautigam CA, Chen R, Lu D, Torres-Vázquez J, Zhang X. Structure analyses reveal a regulated oligomerization mechanism of the PlexinD1/GIPC/myosin VI complex. eLife 2017; 6. [PMID: 28537552 PMCID: PMC5461112 DOI: 10.7554/elife.27322] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
The GIPC family adaptor proteins mediate endocytosis by tethering cargo proteins to the myosin VI motor. The structural mechanisms for the GIPC/cargo and GIPC/myosin VI interactions remained unclear. PlexinD1, a transmembrane receptor that regulates neuronal and cardiovascular development, is a cargo of GIPCs. GIPC-mediated endocytic trafficking regulates PlexinD1 signaling. Here, we unravel the mechanisms of the interactions among PlexinD1, GIPCs and myosin VI by a series of crystal structures of these proteins in apo or bound states. GIPC1 forms a domain-swapped dimer in an autoinhibited conformation that hinders binding of both PlexinD1 and myosin VI. PlexinD1 binding to GIPC1 releases the autoinhibition, promoting its interaction with myosin VI. GIPCs and myosin VI interact through two distinct interfaces and form an open-ended alternating array. Our data support that this alternating array underlies the oligomerization of the GIPC/Myosin VI complexes in solution and cells. DOI:http://dx.doi.org/10.7554/eLife.27322.001
Collapse
Affiliation(s)
- Guijun Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rui Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Defen Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
56
|
Li X, Chen Q, Yin D, Shi S, Yu L, Zhou S, Chen E, Zhou Z, Shi Y, Fan J, Zhou J, Dai Z. Novel role of semaphorin 3A in the growth and progression of hepatocellular carcinoma. Oncol Rep 2017; 37:3313-3320. [PMID: 28498470 DOI: 10.3892/or.2017.5616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
Semaphorin 3A (SEMA3A), a secretory protein, is a founding member of the semaphorin family and functions in both the biological behavior of tumor cells and the modulation of tumor-associated macrophages. However, the role of SEMA3A in hepatocellular carcinoma (HCC) is still not well established. In the present study, we investigated the expression levels of SEMA3A in 80 HCC tissues and cell lines, using RT-qPCR, western blotting and immunohistochemistry. Expression profile analysis revealed that SEMA3A was significantly overexpressed in human HCC patients and positively correlated with the metastatic potential of HCC cells. Lentiviral transfection into PLC/PRF/5 and HCCLM3 cells was performed to stably upregulate and downregulate the expression of SEMA3A in HCC cells. Cell Counting Kit-8 (CCK-8), wound-healing and invasion assays revealed that SEMA3A promoted the proliferation and migration of HCC cells in vitro. Proteome profiler antibody microarray analysis revealed that overexpression of SEMA3A in HCC cells induced a significant increase in the expression levels of gelsolin-like capping protein (CapG), galectin-3, enolase 2 and epithelial cell adhesion molecule (EpCAM). Furthermore, the upregulation of SEMA3A in HCC cells promoted tumor growth and progression in an HCC mouse model. These results indicate that SEMA3A enhances CapG, galectin-3, enolase 2 and EpCAM expression to promote HCC progression and is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xuedong Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qing Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Dan Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shiming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lei Yu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shaolai Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Erbao Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhengjun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yinghong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
57
|
Post-endocytic sorting of Plexin-D1 controls signal transduction and development of axonal and vascular circuits. Nat Commun 2017; 8:14508. [PMID: 28224988 PMCID: PMC5322531 DOI: 10.1038/ncomms14508] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Local endocytic events involving receptors for axon guidance cues play a central role in controlling growth cone behaviour. Yet, little is known about the fate of internalized receptors, and whether the sorting events directing them to distinct endosomal pathways control guidance decisions. Here, we show that the receptor Plexin-D1 contains a sorting motif that interacts with the adaptor protein GIPC1 to facilitate transport to recycling endosomes. This sorting process promotes colocalization of Plexin-D1 with vesicular pools of active R-ras, leading to its inactivation. In the absence of interaction with GIPC1, missorting of Plexin-D1 results in loss of signalling activity. Consequently, Gipc1 mutant mice show specific defects in axonal projections, as well as vascular structures, that rely on Plexin-D1 signalling for their development. Thus, intracellular sorting steps that occur after receptor internalization by endocytosis provide a critical level of control of cellular responses to guidance signals. Molecular mechanisms controlling axonal growth cone behaviour are only partially understood. Here the authors reveal a role of an adaptor protein GIPC1 in Plexin-D1 receptor recycling, and show that this process is required for axon track formation and vascular patterning in mice.
Collapse
|
58
|
Zhang L, Buck M. Molecular Dynamics Simulations Reveal Isoform Specific Contact Dynamics between the Plexin Rho GTPase Binding Domain (RBD) and Small Rho GTPases Rac1 and Rnd1. J Phys Chem B 2017; 121:1485-1498. [PMID: 28103666 DOI: 10.1021/acs.jpcb.6b11022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Plexin family of transmembrane receptors are unique in that their intracellular region interacts directly with small GTPases of the Rho family. The Rho GTPase binding domain of plexin (RBD)-which is responsible for these interactions-can bind with Rac1 as well as Rnd1 GTPases. GTPase complexes have been crystallized with the RBDs of plexinA1, -A2, and -B1. The protein association is thought to elicit different functional responses in a GTPase and plexin isoform specific manner, but the origin of this is unknown. In this project, we investigated complexes between several RBD and Rac1/Rnd1 GTPases using multimicrosecond length all atom molecular dynamics simulations, also with reference to the free forms of the RBDs and GTPases. In accord with the crystallographic data, the RBDs experience more structural changes than Rho-GTPases upon complex formation. Changes in protein dynamics and networks of correlated motions are revealed by analyzing dihedral angle fluctuations in the proteins. The extent of these changes differs between the different RBDs and also between the Rac1 and Rnd1 GTPases. While the RBDs in the free and bound states have similar-if not decreased-correlations, correlations within the GTPases are increased upon binding. Mapping highly correlated residues to the structures, it is found that the plexinA1, -B1, and -A2 RBDs all have similar communication pathways within the ubiquitin fold, but that different residues are involved. Dynamic network analyses indicate that plexinA1 and -B1 RBDs interact with small GTPases in a similar manner, whereas complexes with the plexinA2 RBD display different features. Importantly complexes with Rnd1 have a considerable number of dynamic correlations and network connections between the proteins, whereas such features are missing in the RBD-Rac1 complexes. Overall, the simulations suggest mechanisms that are consistent with the experimental data on plexinB1 and indicate RBD and GTPase isoform specific changes in protein dynamics upon complex formation.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering Department, Tennessee Technological University , 1 William L Jones Dr., Cookeville, Tennessee 38505, United States
| | - Matthias Buck
- Department of Physiology and Biophysics, Medical School of Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
59
|
Abstract
Protein phosphorylation is one of the widely used posttranslational modifications that alter protein function in vivo. We recently showed phosphorylation of Drosophila Plexin A by cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and subsequent inhibition of plexin-mediated repulsive guidance. This phosphorylation occurs in the active site of the plexin GTPase-activating protein (GAP) domain, which in turn inhibits endogenous GAP activity toward Ras/Rap family small GTP-binding proteins by recruiting the phospho-serine/threonine-binding protein 14-3-3ε. Here we describe how phosphorylation of Plexin A can be detected and quantitated using an in vitro kinase assay and radioactive [γ-P32] adenosine 5'-triphosphate (ATP).
Collapse
Affiliation(s)
- Taehong Yang
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
60
|
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. J Virol 2016; 91:JVI.01613-16. [PMID: 27795423 DOI: 10.1128/jvi.01613-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic neuralgia (PHN) is a common complication of shingles that manifests as prolonged excruciating pain, which has proven difficult to treat. The formation of fused multinucleated cells in ganglia might be associated with this condition. An effective vaccine against VZV is available but not recommended for immunocompromised individuals, highlighting the need for new therapies. This study investigated the viral and cellular responses to hyperfusion, a condition where the usual constraints of cell membranes are overcome and cells form multinucleated cells. This process hinders VZV and is regulated by a viral glycoprotein, gB. A combination of live-cell imaging and next-generation genomics revealed an alteration in viral and cellular responses during hyperfusion that was caused by the loss of gB regulation. These studies reveal mechanisms central to VZV pathogenesis, potentially leading to improved therapies.
Collapse
|
61
|
McColl B, Garg R, Riou P, Riento K, Ridley AJ. Rnd3-induced cell rounding requires interaction with Plexin-B2. J Cell Sci 2016; 129:4046-4056. [PMID: 27656111 PMCID: PMC5117210 DOI: 10.1242/jcs.192211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022] Open
Abstract
Rnd proteins are atypical members of the Rho GTPase family that induce actin cytoskeletal reorganization and cell rounding. Rnd proteins have been reported to bind to the intracellular domain of several plexin receptors, but whether plexins contribute to the Rnd-induced rounding response is not known. Here we show that Rnd3 interacts preferentially with plexin-B2 of the three plexin-B proteins, whereas Rnd2 interacts with all three B-type plexins, and Rnd1 shows only very weak interaction with plexin-B proteins in immunoprecipitations. Plexin-B1 has been reported to act as a GAP for R-Ras and/or Rap1 proteins. We show that all three plexin-B proteins interact with R-Ras and Rap1, but Rnd proteins do not alter this interaction or R-Ras or Rap1 activity. We demonstrate that plexin-B2 promotes Rnd3-induced cell rounding and loss of stress fibres, and enhances the inhibition of HeLa cell invasion by Rnd3. We identify the amino acids in Rnd3 that are required for plexin-B2 interaction, and show that mutation of these amino acids prevents Rnd3-induced morphological changes. These results indicate that plexin-B2 is a downstream target for Rnd3, which contributes to its cellular function.
Collapse
Affiliation(s)
- Brad McColl
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Philippe Riou
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Kirsi Riento
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
62
|
Allosteric Inhibition of a Semaphorin 4D Receptor Plexin B1 by a High-Affinity Macrocyclic Peptide. Cell Chem Biol 2016; 23:1341-1350. [DOI: 10.1016/j.chembiol.2016.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/08/2016] [Accepted: 10/10/2016] [Indexed: 02/04/2023]
|
63
|
Abstract
Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.
Collapse
Affiliation(s)
- Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom;
| | - E Yvonne Jones
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom;
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany;
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
64
|
Barton R, Khakbaz P, Bera I, Klauda JB, Iovine MK, Berger BW. Interplay of Specific Trans- and Juxtamembrane Interfaces in Plexin A3 Dimerization and Signal Transduction. Biochemistry 2016; 55:4928-38. [PMID: 27508400 DOI: 10.1021/acs.biochem.6b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plexins are transmembrane proteins that serve as guidance receptors during angiogenesis, lymphangiogenesis, neuronal development, and zebrafish fin regeneration, with a putative role in cancer metastasis. Receptor dimerization or clustering, induced by extracellular ligand binding but modulated in part by the plexin transmembrane (TM) and juxtamembrane (JM) domains, is thought to drive plexin activity. Previous studies indicate that isolated plexin TM domains interact through a conserved, small-x3-small packing motif, and the cytosolic JM region interacts through a hydrophobic heptad repeat; however, the roles and interplay of these regions in plexin signal transduction remain unclear. Using an integrated experimental and simulation approach, we find disruption of the small-x3-small motifs in the Danio rerio Plexin A3 TM domain enhances dimerization of the TM-JM domain by enhancing JM-mediated dimerization. Furthermore, mutations of the cytosolic JM heptad repeat that disrupt dimerization do so even in the presence of TM domain mutations. However, mutations to the small-x3-small TM interfaces also disrupt Plexin A3 signaling in a zebrafish axonal guidance assay, indicating the importance of this TM interface in signal transduction. Collectively, our experimental and simulation results demonstrate that multiple TM and JM interfaces exist in the Plexin A3 homodimer, and these interfaces independently regulate dimerization that is important in Plexin A3 signal transduction.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Pouyan Khakbaz
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Indrani Bera
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States.,Biophysics Program, University of Maryland , College Park, Maryland 20742-2431, United States
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Bryan W Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States.,Program in Bioengineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
65
|
Marita M, Wang Y, Kaliszewski MJ, Skinner KC, Comar WD, Shi X, Dasari P, Zhang X, Smith AW. Class A Plexins Are Organized as Preformed Inactive Dimers on the Cell Surface. Biophys J 2016; 109:1937-45. [PMID: 26536270 DOI: 10.1016/j.bpj.2015.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023] Open
Abstract
Plexins are single-pass transmembrane receptors that bind the axon guidance molecules semaphorins. Single-pass transmembrane proteins are an important class of receptors that display a wide variety of activation mechanisms, often involving ligand-dependent dimerization or conformational changes. Resolving the activation mechanism and dimerization state of these receptors is extremely challenging, especially in a live-cell environment. Here, we report on the dimerization state of PlexinA4 and its response to activation by semaphorin binding. Semaphorins are dimeric molecules that activate plexin by binding two copies of plexin simultaneously and inducing formation of a specific active dimer of plexin. An open question is whether there are preexisting plexin dimers that could act as autoinhibitory complexes. We address these questions with pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a two-color fluorescence microscopy method that is directly sensitive to protein dimerization in a live-cell environment. With PIE-FCCS, we show that inactive PlexinA4 is dimerized in the live-cell plasma membrane. By comparing the cross correlation of full-length PlexinA4 to control proteins and plexin mutants, we show that dimerization of inactive PlexinA4 requires the Sema domain, but not the cytoplasmic domain. Ligand stimulation with Sema6A does not change the degree of cross correlation, indicating that plexin activation does not lead to higher-order oligomerization. Together, the results suggest that semaphorin activates plexin by disrupting an inhibitory plexin dimer and inducing the active dimer.
Collapse
Affiliation(s)
- Morgan Marita
- Department of Chemistry, University of Akron, Akron, Ohio
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | | | | | - Xiaojun Shi
- Department of Chemistry, University of Akron, Akron, Ohio
| | - Pranathi Dasari
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio.
| |
Collapse
|
66
|
Kong Y, Janssen BJC, Malinauskas T, Vangoor VR, Coles CH, Kaufmann R, Ni T, Gilbert RJC, Padilla-Parra S, Pasterkamp RJ, Jones EY. Structural Basis for Plexin Activation and Regulation. Neuron 2016; 91:548-60. [PMID: 27397516 PMCID: PMC4980550 DOI: 10.1016/j.neuron.2016.06.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
Abstract
Class A plexins (PlxnAs) act as semaphorin receptors and control diverse aspects of nervous system development and plasticity, ranging from axon guidance and neuron migration to synaptic organization. PlxnA signaling requires cytoplasmic domain dimerization, but extracellular regulation and activation mechanisms remain unclear. Here we present crystal structures of PlxnA (PlxnA1, PlxnA2, and PlxnA4) full ectodomains. Domains 1-9 form a ring-like conformation from which the C-terminal domain 10 points away. All our PlxnA ectodomain structures show autoinhibitory, intermolecular "head-to-stalk" (domain 1 to domain 4-5) interactions, which are confirmed by biophysical assays, live cell fluorescence microscopy, and cell-based and neuronal growth cone collapse assays. This work reveals a 2-fold role of the PlxnA ectodomains: imposing a pre-signaling autoinhibitory separation for the cytoplasmic domains via intermolecular head-to-stalk interactions and supporting dimerization-based PlxnA activation upon ligand binding. More generally, our data identify a novel molecular mechanism for preventing premature activation of axon guidance receptors.
Collapse
Affiliation(s)
- Youxin Kong
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Bert J C Janssen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charlotte H Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sergi Padilla-Parra
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
67
|
Yoo SK, Pascoe HG, Pereira T, Kondo S, Jacinto A, Zhang X, Hariharan IK. Plexins function in epithelial repair in both Drosophila and zebrafish. Nat Commun 2016; 7:12282. [PMID: 27452696 PMCID: PMC4962468 DOI: 10.1038/ncomms12282] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. Plexins are semaphorin receptors and are well known for their roles in neuronal pathfinding. Here the authors describe a role for Plexin A in healing damaged epithelia in Drosophila and zebrafish. In Drosophila, Plexin A inhibits the GTPase Rap1 to allow epithelial remodelling to facilitate wound repair.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.,The Miller Institute, University of California, Berkeley, California 94720, USA.,Physiological Genetics Laboratory, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Telmo Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
68
|
Abstract
Secreted class 3 semaphorins (Sema3), which signal through holoreceptor complexes that are formed by different subunits, such as neuropilins (Nrps), proteoglycans, and plexins, were initially characterized as fundamental regulators of axon guidance during embryogenesis. Subsequently, Sema3A, Sema3C, Sema3D, and Sema3E were discovered to play crucial roles in cardiovascular development, mainly acting through Nrp1 and Plexin D1, which funnels the signal of multiple Sema3 in vascular endothelial cells. Mechanistically, Sema3 proteins control cardiovascular patterning through the enzymatic GTPase-activating-protein activity of the cytodomain of Plexin D1, which negatively regulates the function of Rap1, a small GTPase that is well-known for its ability to drive vascular morphogenesis and to elicit the conformational activation of integrin adhesion receptors.
Collapse
Affiliation(s)
- Donatella Valdembri
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| | - Donatella Regano
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Federica Maione
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Enrico Giraudo
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Guido Serini
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| |
Collapse
|
69
|
Ueda Y, Kondo N, Ozawa M, Yasuda K, Tomiyama T, Kinashi T. Sema3e/Plexin D1 Modulates Immunological Synapse and Migration of Thymocytes by Rap1 Inhibition. THE JOURNAL OF IMMUNOLOGY 2016; 196:3019-31. [PMID: 26921307 DOI: 10.4049/jimmunol.1502121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
Regulation of thymocyte trafficking plays an important role during thymic selection, but our understanding of the molecular mechanisms underlying these processes is limited. In this study, we demonstrated that class III semaphorin E (sema3e), a guidance molecule during neural and vascular development, directly inhibited Rap1 activation and LFA-1-dependent adhesion through the GTPase-activating protein activity of plexin D1. Sema3e inhibited Rap1 activation of thymocytes in response to chemokines and TCR stimulation, LFA-mediated adhesion, and T cell-APC interactions. Immunological synapse (IS) formation in mature thymocytes on supported lipid bilayers was also attenuated by sema3e. Impaired IS formation was associated with reduced Rap1 activation on the contact surface and cell periphery. Moreover, a significant increase of CD4(+) thymocytes was detected in the medulla of mice with T cell lineage-specific deletion of plexin D1. Two-photon live imaging of thymic explants and slices revealed enhanced Rap1 activation and migration of CD69(+) double-positive and single-positive cells with plexin D1 deficiency. Our results demonstrate that sema3e/plexin D1 modulates IS formation and Ag-scanning activities of thymocytes within thymic tissues.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Department of Molecular Genetics, Kansai Medical University, Osaka 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Kansai Medical University, Osaka 573-1010, Japan
| | - Madoka Ozawa
- Department of Molecular Genetics, Kansai Medical University, Osaka 573-1010, Japan
| | - Kaneki Yasuda
- Department of Urology and Andrology, Kansai Medical University, Osaka 573-1010, Japan; and
| | - Takashi Tomiyama
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Kansai Medical University, Osaka 573-1010, Japan;
| |
Collapse
|
70
|
Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis. PLoS One 2015; 10:e0146027. [PMID: 26720585 PMCID: PMC4697795 DOI: 10.1371/journal.pone.0146027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022] Open
Abstract
Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (P<0.001) and deep infiltrating endometriotic lesions of uterosacral ligament (P = 0.028)compared with glandular epithelial cells of the endometrium from women with endometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (P<0.001, P<0.001, respectively). NFDs of Anti-TH (+) endometriosis-associated sympathetic nerve of peritoneal endometriosis (p<0.001) and deep endometriosis of uterosacral ligament (p<0.001) were significantly lower than NFDs of para-endometriotic sympathetic nerve. Our results suggest that Sema 3A may contribute to the regulation of aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis.
Collapse
|
71
|
Secondary PDZ domain-binding site on class B plexins enhances the affinity for PDZ-RhoGEF. Proc Natl Acad Sci U S A 2015; 112:14852-7. [PMID: 26627240 DOI: 10.1073/pnas.1508931112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PDZ domains are abundant protein interaction modules and typically recognize a short motif at the C terminus of their ligands, with a few residues in the motif endowing the binding specificity. The sequence-based rules, however, cannot fully account for the specificity between the vast number of PDZ domains and ligands in the cell. Plexins are transmembrane receptors that regulate processes such as axon guidance and angiogenesis. Two related guanine nucleotide exchange factors (GEFs), PDZ-RhoGEF and leukemia-associated RhoGEF (LARG), use their PDZ domains to bind class B plexins and play critical roles in signaling. Here, we present the crystal structure of the full-length cytoplasmic region of PlexinB2 in complex with the PDZ domain of PDZ-RhoGEF. The structure reveals that, in addition to the canonical C-terminal motif/PDZ interaction, the 3D domain of PlexinB2 forms a secondary interface with the PDZ domain. Our biophysical and cell-based assays show that the secondary interface contributes to the specific interaction between plexin and PDZ-RhoGEF and to signaling by plexin in the cell. Formation of secondary interfaces may be a general mechanism for increasing affinity and specificity of modular domain-mediated interactions.
Collapse
|
72
|
Li X, Parker MW, Vander Kooi CW. Control of cellular motility by neuropilin-mediated physical interactions. Biomol Concepts 2015; 5:157-66. [PMID: 25018786 DOI: 10.1515/bmc-2013-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multistep process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, the role of Nrp in migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. Here, we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts toward developing Nrp inhibitors.
Collapse
|
73
|
Peng H, Cao J, Yu R, Danesh F, Wang Y, Mitch WE, Xu J, Hu Z. CKD Stimulates Muscle Protein Loss Via Rho-associated Protein Kinase 1 Activation. J Am Soc Nephrol 2015; 27:509-19. [PMID: 26054539 DOI: 10.1681/asn.2014121208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/27/2014] [Indexed: 11/03/2022] Open
Abstract
In patients with CKD, muscle wasting is common and is associated with morbidity and mortality. Mechanisms leading to loss of muscle proteins include insulin resistance, which suppresses Akt activity and thus stimulates protein degradation via the ubiquitin-proteasome system. However, the specific factors controlling CKD-induced suppression of Akt activity in muscle remain undefined. In mice with CKD, the reduction in Akt activity in muscle exceeded the decrease in upstream insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, suggesting that CKD activates other pathways that suppress Akt. Furthermore, a CKD-induced increase uncovered caspase-3 activity in muscle in these mice. In C2C12 muscle cells, activated caspase-3 cleaves and activates Rho-associated protein kinase 1 (ROCK1), which enhances the activity of phosphatase and tensin homolog (PTEN) and reduces Akt activity. Notably, constitutive activation of ROCK1 also led to increased caspase-3 activity in vitro. In mice with either global ROCK1 knockout or muscle-specific PTEN knockout, CKD-associated muscle proteolysis was blunted. These results suggest ROCK1 activation in CKD and perhaps in other catabolic conditions can promote loss of muscle protein via a negative feedback loop.
Collapse
Affiliation(s)
- Hui Peng
- Department of Internal Medicine, Nephrology Division, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jin Cao
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rizhen Yu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas; Renal Section, Changhai Hospital, Shanghai, China; and
| | - Farhad Danesh
- Nephrology Division, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanlin Wang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jing Xu
- Nephrology Division, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
74
|
Williamson M, de Winter P, Masters JR. Plexin-B1 signalling promotes androgen receptor translocation to the nucleus. Oncogene 2015; 35:1066-72. [DOI: 10.1038/onc.2015.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/18/2015] [Accepted: 03/03/2015] [Indexed: 12/22/2022]
|
75
|
Plexin-B3 suppresses excitatory and promotes inhibitory synapse formation in rat hippocampal neurons. Exp Cell Res 2015; 335:269-78. [PMID: 25989221 DOI: 10.1016/j.yexcr.2015.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
Abstract
Molecular mechanisms underlying synaptogenesis and synaptic plasticity have become one of the main topics in neurobiology. Increasing evidence suggests that axon guidance molecules including semaphorins and plexins participate in synapse formation and elimination. Although class B plexins are widely expressed in the brain, their role in the nervous system remains poorly characterized. We previously identified that B-plexins modulate microtubule dynamics and through this impact dendrite growth in rat hippocampal neurons. Here, we demonstrate that Plexin-B2 and Plexin-B3 are present in dendrites, but do not localize in synapses. We find that overexpression of all B-plexins leads to decreased volume of excitatory synapses, and at the same time Plexin-B1 and Plexin-B3 promote inhibitory synapse assembly. Plexin-B3 mutants revealed that these processes use different downstream pathways. While elimination of excitatory synapses is the result of Plexin-B3 binding to microtubule end binding proteins EB1 and EB3, the increase in inhibitory synapses is mediated by regulation of Ras and Rho GTPases. Overall, our findings demonstrate that Plexin-B3 contributes to regulating synapse formation.
Collapse
|
76
|
Xia J, Swiercz JM, Bañón-Rodríguez I, Matković I, Federico G, Sun T, Franz T, Brakebusch CH, Kumanogoh A, Friedel RH, Martín-Belmonte F, Gröne HJ, Offermanns S, Worzfeld T. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair. Dev Cell 2015; 33:299-313. [PMID: 25892012 DOI: 10.1016/j.devcel.2015.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023]
Abstract
Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central regulatory mechanism of mitotic spindle orientation necessary for the alignment of epithelial cell divisions with the epithelial plane.
Collapse
Affiliation(s)
- Jingjing Xia
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ivana Matković
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35043 Marburg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tianliang Sun
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Timo Franz
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cord H Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University, Osaka 565-0871, Japan
| | - Roland H Friedel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Medical Faculty, University of Frankfurt, 60590 Frankfurt, Germany
| | - Thomas Worzfeld
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
77
|
Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:161-8. [PMID: 25824683 DOI: 10.1016/j.pbiomolbio.2015.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/03/2023]
Abstract
Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.
Collapse
Affiliation(s)
- Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
78
|
Jones EY. Understanding cell signalling systems: paving the way for new therapies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20130155. [PMID: 25624520 PMCID: PMC4308982 DOI: 10.1098/rsta.2013.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cell-to-cell signalling mechanisms of multi-cellular organisms orchestrate human development during embryogenesis and control homeostasis in adult tissues. These are mechanisms vital to human health and perturbation of cell-to-cell signalling is a contributing factor in many pathologies including cancer. The semaphorin cell guidance cues and their cognate plexin receptors exemplify a cell-to-cell signalling system for which insights into mechanistic principles are emerging. X-ray crystallographic data from Diamond beam lines have enabled us to probe the inner workings of semaphorin-plexin signalling to atomic-level resolutions. Importantly, we can complement protein crystallographic results with biophysical and cellular studies to dovetail structural information with functional impact. The signature seven-bladed β propeller 'sema' domain of the semaphorins forms a dimer; in contrast the equivalent domain in the plexins is monomeric. The generic architecture of a semaphorin-plexin complex is characterized by the dimeric semaphorin cross-linking two copies of the plexin receptor. For specific family members, the co-receptor neuropilin serves to bolster this architecture, but in all cases, the dimeric interaction lies at the core of the ligand receptor complex, providing the essential trigger for signalling.
Collapse
Affiliation(s)
- E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
79
|
Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 2015; 6:6385. [PMID: 25721933 PMCID: PMC4351556 DOI: 10.1038/ncomms7385] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/08/2022] Open
Abstract
Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.
Collapse
|
80
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
81
|
Barton R, Palacio D, Iovine MK, Berger BW. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction. PLoS One 2015; 10:e0116368. [PMID: 25565389 PMCID: PMC4286236 DOI: 10.1371/journal.pone.0116368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 01/24/2023] Open
Abstract
Plexins (plxns) are transmembrane (TM) receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM) for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET²) suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F) are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L) are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danica Palacio
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Bryan W. Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
82
|
Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, Pratilas CA, Abele C, Hernandez JM, Ohara M, Okada M, Viale A, Heguy A, Socci ND, Sapino A, Seshan VE, Long S, Inghirami G, Rosen N, Giancotti FG. The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol 2014; 17:81-94. [PMID: 25531777 DOI: 10.1038/ncb3082] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
We identified the Rho GTPase Rnd1 as a candidate metastasis suppressor in basal-like and triple-negative breast cancer through bioinformatics analysis. Depletion of Rnd1 disrupted epithelial adhesion and polarity, induced epithelial-to-mesenchymal transition, and cooperated with deregulated expression of c-Myc or loss of p53 to cause neoplastic conversion. Mechanistic studies revealed that Rnd1 suppresses Ras signalling by activating the GAP domain of Plexin B1, which inhibits Rap1. Rap1 inhibition in turn led to derepression of p120 Ras-GAP, which was able to inhibit Ras. Inactivation of Rnd1 in mammary epithelial cells induced highly undifferentiated and invasive tumours in mice. Conversely, Rnd1 expression inhibited spontaneous and experimental lung colonization in mouse models of metastasis. Genomic studies indicated that gene deletion in combination with epigenetic silencing or, more rarely, point mutation inactivates RND1 in human breast cancer. These results reveal a previously unappreciated mechanism through which Rnd1 restrains activation of Ras-MAPK signalling and breast tumour initiation and progression.
Collapse
Affiliation(s)
- Tomoyo Okada
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Surajit Sinha
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Ilaria Esposito
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Gaia Schiavon
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Miguel A López-Lago
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Wenjing Su
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Christine A Pratilas
- 1] Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Department of Pediatrics, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Cristina Abele
- Department of Biomedical Sciences and Human Oncology, Center of Experimental Medicine and Research, University of Torino, Torino 10126, Italy
| | - Jonathan M Hernandez
- 1] Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Department of Surgery, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Masahiro Ohara
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Agnes Viale
- Genomics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Adriana Heguy
- Geoffrey Beene Translational Oncology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D Socci
- Bioinformatics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anna Sapino
- Department of Medical Sciences, Center of Experimental Medicine and Research, University of Torino, Torino 10126, Italy
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Stephen Long
- Structural Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Giorgio Inghirami
- Department of Biomedical Sciences and Human Oncology, Center of Experimental Medicine and Research, University of Torino, Torino 10126, Italy
| | - Neal Rosen
- 1] Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Filippo G Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
83
|
The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2. Biochem Biophys Res Commun 2014; 453:473-9. [DOI: 10.1016/j.bbrc.2014.09.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022]
|
84
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
85
|
Abstract
Semaphorins are secreted and membrane-associated proteins that regulate many different developmental processes, including neural circuit assembly, bone formation and angiogenesis. Trans and cis interactions between semaphorins and their multimeric receptors trigger intracellular signal transduction networks that regulate cytoskeletal dynamics and influence cell shape, differentiation, motility and survival. Here and in the accompanying poster we provide an overview of the molecular biology of semaphorin signalling within the context of specific cell and developmental processes, highlighting the mechanisms that act to fine-tune, diversify and spatiotemporally control the effects of semaphorins.
Collapse
Affiliation(s)
- Bart C. Jongbloets
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, 3451 PM Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, 3451 PM Utrecht, The Netherlands
| |
Collapse
|
86
|
Zielonka M, Krishnan RK, Swiercz JM, Offermanns S. The IκB kinase complex is required for plexin-B-mediated activation of RhoA. PLoS One 2014; 9:e105661. [PMID: 25137062 PMCID: PMC4138210 DOI: 10.1371/journal.pone.0105661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023] Open
Abstract
Plexins are widely expressed transmembrane proteins that mediate the cellular effects of semaphorins. The molecular mechanisms of plexin-mediated signal transduction are still poorly understood. Here we show that signalling via B-family plexins leading to the activation of the small GTPase RhoA requires activation of the IκB kinase (IKK)-complex. In contrast, plexin-B-dependent regulation of R-Ras activity is not affected by IKK activity. This regulation of plexin signalling depends on the kinase activity of the IKK-complex, but is independent of NF-κB activation. We confirm that the IKK-complex is active in tumour cells and osteoblasts, and we demonstrate that plexin-B-dependent tumour cell invasiveness and regulation of osteoblast differentiation require an active IKK-complex. This study identifies a novel, NF-κB-independent function of the IKK-complex and shows that IKK directs plexin-B signalling to the activation of RhoA.
Collapse
Affiliation(s)
- Matthias Zielonka
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Ramesh K. Krishnan
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Jakub M. Swiercz
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- * E-mail: (SO); (JMS)
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- Medical Faculty, University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (SO); (JMS)
| |
Collapse
|
87
|
Abstract
Precise connectivity in neuronal circuits is a prerequisite for proper brain function. The dauntingly complex environment encountered by axons and dendrites, even after navigation to their target area, prompts the question of how specificity of synaptic connections arises during development. We review developmental strategies and molecular mechanisms that are used by neurons to ensure their precise matching of pre- and postsynaptic elements. The emerging theme is that each circuit uses a combination of simple mechanisms to achieve its refined, often complex connectivity pattern. At increasing levels of resolution, from lamina choice to subcellular targeting, similar signaling concepts are reemployed to narrow the choice of potential matches. Temporal control over synapse development and synapse elimination further ensures the specificity of connections in the nervous system.
Collapse
Affiliation(s)
- Shaul Yogev
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305;
| | | |
Collapse
|
88
|
Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014; 30:967-984. [PMID: 24957881 DOI: 10.1007/s12264-013-1456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/09/2014] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.
Collapse
|
89
|
Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 2014; 1:e23272. [PMID: 24665374 PMCID: PMC3879177 DOI: 10.4161/tisb.23272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
Tissue barriers maintain homeostasis, protect underlying tissues, are remodeled during organogenesis and injury and limit aberrant proliferation and dissemination. In this context, endothelial and epithelial intercellular junctions are the primary targets of various cues. This cellular adaptation requires plasticity and dynamics of adhesion molecules and the associated cytoskeleton, as well as the adhesive-linked signaling platforms. It is therefore not surprising that the guidance molecules from the Semaphorin family arise as novel modifiers of epithelia and endothelia in development and diseases. This review will focus on the actions of Semaphorins, and their cognate receptors, Plexins and Neuropilins, on epithelial and endothelial barrier properties.
Collapse
Affiliation(s)
- Lucas Treps
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Armelle Le Guelte
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Julie Gavard
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
90
|
RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness. Blood 2014; 123:3635-45. [DOI: 10.1182/blood-2014-02-557843] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Key Points
Rho-deficient neutrophils are hyperresponsive. RhoA acts predominantly as a negative regulator of chemotaxis.
Collapse
|
91
|
Tata A, Stoppel DC, Hong S, Ben-Zvi A, Xie T, Gu C. An image-based RNAi screen identifies SH3BP1 as a key effector of Semaphorin 3E-PlexinD1 signaling. ACTA ACUST UNITED AC 2014; 205:573-90. [PMID: 24841563 PMCID: PMC4033773 DOI: 10.1083/jcb.201309004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular signals have to be precisely interpreted intracellularly and translated into diverse cellular behaviors often mediated by cytoskeletal changes. Semaphorins are one of the largest families of guidance cues and play a critical role in many systems. However, how different cell types translate extracellular semaphorin binding into intracellular signaling remains unclear. Here we developed and performed a novel image-based genome-wide functional RNAi screen for downstream signaling molecules that convert the interaction between Semaphorin 3E (Sema3E) and PlexinD1 into cellular behaviors. One of the genes identified in this screen is a RhoGAP protein, SH3-domain binding protein 1 (SH3BP1). We demonstrate that SH3BP1 mediates Sema3E-induced cell collapse through interaction with PlexinD1 and regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1) activity. The identification and characterization of SH3BP1 as a novel downstream effector of Sema3E-PlexinD1 provides an explanation for how extracellular signals are translated into cytoskeletal changes and unique cell behavior, but also lays the foundation for characterizing other genes identified from our screen to obtain a more complete picture of plexin signaling.
Collapse
Affiliation(s)
- Aleksandra Tata
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - David C Stoppel
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Shangyu Hong
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Ayal Ben-Zvi
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Tiao Xie
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Chenghua Gu
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| |
Collapse
|
92
|
Abstract
Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.
Collapse
|
93
|
Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol 2014; 24:342-51. [PMID: 24388877 DOI: 10.1016/j.tcb.2013.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023]
Abstract
Appropriate interneuron migration and distribution is essential for the construction of functional neuronal circuitry and the maintenance of excitatory/inhibitory balance in the brain. Gamma-aminobutyric acid (GABA)ergic interneurons originating from the ventral telencephalon choreograph a complex pattern of migration to reach their target destinations within the developing brain. This review examines the cellular and molecular underpinnings of the major decision-making steps involved in this process of oriental navigation of cortical interneurons.
Collapse
|
94
|
Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 2013; 13:802-14. [PMID: 24319778 DOI: 10.1038/nri3545] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Semaphorins were originally identified as axon-guidance molecules that function during neuronal development. However, cumulative evidence indicates that semaphorins also participate in immune responses, both physiological and pathological, and they are now considered to be potential diagnostic and/or therapeutic targets for a range of diseases. The primary receptors for semaphorins are neuropilins and plexins, which have cell type-specific patterns of expression and are involved in multiple signalling responses. In this Review, we focus on the roles of neuropilin 1 (NRP1) and plexins in the regulation of the immune system, and we summarize recent advances in our understanding of their pathological implications.
Collapse
|
95
|
Choi YI, Duke-Cohan JS, Tan J, Gui J, Singh MK, Epstein JA, Reinherz EL. Plxnd1 expression in thymocytes regulates their intrathymic migration while that in thymic endothelium impacts medullary topology. Front Immunol 2013; 4:392. [PMID: 24312099 PMCID: PMC3832804 DOI: 10.3389/fimmu.2013.00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
An important role for plexinD1 in thymic development is inferred from studies of germline Plxnd1 knockout (KO) mice where mislocalized CD69+ thymocytes as well as ectopic thymic subcapsular medullary structures were observed. Given embryonic lethality of the Plxnd1−/− genotype, fetal liver transplantation was employed in these prior analyses. Such embryonic hematopoietic reconstitution may have transferred Plxnd1 KO endothelial and/or epithelial stem cells in addition to Plxnd1 KO lymphoid progenitors, thereby contributing to that phenotype. Here we use Plxnd1flox/flox mice crossed to pLck-Cre, pKeratin14-Cre, or pTek-Cre transgenic animals to create cell-type specific conditional knockout (CKO) lines involving thymocytes (D1ThyCKO), thymic epithelium (D1EpCKO), and thymic endothelium (D1EnCKO), respectively. These CKOs allowed us to directly assess the role of plexinD1 in each lineage. Loss of plexinD1 expression on double positive (DP) thymocytes leads to their aberrant migration and cortical retention after TCR-mediated positive selection. In contrast, ectopic medulla formation is a consequence of loss of plexinD1 expression on endothelial cells, in turn linked to dysregulation of thymic angiogenesis. D1EpCKO thymi manifest neither abnormality. Collectively, our findings underscore the non-redundant roles for plexinD1 on thymocytes and endothelium, including the dynamic nature of medulla formation resulting from crosstalk between these thymic cellular components.
Collapse
Affiliation(s)
- Young I Choi
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Department of Medicine, Harvard Medical School , Boston, MA , USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2013; 2:e01279. [PMID: 24137545 PMCID: PMC3787391 DOI: 10.7554/elife.01279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huawei He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
97
|
Falta MT, Pinilla C, Mack DG, Tinega AN, Crawford F, Giulianotti M, Santos R, Clayton GM, Wang Y, Zhang X, Maier LA, Marrack P, Kappler JW, Fontenot AP. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. ACTA ACUST UNITED AC 2013; 210:1403-18. [PMID: 23797096 PMCID: PMC3698527 DOI: 10.1084/jem.20122426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identification of peptides that form complexes with beryllium and class II HLA molecules and are recognized by CD4+ T cells from patients with chronic beryllium disease. Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.
Collapse
Affiliation(s)
- Michael T Falta
- Department of Medicine, University of Colorado, Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
99
|
Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res 2013; 319:2323-8. [PMID: 23603280 DOI: 10.1016/j.yexcr.2013.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. :
| |
Collapse
|
100
|
Mizumoto K, Shen K. Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 2013; 77:655-66. [PMID: 23439119 DOI: 10.1016/j.neuron.2012.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
VIDEO ABSTRACT Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. Although axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain-a phenomenon we term synaptic tiling. Using DA8 and DA9 motoneurons, we found that the synaptic tiling requires the PlexinA4 homolog, PLX-1, and two transmembrane semaphorins. In the plexin or semaphorin mutants, synaptic domains from both neurons expand and overlap with each other without guidance defects. In a semaphorin-dependent manner, PLX-1 is concentrated at the synapse-free axonal segment, delineating the tiling border. Furthermore, plexin inhibits presynapse formation by suppressing synaptic F-actin through its cytoplasmic GTPase-activating protein (GAP) domain. Hence, contact-dependent, intra-axonal plexin signaling specifies synaptic circuits by inhibiting synapse formation at the subcellular loci.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | | |
Collapse
|